cgroup.c 82.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
34
#include <linux/proc_fs.h>
35 36
#include <linux/rcupdate.h>
#include <linux/sched.h>
37
#include <linux/backing-dev.h>
38 39 40 41 42
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
43
#include <linux/sort.h>
44
#include <linux/kmod.h>
B
Balbir Singh 已提交
45 46
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
47
#include <linux/hash.h>
B
Balbir Singh 已提交
48

49 50
#include <asm/atomic.h>

51 52
static DEFINE_MUTEX(cgroup_mutex);

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
/* Generate an array of cgroup subsystem pointers */
#define SUBSYS(_x) &_x ## _subsys,

static struct cgroup_subsys *subsys[] = {
#include <linux/cgroup_subsys.h>
};

/*
 * A cgroupfs_root represents the root of a cgroup hierarchy,
 * and may be associated with a superblock to form an active
 * hierarchy
 */
struct cgroupfs_root {
	struct super_block *sb;

	/*
	 * The bitmask of subsystems intended to be attached to this
	 * hierarchy
	 */
	unsigned long subsys_bits;

	/* The bitmask of subsystems currently attached to this hierarchy */
	unsigned long actual_subsys_bits;

	/* A list running through the attached subsystems */
	struct list_head subsys_list;

	/* The root cgroup for this hierarchy */
	struct cgroup top_cgroup;

	/* Tracks how many cgroups are currently defined in hierarchy.*/
	int number_of_cgroups;

	/* A list running through the mounted hierarchies */
	struct list_head root_list;

	/* Hierarchy-specific flags */
	unsigned long flags;
91

92
	/* The path to use for release notifications. */
93
	char release_agent_path[PATH_MAX];
94 95 96 97 98 99 100 101 102 103 104 105 106
};


/*
 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 * subsystems that are otherwise unattached - it never has more than a
 * single cgroup, and all tasks are part of that cgroup.
 */
static struct cgroupfs_root rootnode;

/* The list of hierarchy roots */

static LIST_HEAD(roots);
107
static int root_count;
108 109 110 111 112

/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
#define dummytop (&rootnode.top_cgroup)

/* This flag indicates whether tasks in the fork and exit paths should
L
Li Zefan 已提交
113 114 115
 * check for fork/exit handlers to call. This avoids us having to do
 * extra work in the fork/exit path if none of the subsystems need to
 * be called.
116
 */
117
static int need_forkexit_callback __read_mostly;
118
static int need_mm_owner_callback __read_mostly;
119 120

/* convenient tests for these bits */
121
inline int cgroup_is_removed(const struct cgroup *cgrp)
122
{
123
	return test_bit(CGRP_REMOVED, &cgrp->flags);
124 125 126 127 128 129 130
}

/* bits in struct cgroupfs_root flags field */
enum {
	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
};

131
static int cgroup_is_releasable(const struct cgroup *cgrp)
132 133
{
	const int bits =
134 135 136
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
137 138
}

139
static int notify_on_release(const struct cgroup *cgrp)
140
{
141
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
142 143
}

144 145 146 147 148 149 150 151 152 153 154
/*
 * for_each_subsys() allows you to iterate on each subsystem attached to
 * an active hierarchy
 */
#define for_each_subsys(_root, _ss) \
list_for_each_entry(_ss, &_root->subsys_list, sibling)

/* for_each_root() allows you to iterate across the active hierarchies */
#define for_each_root(_root) \
list_for_each_entry(_root, &roots, root_list)

155 156 157 158 159 160
/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
static DEFINE_SPINLOCK(release_list_lock);
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
161
static void check_for_release(struct cgroup *cgrp);
162

163 164 165 166 167 168
/* Link structure for associating css_set objects with cgroups */
struct cg_cgroup_link {
	/*
	 * List running through cg_cgroup_links associated with a
	 * cgroup, anchored on cgroup->css_sets
	 */
169
	struct list_head cgrp_link_list;
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
	/*
	 * List running through cg_cgroup_links pointing at a
	 * single css_set object, anchored on css_set->cg_links
	 */
	struct list_head cg_link_list;
	struct css_set *cg;
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
static struct cg_cgroup_link init_css_set_link;

/* css_set_lock protects the list of css_set objects, and the
 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 * due to cgroup_iter_start() */
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
/* hash table for cgroup groups. This improves the performance to
 * find an existing css_set */
#define CSS_SET_HASH_BITS	7
#define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS)
static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];

static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
{
	int i;
	int index;
	unsigned long tmp = 0UL;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
		tmp += (unsigned long)css[i];
	tmp = (tmp >> 16) ^ tmp;

	index = hash_long(tmp, CSS_SET_HASH_BITS);

	return &css_set_table[index];
}

215 216 217 218
/* We don't maintain the lists running through each css_set to its
 * task until after the first call to cgroup_iter_start(). This
 * reduces the fork()/exit() overhead for people who have cgroups
 * compiled into their kernel but not actually in use */
219
static int use_task_css_set_links __read_mostly;
220 221 222 223 224 225 226

/* When we create or destroy a css_set, the operation simply
 * takes/releases a reference count on all the cgroups referenced
 * by subsystems in this css_set. This can end up multiple-counting
 * some cgroups, but that's OK - the ref-count is just a
 * busy/not-busy indicator; ensuring that we only count each cgroup
 * once would require taking a global lock to ensure that no
227 228 229 230 231 232 233
 * subsystems moved between hierarchies while we were doing so.
 *
 * Possible TODO: decide at boot time based on the number of
 * registered subsystems and the number of CPUs or NUMA nodes whether
 * it's better for performance to ref-count every subsystem, or to
 * take a global lock and only add one ref count to each hierarchy.
 */
234 235 236 237

/*
 * unlink a css_set from the list and free it
 */
238
static void unlink_css_set(struct css_set *cg)
239
{
K
KOSAKI Motohiro 已提交
240 241 242
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

243
	write_lock(&css_set_lock);
244
	hlist_del(&cg->hlist);
245
	css_set_count--;
K
KOSAKI Motohiro 已提交
246 247 248

	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
				 cg_link_list) {
249
		list_del(&link->cg_link_list);
250
		list_del(&link->cgrp_link_list);
251 252
		kfree(link);
	}
K
KOSAKI Motohiro 已提交
253

254
	write_unlock(&css_set_lock);
255 256 257 258 259 260 261 262 263 264 265
}

static void __release_css_set(struct kref *k, int taskexit)
{
	int i;
	struct css_set *cg = container_of(k, struct css_set, ref);

	unlink_css_set(cg);

	rcu_read_lock();
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
266 267 268
		struct cgroup *cgrp = cg->subsys[i]->cgroup;
		if (atomic_dec_and_test(&cgrp->count) &&
		    notify_on_release(cgrp)) {
269
			if (taskexit)
270 271
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
272 273 274
		}
	}
	rcu_read_unlock();
275
	kfree(cg);
276 277
}

278 279 280 281 282 283 284 285 286 287
static void release_css_set(struct kref *k)
{
	__release_css_set(k, 0);
}

static void release_css_set_taskexit(struct kref *k)
{
	__release_css_set(k, 1);
}

288 289 290 291 292 293 294 295 296 297 298 299 300
/*
 * refcounted get/put for css_set objects
 */
static inline void get_css_set(struct css_set *cg)
{
	kref_get(&cg->ref);
}

static inline void put_css_set(struct css_set *cg)
{
	kref_put(&cg->ref, release_css_set);
}

301 302 303 304 305
static inline void put_css_set_taskexit(struct css_set *cg)
{
	kref_put(&cg->ref, release_css_set_taskexit);
}

306 307 308
/*
 * find_existing_css_set() is a helper for
 * find_css_set(), and checks to see whether an existing
309
 * css_set is suitable.
310 311 312 313
 *
 * oldcg: the cgroup group that we're using before the cgroup
 * transition
 *
314
 * cgrp: the cgroup that we're moving into
315 316 317 318 319 320
 *
 * template: location in which to build the desired set of subsystem
 * state objects for the new cgroup group
 */
static struct css_set *find_existing_css_set(
	struct css_set *oldcg,
321
	struct cgroup *cgrp,
322
	struct cgroup_subsys_state *template[])
323 324
{
	int i;
325
	struct cgroupfs_root *root = cgrp->root;
326 327 328
	struct hlist_head *hhead;
	struct hlist_node *node;
	struct css_set *cg;
329 330 331 332

