cgroup.c 93.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
34
#include <linux/proc_fs.h>
35 36
#include <linux/rcupdate.h>
#include <linux/sched.h>
37
#include <linux/backing-dev.h>
38 39 40 41 42
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
43
#include <linux/sort.h>
44
#include <linux/kmod.h>
B
Balbir Singh 已提交
45 46
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
47
#include <linux/hash.h>
48
#include <linux/namei.h>
49
#include <linux/smp_lock.h>
B
Balbir Singh 已提交
50

51 52
#include <asm/atomic.h>

53 54
static DEFINE_MUTEX(cgroup_mutex);

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
/* Generate an array of cgroup subsystem pointers */
#define SUBSYS(_x) &_x ## _subsys,

static struct cgroup_subsys *subsys[] = {
#include <linux/cgroup_subsys.h>
};

/*
 * A cgroupfs_root represents the root of a cgroup hierarchy,
 * and may be associated with a superblock to form an active
 * hierarchy
 */
struct cgroupfs_root {
	struct super_block *sb;

	/*
	 * The bitmask of subsystems intended to be attached to this
	 * hierarchy
	 */
	unsigned long subsys_bits;

	/* The bitmask of subsystems currently attached to this hierarchy */
	unsigned long actual_subsys_bits;

	/* A list running through the attached subsystems */
	struct list_head subsys_list;

	/* The root cgroup for this hierarchy */
	struct cgroup top_cgroup;

	/* Tracks how many cgroups are currently defined in hierarchy.*/
	int number_of_cgroups;

88
	/* A list running through the active hierarchies */
89 90 91 92
	struct list_head root_list;

	/* Hierarchy-specific flags */
	unsigned long flags;
93

94
	/* The path to use for release notifications. */
95
	char release_agent_path[PATH_MAX];
96 97 98 99 100 101 102 103 104
};

/*
 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 * subsystems that are otherwise unattached - it never has more than a
 * single cgroup, and all tasks are part of that cgroup.
 */
static struct cgroupfs_root rootnode;

K
KAMEZAWA Hiroyuki 已提交
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
/*
 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
 * cgroup_subsys->use_id != 0.
 */
#define CSS_ID_MAX	(65535)
struct css_id {
	/*
	 * The css to which this ID points. This pointer is set to valid value
	 * after cgroup is populated. If cgroup is removed, this will be NULL.
	 * This pointer is expected to be RCU-safe because destroy()
	 * is called after synchronize_rcu(). But for safe use, css_is_removed()
	 * css_tryget() should be used for avoiding race.
	 */
	struct cgroup_subsys_state *css;
	/*
	 * ID of this css.
	 */
	unsigned short id;
	/*
	 * Depth in hierarchy which this ID belongs to.
	 */
	unsigned short depth;
	/*
	 * ID is freed by RCU. (and lookup routine is RCU safe.)
	 */
	struct rcu_head rcu_head;
	/*
	 * Hierarchy of CSS ID belongs to.
	 */
	unsigned short stack[0]; /* Array of Length (depth+1) */
};


138 139 140
/* The list of hierarchy roots */

static LIST_HEAD(roots);
141
static int root_count;
142 143 144 145 146

/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
#define dummytop (&rootnode.top_cgroup)

/* This flag indicates whether tasks in the fork and exit paths should
L
Li Zefan 已提交
147 148 149
 * check for fork/exit handlers to call. This avoids us having to do
 * extra work in the fork/exit path if none of the subsystems need to
 * be called.
150
 */
151
static int need_forkexit_callback __read_mostly;
152 153

/* convenient tests for these bits */
154
inline int cgroup_is_removed(const struct cgroup *cgrp)
155
{
156
	return test_bit(CGRP_REMOVED, &cgrp->flags);
157 158 159 160 161 162 163
}

/* bits in struct cgroupfs_root flags field */
enum {
	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
};

164
static int cgroup_is_releasable(const struct cgroup *cgrp)
165 166
{
	const int bits =
167 168 169
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
170 171
}

172
static int notify_on_release(const struct cgroup *cgrp)
173
{
174
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
175 176
}

177 178 179 180 181 182 183
/*
 * for_each_subsys() allows you to iterate on each subsystem attached to
 * an active hierarchy
 */
#define for_each_subsys(_root, _ss) \
list_for_each_entry(_ss, &_root->subsys_list, sibling)

184 185
/* for_each_active_root() allows you to iterate across the active hierarchies */
#define for_each_active_root(_root) \
186 187
list_for_each_entry(_root, &roots, root_list)

188 189 190 191 192 193
/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
static DEFINE_SPINLOCK(release_list_lock);
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
194
static void check_for_release(struct cgroup *cgrp);
195

196 197 198 199 200 201
/* Link structure for associating css_set objects with cgroups */
struct cg_cgroup_link {
	/*
	 * List running through cg_cgroup_links associated with a
	 * cgroup, anchored on cgroup->css_sets
	 */
202
	struct list_head cgrp_link_list;
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
	/*
	 * List running through cg_cgroup_links pointing at a
	 * single css_set object, anchored on css_set->cg_links
	 */
	struct list_head cg_link_list;
	struct css_set *cg;
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
static struct cg_cgroup_link init_css_set_link;

K
KAMEZAWA Hiroyuki 已提交
221 222
static int cgroup_subsys_init_idr(struct cgroup_subsys *ss);

223 224 225 226 227 228
/* css_set_lock protects the list of css_set objects, and the
 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 * due to cgroup_iter_start() */
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
/* hash table for cgroup groups. This improves the performance to
 * find an existing css_set */
#define CSS_SET_HASH_BITS	7
#define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS)
static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];

static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
{
	int i;
	int index;
	unsigned long tmp = 0UL;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
		tmp += (unsigned long)css[i];
	tmp = (tmp >> 16) ^ tmp;

	index = hash_long(tmp, CSS_SET_HASH_BITS);

	return &css_set_table[index];
}

250 251 252 253
/* We don't maintain the lists running through each css_set to its
 * task until after the first call to cgroup_iter_start(). This
 * reduces the fork()/exit() overhead for people who have cgroups
 * compiled into their kernel but not actually in use */
254
static int use_task_css_set_links __read_mostly;
255 256 257 258 259 260 261

/* When we create or destroy a css_set, the operation simply
 * takes/releases a reference count on all the cgroups referenced
 * by subsystems in this css_set. This can end up multiple-counting
 * some cgroups, but that's OK - the ref-count is just a
 * busy/not-busy indicator; ensuring that we only count each cgroup
 * once would require taking a global lock to ensure that no
262 263 264 265 266 267 268
 * subsystems moved between hierarchies while we were doing so.
 *
 * Possible TODO: decide at boot time based on the number of
 * registered subsystems and the number of CPUs or NUMA nodes whether
 * it's better for performance to ref-count every subsystem, or to
 * take a global lock and only add one ref count to each hierarchy.
 */
269 270 271 272

/*
 * unlink a css_set from the list and free it
 */
273
static void unlink_css_set(struct css_set *cg)
274
{
K
KOSAKI Motohiro 已提交
275 276 277
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

278
	hlist_del(&cg->hlist);
279
	css_set_count--;
K
KOSAKI Motohiro 已提交
280 281 282

	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
				 cg_link_list) {
283
		list_del(&link->cg_link_list);
284
		list_del(&link->cgrp_link_list);
285 286
		kfree(link);
	}
287 288
}

289
static void __put_css_set(struct css_set *cg, int taskexit)
290 291
{
	int i;
292 293 294 295 296 297 298 299 300 301 302 303
	/*
	 * Ensure that the refcount doesn't hit zero while any readers
	 * can see it. Similar to atomic_dec_and_lock(), but for an
	 * rwlock
	 */
	if (atomic_add_unless(&cg->refcount, -1, 1))
		return;
	write_lock(&css_set_lock);
	if (!atomic_dec_and_test(&cg->refcount)) {
		write_unlock(&css_set_lock);
		return;
	}
304
	unlink_css_set(cg);
305
	write_unlock(&css_set_lock);
306 307 308

	rcu_read_lock();
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
309
		struct cgroup *cgrp = rcu_dereference(cg->subsys[i]->cgroup);
310 311
		if (atomic_dec_and_test(&cgrp->count) &&
		    notify_on_release(cgrp)) {
312
			if (taskexit)
313 314
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
315 316 317
		}
	}
	rcu_read_unlock();
318
	kfree(cg);
319 320
}

321 322 323 324 325
/*
 * refcounted get/put for css_set objects
 */
static inline void get_css_set(struct css_set *cg)
{
326
	atomic_inc(&cg->refcount);
327 328 329 330
}

static inline void put_css_set(struct css_set *cg)
{
331
	__put_css_set(cg, 0);
332 333
}

334 335
static inline void put_css_set_taskexit(struct css_set *cg)
{
336
	__put_css_set(cg, 1);
337 338
}

339 340 341
/*
 * find_existing_css_set() is a helper for
 * find_css_set(), and checks to see whether an existing
342
 * css_set is suitable.
343 344 345 346
 *
 * oldcg: the cgroup group that we're using before the cgroup
 * transition
 *
347
 * cgrp: the cgroup that we're moving into
348 349 350 351 352 353
 *
 * template: location in which to build the desired set of subsystem
 * state objects for the new cgroup group
 */
static struct css_set *find_existing_css_set(
	struct css_set *oldcg,
354
	struct cgroup *cgrp,
355
	struct cgroup_subsys_state *template[])
356 357
{
	int i;
358
	struct cgroupfs_root *root = cgrp->root;
359 360 361
	struct hlist_head *hhead;
	struct hlist_node *node;
	struct css_set *cg;
362 363 364 365

	/* Built the set of subsystem state objects that we want to
	 * see in the new css_set */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
366
		if (root->subsys_bits & (1UL << i)) {
367 368 369
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
370
			template[i] = cgrp->subsys[i];
371 372 373 374 375 376 377
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
			template[i] = oldcg->subsys[i];
		}
	}

378 379
	hhead = css_set_hash(template);
	hlist_for_each_entry(cg, node, hhead, hlist) {
380 381 382 383
		if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
			/* All subsystems matched */
			return cg;
		}
384
	}
385 386 387 388 389

	/* No existing cgroup group matched */
	return NULL;
}

390 391 392 393 394 395 396 397 398 399 400
static void free_cg_links(struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

	list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
		list_del(&link->cgrp_link_list);
		kfree(link);
	}
}

401 402
/*
 * allocate_cg_links() allocates "count" cg_cgroup_link structures
403
 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
404 405 406 407 408 409 410 411 412 413
 * success or a negative error
 */
static int allocate_cg_links(int count, struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	int i;
	INIT_LIST_HEAD(tmp);
	for (i = 0; i < count; i++) {
		link = kmalloc(sizeof(*link), GFP_KERNEL);
		if (!link) {
414
			free_cg_links(tmp);
415 416
			return -ENOMEM;
		}
417
		list_add(&link->cgrp_link_list, tmp);
418 419 420 421
	}
	return 0;
}

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
/**
 * link_css_set - a helper function to link a css_set to a cgroup
 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
 * @cg: the css_set to be linked
 * @cgrp: the destination cgroup
 */
static void link_css_set(struct list_head *tmp_cg_links,
			 struct css_set *cg, struct cgroup *cgrp)
{
	struct cg_cgroup_link *link;

	BUG_ON(list_empty(tmp_cg_links));
	link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
				cgrp_link_list);
	link->cg = cg;
	list_move(&link->cgrp_link_list, &cgrp->css_sets);
	list_add(&link->cg_link_list, &cg->cg_links);
}

441 442 443 444 445 446 447 448
/*
 * find_css_set() takes an existing cgroup group and a
 * cgroup object, and returns a css_set object that's
 * equivalent to the old group, but with the given cgroup
 * substituted into the appropriate hierarchy. Must be called with
 * cgroup_mutex held
 */
static struct css_set *find_css_set(
449
	struct css_set *oldcg, struct cgroup *cgrp)
450 451 452 453 454 455 456
{
	struct css_set *res;
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
	int i;

	struct list_head tmp_cg_links;

457 458
	struct hlist_head *hhead;

459 460
	/* First see if we already have a cgroup group that matches
	 * the desired set */
461
	read_lock(&css_set_lock);
462
	res = find_existing_css_set(oldcg, cgrp, template);
463 464
	if (res)
		get_css_set(res);
465
	read_unlock(&css_set_lock);
466 467 468 469 470 471 472 473 474 475 476 477 478 479

	if (res)
		return res;

	res = kmalloc(sizeof(*res), GFP_KERNEL);
	if (!res)
		return NULL;

	/* Allocate all the cg_cgroup_link objects that we'll need */
	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
		kfree(res);
		return NULL;
	}

480
	atomic_set(&res->refcount, 1);
481 482
	INIT_LIST_HEAD(&res->cg_links);
	INIT_LIST_HEAD(&res->tasks);
483
	INIT_HLIST_NODE(&res->hlist);
484 485 486 487 488 489 490 491

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
	memcpy(res->subsys, template, sizeof(res->subsys));

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
492
		struct cgroup *cgrp = res->subsys[i]->cgroup;
493
		struct cgroup_subsys *ss = subsys[i];
494
		atomic_inc(&cgrp->count);
495 496 497 498 499
		/*
		 * We want to add a link once per cgroup, so we
		 * only do it for the first subsystem in each
		 * hierarchy
		 */
500 501
		if (ss->root->subsys_list.next == &ss->sibling)
			link_css_set(&tmp_cg_links, res, cgrp);
502
	}
503 504
	if (list_empty(&rootnode.subsys_list))
		link_css_set(&tmp_cg_links, res, dummytop);
505 506 507 508

	BUG_ON(!list_empty(&tmp_cg_links));

	css_set_count++;
509 510 511 512 513

	/* Add this cgroup group to the hash table */
	hhead = css_set_hash(res->subsys);
	hlist_add_head(&res->hlist, hhead);

514 515 516
	write_unlock(&css_set_lock);

	return res;
517 518
}

519 520 521 522 523 524 525 526 527 528
/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
529
 * cgroup_attach_task() can increment it again.  Because a count of zero
530 531 532 533 534 535 536 537 538 539 540 541 542
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
L
Li Zefan 已提交
543 544
 * to the release agent with the name of the cgroup (path relative to
 * the root of cgroup file system) as the argument.
545 546 547 548 549 550 551 552 553 554 555
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
556
 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
L
Li Zefan 已提交
557
 * another.  It does so using cgroup_mutex, however there are
558 559 560
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
561
 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
562 563 564 565
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
566
 * update of a tasks cgroup pointer by cgroup_attach_task()
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
 */

/**
 * cgroup_lock - lock out any changes to cgroup structures
 *
 */
void cgroup_lock(void)
{
	mutex_lock(&cgroup_mutex);
}

/**
 * cgroup_unlock - release lock on cgroup changes
 *
 * Undo the lock taken in a previous cgroup_lock() call.
 */
void cgroup_unlock(void)
{
	mutex_unlock(&cgroup_mutex);
}

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
597
static int cgroup_populate_dir(struct cgroup *cgrp);
598
static struct inode_operations cgroup_dir_inode_operations;
599 600 601
static struct file_operations proc_cgroupstats_operations;

static struct backing_dev_info cgroup_backing_dev_info = {
602
	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
603
};
604

K
KAMEZAWA Hiroyuki 已提交
605 606 607
static int alloc_css_id(struct cgroup_subsys *ss,
			struct cgroup *parent, struct cgroup *child);

608 609 610 611 612 613
static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
{
	struct inode *inode = new_inode(sb);

	if (inode) {
		inode->i_mode = mode;
614 615
		inode->i_uid = current_fsuid();
		inode->i_gid = current_fsgid();
616 617 618 619 620 621
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

622 623 624 625
/*
 * Call subsys's pre_destroy handler.
 * This is called before css refcnt check.
 */
626
static int cgroup_call_pre_destroy(struct cgroup *cgrp)
627 628
{
	struct cgroup_subsys *ss;
629 630
	int ret = 0;

631
	for_each_subsys(cgrp->root, ss)
632 633 634 635 636 637
		if (ss->pre_destroy) {
			ret = ss->pre_destroy(ss, cgrp);
			if (ret)
				break;
		}
	return ret;
638 639
}

640 641 642 643 644 645 646
static void free_cgroup_rcu(struct rcu_head *obj)
{
	struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);

	kfree(cgrp);
}

647 648 649 650
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
651
		struct cgroup *cgrp = dentry->d_fsdata;
652
		struct cgroup_subsys *ss;
653
		BUG_ON(!(cgroup_is_removed(cgrp)));
654 655 656 657 658 659 660
		/* It's possible for external users to be holding css
		 * reference counts on a cgroup; css_put() needs to
		 * be able to access the cgroup after decrementing
		 * the reference count in order to know if it needs to
		 * queue the cgroup to be handled by the release
		 * agent */
		synchronize_rcu();
661 662 663 664 665

		mutex_lock(&cgroup_mutex);
		/*
		 * Release the subsystem state objects.
		 */
666 667
		for_each_subsys(cgrp->root, ss)
			ss->destroy(ss, cgrp);
668 669 670 671

		cgrp->root->number_of_cgroups--;
		mutex_unlock(&cgroup_mutex);

672 673 674 675
		/*
		 * Drop the active superblock reference that we took when we
		 * created the cgroup
		 */
676 677
		deactivate_super(cgrp->root->sb);

678
		call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
	}
	iput(inode);
}

static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

static void cgroup_clear_directory(struct dentry *dentry)
{
	struct list_head *node;

	BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
	spin_lock(&dcache_lock);
	node = dentry->d_subdirs.next;
	while (node != &dentry->d_subdirs) {
		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
		list_del_init(node);
		if (d->d_inode) {
			/* This should never be called on a cgroup
			 * directory with child cgroups */
			BUG_ON(d->d_inode->i_mode & S_IFDIR);
			d = dget_locked(d);
			spin_unlock(&dcache_lock);
			d_delete(d);
			simple_unlink(dentry->d_inode, d);
			dput(d);
			spin_lock(&dcache_lock);
		}
		node = dentry->d_subdirs.next;
	}
	spin_unlock(&dcache_lock);
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
	cgroup_clear_directory(dentry);

	spin_lock(&dcache_lock);
	list_del_init(&dentry->d_u.d_child);
	spin_unlock(&dcache_lock);
	remove_dir(dentry);
}

731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
/*
 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
 * reference to css->refcnt. In general, this refcnt is expected to goes down
 * to zero, soon.
 *
 * CGRP_WAIT_ON_RMDIR flag is modified under cgroup's inode->i_mutex;
 */
DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);

static void cgroup_wakeup_rmdir_waiters(const struct cgroup *cgrp)
{
	if (unlikely(test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
		wake_up_all(&cgroup_rmdir_waitq);
}

747 748 749 750
static int rebind_subsystems(struct cgroupfs_root *root,
			      unsigned long final_bits)
{
	unsigned long added_bits, removed_bits;
751
	struct cgroup *cgrp = &root->top_cgroup;
752 753 754 755 756 757
	int i;

	removed_bits = root->actual_subsys_bits & ~final_bits;
	added_bits = final_bits & ~root->actual_subsys_bits;
	/* Check that any added subsystems are currently free */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
758
		unsigned long bit = 1UL << i;
759 760 761 762 763 764 765 766 767 768 769 770 771
		struct cgroup_subsys *ss = subsys[i];
		if (!(bit & added_bits))
			continue;
		if (ss->root != &rootnode) {
			/* Subsystem isn't free */
			return -EBUSY;
		}
	}

	/* Currently we don't handle adding/removing subsystems when
	 * any child cgroups exist. This is theoretically supportable
	 * but involves complex error handling, so it's being left until
	 * later */
772
	if (root->number_of_cgroups > 1)
773 774 775 776 777 778 779 780
		return -EBUSY;

	/* Process each subsystem */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		unsigned long bit = 1UL << i;
		if (bit & added_bits) {
			/* We're binding this subsystem to this hierarchy */
781
			BUG_ON(cgrp->subsys[i]);
782 783
			BUG_ON(!dummytop->subsys[i]);
			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
784
			mutex_lock(&ss->hierarchy_mutex);
785 786
			cgrp->subsys[i] = dummytop->subsys[i];
			cgrp->subsys[i]->cgroup = cgrp;
787
			list_move(&ss->sibling, &root->subsys_list);
788
			ss->root = root;
789
			if (ss->bind)
790
				ss->bind(ss, cgrp);
791
			mutex_unlock(&ss->hierarchy_mutex);
792 793
		} else if (bit & removed_bits) {
			/* We're removing this subsystem */
794 795
			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
796
			mutex_lock(&ss->hierarchy_mutex);
797 798 799
			if (ss->bind)
				ss->bind(ss, dummytop);
			dummytop->subsys[i]->cgroup = dummytop;
800
			cgrp->subsys[i] = NULL;
801
			subsys[i]->root = &rootnode;
802
			list_move(&ss->sibling, &rootnode.subsys_list);
803
			mutex_unlock(&ss->hierarchy_mutex);
804 805
		} else if (bit & final_bits) {
			/* Subsystem state should already exist */
806
			BUG_ON(!cgrp->subsys[i]);
807 808
		} else {
			/* Subsystem state shouldn't exist */
809
			BUG_ON(cgrp->subsys[i]);
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
		}
	}
	root->subsys_bits = root->actual_subsys_bits = final_bits;
	synchronize_rcu();

	return 0;
}

static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
{
	struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
	struct cgroup_subsys *ss;

	mutex_lock(&cgroup_mutex);
	for_each_subsys(root, ss)
		seq_printf(seq, ",%s", ss->name);
	if (test_bit(ROOT_NOPREFIX, &root->flags))
		seq_puts(seq, ",noprefix");
828 829
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
830 831 832 833 834 835 836
	mutex_unlock(&cgroup_mutex);
	return 0;
}

struct cgroup_sb_opts {
	unsigned long subsys_bits;
	unsigned long flags;
837
	char *release_agent;
838 839 840 841 842 843 844 845 846 847 848
};

/* Convert a hierarchy specifier into a bitmask of subsystems and
 * flags. */
static int parse_cgroupfs_options(char *data,
				     struct cgroup_sb_opts *opts)
{
	char *token, *o = data ?: "all";

	opts->subsys_bits = 0;
	opts->flags = 0;
849
	opts->release_agent = NULL;
850 851 852 853 854

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
		if (!strcmp(token, "all")) {
855 856 857 858 859 860 861 862
			/* Add all non-disabled subsystems */
			int i;
			opts->subsys_bits = 0;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				struct cgroup_subsys *ss = subsys[i];
				if (!ss->disabled)
					opts->subsys_bits |= 1ul << i;
			}
863 864
		} else if (!strcmp(token, "noprefix")) {
			set_bit(ROOT_NOPREFIX, &opts->flags);
865 866 867 868 869 870 871 872 873
		} else if (!strncmp(token, "release_agent=", 14)) {
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
			opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
			if (!opts->release_agent)
				return -ENOMEM;
			strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
			opts->release_agent[PATH_MAX - 1] = 0;
874 875 876 877 878 879
		} else {
			struct cgroup_subsys *ss;
			int i;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				ss = subsys[i];
				if (!strcmp(token, ss->name)) {
880 881
					if (!ss->disabled)
						set_bit(i, &opts->subsys_bits);
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
					break;
				}
			}
			if (i == CGROUP_SUBSYS_COUNT)
				return -ENOENT;
		}
	}