	/* Built the set of subsystem state objects that we want to
	 * see in the new css_set */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
333
		if (root->subsys_bits & (1UL << i)) {
334 335 336
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
337
			template[i] = cgrp->subsys[i];
338 339 340 341 342 343 344
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
			template[i] = oldcg->subsys[i];
		}
	}

345 346
	hhead = css_set_hash(template);
	hlist_for_each_entry(cg, node, hhead, hlist) {
347 348 349 350
		if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
			/* All subsystems matched */
			return cg;
		}
351
	}
352 353 354 355 356 357 358

	/* No existing cgroup group matched */
	return NULL;
}

/*
 * allocate_cg_links() allocates "count" cg_cgroup_link structures
359
 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
360 361 362 363 364
 * success or a negative error
 */
static int allocate_cg_links(int count, struct list_head *tmp)
{
	struct cg_cgroup_link *link;
K
KOSAKI Motohiro 已提交
365
	struct cg_cgroup_link *saved_link;
366 367 368 369 370
	int i;
	INIT_LIST_HEAD(tmp);
	for (i = 0; i < count; i++) {
		link = kmalloc(sizeof(*link), GFP_KERNEL);
		if (!link) {
K
KOSAKI Motohiro 已提交
371 372
			list_for_each_entry_safe(link, saved_link, tmp,
						 cgrp_link_list) {
373
				list_del(&link->cgrp_link_list);
374 375 376 377
				kfree(link);
			}
			return -ENOMEM;
		}
378
		list_add(&link->cgrp_link_list, tmp);
379 380 381 382 383 384
	}
	return 0;
}

static void free_cg_links(struct list_head *tmp)
{
K
KOSAKI Motohiro 已提交
385 386 387 388
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

	list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
389
		list_del(&link->cgrp_link_list);
390 391 392 393 394 395 396 397 398 399 400 401
		kfree(link);
	}
}

/*
 * find_css_set() takes an existing cgroup group and a
 * cgroup object, and returns a css_set object that's
 * equivalent to the old group, but with the given cgroup
 * substituted into the appropriate hierarchy. Must be called with
 * cgroup_mutex held
 */
static struct css_set *find_css_set(
402
	struct css_set *oldcg, struct cgroup *cgrp)
403 404 405 406 407 408 409 410
{
	struct css_set *res;
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
	int i;

	struct list_head tmp_cg_links;
	struct cg_cgroup_link *link;

411 412
	struct hlist_head *hhead;

413 414
	/* First see if we already have a cgroup group that matches
	 * the desired set */
415
	read_lock(&css_set_lock);
416
	res = find_existing_css_set(oldcg, cgrp, template);
417 418
	if (res)
		get_css_set(res);
419
	read_unlock(&css_set_lock);
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436

	if (res)
		return res;

	res = kmalloc(sizeof(*res), GFP_KERNEL);
	if (!res)
		return NULL;

	/* Allocate all the cg_cgroup_link objects that we'll need */
	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
		kfree(res);
		return NULL;
	}

	kref_init(&res->ref);
	INIT_LIST_HEAD(&res->cg_links);
	INIT_LIST_HEAD(&res->tasks);
437
	INIT_HLIST_NODE(&res->hlist);
438 439 440 441 442 443 444 445

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
	memcpy(res->subsys, template, sizeof(res->subsys));

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
446
		struct cgroup *cgrp = res->subsys[i]->cgroup;
447
		struct cgroup_subsys *ss = subsys[i];
448
		atomic_inc(&cgrp->count);
449 450 451 452 453 454 455 456 457
		/*
		 * We want to add a link once per cgroup, so we
		 * only do it for the first subsystem in each
		 * hierarchy
		 */
		if (ss->root->subsys_list.next == &ss->sibling) {
			BUG_ON(list_empty(&tmp_cg_links));
			link = list_entry(tmp_cg_links.next,
					  struct cg_cgroup_link,
458 459 460
					  cgrp_link_list);
			list_del(&link->cgrp_link_list);
			list_add(&link->cgrp_link_list, &cgrp->css_sets);
461 462 463 464 465 466 467
			link->cg = res;
			list_add(&link->cg_link_list, &res->cg_links);
		}
	}
	if (list_empty(&rootnode.subsys_list)) {
		link = list_entry(tmp_cg_links.next,
				  struct cg_cgroup_link,
468 469 470
				  cgrp_link_list);
		list_del(&link->cgrp_link_list);
		list_add(&link->cgrp_link_list, &dummytop->css_sets);
471 472 473 474 475 476 477
		link->cg = res;
		list_add(&link->cg_link_list, &res->cg_links);
	}

	BUG_ON(!list_empty(&tmp_cg_links));

	css_set_count++;
478 479 480 481 482

	/* Add this cgroup group to the hash table */
	hhead = css_set_hash(res->subsys);
	hlist_add_head(&res->hlist, hhead);

483 484 485
	write_unlock(&css_set_lock);

	return res;
486 487
}

488 489 490 491 492 493 494 495 496 497
/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
498
 * cgroup_attach_task() can increment it again.  Because a count of zero
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The cgroup_common_file_write handler for operations that modify
 * the cgroup hierarchy holds cgroup_mutex across the entire operation,
 * single threading all such cgroup modifications across the system.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
L
Li Zefan 已提交
516 517
 * to the release agent with the name of the cgroup (path relative to
 * the root of cgroup file system) as the argument.
518 519 520 521 522 523 524 525 526 527 528
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
529
 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
L
Li Zefan 已提交
530
 * another.  It does so using cgroup_mutex, however there are
531 532 533
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
534
 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
535 536 537 538
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
539
 * update of a tasks cgroup pointer by cgroup_attach_task()
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
 */

/**
 * cgroup_lock - lock out any changes to cgroup structures
 *
 */
void cgroup_lock(void)
{
	mutex_lock(&cgroup_mutex);
}

/**
 * cgroup_unlock - release lock on cgroup changes
 *
 * Undo the lock taken in a previous cgroup_lock() call.
 */
void cgroup_unlock(void)
{
	mutex_unlock(&cgroup_mutex);
}

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
570
static int cgroup_populate_dir(struct cgroup *cgrp);
571
static struct inode_operations cgroup_dir_inode_operations;
572 573 574
static struct file_operations proc_cgroupstats_operations;

static struct backing_dev_info cgroup_backing_dev_info = {
575
	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
576
};
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592

static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
{
	struct inode *inode = new_inode(sb);

	if (inode) {
		inode->i_mode = mode;
		inode->i_uid = current->fsuid;
		inode->i_gid = current->fsgid;
		inode->i_blocks = 0;
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

593 594 595 596 597 598 599 600 601 602 603 604 605
/*
 * Call subsys's pre_destroy handler.
 * This is called before css refcnt check.
 */
static void cgroup_call_pre_destroy(struct cgroup *cgrp)
{
	struct cgroup_subsys *ss;
	for_each_subsys(cgrp->root, ss)
		if (ss->pre_destroy && cgrp->subsys[ss->subsys_id])
			ss->pre_destroy(ss, cgrp);
	return;
}

606 607 608 609
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
610
		struct cgroup *cgrp = dentry->d_fsdata;
611
		struct cgroup_subsys *ss;
612
		BUG_ON(!(cgroup_is_removed(cgrp)));
613 614 615 616 617 618 619
		/* It's possible for external users to be holding css
		 * reference counts on a cgroup; css_put() needs to
		 * be able to access the cgroup after decrementing
		 * the reference count in order to know if it needs to
		 * queue the cgroup to be handled by the release
		 * agent */
		synchronize_rcu();
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636

		mutex_lock(&cgroup_mutex);
		/*
		 * Release the subsystem state objects.
		 */
		for_each_subsys(cgrp->root, ss) {
			if (cgrp->subsys[ss->subsys_id])
				ss->destroy(ss, cgrp);
		}

		cgrp->root->number_of_cgroups--;
		mutex_unlock(&cgroup_mutex);

		/* Drop the active superblock reference that we took when we
		 * created the cgroup */
		deactivate_super(cgrp->root->sb);