	/* We can't have an empty hierarchy */
	if (!opts->subsys_bits)
		return -EINVAL;

	return 0;
}

static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
901
	struct cgroup *cgrp = &root->top_cgroup;
902 903
	struct cgroup_sb_opts opts;

904
	lock_kernel();
905
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
906 907 908 909 910 911 912 913 914 915 916 917 918 919
	mutex_lock(&cgroup_mutex);

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

	/* Don't allow flags to change at remount */
	if (opts.flags != root->flags) {
		ret = -EINVAL;
		goto out_unlock;
	}

	ret = rebind_subsystems(root, opts.subsys_bits);
920 921
	if (ret)
		goto out_unlock;
922 923

	/* (re)populate subsystem files */
924
	cgroup_populate_dir(cgrp);
925

926 927
	if (opts.release_agent)
		strcpy(root->release_agent_path, opts.release_agent);
928
 out_unlock:
929
	kfree(opts.release_agent);
930
	mutex_unlock(&cgroup_mutex);
931
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
932
	unlock_kernel();
933 934 935 936 937 938 939 940 941 942
	return ret;
}

static struct super_operations cgroup_ops = {
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

943 944 945 946 947 948 949 950
static void init_cgroup_housekeeping(struct cgroup *cgrp)
{
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
	init_rwsem(&cgrp->pids_mutex);
}
951 952
static void init_cgroup_root(struct cgroupfs_root *root)
{
953
	struct cgroup *cgrp = &root->top_cgroup;
954 955 956
	INIT_LIST_HEAD(&root->subsys_list);
	INIT_LIST_HEAD(&root->root_list);
	root->number_of_cgroups = 1;
957 958
	cgrp->root = root;
	cgrp->top_cgroup = cgrp;
959
	init_cgroup_housekeeping(cgrp);
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
}

static int cgroup_test_super(struct super_block *sb, void *data)
{
	struct cgroupfs_root *new = data;
	struct cgroupfs_root *root = sb->s_fs_info;

	/* First check subsystems */
	if (new->subsys_bits != root->subsys_bits)
	    return 0;

	/* Next check flags */
	if (new->flags != root->flags)
		return 0;

	return 1;
}

static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
	struct cgroupfs_root *root = data;

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

	sb->s_fs_info = root;
	root->sb = sb;

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
	struct dentry *dentry;

	if (!inode)
		return -ENOMEM;

	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
	dentry = d_alloc_root(inode);
	if (!dentry) {
		iput(inode);
		return -ENOMEM;
	}
	sb->s_root = dentry;
	return 0;
}

static int cgroup_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
{
	struct cgroup_sb_opts opts;
	int ret = 0;
	struct super_block *sb;
	struct cgroupfs_root *root;
1028
	struct list_head tmp_cg_links;
1029 1030 1031

	/* First find the desired set of subsystems */
	ret = parse_cgroupfs_options(data, &opts);
1032
	if (ret) {
1033
		kfree(opts.release_agent);
1034
		return ret;
1035
	}
1036 1037

	root = kzalloc(sizeof(*root), GFP_KERNEL);
1038
	if (!root) {
1039
		kfree(opts.release_agent);
1040
		return -ENOMEM;
1041
	}
1042 1043 1044 1045

	init_cgroup_root(root);
	root->subsys_bits = opts.subsys_bits;
	root->flags = opts.flags;
1046 1047 1048 1049
	if (opts.release_agent) {
		strcpy(root->release_agent_path, opts.release_agent);
		kfree(opts.release_agent);
	}
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064

	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);

	if (IS_ERR(sb)) {
		kfree(root);
		return PTR_ERR(sb);
	}

	if (sb->s_fs_info != root) {
		/* Reusing an existing superblock */
		BUG_ON(sb->s_root == NULL);
		kfree(root);
		root = NULL;
	} else {
		/* New superblock */
1065
		struct cgroup *root_cgrp = &root->top_cgroup;
1066
		struct inode *inode;
1067
		int i;
1068 1069 1070 1071 1072 1073

		BUG_ON(sb->s_root != NULL);

		ret = cgroup_get_rootdir(sb);
		if (ret)
			goto drop_new_super;
1074
		inode = sb->s_root->d_inode;
1075

1076
		mutex_lock(&inode->i_mutex);
1077 1078
		mutex_lock(&cgroup_mutex);

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
		/*
		 * We're accessing css_set_count without locking
		 * css_set_lock here, but that's OK - it can only be
		 * increased by someone holding cgroup_lock, and
		 * that's us. The worst that can happen is that we
		 * have some link structures left over
		 */
		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
		if (ret) {
			mutex_unlock(&cgroup_mutex);
			mutex_unlock(&inode->i_mutex);
			goto drop_new_super;
		}

1093 1094 1095
		ret = rebind_subsystems(root, root->subsys_bits);
		if (ret == -EBUSY) {
			mutex_unlock(&cgroup_mutex);
1096
			mutex_unlock(&inode->i_mutex);
1097
			goto free_cg_links;
1098 1099 1100 1101 1102 1103
		}

		/* EBUSY should be the only error here */
		BUG_ON(ret);

		list_add(&root->root_list, &roots);
1104
		root_count++;
1105

1106
		sb->s_root->d_fsdata = root_cgrp;
1107 1108
		root->top_cgroup.dentry = sb->s_root;

1109 1110 1111
		/* Link the top cgroup in this hierarchy into all
		 * the css_set objects */
		write_lock(&css_set_lock);
1112 1113 1114
		for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
			struct hlist_head *hhead = &css_set_table[i];
			struct hlist_node *node;
1115
			struct css_set *cg;
1116

1117 1118
			hlist_for_each_entry(cg, node, hhead, hlist)
				link_css_set(&tmp_cg_links, cg, root_cgrp);
1119
		}
1120 1121 1122 1123
		write_unlock(&css_set_lock);

		free_cg_links(&tmp_cg_links);

1124 1125
		BUG_ON(!list_empty(&root_cgrp->sibling));
		BUG_ON(!list_empty(&root_cgrp->children));
1126 1127
		BUG_ON(root->number_of_cgroups != 1);

1128
		cgroup_populate_dir(root_cgrp);
1129
		mutex_unlock(&inode->i_mutex);
1130 1131 1132
		mutex_unlock(&cgroup_mutex);
	}

1133 1134
	simple_set_mnt(mnt, sb);
	return 0;
1135

1136 1137
 free_cg_links:
	free_cg_links(&tmp_cg_links);
1138
 drop_new_super:
1139
	deactivate_locked_super(sb);
1140 1141 1142 1143 1144
	return ret;
}

static void cgroup_kill_sb(struct super_block *sb) {
	struct cgroupfs_root *root = sb->s_fs_info;
1145
	struct cgroup *cgrp = &root->top_cgroup;
1146
	int ret;
K
KOSAKI Motohiro 已提交
1147 1148
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
1149 1150 1151 1152

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
1153 1154
	BUG_ON(!list_empty(&cgrp->children));
	BUG_ON(!list_empty(&cgrp->sibling));
1155 1156 1157 1158 1159 1160 1161 1162

	mutex_lock(&cgroup_mutex);

	/* Rebind all subsystems back to the default hierarchy */
	ret = rebind_subsystems(root, 0);
	/* Shouldn't be able to fail ... */
	BUG_ON(ret);

1163 1164 1165 1166 1167
	/*
	 * Release all the links from css_sets to this hierarchy's
	 * root cgroup
	 */
	write_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1168 1169 1170

	list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
				 cgrp_link_list) {
1171
		list_del(&link->cg_link_list);
1172
		list_del(&link->cgrp_link_list);
1173 1174 1175 1176
		kfree(link);
	}
	write_unlock(&css_set_lock);

1177 1178 1179 1180
	if (!list_empty(&root->root_list)) {
		list_del(&root->root_list);
		root_count--;
	}
1181

1182 1183 1184
	mutex_unlock(&cgroup_mutex);

	kill_litter_super(sb);
L
Li Zefan 已提交
1185
	kfree(root);
1186 1187 1188 1189 1190 1191 1192 1193
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
	.get_sb = cgroup_get_sb,
	.kill_sb = cgroup_kill_sb,
};

1194
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1195 1196 1197 1198 1199 1200 1201 1202 1203
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

L
Li Zefan 已提交
1204 1205 1206 1207 1208 1209
/**
 * cgroup_path - generate the path of a cgroup
 * @cgrp: the cgroup in question
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
1210 1211 1212
 * Called with cgroup_mutex held or else with an RCU-protected cgroup
 * reference.  Writes path of cgroup into buf.  Returns 0 on success,
 * -errno on error.
1213
 */
1214
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1215 1216
{
	char *start;
1217
	struct dentry *dentry = rcu_dereference(cgrp->dentry);
1218

1219
	if (!dentry || cgrp == dummytop) {
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
		/*
		 * Inactive subsystems have no dentry for their root
		 * cgroup
		 */
		strcpy(buf, "/");
		return 0;
	}

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
1232
		int len = dentry->d_name.len;
1233 1234
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
1235 1236 1237
		memcpy(start, cgrp->dentry->d_name.name, len);
		cgrp = cgrp->parent;
		if (!cgrp)
1238
			break;
1239
		dentry = rcu_dereference(cgrp->dentry);
1240
		if (!cgrp->parent)
1241 1242 1243 1244 1245 1246 1247 1248 1249
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}

1250 1251 1252 1253 1254
/*
 * Return the first subsystem attached to a cgroup's hierarchy, and
 * its subsystem id.
 */

1255
static void get_first_subsys(const struct cgroup *cgrp,
1256 1257
			struct cgroup_subsys_state **css, int *subsys_id)
{
1258
	const struct cgroupfs_root *root = cgrp->root;
1259 1260 1261 1262 1263
	const struct cgroup_subsys *test_ss;
	BUG_ON(list_empty(&root->subsys_list));
	test_ss = list_entry(root->subsys_list.next,
			     struct cgroup_subsys, sibling);
	if (css) {
1264
		*css = cgrp->subsys[test_ss->subsys_id];
1265 1266 1267 1268 1269 1270
		BUG_ON(!*css);
	}
	if (subsys_id)
		*subsys_id = test_ss->subsys_id;
}

L
Li Zefan 已提交
1271 1272 1273 1274
/**
 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
 * @cgrp: the cgroup the task is attaching to
 * @tsk: the task to be attached
1275
 *
L
Li Zefan 已提交
1276 1277
 * Call holding cgroup_mutex. May take task_lock of
 * the task 'tsk' during call.
1278
 */
1279
int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1280 1281 1282
{
	int retval = 0;
	struct cgroup_subsys *ss;
1283
	struct cgroup *oldcgrp;
1284
	struct css_set *cg;
1285
	struct css_set *newcg;
1286
	struct cgroupfs_root *root = cgrp->root;
1287 1288
	int subsys_id;

1289
	get_first_subsys(cgrp, NULL, &subsys_id);
1290 1291

	/* Nothing to do if the task is already in that cgroup */
1292 1293
	oldcgrp = task_cgroup(tsk, subsys_id);
	if (cgrp == oldcgrp)
1294 1295 1296 1297
		return 0;

	for_each_subsys(root, ss) {
		if (ss->can_attach) {
1298
			retval = ss->can_attach(ss, cgrp, tsk);
P
Paul Jackson 已提交
1299
			if (retval)
1300 1301 1302 1303
				return retval;
		}
	}

1304 1305 1306 1307
	task_lock(tsk);
	cg = tsk->cgroups;
	get_css_set(cg);
	task_unlock(tsk);
1308 1309 1310 1311
	/*
	 * Locate or allocate a new css_set for this task,
	 * based on its final set of cgroups
	 */
1312
	newcg = find_css_set(cg, cgrp);
1313
	put_css_set(cg);
P
Paul Jackson 已提交
1314
	if (!newcg)
1315 1316
		return -ENOMEM;