637
		kfree(cgrp);
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
	}
	iput(inode);
}

static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

static void cgroup_clear_directory(struct dentry *dentry)
{
	struct list_head *node;

	BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
	spin_lock(&dcache_lock);
	node = dentry->d_subdirs.next;
	while (node != &dentry->d_subdirs) {
		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
		list_del_init(node);
		if (d->d_inode) {
			/* This should never be called on a cgroup
			 * directory with child cgroups */
			BUG_ON(d->d_inode->i_mode & S_IFDIR);
			d = dget_locked(d);
			spin_unlock(&dcache_lock);
			d_delete(d);
			simple_unlink(dentry->d_inode, d);
			dput(d);
			spin_lock(&dcache_lock);
		}
		node = dentry->d_subdirs.next;
	}
	spin_unlock(&dcache_lock);
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
	cgroup_clear_directory(dentry);

	spin_lock(&dcache_lock);
	list_del_init(&dentry->d_u.d_child);
	spin_unlock(&dcache_lock);
	remove_dir(dentry);
}

static int rebind_subsystems(struct cgroupfs_root *root,
			      unsigned long final_bits)
{
	unsigned long added_bits, removed_bits;
694
	struct cgroup *cgrp = &root->top_cgroup;
695 696 697 698 699 700
	int i;

	removed_bits = root->actual_subsys_bits & ~final_bits;
	added_bits = final_bits & ~root->actual_subsys_bits;
	/* Check that any added subsystems are currently free */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
701
		unsigned long bit = 1UL << i;
702 703 704 705 706 707 708 709 710 711 712 713 714
		struct cgroup_subsys *ss = subsys[i];
		if (!(bit & added_bits))
			continue;
		if (ss->root != &rootnode) {
			/* Subsystem isn't free */
			return -EBUSY;
		}
	}

	/* Currently we don't handle adding/removing subsystems when
	 * any child cgroups exist. This is theoretically supportable
	 * but involves complex error handling, so it's being left until
	 * later */
715
	if (!list_empty(&cgrp->children))
716 717 718 719 720 721 722 723
		return -EBUSY;

	/* Process each subsystem */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		unsigned long bit = 1UL << i;
		if (bit & added_bits) {
			/* We're binding this subsystem to this hierarchy */
724
			BUG_ON(cgrp->subsys[i]);
725 726
			BUG_ON(!dummytop->subsys[i]);
			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
727 728
			cgrp->subsys[i] = dummytop->subsys[i];
			cgrp->subsys[i]->cgroup = cgrp;
729 730 731
			list_add(&ss->sibling, &root->subsys_list);
			rcu_assign_pointer(ss->root, root);
			if (ss->bind)
732
				ss->bind(ss, cgrp);
733 734 735

		} else if (bit & removed_bits) {
			/* We're removing this subsystem */
736 737
			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
738 739 740
			if (ss->bind)
				ss->bind(ss, dummytop);
			dummytop->subsys[i]->cgroup = dummytop;
741
			cgrp->subsys[i] = NULL;
742 743 744 745
			rcu_assign_pointer(subsys[i]->root, &rootnode);
			list_del(&ss->sibling);
		} else if (bit & final_bits) {
			/* Subsystem state should already exist */
746
			BUG_ON(!cgrp->subsys[i]);
747 748
		} else {
			/* Subsystem state shouldn't exist */
749
			BUG_ON(cgrp->subsys[i]);
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
		}
	}
	root->subsys_bits = root->actual_subsys_bits = final_bits;
	synchronize_rcu();

	return 0;
}

static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
{
	struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
	struct cgroup_subsys *ss;

	mutex_lock(&cgroup_mutex);
	for_each_subsys(root, ss)
		seq_printf(seq, ",%s", ss->name);
	if (test_bit(ROOT_NOPREFIX, &root->flags))
		seq_puts(seq, ",noprefix");
768 769
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
770 771 772 773 774 775 776
	mutex_unlock(&cgroup_mutex);
	return 0;
}

struct cgroup_sb_opts {
	unsigned long subsys_bits;
	unsigned long flags;
777
	char *release_agent;
778 779 780 781 782 783 784 785 786 787 788
};

/* Convert a hierarchy specifier into a bitmask of subsystems and
 * flags. */
static int parse_cgroupfs_options(char *data,
				     struct cgroup_sb_opts *opts)
{
	char *token, *o = data ?: "all";

	opts->subsys_bits = 0;
	opts->flags = 0;
789
	opts->release_agent = NULL;
790 791 792 793 794

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
		if (!strcmp(token, "all")) {
795 796 797 798 799 800 801 802
			/* Add all non-disabled subsystems */
			int i;
			opts->subsys_bits = 0;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				struct cgroup_subsys *ss = subsys[i];
				if (!ss->disabled)
					opts->subsys_bits |= 1ul << i;
			}
803 804
		} else if (!strcmp(token, "noprefix")) {
			set_bit(ROOT_NOPREFIX, &opts->flags);
805 806 807 808 809 810 811 812 813
		} else if (!strncmp(token, "release_agent=", 14)) {
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
			opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
			if (!opts->release_agent)
				return -ENOMEM;
			strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
			opts->release_agent[PATH_MAX - 1] = 0;
814 815 816 817 818 819
		} else {
			struct cgroup_subsys *ss;
			int i;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				ss = subsys[i];
				if (!strcmp(token, ss->name)) {
820 821
					if (!ss->disabled)
						set_bit(i, &opts->subsys_bits);
822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
					break;
				}
			}
			if (i == CGROUP_SUBSYS_COUNT)
				return -ENOENT;
		}
	}

	/* We can't have an empty hierarchy */
	if (!opts->subsys_bits)
		return -EINVAL;

	return 0;
}

static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
841
	struct cgroup *cgrp = &root->top_cgroup;
842 843
	struct cgroup_sb_opts opts;

844
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
	mutex_lock(&cgroup_mutex);

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

	/* Don't allow flags to change at remount */
	if (opts.flags != root->flags) {
		ret = -EINVAL;
		goto out_unlock;
	}

	ret = rebind_subsystems(root, opts.subsys_bits);

	/* (re)populate subsystem files */
	if (!ret)
862
		cgroup_populate_dir(cgrp);
863

864 865
	if (opts.release_agent)
		strcpy(root->release_agent_path, opts.release_agent);
866
 out_unlock:
867 868
	if (opts.release_agent)
		kfree(opts.release_agent);
869
	mutex_unlock(&cgroup_mutex);
870
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
871 872 873 874 875 876 877 878 879 880 881 882
	return ret;
}

static struct super_operations cgroup_ops = {
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

static void init_cgroup_root(struct cgroupfs_root *root)
{
883
	struct cgroup *cgrp = &root->top_cgroup;
884 885 886
	INIT_LIST_HEAD(&root->subsys_list);
	INIT_LIST_HEAD(&root->root_list);
	root->number_of_cgroups = 1;
887 888 889 890 891 892
	cgrp->root = root;
	cgrp->top_cgroup = cgrp;
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
}

static int cgroup_test_super(struct super_block *sb, void *data)
{
	struct cgroupfs_root *new = data;
	struct cgroupfs_root *root = sb->s_fs_info;

	/* First check subsystems */
	if (new->subsys_bits != root->subsys_bits)
	    return 0;

	/* Next check flags */
	if (new->flags != root->flags)
		return 0;

	return 1;
}

static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
	struct cgroupfs_root *root = data;

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

	sb->s_fs_info = root;
	root->sb = sb;

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
	struct dentry *dentry;

	if (!inode)
		return -ENOMEM;

	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
	dentry = d_alloc_root(inode);
	if (!dentry) {
		iput(inode);
		return -ENOMEM;
	}
	sb->s_root = dentry;
	return 0;
}

static int cgroup_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
{
	struct cgroup_sb_opts opts;
	int ret = 0;
	struct super_block *sb;
	struct cgroupfs_root *root;
961
	struct list_head tmp_cg_links;
962
	INIT_LIST_HEAD(&tmp_cg_links);
963 964 965