1317 1318 1319
	task_lock(tsk);
	if (tsk->flags & PF_EXITING) {
		task_unlock(tsk);
1320
		put_css_set(newcg);
1321 1322
		return -ESRCH;
	}
1323
	rcu_assign_pointer(tsk->cgroups, newcg);
1324 1325
	task_unlock(tsk);

1326 1327 1328 1329 1330 1331 1332 1333
	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
	if (!list_empty(&tsk->cg_list)) {
		list_del(&tsk->cg_list);
		list_add(&tsk->cg_list, &newcg->tasks);
	}
	write_unlock(&css_set_lock);

1334
	for_each_subsys(root, ss) {
P
Paul Jackson 已提交
1335
		if (ss->attach)
1336
			ss->attach(ss, cgrp, oldcgrp, tsk);
1337
	}
1338
	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1339
	synchronize_rcu();
1340
	put_css_set(cg);
1341 1342 1343 1344 1345 1346

	/*
	 * wake up rmdir() waiter. the rmdir should fail since the cgroup
	 * is no longer empty.
	 */
	cgroup_wakeup_rmdir_waiters(cgrp);
1347 1348 1349 1350
	return 0;
}

/*
1351 1352
 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
 * held. May take task_lock of task
1353
 */
1354
static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1355 1356
{
	struct task_struct *tsk;
1357
	const struct cred *cred = current_cred(), *tcred;
1358 1359 1360 1361
	int ret;

	if (pid) {
		rcu_read_lock();
1362
		tsk = find_task_by_vpid(pid);
1363 1364 1365 1366 1367
		if (!tsk || tsk->flags & PF_EXITING) {
			rcu_read_unlock();
			return -ESRCH;
		}

1368 1369 1370 1371 1372
		tcred = __task_cred(tsk);
		if (cred->euid &&
		    cred->euid != tcred->uid &&
		    cred->euid != tcred->suid) {
			rcu_read_unlock();
1373 1374
			return -EACCES;
		}
1375 1376
		get_task_struct(tsk);
		rcu_read_unlock();
1377 1378 1379 1380 1381
	} else {
		tsk = current;
		get_task_struct(tsk);
	}

1382
	ret = cgroup_attach_task(cgrp, tsk);
1383 1384 1385 1386
	put_task_struct(tsk);
	return ret;
}

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
{
	int ret;
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	ret = attach_task_by_pid(cgrp, pid);
	cgroup_unlock();
	return ret;
}

1397 1398 1399 1400 1401
/* The various types of files and directories in a cgroup file system */
enum cgroup_filetype {
	FILE_ROOT,
	FILE_DIR,
	FILE_TASKLIST,
1402 1403
	FILE_NOTIFY_ON_RELEASE,
	FILE_RELEASE_AGENT,
1404 1405
};

1406 1407 1408 1409
/**
 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
 * @cgrp: the cgroup to be checked for liveness
 *
1410 1411
 * On success, returns true; the lock should be later released with
 * cgroup_unlock(). On failure returns false with no lock held.
1412
 */
1413
bool cgroup_lock_live_group(struct cgroup *cgrp)
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
{
	mutex_lock(&cgroup_mutex);
	if (cgroup_is_removed(cgrp)) {
		mutex_unlock(&cgroup_mutex);
		return false;
	}
	return true;
}

static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	strcpy(cgrp->root->release_agent_path, buffer);
1430
	cgroup_unlock();
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
	return 0;
}

static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
				     struct seq_file *seq)
{
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	seq_puts(seq, cgrp->root->release_agent_path);
	seq_putc(seq, '\n');
1441
	cgroup_unlock();
1442 1443 1444
	return 0;
}

1445 1446 1447
/* A buffer size big enough for numbers or short strings */
#define CGROUP_LOCAL_BUFFER_SIZE 64

1448
static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1449 1450 1451
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
1452
{
1453
	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
	int retval = 0;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */
1465
	strstrip(buffer);
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
	if (cft->write_u64) {
		u64 val = simple_strtoull(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_u64(cgrp, cft, val);
	} else {
		s64 val = simple_strtoll(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_s64(cgrp, cft, val);
	}
1477 1478 1479 1480 1481
	if (!retval)
		retval = nbytes;
	return retval;
}

1482 1483 1484 1485 1486
static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   const char __user *userbuf,
				   size_t nbytes, loff_t *unused_ppos)
{
1487
	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
	int retval = 0;
	size_t max_bytes = cft->max_write_len;
	char *buffer = local_buffer;

	if (!max_bytes)
		max_bytes = sizeof(local_buffer) - 1;
	if (nbytes >= max_bytes)
		return -E2BIG;
	/* Allocate a dynamic buffer if we need one */
	if (nbytes >= sizeof(local_buffer)) {
		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
		if (buffer == NULL)
			return -ENOMEM;
	}
L
Li Zefan 已提交
1502 1503 1504 1505
	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out;
	}
1506 1507 1508 1509 1510 1511

	buffer[nbytes] = 0;     /* nul-terminate */
	strstrip(buffer);
	retval = cft->write_string(cgrp, cft, buffer);
	if (!retval)
		retval = nbytes;
L
Li Zefan 已提交
1512
out:
1513 1514 1515 1516 1517
	if (buffer != local_buffer)
		kfree(buffer);
	return retval;
}

1518 1519 1520 1521
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1522
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1523

1524
	if (cgroup_is_removed(cgrp))
1525
		return -ENODEV;
1526
	if (cft->write)
1527
		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1528 1529
	if (cft->write_u64 || cft->write_s64)
		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1530 1531
	if (cft->write_string)
		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1532 1533 1534 1535
	if (cft->trigger) {
		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
		return ret ? ret : nbytes;
	}
1536
	return -EINVAL;
1537 1538
}

1539 1540 1541 1542
static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
1543
{
1544
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1545
	u64 val = cft->read_u64(cgrp, cft);
1546 1547 1548 1549 1550
	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1551 1552 1553 1554 1555
static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
{
1556
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1557 1558 1559 1560 1561 1562
	s64 val = cft->read_s64(cgrp, cft);
	int len = sprintf(tmp, "%lld\n", (long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1563 1564 1565 1566
static ssize_t cgroup_file_read(struct file *file, char __user *buf,
				   size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1567
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1568

1569
	if (cgroup_is_removed(cgrp))
1570 1571 1572
		return -ENODEV;

	if (cft->read)
1573
		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1574 1575
	if (cft->read_u64)
		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
1576 1577
	if (cft->read_s64)
		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
1578 1579 1580
	return -EINVAL;
}

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
/*
 * seqfile ops/methods for returning structured data. Currently just
 * supports string->u64 maps, but can be extended in future.
 */

struct cgroup_seqfile_state {
	struct cftype *cft;
	struct cgroup *cgroup;
};

static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
{
	struct seq_file *sf = cb->state;
	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
}

static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
	struct cgroup_seqfile_state *state = m->private;
	struct cftype *cft = state->cft;
1601 1602 1603 1604 1605 1606 1607 1608
	if (cft->read_map) {
		struct cgroup_map_cb cb = {
			.fill = cgroup_map_add,
			.state = m,
		};
		return cft->read_map(state->cgroup, cft, &cb);
	}
	return cft->read_seq_string(state->cgroup, cft, m);
1609 1610
}

1611
static int cgroup_seqfile_release(struct inode *inode, struct file *file)
1612 1613 1614 1615 1616 1617 1618 1619
{
	struct seq_file *seq = file->private_data;
	kfree(seq->private);
	return single_release(inode, file);
}

static struct file_operations cgroup_seqfile_operations = {
	.read = seq_read,
1620
	.write = cgroup_file_write,
1621 1622 1623 1624
	.llseek = seq_lseek,
	.release = cgroup_seqfile_release,
};

1625 1626 1627 1628 1629 1630 1631 1632 1633
static int cgroup_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;
	cft = __d_cft(file->f_dentry);
1634

1635
	if (cft->read_map || cft->read_seq_string) {
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
		struct cgroup_seqfile_state *state =
			kzalloc(sizeof(*state), GFP_USER);
		if (!state)
			return -ENOMEM;
		state->cft = cft;
		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
		file->f_op = &cgroup_seqfile_operations;
		err = single_open(file, cgroup_seqfile_show, state);
		if (err < 0)
			kfree(state);
	} else if (cft->open)
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

static struct file_operations cgroup_file_operations = {
	.read = cgroup_file_read,
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

static struct inode_operations cgroup_dir_inode_operations = {
	.lookup = simple_lookup,
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
};

L
Li Zefan 已提交
1692
static int cgroup_create_file(struct dentry *dentry, mode_t mode,
1693 1694
				struct super_block *sb)
{
A
Al Viro 已提交
1695
	static const struct dentry_operations cgroup_dops = {
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
		.d_iput = cgroup_diput,
	};

	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);

		/* start with the directory inode held, so that we can
		 * populate it without racing with another mkdir */
1719
		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
	}
	dentry->d_op = &cgroup_dops;
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
L
Li Zefan 已提交
1731 1732 1733 1734 1735
 * cgroup_create_dir - create a directory for an object.
 * @cgrp: the cgroup we create the directory for. It must have a valid
 *        ->parent field. And we are going to fill its ->dentry field.
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new directory.
1736
 */
1737
static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
L
Li Zefan 已提交
1738
				mode_t mode)
1739 1740 1741 1742
{
	struct dentry *parent;
	int error = 0;

1743 1744
	parent = cgrp->parent->dentry;
	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1745
	if (!error) {
1746
		dentry->d_fsdata = cgrp;
1747
		inc_nlink(parent->d_inode);
1748
		rcu_assign_pointer(cgrp->dentry, dentry);
1749 1750 1751 1752 1753 1754 1755
		dget(dentry);
	}
	dput(dentry);

	return error;
}

L
Li Zefan 已提交
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
/**
 * cgroup_file_mode - deduce file mode of a control file
 * @cft: the control file in question
 *
 * returns cft->mode if ->mode is not 0
 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
 * returns S_IRUGO if it has only a read handler
 * returns S_IWUSR if it has only a write hander
 */
static mode_t cgroup_file_mode(const struct cftype *cft)
{
	mode_t mode = 0;

	if (cft->mode)
		return cft->mode;

	if (cft->read || cft->read_u64 || cft->read_s64 ||
	    cft->read_map || cft->read_seq_string)
		mode |= S_IRUGO;

	if (cft->write || cft->write_u64 || cft->write_s64 ||
	    cft->write_string || cft->trigger)
		mode |= S_IWUSR;

	return mode;
}

1783
int cgroup_add_file(struct cgroup *cgrp,
1784 1785 1786
		       struct cgroup_subsys *subsys,
		       const struct cftype *cft)
{
1787
	struct dentry *dir = cgrp->dentry;
1788 1789
	struct dentry *dentry;
	int error;
L
Li Zefan 已提交
1790
	mode_t mode;
1791 1792

	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1793
	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1794 1795 1796 1797 1798 1799 1800
		strcpy(name, subsys->name);
		strcat(name, ".");
	}
	strcat(name, cft->name);
	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
	dentry = lookup_one_len(name, dir, strlen(name));
	if (!IS_ERR(dentry)) {
L
Li Zefan 已提交
1801 1802
		mode = cgroup_file_mode(cft);
		error = cgroup_create_file(dentry, mode | S_IFREG,
1803
						cgrp->root->sb);
1804 1805 1806 1807 1808 1809 1810 1811
		if (!error)
			dentry->d_fsdata = (void *)cft;
		dput(dentry);
	} else
		error = PTR_ERR(dentry);
	return error;
}

1812
int cgroup_add_files(struct cgroup *cgrp,
1813 1814 1815 1816 1817 1818
			struct cgroup_subsys *subsys,
			const struct cftype cft[],
			int count)
{
	int i, err;
	for (i = 0; i < count; i++) {
1819
		err = cgroup_add_file(cgrp, subsys, &cft[i]);
1820 1821 1822 1823 1824 1825
		if (err)
			return err;
	}
	return 0;
}