	/* First find the desired set of subsystems */
	ret = parse_cgroupfs_options(data, &opts);
966 967 968
	if (ret) {
		if (opts.release_agent)
			kfree(opts.release_agent);
969
		return ret;
970
	}
971 972

	root = kzalloc(sizeof(*root), GFP_KERNEL);
973 974 975
	if (!root) {
		if (opts.release_agent)
			kfree(opts.release_agent);
976
		return -ENOMEM;
977
	}
978 979 980 981

	init_cgroup_root(root);
	root->subsys_bits = opts.subsys_bits;
	root->flags = opts.flags;
982 983 984 985
	if (opts.release_agent) {
		strcpy(root->release_agent_path, opts.release_agent);
		kfree(opts.release_agent);
	}
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000

	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);

	if (IS_ERR(sb)) {
		kfree(root);
		return PTR_ERR(sb);
	}

	if (sb->s_fs_info != root) {
		/* Reusing an existing superblock */
		BUG_ON(sb->s_root == NULL);
		kfree(root);
		root = NULL;
	} else {
		/* New superblock */
1001
		struct cgroup *cgrp = &root->top_cgroup;
1002
		struct inode *inode;
1003
		int i;
1004 1005 1006 1007 1008 1009

		BUG_ON(sb->s_root != NULL);

		ret = cgroup_get_rootdir(sb);
		if (ret)
			goto drop_new_super;
1010
		inode = sb->s_root->d_inode;
1011

1012
		mutex_lock(&inode->i_mutex);
1013 1014
		mutex_lock(&cgroup_mutex);

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
		/*
		 * We're accessing css_set_count without locking
		 * css_set_lock here, but that's OK - it can only be
		 * increased by someone holding cgroup_lock, and
		 * that's us. The worst that can happen is that we
		 * have some link structures left over
		 */
		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
		if (ret) {
			mutex_unlock(&cgroup_mutex);
			mutex_unlock(&inode->i_mutex);
			goto drop_new_super;
		}

1029 1030 1031
		ret = rebind_subsystems(root, root->subsys_bits);
		if (ret == -EBUSY) {
			mutex_unlock(&cgroup_mutex);
1032
			mutex_unlock(&inode->i_mutex);
1033 1034 1035 1036 1037 1038 1039
			goto drop_new_super;
		}

		/* EBUSY should be the only error here */
		BUG_ON(ret);

		list_add(&root->root_list, &roots);
1040
		root_count++;
1041 1042 1043 1044

		sb->s_root->d_fsdata = &root->top_cgroup;
		root->top_cgroup.dentry = sb->s_root;

1045 1046 1047
		/* Link the top cgroup in this hierarchy into all
		 * the css_set objects */
		write_lock(&css_set_lock);
1048 1049 1050
		for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
			struct hlist_head *hhead = &css_set_table[i];
			struct hlist_node *node;
1051
			struct css_set *cg;
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066

			hlist_for_each_entry(cg, node, hhead, hlist) {
				struct cg_cgroup_link *link;

				BUG_ON(list_empty(&tmp_cg_links));
				link = list_entry(tmp_cg_links.next,
						  struct cg_cgroup_link,
						  cgrp_link_list);
				list_del(&link->cgrp_link_list);
				link->cg = cg;
				list_add(&link->cgrp_link_list,
					 &root->top_cgroup.css_sets);
				list_add(&link->cg_link_list, &cg->cg_links);
			}
		}
1067 1068 1069 1070
		write_unlock(&css_set_lock);

		free_cg_links(&tmp_cg_links);

1071 1072
		BUG_ON(!list_empty(&cgrp->sibling));
		BUG_ON(!list_empty(&cgrp->children));
1073 1074
		BUG_ON(root->number_of_cgroups != 1);

1075
		cgroup_populate_dir(cgrp);
1076
		mutex_unlock(&inode->i_mutex);
1077 1078 1079 1080 1081 1082 1083 1084
		mutex_unlock(&cgroup_mutex);
	}

	return simple_set_mnt(mnt, sb);

 drop_new_super:
	up_write(&sb->s_umount);
	deactivate_super(sb);
1085
	free_cg_links(&tmp_cg_links);
1086 1087 1088 1089 1090
	return ret;
}

static void cgroup_kill_sb(struct super_block *sb) {
	struct cgroupfs_root *root = sb->s_fs_info;
1091
	struct cgroup *cgrp = &root->top_cgroup;
1092
	int ret;
K
KOSAKI Motohiro 已提交
1093 1094
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
1095 1096 1097 1098

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
1099 1100
	BUG_ON(!list_empty(&cgrp->children));
	BUG_ON(!list_empty(&cgrp->sibling));
1101 1102 1103 1104 1105 1106 1107 1108

	mutex_lock(&cgroup_mutex);

	/* Rebind all subsystems back to the default hierarchy */
	ret = rebind_subsystems(root, 0);
	/* Shouldn't be able to fail ... */
	BUG_ON(ret);

1109 1110 1111 1112 1113
	/*
	 * Release all the links from css_sets to this hierarchy's
	 * root cgroup
	 */
	write_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1114 1115 1116

	list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
				 cgrp_link_list) {
1117
		list_del(&link->cg_link_list);
1118
		list_del(&link->cgrp_link_list);
1119 1120 1121 1122 1123
		kfree(link);
	}
	write_unlock(&css_set_lock);

	if (!list_empty(&root->root_list)) {
1124
		list_del(&root->root_list);
1125 1126
		root_count--;
	}
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
	mutex_unlock(&cgroup_mutex);

	kfree(root);
	kill_litter_super(sb);
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
	.get_sb = cgroup_get_sb,
	.kill_sb = cgroup_kill_sb,
};

1139
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1140 1141 1142 1143 1144 1145 1146 1147 1148
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

L
Li Zefan 已提交
1149 1150 1151 1152 1153 1154 1155
/**
 * cgroup_path - generate the path of a cgroup
 * @cgrp: the cgroup in question
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
 * Called with cgroup_mutex held. Writes path of cgroup into buf.
1156 1157
 * Returns 0 on success, -errno on error.
 */
1158
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1159 1160 1161
{
	char *start;

1162
	if (cgrp == dummytop) {
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
		/*
		 * Inactive subsystems have no dentry for their root
		 * cgroup
		 */
		strcpy(buf, "/");
		return 0;
	}

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
1175
		int len = cgrp->dentry->d_name.len;
1176 1177
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
1178 1179 1180
		memcpy(start, cgrp->dentry->d_name.name, len);
		cgrp = cgrp->parent;
		if (!cgrp)
1181
			break;
1182
		if (!cgrp->parent)
1183 1184 1185 1186 1187 1188 1189 1190 1191
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}

1192 1193 1194 1195 1196
/*
 * Return the first subsystem attached to a cgroup's hierarchy, and
 * its subsystem id.
 */

1197
static void get_first_subsys(const struct cgroup *cgrp,
1198 1199
			struct cgroup_subsys_state **css, int *subsys_id)
{
1200
	const struct cgroupfs_root *root = cgrp->root;
1201 1202 1203 1204 1205
	const struct cgroup_subsys *test_ss;
	BUG_ON(list_empty(&root->subsys_list));
	test_ss = list_entry(root->subsys_list.next,
			     struct cgroup_subsys, sibling);
	if (css) {
1206
		*css = cgrp->subsys[test_ss->subsys_id];
1207 1208 1209 1210 1211 1212
		BUG_ON(!*css);
	}
	if (subsys_id)
		*subsys_id = test_ss->subsys_id;
}

L
Li Zefan 已提交
1213 1214 1215 1216
/**
 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
 * @cgrp: the cgroup the task is attaching to
 * @tsk: the task to be attached
1217
 *
L
Li Zefan 已提交
1218 1219
 * Call holding cgroup_mutex. May take task_lock of
 * the task 'tsk' during call.
1220
 */
1221
int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1222 1223 1224
{
	int retval = 0;
	struct cgroup_subsys *ss;
1225
	struct cgroup *oldcgrp;
1226 1227
	struct css_set *cg = tsk->cgroups;
	struct css_set *newcg;
1228
	struct cgroupfs_root *root = cgrp->root;
1229 1230
	int subsys_id;

1231
	get_first_subsys(cgrp, NULL, &subsys_id);
1232 1233

	/* Nothing to do if the task is already in that cgroup */
1234 1235
	oldcgrp = task_cgroup(tsk, subsys_id);
	if (cgrp == oldcgrp)
1236 1237 1238 1239
		return 0;

	for_each_subsys(root, ss) {
		if (ss->can_attach) {
1240
			retval = ss->can_attach(ss, cgrp, tsk);
P
Paul Jackson 已提交
1241
			if (retval)
1242 1243 1244 1245
				return retval;
		}
	}