L
Li Zefan 已提交
1826 1827 1828 1829 1830 1831
/**
 * cgroup_task_count - count the number of tasks in a cgroup.
 * @cgrp: the cgroup in question
 *
 * Return the number of tasks in the cgroup.
 */
1832
int cgroup_task_count(const struct cgroup *cgrp)
1833 1834
{
	int count = 0;
K
KOSAKI Motohiro 已提交
1835
	struct cg_cgroup_link *link;
1836 1837

	read_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1838
	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
1839
		count += atomic_read(&link->cg->refcount);
1840 1841
	}
	read_unlock(&css_set_lock);
1842 1843 1844
	return count;
}

1845 1846 1847 1848
/*
 * Advance a list_head iterator.  The iterator should be positioned at
 * the start of a css_set
 */
1849
static void cgroup_advance_iter(struct cgroup *cgrp,
1850 1851 1852 1853 1854 1855 1856 1857 1858
					  struct cgroup_iter *it)
{
	struct list_head *l = it->cg_link;
	struct cg_cgroup_link *link;
	struct css_set *cg;

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
1859
		if (l == &cgrp->css_sets) {
1860 1861 1862
			it->cg_link = NULL;
			return;
		}
1863
		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1864 1865 1866 1867 1868 1869
		cg = link->cg;
	} while (list_empty(&cg->tasks));
	it->cg_link = l;
	it->task = cg->tasks.next;
}

1870 1871 1872 1873 1874 1875 1876 1877 1878
/*
 * To reduce the fork() overhead for systems that are not actually
 * using their cgroups capability, we don't maintain the lists running
 * through each css_set to its tasks until we see the list actually
 * used - in other words after the first call to cgroup_iter_start().
 *
 * The tasklist_lock is not held here, as do_each_thread() and
 * while_each_thread() are protected by RCU.
 */
1879
static void cgroup_enable_task_cg_lists(void)
1880 1881 1882 1883 1884 1885
{
	struct task_struct *p, *g;
	write_lock(&css_set_lock);
	use_task_css_set_links = 1;
	do_each_thread(g, p) {
		task_lock(p);
1886 1887 1888 1889 1890 1891
		/*
		 * We should check if the process is exiting, otherwise
		 * it will race with cgroup_exit() in that the list
		 * entry won't be deleted though the process has exited.
		 */
		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
1892 1893 1894 1895 1896 1897
			list_add(&p->cg_list, &p->cgroups->tasks);
		task_unlock(p);
	} while_each_thread(g, p);
	write_unlock(&css_set_lock);
}

1898
void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
1899 1900 1901 1902 1903 1904
{
	/*
	 * The first time anyone tries to iterate across a cgroup,
	 * we need to enable the list linking each css_set to its
	 * tasks, and fix up all existing tasks.
	 */
1905 1906 1907
	if (!use_task_css_set_links)
		cgroup_enable_task_cg_lists();

1908
	read_lock(&css_set_lock);
1909 1910
	it->cg_link = &cgrp->css_sets;
	cgroup_advance_iter(cgrp, it);
1911 1912
}

1913
struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1914 1915 1916 1917
					struct cgroup_iter *it)
{
	struct task_struct *res;
	struct list_head *l = it->task;
1918
	struct cg_cgroup_link *link;
1919 1920 1921 1922 1923 1924 1925

	/* If the iterator cg is NULL, we have no tasks */
	if (!it->cg_link)
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
1926 1927
	link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
	if (l == &link->cg->tasks) {
1928 1929
		/* We reached the end of this task list - move on to
		 * the next cg_cgroup_link */
1930
		cgroup_advance_iter(cgrp, it);
1931 1932 1933 1934 1935 1936
	} else {
		it->task = l;
	}
	return res;
}

1937
void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
1938 1939 1940 1941
{
	read_unlock(&css_set_lock);
}

1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively) simultaneously.
		 */
		return t1 > t2;
	}
}

/*
 * This function is a callback from heap_insert() and is used to order
 * the heap.
 * In this case we order the heap in descending task start time.
 */
static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

/**
 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
 * @scan: struct cgroup_scanner containing arguments for the scan
 *
 * Arguments include pointers to callback functions test_task() and
 * process_task().
 * Iterate through all the tasks in a cgroup, calling test_task() for each,
 * and if it returns true, call process_task() for it also.
 * The test_task pointer may be NULL, meaning always true (select all tasks).
 * Effectively duplicates cgroup_iter_{start,next,end}()
 * but does not lock css_set_lock for the call to process_task().
 * The struct cgroup_scanner may be embedded in any structure of the caller's
 * creation.
 * It is guaranteed that process_task() will act on every task that
 * is a member of the cgroup for the duration of this call. This
 * function may or may not call process_task() for tasks that exit
 * or move to a different cgroup during the call, or are forked or
 * move into the cgroup during the call.
 *
 * Note that test_task() may be called with locks held, and may in some
 * situations be called multiple times for the same task, so it should
 * be cheap.
 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
 * pre-allocated and will be used for heap operations (and its "gt" member will
 * be overwritten), else a temporary heap will be used (allocation of which
 * may cause this function to fail).
 */
int cgroup_scan_tasks(struct cgroup_scanner *scan)
{
	int retval, i;
	struct cgroup_iter it;
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap tmp_heap;
	struct ptr_heap *heap;
	struct timespec latest_time = { 0, 0 };

	if (scan->heap) {
		/* The caller supplied our heap and pre-allocated its memory */
		heap = scan->heap;
		heap->gt = &started_after;
	} else {
		/* We need to allocate our own heap memory */
		heap = &tmp_heap;
		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
		if (retval)
			/* cannot allocate the heap */
			return retval;
	}

 again:
	/*
	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
	 * to determine which are of interest, and using the scanner's
	 * "process_task" callback to process any of them that need an update.
	 * Since we don't want to hold any locks during the task updates,
	 * gather tasks to be processed in a heap structure.
	 * The heap is sorted by descending task start time.
	 * If the statically-sized heap fills up, we overflow tasks that
	 * started later, and in future iterations only consider tasks that
	 * started after the latest task in the previous pass. This
	 * guarantees forward progress and that we don't miss any tasks.
	 */
	heap->size = 0;
	cgroup_iter_start(scan->cg, &it);
	while ((p = cgroup_iter_next(scan->cg, &it))) {
		/*
		 * Only affect tasks that qualify per the caller's callback,
		 * if he provided one
		 */
		if (scan->test_task && !scan->test_task(p, scan))
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(heap, p);
		if (dropped == NULL) {
			/*
			 * The new task was inserted; the heap wasn't
			 * previously full
			 */
			get_task_struct(p);
		} else if (dropped != p) {
			/*
			 * The new task was inserted, and pushed out a
			 * different task
			 */
			get_task_struct(p);
			put_task_struct(dropped);
		}
		/*
		 * Else the new task was newer than anything already in
		 * the heap and wasn't inserted
		 */
	}
	cgroup_iter_end(scan->cg, &it);

	if (heap->size) {
		for (i = 0; i < heap->size; i++) {
2079
			struct task_struct *q = heap->ptrs[i];
2080
			if (i == 0) {
2081 2082
				latest_time = q->start_time;
				latest_task = q;
2083 2084
			}
			/* Process the task per the caller's callback */
2085 2086
			scan->process_task(q, scan);
			put_task_struct(q);
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't get processed.
		 * Not the most efficient way to do it, but it avoids
		 * having to take callback_mutex in the fork path
		 */
		goto again;
	}
	if (heap == &tmp_heap)
		heap_free(&tmp_heap);
	return 0;
}

2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
/*
 * Stuff for reading the 'tasks' file.
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 */

/*
 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2114
 * 'cgrp'.  Return actual number of pids loaded.  No need to
2115 2116 2117 2118
 * task_lock(p) when reading out p->cgroup, since we're in an RCU
 * read section, so the css_set can't go away, and is
 * immutable after creation.
 */
2119
static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
2120
{
2121
	int n = 0, pid;
2122 2123
	struct cgroup_iter it;
	struct task_struct *tsk;
2124 2125
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
2126 2127
		if (unlikely(n == npids))
			break;
2128 2129 2130
		pid = task_pid_vnr(tsk);
		if (pid > 0)
			pidarray[n++] = pid;
2131
	}
2132
	cgroup_iter_end(cgrp, &it);
2133 2134 2135
	return n;
}

B
Balbir Singh 已提交
2136
/**
L
Li Zefan 已提交
2137
 * cgroupstats_build - build and fill cgroupstats
B
Balbir Singh 已提交
2138 2139 2140
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
L
Li Zefan 已提交
2141 2142 2143
 *
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
B
Balbir Singh 已提交
2144 2145 2146 2147
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
2148
	struct cgroup *cgrp;
B
Balbir Singh 已提交
2149 2150
	struct cgroup_iter it;
	struct task_struct *tsk;
2151

B
Balbir Singh 已提交
2152
	/*
2153 2154
	 * Validate dentry by checking the superblock operations,
	 * and make sure it's a directory.
B
Balbir Singh 已提交
2155
	 */
2156 2157
	if (dentry->d_sb->s_op != &cgroup_ops ||
	    !S_ISDIR(dentry->d_inode->i_mode))
B
Balbir Singh 已提交
2158 2159 2160
		 goto err;

	ret = 0;
2161
	cgrp = dentry->d_fsdata;
B
Balbir Singh 已提交
2162

2163 2164
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
B
Balbir Singh 已提交
2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
2184
	cgroup_iter_end(cgrp, &it);
B
Balbir Singh 已提交
2185 2186 2187 2188 2189

err:
	return ret;
}

2190 2191 2192 2193 2194
static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

2195

2196
/*
2197 2198 2199
 * seq_file methods for the "tasks" file. The seq_file position is the
 * next pid to display; the seq_file iterator is a pointer to the pid
 * in the cgroup->tasks_pids array.
2200
 */
2201 2202

static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos)
2203
{
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
	/*
	 * Initially we receive a position value that corresponds to
	 * one more than the last pid shown (or 0 on the first call or
	 * after a seek to the start). Use a binary-search to find the
	 * next pid to display, if any
	 */
	struct cgroup *cgrp = s->private;
	int index = 0, pid = *pos;
	int *iter;

	down_read(&cgrp->pids_mutex);
	if (pid) {
		int end = cgrp->pids_length;
S
Stephen Rothwell 已提交
2217

2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
		while (index < end) {
			int mid = (index + end) / 2;
			if (cgrp->tasks_pids[mid] == pid) {
				index = mid;
				break;
			} else if (cgrp->tasks_pids[mid] <= pid)
				index = mid + 1;
			else
				end = mid;
		}
	}
	/* If we're off the end of the array, we're done */
	if (index >= cgrp->pids_length)
		return NULL;
	/* Update the abstract position to be the actual pid that we found */
	iter = cgrp->tasks_pids + index;
	*pos = *iter;
	return iter;
}

static void cgroup_tasks_stop(struct seq_file *s, void *v)
{
	struct cgroup *cgrp = s->private;
	up_read(&cgrp->pids_mutex);
}

static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos)
{
	struct cgroup *cgrp = s->private;
	int *p = v;
	int *end = cgrp->tasks_pids + cgrp->pids_length;

	/*
	 * Advance to the next pid in the array. If this goes off the
	 * end, we're done
	 */
	p++;
	if (p >= end) {
		return NULL;
	} else {
		*pos = *p;
		return p;
	}
}

static int cgroup_tasks_show(struct seq_file *s, void *v)
{
	return seq_printf(s, "%d\n", *(int *)v);
}
2267

2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
static struct seq_operations cgroup_tasks_seq_operations = {
	.start = cgroup_tasks_start,
	.stop = cgroup_tasks_stop,
	.next = cgroup_tasks_next,
	.show = cgroup_tasks_show,
};

static void release_cgroup_pid_array(struct cgroup *cgrp)
{
	down_write(&cgrp->pids_mutex);
	BUG_ON(!cgrp->pids_use_count);
	if (!--cgrp->pids_use_count) {
		kfree(cgrp->tasks_pids);
		cgrp->tasks_pids = NULL;
		cgrp->pids_length = 0;
	}
	up_write(&cgrp->pids_mutex);
2285 2286
}