1246 1247 1248 1249
	/*
	 * Locate or allocate a new css_set for this task,
	 * based on its final set of cgroups
	 */
1250
	newcg = find_css_set(cg, cgrp);
P
Paul Jackson 已提交
1251
	if (!newcg)
1252 1253
		return -ENOMEM;

1254 1255 1256
	task_lock(tsk);
	if (tsk->flags & PF_EXITING) {
		task_unlock(tsk);
1257
		put_css_set(newcg);
1258 1259
		return -ESRCH;
	}
1260
	rcu_assign_pointer(tsk->cgroups, newcg);
1261 1262
	task_unlock(tsk);

1263 1264 1265 1266 1267 1268 1269 1270
	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
	if (!list_empty(&tsk->cg_list)) {
		list_del(&tsk->cg_list);
		list_add(&tsk->cg_list, &newcg->tasks);
	}
	write_unlock(&css_set_lock);

1271
	for_each_subsys(root, ss) {
P
Paul Jackson 已提交
1272
		if (ss->attach)
1273
			ss->attach(ss, cgrp, oldcgrp, tsk);
1274
	}
1275
	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1276
	synchronize_rcu();
1277
	put_css_set(cg);
1278 1279 1280 1281
	return 0;
}

/*
1282
 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with
1283 1284
 * cgroup_mutex, may take task_lock of task
 */
1285
static int attach_task_by_pid(struct cgroup *cgrp, char *pidbuf)
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
{
	pid_t pid;
	struct task_struct *tsk;
	int ret;

	if (sscanf(pidbuf, "%d", &pid) != 1)
		return -EIO;

	if (pid) {
		rcu_read_lock();
1296
		tsk = find_task_by_vpid(pid);
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
		if (!tsk || tsk->flags & PF_EXITING) {
			rcu_read_unlock();
			return -ESRCH;
		}
		get_task_struct(tsk);
		rcu_read_unlock();

		if ((current->euid) && (current->euid != tsk->uid)
		    && (current->euid != tsk->suid)) {
			put_task_struct(tsk);
			return -EACCES;
		}
	} else {
		tsk = current;
		get_task_struct(tsk);
	}

1314
	ret = cgroup_attach_task(cgrp, tsk);
1315 1316 1317 1318
	put_task_struct(tsk);
	return ret;
}

1319 1320 1321 1322 1323
/* The various types of files and directories in a cgroup file system */
enum cgroup_filetype {
	FILE_ROOT,
	FILE_DIR,
	FILE_TASKLIST,
1324 1325
	FILE_NOTIFY_ON_RELEASE,
	FILE_RELEASE_AGENT,
1326 1327
};

1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
/**
 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
 * @cgrp: the cgroup to be checked for liveness
 *
 * Returns true (with lock held) on success, or false (with no lock
 * held) on failure.
 */
int cgroup_lock_live_group(struct cgroup *cgrp)
{
	mutex_lock(&cgroup_mutex);
	if (cgroup_is_removed(cgrp)) {
		mutex_unlock(&cgroup_mutex);
		return false;
	}
	return true;
}

static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	strcpy(cgrp->root->release_agent_path, buffer);
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
				     struct seq_file *seq)
{
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	seq_puts(seq, cgrp->root->release_agent_path);
	seq_putc(seq, '\n');
	mutex_unlock(&cgroup_mutex);
	return 0;
}

1367
static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1368 1369 1370
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
{
	char buffer[64];
	int retval = 0;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */
1384
	strstrip(buffer);
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
	if (cft->write_u64) {
		u64 val = simple_strtoull(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_u64(cgrp, cft, val);
	} else {
		s64 val = simple_strtoll(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_s64(cgrp, cft, val);
	}
1396 1397 1398 1399 1400
	if (!retval)
		retval = nbytes;
	return retval;
}

1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   const char __user *userbuf,
				   size_t nbytes, loff_t *unused_ppos)
{
	char local_buffer[64];
	int retval = 0;
	size_t max_bytes = cft->max_write_len;
	char *buffer = local_buffer;

	if (!max_bytes)
		max_bytes = sizeof(local_buffer) - 1;
	if (nbytes >= max_bytes)
		return -E2BIG;
	/* Allocate a dynamic buffer if we need one */
	if (nbytes >= sizeof(local_buffer)) {
		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
		if (buffer == NULL)
			return -ENOMEM;
	}
	if (nbytes && copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */
	strstrip(buffer);
	retval = cft->write_string(cgrp, cft, buffer);
	if (!retval)
		retval = nbytes;
	if (buffer != local_buffer)
		kfree(buffer);
	return retval;
}

1434
static ssize_t cgroup_common_file_write(struct cgroup *cgrp,
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
					   struct cftype *cft,
					   struct file *file,
					   const char __user *userbuf,
					   size_t nbytes, loff_t *unused_ppos)
{
	enum cgroup_filetype type = cft->private;
	char *buffer;
	int retval = 0;

	if (nbytes >= PATH_MAX)
		return -E2BIG;

	/* +1 for nul-terminator */
	buffer = kmalloc(nbytes + 1, GFP_KERNEL);
	if (buffer == NULL)
		return -ENOMEM;

	if (copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out1;
	}
	buffer[nbytes] = 0;	/* nul-terminate */
P
Paul Jackson 已提交
1457
	strstrip(buffer);	/* strip -just- trailing whitespace */
1458 1459 1460

	mutex_lock(&cgroup_mutex);

1461 1462 1463 1464
	/*
	 * This was already checked for in cgroup_file_write(), but
	 * check again now we're holding cgroup_mutex.
	 */
1465
	if (cgroup_is_removed(cgrp)) {
1466 1467 1468 1469 1470 1471
		retval = -ENODEV;
		goto out2;
	}

	switch (type) {
	case FILE_TASKLIST:
1472
		retval = attach_task_by_pid(cgrp, buffer);
1473
		break;
1474
	case FILE_NOTIFY_ON_RELEASE:
1475
		clear_bit(CGRP_RELEASABLE, &cgrp->flags);
1476
		if (simple_strtoul(buffer, NULL, 10) != 0)
1477
			set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
1478
		else
1479
			clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
1480
		break;
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
	default:
		retval = -EINVAL;
		goto out2;
	}

	if (retval == 0)
		retval = nbytes;
out2:
	mutex_unlock(&cgroup_mutex);
out1:
	kfree(buffer);
	return retval;
}

1495 1496 1497 1498
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1499
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1500

1501
	if (!cft || cgroup_is_removed(cgrp))
1502
		return -ENODEV;
1503
	if (cft->write)
1504
		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1505 1506
	if (cft->write_u64 || cft->write_s64)
		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1507 1508
	if (cft->write_string)
		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1509 1510 1511 1512
	if (cft->trigger) {
		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
		return ret ? ret : nbytes;
	}
1513
	return -EINVAL;
1514 1515
}

1516 1517 1518 1519
static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
1520 1521
{
	char tmp[64];
1522
	u64 val = cft->read_u64(cgrp, cft);
1523 1524 1525 1526 1527
	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
{
	char tmp[64];
	s64 val = cft->read_s64(cgrp, cft);
	int len = sprintf(tmp, "%lld\n", (long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1540 1541 1542 1543
static ssize_t cgroup_file_read(struct file *file, char __user *buf,
				   size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1544
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1545

1546
	if (!cft || cgroup_is_removed(cgrp))
1547 1548 1549
		return -ENODEV;

	if (cft->read)
1550
		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1551 1552
	if (cft->read_u64)
		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
1553 1554
	if (cft->read_s64)
		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
1555 1556 1557
	return -EINVAL;
}