2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
static int cgroup_tasks_release(struct inode *inode, struct file *file)
{
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);

	if (!(file->f_mode & FMODE_READ))
		return 0;

	release_cgroup_pid_array(cgrp);
	return seq_release(inode, file);
}

static struct file_operations cgroup_tasks_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.write = cgroup_file_write,
	.release = cgroup_tasks_release,
};

2305
/*
2306
 * Handle an open on 'tasks' file.  Prepare an array containing the
2307 2308
 * process id's of tasks currently attached to the cgroup being opened.
 */
2309

2310 2311
static int cgroup_tasks_open(struct inode *unused, struct file *file)
{
2312
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2313 2314
	pid_t *pidarray;
	int npids;
2315
	int retval;
2316

2317
	/* Nothing to do for write-only files */
2318 2319 2320 2321 2322 2323 2324 2325 2326
	if (!(file->f_mode & FMODE_READ))
		return 0;

	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
2327
	npids = cgroup_task_count(cgrp);
2328 2329 2330 2331 2332
	pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
	if (!pidarray)
		return -ENOMEM;
	npids = pid_array_load(pidarray, npids, cgrp);
	sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2333

2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
	/*
	 * Store the array in the cgroup, freeing the old
	 * array if necessary
	 */
	down_write(&cgrp->pids_mutex);
	kfree(cgrp->tasks_pids);
	cgrp->tasks_pids = pidarray;
	cgrp->pids_length = npids;
	cgrp->pids_use_count++;
	up_write(&cgrp->pids_mutex);

	file->f_op = &cgroup_tasks_operations;

	retval = seq_open(file, &cgroup_tasks_seq_operations);
	if (retval) {
		release_cgroup_pid_array(cgrp);
		return retval;
2351
	}
2352
	((struct seq_file *)file->private_data)->private = cgrp;
2353 2354 2355
	return 0;
}

2356
static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2357 2358
					    struct cftype *cft)
{
2359
	return notify_on_release(cgrp);
2360 2361
}

2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
static int cgroup_write_notify_on_release(struct cgroup *cgrp,
					  struct cftype *cft,
					  u64 val)
{
	clear_bit(CGRP_RELEASABLE, &cgrp->flags);
	if (val)
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	else
		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	return 0;
}

2374 2375 2376
/*
 * for the common functions, 'private' gives the type of file
 */
2377 2378 2379 2380
static struct cftype files[] = {
	{
		.name = "tasks",
		.open = cgroup_tasks_open,
2381
		.write_u64 = cgroup_tasks_write,
2382 2383
		.release = cgroup_tasks_release,
		.private = FILE_TASKLIST,
L
Li Zefan 已提交
2384
		.mode = S_IRUGO | S_IWUSR,
2385 2386 2387 2388
	},

	{
		.name = "notify_on_release",
2389
		.read_u64 = cgroup_read_notify_on_release,
2390
		.write_u64 = cgroup_write_notify_on_release,
2391 2392 2393 2394 2395 2396
		.private = FILE_NOTIFY_ON_RELEASE,
	},
};

static struct cftype cft_release_agent = {
	.name = "release_agent",
2397 2398 2399
	.read_seq_string = cgroup_release_agent_show,
	.write_string = cgroup_release_agent_write,
	.max_write_len = PATH_MAX,
2400
	.private = FILE_RELEASE_AGENT,
2401 2402
};

2403
static int cgroup_populate_dir(struct cgroup *cgrp)
2404 2405 2406 2407 2408
{
	int err;
	struct cgroup_subsys *ss;

	/* First clear out any existing files */
2409
	cgroup_clear_directory(cgrp->dentry);
2410

2411
	err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2412 2413 2414
	if (err < 0)
		return err;

2415 2416
	if (cgrp == cgrp->top_cgroup) {
		if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2417 2418 2419
			return err;
	}

2420 2421
	for_each_subsys(cgrp->root, ss) {
		if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2422 2423
			return err;
	}
K
KAMEZAWA Hiroyuki 已提交
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434
	/* This cgroup is ready now */
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		/*
		 * Update id->css pointer and make this css visible from
		 * CSS ID functions. This pointer will be dereferened
		 * from RCU-read-side without locks.
		 */
		if (css->id)
			rcu_assign_pointer(css->id->css, css);
	}
2435 2436 2437 2438 2439 2440

	return 0;
}

static void init_cgroup_css(struct cgroup_subsys_state *css,
			       struct cgroup_subsys *ss,
2441
			       struct cgroup *cgrp)
2442
{
2443
	css->cgroup = cgrp;
P
Paul Menage 已提交
2444
	atomic_set(&css->refcnt, 1);
2445
	css->flags = 0;
K
KAMEZAWA Hiroyuki 已提交
2446
	css->id = NULL;
2447
	if (cgrp == dummytop)
2448
		set_bit(CSS_ROOT, &css->flags);
2449 2450
	BUG_ON(cgrp->subsys[ss->subsys_id]);
	cgrp->subsys[ss->subsys_id] = css;
2451 2452
}

2453 2454 2455 2456 2457 2458 2459 2460
static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
{
	/* We need to take each hierarchy_mutex in a consistent order */
	int i;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (ss->root == root)
2461
			mutex_lock(&ss->hierarchy_mutex);
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
	}
}

static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
{
	int i;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (ss->root == root)
			mutex_unlock(&ss->hierarchy_mutex);
	}
}

2476
/*
L
Li Zefan 已提交
2477 2478 2479 2480
 * cgroup_create - create a cgroup
 * @parent: cgroup that will be parent of the new cgroup
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new inode
2481
 *
L
Li Zefan 已提交
2482
 * Must be called with the mutex on the parent inode held
2483 2484
 */
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
L
Li Zefan 已提交
2485
			     mode_t mode)
2486
{
2487
	struct cgroup *cgrp;
2488 2489 2490 2491 2492
	struct cgroupfs_root *root = parent->root;
	int err = 0;
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

2493 2494
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505
		return -ENOMEM;

	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
	atomic_inc(&sb->s_active);

	mutex_lock(&cgroup_mutex);

2506
	init_cgroup_housekeeping(cgrp);
2507

2508 2509 2510
	cgrp->parent = parent;
	cgrp->root = parent->root;
	cgrp->top_cgroup = parent->top_cgroup;
2511

2512 2513 2514
	if (notify_on_release(parent))
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);

2515
	for_each_subsys(root, ss) {
2516
		struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2517 2518 2519 2520
		if (IS_ERR(css)) {
			err = PTR_ERR(css);
			goto err_destroy;
		}
2521
		init_cgroup_css(css, ss, cgrp);
K
KAMEZAWA Hiroyuki 已提交
2522 2523 2524 2525
		if (ss->use_id)
			if (alloc_css_id(ss, parent, cgrp))
				goto err_destroy;
		/* At error, ->destroy() callback has to free assigned ID. */
2526 2527
	}

2528
	cgroup_lock_hierarchy(root);
2529
	list_add(&cgrp->sibling, &cgrp->parent->children);
2530
	cgroup_unlock_hierarchy(root);
2531 2532
	root->number_of_cgroups++;

2533
	err = cgroup_create_dir(cgrp, dentry, mode);
2534 2535 2536 2537
	if (err < 0)
		goto err_remove;

	/* The cgroup directory was pre-locked for us */
2538
	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2539

2540
	err = cgroup_populate_dir(cgrp);
2541 2542 2543
	/* If err < 0, we have a half-filled directory - oh well ;) */

	mutex_unlock(&cgroup_mutex);
2544
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2545 2546 2547 2548 2549

	return 0;

 err_remove:

2550
	cgroup_lock_hierarchy(root);
2551
	list_del(&cgrp->sibling);
2552
	cgroup_unlock_hierarchy(root);
2553 2554 2555 2556 2557
	root->number_of_cgroups--;

 err_destroy:

	for_each_subsys(root, ss) {
2558 2559
		if (cgrp->subsys[ss->subsys_id])
			ss->destroy(ss, cgrp);
2560 2561 2562 2563 2564 2565 2566
	}

	mutex_unlock(&cgroup_mutex);

	/* Release the reference count that we took on the superblock */
	deactivate_super(sb);

2567
	kfree(cgrp);
2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578
	return err;
}

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

2579
static int cgroup_has_css_refs(struct cgroup *cgrp)
2580 2581 2582
{
	/* Check the reference count on each subsystem. Since we
	 * already established that there are no tasks in the
P
Paul Menage 已提交
2583
	 * cgroup, if the css refcount is also 1, then there should
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
	 * be no outstanding references, so the subsystem is safe to
	 * destroy. We scan across all subsystems rather than using
	 * the per-hierarchy linked list of mounted subsystems since
	 * we can be called via check_for_release() with no
	 * synchronization other than RCU, and the subsystem linked
	 * list isn't RCU-safe */
	int i;
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		struct cgroup_subsys_state *css;
		/* Skip subsystems not in this hierarchy */
2595
		if (ss->root != cgrp->root)
2596
			continue;
2597
		css = cgrp->subsys[ss->subsys_id];
2598 2599 2600 2601 2602 2603
		/* When called from check_for_release() it's possible
		 * that by this point the cgroup has been removed
		 * and the css deleted. But a false-positive doesn't
		 * matter, since it can only happen if the cgroup
		 * has been deleted and hence no longer needs the
		 * release agent to be called anyway. */
P
Paul Menage 已提交
2604
		if (css && (atomic_read(&css->refcnt) > 1))
2605 2606 2607 2608 2609
			return 1;
	}
	return 0;
}

P
Paul Menage 已提交
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
/*
 * Atomically mark all (or else none) of the cgroup's CSS objects as
 * CSS_REMOVED. Return true on success, or false if the cgroup has
 * busy subsystems. Call with cgroup_mutex held
 */

static int cgroup_clear_css_refs(struct cgroup *cgrp)
{
	struct cgroup_subsys *ss;
	unsigned long flags;
	bool failed = false;
	local_irq_save(flags);
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		int refcnt;
2625
		while (1) {
P
Paul Menage 已提交
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
			/* We can only remove a CSS with a refcnt==1 */
			refcnt = atomic_read(&css->refcnt);
			if (refcnt > 1) {
				failed = true;
				goto done;
			}
			BUG_ON(!refcnt);
			/*
			 * Drop the refcnt to 0 while we check other
			 * subsystems. This will cause any racing
			 * css_tryget() to spin until we set the
			 * CSS_REMOVED bits or abort
			 */
2639 2640 2641 2642
			if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
				break;
			cpu_relax();
		}
P
Paul Menage 已提交
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
	}
 done:
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		if (failed) {
			/*
			 * Restore old refcnt if we previously managed
			 * to clear it from 1 to 0
			 */
			if (!atomic_read(&css->refcnt))
				atomic_set(&css->refcnt, 1);
		} else {
			/* Commit the fact that the CSS is removed */
			set_bit(CSS_REMOVED, &css->flags);
		}
	}
	local_irq_restore(flags);
	return !failed;
}

2663 2664
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
2665
	struct cgroup *cgrp = dentry->d_fsdata;
2666 2667
	struct dentry *d;
	struct cgroup *parent;
2668 2669
	DEFINE_WAIT(wait);
	int ret;
2670 2671

	/* the vfs holds both inode->i_mutex already */
2672
again:
2673
	mutex_lock(&cgroup_mutex);
2674
	if (atomic_read(&cgrp->count) != 0) {
2675 2676 2677
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2678
	if (!list_empty(&cgrp->children)) {
2679 2680 2681
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2682
	mutex_unlock(&cgroup_mutex);
L
Li Zefan 已提交
2683