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
/*
 * seqfile ops/methods for returning structured data. Currently just
 * supports string->u64 maps, but can be extended in future.
 */

struct cgroup_seqfile_state {
	struct cftype *cft;
	struct cgroup *cgroup;
};

static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
{
	struct seq_file *sf = cb->state;
	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
}

static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
	struct cgroup_seqfile_state *state = m->private;
	struct cftype *cft = state->cft;
1578 1579 1580 1581 1582 1583 1584 1585
	if (cft->read_map) {
		struct cgroup_map_cb cb = {
			.fill = cgroup_map_add,
			.state = m,
		};
		return cft->read_map(state->cgroup, cft, &cb);
	}
	return cft->read_seq_string(state->cgroup, cft, m);
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
}

int cgroup_seqfile_release(struct inode *inode, struct file *file)
{
	struct seq_file *seq = file->private_data;
	kfree(seq->private);
	return single_release(inode, file);
}

static struct file_operations cgroup_seqfile_operations = {
	.read = seq_read,
1597
	.write = cgroup_file_write,
1598 1599 1600 1601
	.llseek = seq_lseek,
	.release = cgroup_seqfile_release,
};

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
static int cgroup_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;

	cft = __d_cft(file->f_dentry);
	if (!cft)
		return -ENODEV;
1614
	if (cft->read_map || cft->read_seq_string) {
1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
		struct cgroup_seqfile_state *state =
			kzalloc(sizeof(*state), GFP_USER);
		if (!state)
			return -ENOMEM;
		state->cft = cft;
		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
		file->f_op = &cgroup_seqfile_operations;
		err = single_open(file, cgroup_seqfile_show, state);
		if (err < 0)
			kfree(state);
	} else if (cft->open)
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

static struct file_operations cgroup_file_operations = {
	.read = cgroup_file_read,
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

static struct inode_operations cgroup_dir_inode_operations = {
	.lookup = simple_lookup,
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
};

static int cgroup_create_file(struct dentry *dentry, int mode,
				struct super_block *sb)
{
	static struct dentry_operations cgroup_dops = {
		.d_iput = cgroup_diput,
	};

	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);

		/* start with the directory inode held, so that we can
		 * populate it without racing with another mkdir */
1698
		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
	}
	dentry->d_op = &cgroup_dops;
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
L
Li Zefan 已提交
1710 1711 1712 1713 1714
 * cgroup_create_dir - create a directory for an object.
 * @cgrp: the cgroup we create the directory for. It must have a valid
 *        ->parent field. And we are going to fill its ->dentry field.
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new directory.
1715
 */
1716
static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
1717 1718 1719 1720 1721
				int mode)
{
	struct dentry *parent;
	int error = 0;

1722 1723
	parent = cgrp->parent->dentry;
	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1724
	if (!error) {
1725
		dentry->d_fsdata = cgrp;
1726
		inc_nlink(parent->d_inode);
1727
		cgrp->dentry = dentry;
1728 1729 1730 1731 1732 1733 1734
		dget(dentry);
	}
	dput(dentry);

	return error;
}

1735
int cgroup_add_file(struct cgroup *cgrp,
1736 1737 1738
		       struct cgroup_subsys *subsys,
		       const struct cftype *cft)
{
1739
	struct dentry *dir = cgrp->dentry;
1740 1741 1742 1743
	struct dentry *dentry;
	int error;

	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1744
	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1745 1746 1747 1748 1749 1750 1751 1752
		strcpy(name, subsys->name);
		strcat(name, ".");
	}
	strcat(name, cft->name);
	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
	dentry = lookup_one_len(name, dir, strlen(name));
	if (!IS_ERR(dentry)) {
		error = cgroup_create_file(dentry, 0644 | S_IFREG,
1753
						cgrp->root->sb);
1754 1755 1756 1757 1758 1759 1760 1761
		if (!error)
			dentry->d_fsdata = (void *)cft;
		dput(dentry);
	} else
		error = PTR_ERR(dentry);
	return error;
}

1762
int cgroup_add_files(struct cgroup *cgrp,
1763 1764 1765 1766 1767 1768
			struct cgroup_subsys *subsys,
			const struct cftype cft[],
			int count)
{
	int i, err;
	for (i = 0; i < count; i++) {
1769
		err = cgroup_add_file(cgrp, subsys, &cft[i]);
1770 1771 1772 1773 1774 1775
		if (err)
			return err;
	}
	return 0;
}

L
Li Zefan 已提交
1776 1777 1778 1779 1780 1781
/**
 * cgroup_task_count - count the number of tasks in a cgroup.
 * @cgrp: the cgroup in question
 *
 * Return the number of tasks in the cgroup.
 */
1782
int cgroup_task_count(const struct cgroup *cgrp)
1783 1784
{
	int count = 0;
K
KOSAKI Motohiro 已提交
1785
	struct cg_cgroup_link *link;
1786 1787

	read_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1788
	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
1789 1790 1791
		count += atomic_read(&link->cg->ref.refcount);
	}
	read_unlock(&css_set_lock);
1792 1793 1794
	return count;
}

1795 1796 1797 1798
/*
 * Advance a list_head iterator.  The iterator should be positioned at
 * the start of a css_set
 */
1799
static void cgroup_advance_iter(struct cgroup *cgrp,
1800 1801 1802 1803 1804 1805 1806 1807 1808
					  struct cgroup_iter *it)
{
	struct list_head *l = it->cg_link;
	struct cg_cgroup_link *link;
	struct css_set *cg;

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
1809
		if (l == &cgrp->css_sets) {
1810 1811 1812
			it->cg_link = NULL;
			return;
		}
1813
		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1814 1815 1816 1817 1818 1819
		cg = link->cg;
	} while (list_empty(&cg->tasks));
	it->cg_link = l;
	it->task = cg->tasks.next;
}

1820 1821 1822 1823 1824 1825 1826 1827 1828
/*
 * To reduce the fork() overhead for systems that are not actually
 * using their cgroups capability, we don't maintain the lists running
 * through each css_set to its tasks until we see the list actually
 * used - in other words after the first call to cgroup_iter_start().
 *
 * The tasklist_lock is not held here, as do_each_thread() and
 * while_each_thread() are protected by RCU.
 */
1829
static void cgroup_enable_task_cg_lists(void)
1830 1831 1832 1833 1834 1835
{
	struct task_struct *p, *g;
	write_lock(&css_set_lock);
	use_task_css_set_links = 1;
	do_each_thread(g, p) {
		task_lock(p);
1836 1837 1838 1839 1840 1841
		/*
		 * We should check if the process is exiting, otherwise
		 * it will race with cgroup_exit() in that the list
		 * entry won't be deleted though the process has exited.
		 */
		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
1842 1843 1844 1845 1846 1847
			list_add(&p->cg_list, &p->cgroups->tasks);
		task_unlock(p);
	} while_each_thread(g, p);
	write_unlock(&css_set_lock);
}

1848
void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
1849 1850 1851 1852 1853 1854
{
	/*
	 * The first time anyone tries to iterate across a cgroup,
	 * we need to enable the list linking each css_set to its
	 * tasks, and fix up all existing tasks.
	 */
1855 1856 1857
	if (!use_task_css_set_links)
		cgroup_enable_task_cg_lists();

1858
	read_lock(&css_set_lock);
1859 1860
	it->cg_link = &cgrp->css_sets;
	cgroup_advance_iter(cgrp, it);
1861 1862
}

1863
struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
					struct cgroup_iter *it)
{
	struct task_struct *res;
	struct list_head *l = it->task;

	/* If the iterator cg is NULL, we have no tasks */
	if (!it->cg_link)
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
	if (l == &res->cgroups->tasks) {
		/* We reached the end of this task list - move on to
		 * the next cg_cgroup_link */
1878
		cgroup_advance_iter(cgrp, it);
1879 1880 1881 1882 1883 1884
	} else {
		it->task = l;
	}
	return res;
}

1885
void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
1886 1887 1888 1889
{
	read_unlock(&css_set_lock);
}

1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively) simultaneously.
		 */
		return t1 > t2;
	}
}

/*
 * This function is a callback from heap_insert() and is used to order
 * the heap.
 * In this case we order the heap in descending task start time.
 */
static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

/**
 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
 * @scan: struct cgroup_scanner containing arguments for the scan
 *
 * Arguments include pointers to callback functions test_task() and
 * process_task().
 * Iterate through all the tasks in a cgroup, calling test_task() for each,
 * and if it returns true, call process_task() for it also.
 * The test_task pointer may be NULL, meaning always true (select all tasks).
 * Effectively duplicates cgroup_iter_{start,next,end}()
 * but does not lock css_set_lock for the call to process_task().
 * The struct cgroup_scanner may be embedded in any structure of the caller's
 * creation.
 * It is guaranteed that process_task() will act on every task that
 * is a member of the cgroup for the duration of this call. This
 * function may or may not call process_task() for tasks that exit
 * or move to a different cgroup during the call, or are forked or
 * move into the cgroup during the call.
 *
 * Note that test_task() may be called with locks held, and may in some
 * situations be called multiple times for the same task, so it should
 * be cheap.
 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
 * pre-allocated and will be used for heap operations (and its "gt" member will
 * be overwritten), else a temporary heap will be used (allocation of which
 * may cause this function to fail).
 */
int cgroup_scan_tasks(struct cgroup_scanner *scan)
{
	int retval, i;
	struct cgroup_iter it;
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap tmp_heap;
	struct ptr_heap *heap;
	struct timespec latest_time = { 0, 0 };

	if (scan->heap) {
		/* The caller supplied our heap and pre-allocated its memory */
		heap = scan->heap;
		heap->gt = &started_after;
	} else {
		/* We need to allocate our own heap memory */
		heap = &tmp_heap;
		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
		if (retval)
			/* cannot allocate the heap */
			return retval;
	}

 again:
	/*
	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
	 * to determine which are of interest, and using the scanner's
	 * "process_task" callback to process any of them that need an update.
	 * Since we don't want to hold any locks during the task updates,
	 * gather tasks to be processed in a heap structure.
	 * The heap is sorted by descending task start time.
	 * If the statically-sized heap fills up, we overflow tasks that
	 * started later, and in future iterations only consider tasks that
	 * started after the latest task in the previous pass. This
	 * guarantees forward progress and that we don't miss any tasks.
	 */
	heap->size = 0;
	cgroup_iter_start(scan->cg, &it);
	while ((p = cgroup_iter_next(scan->cg, &it))) {
		/*
		 * Only affect tasks that qualify per the caller's callback,
		 * if he provided one
		 */
		if (scan->test_task && !scan->test_task(p, scan))
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(heap, p);
		if (dropped == NULL) {
			/*
			 * The new task was inserted; the heap wasn't
			 * previously full
			 */
			get_task_struct(p);
		} else if (dropped != p) {
			/*
			 * The new task was inserted, and pushed out a
			 * different task
			 */
			get_task_struct(p);
			put_task_struct(dropped);
		}
		/*
		 * Else the new task was newer than anything already in
		 * the heap and wasn't inserted
		 */
	}
	cgroup_iter_end(scan->cg, &it);

	if (heap->size) {
		for (i = 0; i < heap->size; i++) {
2027
			struct task_struct *q = heap->ptrs[i];
2028
			if (i == 0) {
2029 2030
				latest_time = q->start_time;
				latest_task = q;
2031 2032
			}
			/* Process the task per the caller's callback */
2033 2034
			scan->process_task(q, scan);
			put_task_struct(q);
2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't get processed.
		 * Not the most efficient way to do it, but it avoids
		 * having to take callback_mutex in the fork path
		 */
		goto again;
	}
	if (heap == &tmp_heap)
		heap_free(&tmp_heap);
	return 0;
}

2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070
/*
 * Stuff for reading the 'tasks' file.
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 * Upon tasks file open(), a struct ctr_struct is allocated, that
 * will have a pointer to an array (also allocated here).  The struct
 * ctr_struct * is stored in file->private_data.  Its resources will
 * be freed by release() when the file is closed.  The array is used
 * to sprintf the PIDs and then used by read().
 */
struct ctr_struct {
	char *buf;
	int bufsz;
};

/*
 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2071
 * 'cgrp'.  Return actual number of pids loaded.  No need to
2072 2073 2074 2075
 * task_lock(p) when reading out p->cgroup, since we're in an RCU
 * read section, so the css_set can't go away, and is
 * immutable after creation.
 */
2076
static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
2077 2078
{
	int n = 0;
2079 2080
	struct cgroup_iter it;
	struct task_struct *tsk;
2081 2082
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
2083 2084
		if (unlikely(n == npids))
			break;
2085
		pidarray[n++] = task_pid_vnr(tsk);
2086
	}
2087
	cgroup_iter_end(cgrp, &it);
2088 2089 2090
	return n;
}

B
Balbir Singh 已提交
2091
/**
L
Li Zefan 已提交
2092
 * cgroupstats_build - build and fill cgroupstats
B
Balbir Singh 已提交
2093 2094 2095
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
L
Li Zefan 已提交
2096 2097 2098
 *
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
B
Balbir Singh 已提交
2099 2100 2101 2102
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
2103
	struct cgroup *cgrp;
B
Balbir Singh 已提交
2104 2105 2106 2107 2108 2109 2110 2111 2112
	struct cgroup_iter it;
	struct task_struct *tsk;
	/*
	 * Validate dentry by checking the superblock operations
	 */
	if (dentry->d_sb->s_op != &cgroup_ops)
		 goto err;

	ret = 0;
2113
	cgrp = dentry->d_fsdata;
B
Balbir Singh 已提交
2114 2115
	rcu_read_lock();

2116 2117
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
B
Balbir Singh 已提交
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
2137
	cgroup_iter_end(cgrp, &it);
B
Balbir Singh 已提交
2138 2139 2140 2141 2142 2143

	rcu_read_unlock();
err:
	return ret;
}

2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

/*
 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
 * decimal pids in 'buf'.  Don't write more than 'sz' chars, but return
 * count 'cnt' of how many chars would be written if buf were large enough.
 */
static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
{
	int cnt = 0;
	int i;

	for (i = 0; i < npids; i++)
		cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
	return cnt;
}

/*
 * Handle an open on 'tasks' file.  Prepare a buffer listing the
 * process id's of tasks currently attached to the cgroup being opened.
 *
 * Does not require any specific cgroup mutexes, and does not take any.
 */
static int cgroup_tasks_open(struct inode *unused, struct file *file)
{
2172
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
	struct ctr_struct *ctr;
	pid_t *pidarray;
	int npids;
	char c;

	if (!(file->f_mode & FMODE_READ))
		return 0;

	ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
	if (!ctr)
		goto err0;

	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
2191
	npids = cgroup_task_count(cgrp);
2192 2193 2194 2195 2196
	if (npids) {
		pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
		if (!pidarray)
			goto err1;

2197
		npids = pid_array_load(pidarray, npids, cgrp);
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
		sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);

		/* Call pid_array_to_buf() twice, first just to get bufsz */
		ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
		ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
		if (!ctr->buf)
			goto err2;
		ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);

		kfree(pidarray);
	} else {
A
Al Viro 已提交
2209
		ctr->buf = NULL;
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222
		ctr->bufsz = 0;
	}
	file->private_data = ctr;
	return 0;

err2:
	kfree(pidarray);
err1:
	kfree(ctr);
err0:
	return -ENOMEM;
}

2223
static ssize_t cgroup_tasks_read(struct cgroup *cgrp,
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
				    struct cftype *cft,
				    struct file *file, char __user *buf,
				    size_t nbytes, loff_t *ppos)
{
	struct ctr_struct *ctr = file->private_data;

	return simple_read_from_buffer(buf, nbytes, ppos, ctr->buf, ctr->bufsz);
}

static int cgroup_tasks_release(struct inode *unused_inode,
					struct file *file)
{
	struct ctr_struct *ctr;

	if (file->f_mode & FMODE_READ) {
		ctr = file->private_data;
		kfree(ctr->buf);
		kfree(ctr);
	}
	return 0;
}

2246
static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2247 2248
					    struct cftype *cft)
{
2249
	return notify_on_release(cgrp);
2250 2251
}

2252 2253 2254
/*
 * for the common functions, 'private' gives the type of file
 */
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
static struct cftype files[] = {
	{
		.name = "tasks",
		.open = cgroup_tasks_open,
		.read = cgroup_tasks_read,
		.write = cgroup_common_file_write,
		.release = cgroup_tasks_release,
		.private = FILE_TASKLIST,
	},

	{
		.name = "notify_on_release",
2267
		.read_u64 = cgroup_read_notify_on_release,
2268 2269 2270 2271 2272 2273 2274
		.write = cgroup_common_file_write,
		.private = FILE_NOTIFY_ON_RELEASE,
	},
};

static struct cftype cft_release_agent = {
	.name = "release_agent",
2275 2276 2277
	.read_seq_string = cgroup_release_agent_show,
	.write_string = cgroup_release_agent_write,
	.max_write_len = PATH_MAX,
2278
	.private = FILE_RELEASE_AGENT,
2279 2280
};