2684
	/*
L
Li Zefan 已提交
2685 2686
	 * Call pre_destroy handlers of subsys. Notify subsystems
	 * that rmdir() request comes.
2687
	 */
2688 2689 2690
	ret = cgroup_call_pre_destroy(cgrp);
	if (ret)
		return ret;
2691

2692 2693
	mutex_lock(&cgroup_mutex);
	parent = cgrp->parent;
2694
	if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
2695 2696 2697
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
	/*
	 * css_put/get is provided for subsys to grab refcnt to css. In typical
	 * case, subsystem has no reference after pre_destroy(). But, under
	 * hierarchy management, some *temporal* refcnt can be hold.
	 * To avoid returning -EBUSY to a user, waitqueue is used. If subsys
	 * is really busy, it should return -EBUSY at pre_destroy(). wake_up
	 * is called when css_put() is called and refcnt goes down to 0.
	 */
	set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
	prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);

	if (!cgroup_clear_css_refs(cgrp)) {
		mutex_unlock(&cgroup_mutex);
		schedule();
		finish_wait(&cgroup_rmdir_waitq, &wait);
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
		if (signal_pending(current))
			return -EINTR;
		goto again;
	}
	/* NO css_tryget() can success after here. */
	finish_wait(&cgroup_rmdir_waitq, &wait);
	clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2721

2722
	spin_lock(&release_list_lock);
2723 2724 2725
	set_bit(CGRP_REMOVED, &cgrp->flags);
	if (!list_empty(&cgrp->release_list))
		list_del(&cgrp->release_list);
2726
	spin_unlock(&release_list_lock);
2727 2728 2729

	cgroup_lock_hierarchy(cgrp->root);
	/* delete this cgroup from parent->children */
2730
	list_del(&cgrp->sibling);
2731 2732
	cgroup_unlock_hierarchy(cgrp->root);

2733 2734
	spin_lock(&cgrp->dentry->d_lock);
	d = dget(cgrp->dentry);
2735 2736 2737 2738 2739
	spin_unlock(&d->d_lock);

	cgroup_d_remove_dir(d);
	dput(d);

2740
	set_bit(CGRP_RELEASABLE, &parent->flags);
2741 2742
	check_for_release(parent);

2743 2744 2745 2746
	mutex_unlock(&cgroup_mutex);
	return 0;
}

2747
static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
2748 2749
{
	struct cgroup_subsys_state *css;
D
Diego Calleja 已提交
2750 2751

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2752 2753

	/* Create the top cgroup state for this subsystem */
2754
	list_add(&ss->sibling, &rootnode.subsys_list);
2755 2756 2757 2758 2759 2760
	ss->root = &rootnode;
	css = ss->create(ss, dummytop);
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
	init_cgroup_css(css, ss, dummytop);

L
Li Zefan 已提交
2761
	/* Update the init_css_set to contain a subsys
2762
	 * pointer to this state - since the subsystem is
L
Li Zefan 已提交
2763 2764 2765
	 * newly registered, all tasks and hence the
	 * init_css_set is in the subsystem's top cgroup. */
	init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2766 2767 2768

	need_forkexit_callback |= ss->fork || ss->exit;

L
Li Zefan 已提交
2769 2770 2771 2772 2773
	/* At system boot, before all subsystems have been
	 * registered, no tasks have been forked, so we don't
	 * need to invoke fork callbacks here. */
	BUG_ON(!list_empty(&init_task.tasks));

2774
	mutex_init(&ss->hierarchy_mutex);
2775
	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
2776 2777 2778 2779
	ss->active = 1;
}

/**
L
Li Zefan 已提交
2780 2781 2782 2783
 * cgroup_init_early - cgroup initialization at system boot
 *
 * Initialize cgroups at system boot, and initialize any
 * subsystems that request early init.
2784 2785 2786 2787
 */
int __init cgroup_init_early(void)
{
	int i;
2788
	atomic_set(&init_css_set.refcount, 1);
2789 2790
	INIT_LIST_HEAD(&init_css_set.cg_links);
	INIT_LIST_HEAD(&init_css_set.tasks);
2791
	INIT_HLIST_NODE(&init_css_set.hlist);
2792
	css_set_count = 1;
2793
	init_cgroup_root(&rootnode);
2794 2795 2796 2797
	root_count = 1;
	init_task.cgroups = &init_css_set;

	init_css_set_link.cg = &init_css_set;
2798
	list_add(&init_css_set_link.cgrp_link_list,
2799 2800 2801
		 &rootnode.top_cgroup.css_sets);
	list_add(&init_css_set_link.cg_link_list,
		 &init_css_set.cg_links);
2802

2803 2804 2805
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
		INIT_HLIST_HEAD(&css_set_table[i]);

2806 2807 2808 2809 2810 2811 2812 2813
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];

		BUG_ON(!ss->name);
		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
		BUG_ON(!ss->create);
		BUG_ON(!ss->destroy);
		if (ss->subsys_id != i) {
D
Diego Calleja 已提交
2814
			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
			       ss->name, ss->subsys_id);
			BUG();
		}

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
L
Li Zefan 已提交
2826 2827 2828 2829
 * cgroup_init - cgroup initialization
 *
 * Register cgroup filesystem and /proc file, and initialize
 * any subsystems that didn't request early init.
2830 2831 2832 2833 2834
 */
int __init cgroup_init(void)
{
	int err;
	int i;
2835
	struct hlist_head *hhead;
2836 2837 2838 2839

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;
2840 2841 2842 2843 2844

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (!ss->early_init)
			cgroup_init_subsys(ss);
K
KAMEZAWA Hiroyuki 已提交
2845 2846
		if (ss->use_id)
			cgroup_subsys_init_idr(ss);
2847 2848
	}

2849 2850 2851 2852
	/* Add init_css_set to the hash table */
	hhead = css_set_hash(init_css_set.subsys);
	hlist_add_head(&init_css_set.hlist, hhead);

2853 2854 2855 2856
	err = register_filesystem(&cgroup_fs_type);
	if (err < 0)
		goto out;

L
Li Zefan 已提交
2857
	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2858

2859
out:
2860 2861 2862
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

2863 2864
	return err;
}
2865

2866 2867 2868 2869 2870 2871
/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
2872
 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
static int proc_cgroup_show(struct seq_file *m, void *v)
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

2902
	for_each_active_root(root) {
2903
		struct cgroup_subsys *ss;
2904
		struct cgroup *cgrp;
2905 2906 2907
		int subsys_id;
		int count = 0;

2908
		seq_printf(m, "%lu:", root->subsys_bits);
2909 2910 2911 2912
		for_each_subsys(root, ss)
			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
		seq_putc(m, ':');
		get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
2913 2914
		cgrp = task_cgroup(tsk, subsys_id);
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

static int cgroup_open(struct inode *inode, struct file *file)
{
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cgroup_show, pid);
}

struct file_operations proc_cgroup_operations = {
	.open		= cgroup_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
	int i;

2948
	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
2949 2950 2951
	mutex_lock(&cgroup_mutex);
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
2952
		seq_printf(m, "%s\t%lu\t%d\t%d\n",
2953
			   ss->name, ss->root->subsys_bits,
2954
			   ss->root->number_of_cgroups, !ss->disabled);
2955 2956 2957 2958 2959 2960 2961
	}
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
A
Al Viro 已提交
2962
	return single_open(file, proc_cgroupstats_show, NULL);
2963 2964 2965 2966 2967 2968 2969 2970 2971
}

static struct file_operations proc_cgroupstats_operations = {
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

2972 2973
/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
L
Li Zefan 已提交
2974
 * @child: pointer to task_struct of forking parent process.
2975 2976 2977 2978 2979 2980
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
 * it was not made under the protection of RCU or cgroup_mutex, so
2981
 * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
2982 2983
 * have already changed current->cgroups, allowing the previously
 * referenced cgroup group to be removed and freed.
2984 2985 2986 2987 2988 2989
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
2990 2991 2992 2993 2994
	task_lock(current);
	child->cgroups = current->cgroups;
	get_css_set(child->cgroups);
	task_unlock(current);
	INIT_LIST_HEAD(&child->cg_list);
2995 2996 2997
}

/**
L
Li Zefan 已提交
2998 2999 3000 3001 3002 3003
 * cgroup_fork_callbacks - run fork callbacks
 * @child: the new task
 *
 * Called on a new task very soon before adding it to the
 * tasklist. No need to take any locks since no-one can
 * be operating on this task.
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
 */
void cgroup_fork_callbacks(struct task_struct *child)
{
	if (need_forkexit_callback) {
		int i;
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->fork)
				ss->fork(ss, child);
		}
	}
}

3017
/**
L
Li Zefan 已提交
3018 3019 3020 3021 3022 3023 3024 3025
 * cgroup_post_fork - called on a new task after adding it to the task list
 * @child: the task in question
 *
 * Adds the task to the list running through its css_set if necessary.
 * Has to be after the task is visible on the task list in case we race
 * with the first call to cgroup_iter_start() - to guarantee that the
 * new task ends up on its list.
 */
3026 3027 3028 3029
void cgroup_post_fork(struct task_struct *child)
{
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
3030
		task_lock(child);
3031 3032
		if (list_empty(&child->cg_list))
			list_add(&child->cg_list, &child->cgroups->tasks);
3033
		task_unlock(child);
3034 3035 3036
		write_unlock(&css_set_lock);
	}
}
3037 3038 3039
/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
L
Li Zefan 已提交
3040
 * @run_callback: run exit callbacks?
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
3069 3070
 *    which wards off any cgroup_attach_task() attempts, or task is a failed
 *    fork, never visible to cgroup_attach_task.
3071 3072 3073 3074
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
	int i;
3075
	struct css_set *cg;
3076 3077 3078 3079 3080 3081 3082 3083

	if (run_callbacks && need_forkexit_callback) {
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->exit)
				ss->exit(ss, tsk);
		}
	}
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
			list_del(&tsk->cg_list);
		write_unlock(&css_set_lock);
	}

3097 3098
	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
3099 3100
	cg = tsk->cgroups;
	tsk->cgroups = &init_css_set;
3101
	task_unlock(tsk);
3102
	if (cg)
3103
		put_css_set_taskexit(cg);
3104
}
3105 3106

/**
L
Li Zefan 已提交
3107 3108 3109
 * cgroup_clone - clone the cgroup the given subsystem is attached to
 * @tsk: the task to be moved
 * @subsys: the given subsystem
3110
 * @nodename: the name for the new cgroup
L
Li Zefan 已提交
3111 3112 3113 3114
 *
 * Duplicate the current cgroup in the hierarchy that the given
 * subsystem is attached to, and move this task into the new
 * child.
3115
 */
3116 3117
int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
							char *nodename)
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
{
	struct dentry *dentry;
	int ret = 0;
	struct cgroup *parent, *child;
	struct inode *inode;
	struct css_set *cg;
	struct cgroupfs_root *root;
	struct cgroup_subsys *ss;

	/* We shouldn't be called by an unregistered subsystem */
	BUG_ON(!subsys->active);

	/* First figure out what hierarchy and cgroup we're dealing
	 * with, and pin them so we can drop cgroup_mutex */
	mutex_lock(&cgroup_mutex);
 again:
	root = subsys->root;
	if (root == &rootnode) {
		mutex_unlock(&cgroup_mutex);
		return 0;
	}

	/* Pin the hierarchy */
3141
	if (!atomic_inc_not_zero(&root->sb->s_active)) {
3142 3143 3144 3145
		/* We race with the final deactivate_super() */
		mutex_unlock(&cgroup_mutex);
		return 0;
	}
3146

3147
	/* Keep the cgroup alive */
3148 3149 3150
	task_lock(tsk);
	parent = task_cgroup(tsk, subsys->subsys_id);
	cg = tsk->cgroups;
3151
	get_css_set(cg);
3152
	task_unlock(tsk);
3153

3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
	mutex_unlock(&cgroup_mutex);

	/* Now do the VFS work to create a cgroup */
	inode = parent->dentry->d_inode;

	/* Hold the parent directory mutex across this operation to
	 * stop anyone else deleting the new cgroup */
	mutex_lock(&inode->i_mutex);
	dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
	if (IS_ERR(dentry)) {
		printk(KERN_INFO
D
Diego Calleja 已提交
3165
		       "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
3166 3167 3168 3169 3170 3171
		       PTR_ERR(dentry));
		ret = PTR_ERR(dentry);
		goto out_release;
	}

	/* Create the cgroup directory, which also creates the cgroup */
3172
	ret = vfs_mkdir(inode, dentry, 0755);
3173
	child = __d_cgrp(dentry);
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
	dput(dentry);
	if (ret) {
		printk(KERN_INFO
		       "Failed to create cgroup %s: %d\n", nodename,
		       ret);
		goto out_release;
	}

	/* The cgroup now exists. Retake cgroup_mutex and check
	 * that we're still in the same state that we thought we
	 * were. */
	mutex_lock(&cgroup_mutex);
	if ((root != subsys->root) ||
	    (parent != task_cgroup(tsk, subsys->subsys_id))) {
		/* Aargh, we raced ... */
		mutex_unlock(&inode->i_mutex);
3190
		put_css_set(cg);
3191

3192
		deactivate_super(root->sb);
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
		/* The cgroup is still accessible in the VFS, but
		 * we're not going to try to rmdir() it at this
		 * point. */
		printk(KERN_INFO
		       "Race in cgroup_clone() - leaking cgroup %s\n",
		       nodename);
		goto again;
	}

	/* do any required auto-setup */
	for_each_subsys(root, ss) {
		if (ss->post_clone)
			ss->post_clone(ss, child);
	}

	/* All seems fine. Finish by moving the task into the new cgroup */
3209
	ret = cgroup_attach_task(child, tsk);
3210 3211 3212 3213
	mutex_unlock(&cgroup_mutex);

 out_release:
	mutex_unlock(&inode->i_mutex);
3214 3215

	mutex_lock(&cgroup_mutex);
3216
	put_css_set(cg);
3217
	mutex_unlock(&cgroup_mutex);
3218
	deactivate_super(root->sb);
3219 3220 3221
	return ret;
}

L
Li Zefan 已提交
3222
/**
3223
 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
L
Li Zefan 已提交
3224
 * @cgrp: the cgroup in question
3225
 * @task: the task in question
L
Li Zefan 已提交
3226
 *
3227 3228
 * See if @cgrp is a descendant of @task's cgroup in the appropriate
 * hierarchy.
3229 3230 3231 3232 3233 3234
 *
 * If we are sending in dummytop, then presumably we are creating
 * the top cgroup in the subsystem.
 *
 * Called only by the ns (nsproxy) cgroup.
 */
3235
int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
3236 3237 3238 3239 3240
{
	int ret;
	struct cgroup *target;
	int subsys_id;

3241
	if (cgrp == dummytop)
3242 3243
		return 1;

3244
	get_first_subsys(cgrp, NULL, &subsys_id);
3245
	target = task_cgroup(task, subsys_id);
3246 3247 3248
	while (cgrp != target && cgrp!= cgrp->top_cgroup)
		cgrp = cgrp->parent;
	ret = (cgrp == target);
3249 3250
	return ret;
}
3251

3252
static void check_for_release(struct cgroup *cgrp)
3253 3254 3255
{
	/* All of these checks rely on RCU to keep the cgroup
	 * structure alive */
3256 3257
	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
3258 3259 3260 3261 3262
		/* Control Group is currently removeable. If it's not
		 * already queued for a userspace notification, queue
		 * it now */
		int need_schedule_work = 0;
		spin_lock(&release_list_lock);
3263 3264 3265
		if (!cgroup_is_removed(cgrp) &&
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275
			need_schedule_work = 1;
		}
		spin_unlock(&release_list_lock);
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

void __css_put(struct cgroup_subsys_state *css)
{
3276
	struct cgroup *cgrp = css->cgroup;
3277
	rcu_read_lock();
3278 3279 3280 3281 3282 3283
	if (atomic_dec_return(&css->refcnt) == 1) {
		if (notify_on_release(cgrp)) {
			set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
		}
		cgroup_wakeup_rmdir_waiters(cgrp);
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
	}
	rcu_read_unlock();
}

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 */
static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
	spin_lock(&release_list_lock);
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
3319
		char *pathbuf = NULL, *agentbuf = NULL;
3320
		struct cgroup *cgrp = list_entry(release_list.next,
3321 3322
						    struct cgroup,
						    release_list);
3323
		list_del_init(&cgrp->release_list);
3324 3325
		spin_unlock(&release_list_lock);
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3326 3327 3328 3329 3330 3331 3332
		if (!pathbuf)
			goto continue_free;
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
			goto continue_free;
		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
		if (!agentbuf)
			goto continue_free;
3333 3334

		i = 0;
3335 3336
		argv[i++] = agentbuf;
		argv[i++] = pathbuf;
3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		mutex_lock(&cgroup_mutex);
3351 3352 3353
 continue_free:
		kfree(pathbuf);
		kfree(agentbuf);
3354 3355 3356 3357 3358
		spin_lock(&release_list_lock);
	}
	spin_unlock(&release_list_lock);
	mutex_unlock(&cgroup_mutex);
}
3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382

static int __init cgroup_disable(char *str)
{
	int i;
	char *token;

	while ((token = strsep(&str, ",")) != NULL) {
		if (!*token)
			continue;

		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];

			if (!strcmp(token, ss->name)) {
				ss->disabled = 1;
				printk(KERN_INFO "Disabling %s control group"
					" subsystem\n", ss->name);
				break;
			}
		}
	}
	return 1;
}
__setup("cgroup_disable=", cgroup_disable);
K
KAMEZAWA Hiroyuki 已提交
3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409

/*
 * Functons for CSS ID.
 */

/*
 *To get ID other than 0, this should be called when !cgroup_is_removed().
 */
unsigned short css_id(struct cgroup_subsys_state *css)
{
	struct css_id *cssid = rcu_dereference(css->id);

	if (cssid)
		return cssid->id;
	return 0;
}

unsigned short css_depth(struct cgroup_subsys_state *css)
{
	struct css_id *cssid = rcu_dereference(css->id);

	if (cssid)
		return cssid->depth;
	return 0;
}

bool css_is_ancestor(struct cgroup_subsys_state *child,
3410
		    const struct cgroup_subsys_state *root)
K
KAMEZAWA Hiroyuki 已提交
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
{
	struct css_id *child_id = rcu_dereference(child->id);
	struct css_id *root_id = rcu_dereference(root->id);

	if (!child_id || !root_id || (child_id->depth < root_id->depth))
		return false;
	return child_id->stack[root_id->depth] == root_id->id;
}

static void __free_css_id_cb(struct rcu_head *head)
{
	struct css_id *id;

	id = container_of(head, struct css_id, rcu_head);
	kfree(id);
}

void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
{
	struct css_id *id = css->id;
	/* When this is called before css_id initialization, id can be NULL */
	if (!id)
		return;

	BUG_ON(!ss->use_id);

	rcu_assign_pointer(id->css, NULL);
	rcu_assign_pointer(css->id, NULL);
	spin_lock(&ss->id_lock);
	idr_remove(&ss->idr, id->id);
	spin_unlock(&ss->id_lock);
	call_rcu(&id->rcu_head, __free_css_id_cb);
}

/*
 * This is called by init or create(). Then, calls to this function are
 * always serialized (By cgroup_mutex() at create()).
 */

static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
{
	struct css_id *newid;
	int myid, error, size;

	BUG_ON(!ss->use_id);

	size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
	newid = kzalloc(size, GFP_KERNEL);
	if (!newid)
		return ERR_PTR(-ENOMEM);
	/* get id */
	if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
		error = -ENOMEM;
		goto err_out;
	}
	spin_lock(&ss->id_lock);
	/* Don't use 0. allocates an ID of 1-65535 */
	error = idr_get_new_above(&ss->idr, newid, 1, &myid);
	spin_unlock(&ss->id_lock);

	/* Returns error when there are no free spaces for new ID.*/
	if (error) {
		error = -ENOSPC;
		goto err_out;
	}
	if (myid > CSS_ID_MAX)
		goto remove_idr;

	newid->id = myid;
	newid->depth = depth;
	return newid;
remove_idr:
	error = -ENOSPC;
	spin_lock(&ss->id_lock);
	idr_remove(&ss->idr, myid);
	spin_unlock(&ss->id_lock);
err_out:
	kfree(newid);
	return ERR_PTR(error);

}

static int __init cgroup_subsys_init_idr(struct cgroup_subsys *ss)
{
	struct css_id *newid;
	struct cgroup_subsys_state *rootcss;

	spin_lock_init(&ss->id_lock);
	idr_init(&ss->idr);

	rootcss = init_css_set.subsys[ss->subsys_id];
	newid = get_new_cssid(ss, 0);
	if (IS_ERR(newid))
		return PTR_ERR(newid);

	newid->stack[0] = newid->id;
	newid->css = rootcss;
	rootcss->id = newid;
	return 0;
}

static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
			struct cgroup *child)
{
	int subsys_id, i, depth = 0;
	struct cgroup_subsys_state *parent_css, *child_css;
	struct css_id *child_id, *parent_id = NULL;

	subsys_id = ss->subsys_id;
	parent_css = parent->subsys[subsys_id];
	child_css = child->subsys[subsys_id];
	depth = css_depth(parent_css) + 1;
	parent_id = parent_css->id;

	child_id = get_new_cssid(ss, depth);
	if (IS_ERR(child_id))
		return PTR_ERR(child_id);

	for (i = 0; i < depth; i++)
		child_id->stack[i] = parent_id->stack[i];
	child_id->stack[depth] = child_id->id;
	/*
	 * child_id->css pointer will be set after this cgroup is available
	 * see cgroup_populate_dir()
	 */
	rcu_assign_pointer(child_css->id, child_id);

	return 0;
}

/**
 * css_lookup - lookup css by id
 * @ss: cgroup subsys to be looked into.
 * @id: the id
 *
 * Returns pointer to cgroup_subsys_state if there is valid one with id.
 * NULL if not. Should be called under rcu_read_lock()
 */
struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
{
	struct css_id *cssid = NULL;

	BUG_ON(!ss->use_id);
	cssid = idr_find(&ss->idr, id);

	if (unlikely(!cssid))
		return NULL;

	return rcu_dereference(cssid->css);
}

/**
 * css_get_next - lookup next cgroup under specified hierarchy.
 * @ss: pointer to subsystem
 * @id: current position of iteration.
 * @root: pointer to css. search tree under this.
 * @foundid: position of found object.
 *
 * Search next css under the specified hierarchy of rootid. Calling under
 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
 */
struct cgroup_subsys_state *
css_get_next(struct cgroup_subsys *ss, int id,
	     struct cgroup_subsys_state *root, int *foundid)
{
	struct cgroup_subsys_state *ret = NULL;
	struct css_id *tmp;
	int tmpid;
	int rootid = css_id(root);
	int depth = css_depth(root);

	if (!rootid)
		return NULL;

	BUG_ON(!ss->use_id);
	/* fill start point for scan */
	tmpid = id;
	while (1) {
		/*
		 * scan next entry from bitmap(tree), tmpid is updated after
		 * idr_get_next().
		 */
		spin_lock(&ss->id_lock);
		tmp = idr_get_next(&ss->idr, &tmpid);
		spin_unlock(&ss->id_lock);

		if (!tmp)
			break;
		if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
			ret = rcu_dereference(tmp->css);
			if (ret) {
				*foundid = tmpid;
				break;
			}
		}
		/* continue to scan from next id */
		tmpid = tmpid + 1;
	}
	return ret;
}