2281
static int cgroup_populate_dir(struct cgroup *cgrp)
2282 2283 2284 2285 2286
{
	int err;
	struct cgroup_subsys *ss;

	/* First clear out any existing files */
2287
	cgroup_clear_directory(cgrp->dentry);
2288

2289
	err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2290 2291 2292
	if (err < 0)
		return err;

2293 2294
	if (cgrp == cgrp->top_cgroup) {
		if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2295 2296 2297
			return err;
	}

2298 2299
	for_each_subsys(cgrp->root, ss) {
		if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2300 2301 2302 2303 2304 2305 2306 2307
			return err;
	}

	return 0;
}

static void init_cgroup_css(struct cgroup_subsys_state *css,
			       struct cgroup_subsys *ss,
2308
			       struct cgroup *cgrp)
2309
{
2310
	css->cgroup = cgrp;
2311 2312
	atomic_set(&css->refcnt, 0);
	css->flags = 0;
2313
	if (cgrp == dummytop)
2314
		set_bit(CSS_ROOT, &css->flags);
2315 2316
	BUG_ON(cgrp->subsys[ss->subsys_id]);
	cgrp->subsys[ss->subsys_id] = css;
2317 2318 2319
}

/*
L
Li Zefan 已提交
2320 2321 2322 2323
 * cgroup_create - create a cgroup
 * @parent: cgroup that will be parent of the new cgroup
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new inode
2324
 *
L
Li Zefan 已提交
2325
 * Must be called with the mutex on the parent inode held
2326 2327 2328 2329
 */
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
			     int mode)
{
2330
	struct cgroup *cgrp;
2331 2332 2333 2334 2335
	struct cgroupfs_root *root = parent->root;
	int err = 0;
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

2336 2337
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
		return -ENOMEM;

	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
	atomic_inc(&sb->s_active);

	mutex_lock(&cgroup_mutex);

2349 2350 2351 2352
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
2353

2354 2355 2356
	cgrp->parent = parent;
	cgrp->root = parent->root;
	cgrp->top_cgroup = parent->top_cgroup;
2357

2358 2359 2360
	if (notify_on_release(parent))
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);

2361
	for_each_subsys(root, ss) {
2362
		struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2363 2364 2365 2366
		if (IS_ERR(css)) {
			err = PTR_ERR(css);
			goto err_destroy;
		}
2367
		init_cgroup_css(css, ss, cgrp);
2368 2369
	}

2370
	list_add(&cgrp->sibling, &cgrp->parent->children);
2371 2372
	root->number_of_cgroups++;

2373
	err = cgroup_create_dir(cgrp, dentry, mode);
2374 2375 2376 2377
	if (err < 0)
		goto err_remove;

	/* The cgroup directory was pre-locked for us */
2378
	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2379

2380
	err = cgroup_populate_dir(cgrp);
2381 2382 2383
	/* If err < 0, we have a half-filled directory - oh well ;) */

	mutex_unlock(&cgroup_mutex);
2384
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2385 2386 2387 2388 2389

	return 0;

 err_remove:

2390
	list_del(&cgrp->sibling);
2391 2392 2393 2394 2395
	root->number_of_cgroups--;

 err_destroy:

	for_each_subsys(root, ss) {
2396 2397
		if (cgrp->subsys[ss->subsys_id])
			ss->destroy(ss, cgrp);
2398 2399 2400 2401 2402 2403 2404
	}

	mutex_unlock(&cgroup_mutex);

	/* Release the reference count that we took on the superblock */
	deactivate_super(sb);

2405
	kfree(cgrp);
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416
	return err;
}

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

2417
static inline int cgroup_has_css_refs(struct cgroup *cgrp)
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
{
	/* Check the reference count on each subsystem. Since we
	 * already established that there are no tasks in the
	 * cgroup, if the css refcount is also 0, then there should
	 * be no outstanding references, so the subsystem is safe to
	 * destroy. We scan across all subsystems rather than using
	 * the per-hierarchy linked list of mounted subsystems since
	 * we can be called via check_for_release() with no
	 * synchronization other than RCU, and the subsystem linked
	 * list isn't RCU-safe */
	int i;
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		struct cgroup_subsys_state *css;
		/* Skip subsystems not in this hierarchy */
2433
		if (ss->root != cgrp->root)
2434
			continue;
2435
		css = cgrp->subsys[ss->subsys_id];
2436 2437 2438 2439 2440 2441
		/* When called from check_for_release() it's possible
		 * that by this point the cgroup has been removed
		 * and the css deleted. But a false-positive doesn't
		 * matter, since it can only happen if the cgroup
		 * has been deleted and hence no longer needs the
		 * release agent to be called anyway. */
P
Paul Jackson 已提交
2442
		if (css && atomic_read(&css->refcnt))
2443 2444 2445 2446 2447
			return 1;
	}
	return 0;
}

2448 2449
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
2450
	struct cgroup *cgrp = dentry->d_fsdata;
2451 2452 2453 2454 2455 2456 2457 2458
	struct dentry *d;
	struct cgroup *parent;
	struct super_block *sb;
	struct cgroupfs_root *root;

	/* the vfs holds both inode->i_mutex already */

	mutex_lock(&cgroup_mutex);
2459
	if (atomic_read(&cgrp->count) != 0) {
2460 2461 2462
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2463
	if (!list_empty(&cgrp->children)) {
2464 2465 2466 2467
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}

2468 2469
	parent = cgrp->parent;
	root = cgrp->root;
2470
	sb = root->sb;
L
Li Zefan 已提交
2471

2472
	/*
L
Li Zefan 已提交
2473 2474
	 * Call pre_destroy handlers of subsys. Notify subsystems
	 * that rmdir() request comes.
2475 2476
	 */
	cgroup_call_pre_destroy(cgrp);
2477

2478
	if (cgroup_has_css_refs(cgrp)) {
2479 2480 2481 2482
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}

2483
	spin_lock(&release_list_lock);
2484 2485 2486
	set_bit(CGRP_REMOVED, &cgrp->flags);
	if (!list_empty(&cgrp->release_list))
		list_del(&cgrp->release_list);
2487
	spin_unlock(&release_list_lock);
2488
	/* delete my sibling from parent->children */
2489 2490 2491 2492
	list_del(&cgrp->sibling);
	spin_lock(&cgrp->dentry->d_lock);
	d = dget(cgrp->dentry);
	cgrp->dentry = NULL;
2493 2494 2495 2496 2497
	spin_unlock(&d->d_lock);

	cgroup_d_remove_dir(d);
	dput(d);

2498
	set_bit(CGRP_RELEASABLE, &parent->flags);
2499 2500
	check_for_release(parent);

2501 2502 2503 2504
	mutex_unlock(&cgroup_mutex);
	return 0;
}

2505
static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
2506 2507
{
	struct cgroup_subsys_state *css;
D
Diego Calleja 已提交
2508 2509

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2510 2511 2512 2513 2514 2515 2516 2517

	/* Create the top cgroup state for this subsystem */
	ss->root = &rootnode;
	css = ss->create(ss, dummytop);
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
	init_cgroup_css(css, ss, dummytop);

L
Li Zefan 已提交
2518
	/* Update the init_css_set to contain a subsys
2519
	 * pointer to this state - since the subsystem is
L
Li Zefan 已提交
2520 2521 2522
	 * newly registered, all tasks and hence the
	 * init_css_set is in the subsystem's top cgroup. */
	init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2523 2524

	need_forkexit_callback |= ss->fork || ss->exit;
2525
	need_mm_owner_callback |= !!ss->mm_owner_changed;
2526

L
Li Zefan 已提交
2527 2528 2529 2530 2531
	/* At system boot, before all subsystems have been
	 * registered, no tasks have been forked, so we don't
	 * need to invoke fork callbacks here. */
	BUG_ON(!list_empty(&init_task.tasks));

2532 2533 2534 2535
	ss->active = 1;
}

/**
L
Li Zefan 已提交
2536 2537 2538 2539
 * cgroup_init_early - cgroup initialization at system boot
 *
 * Initialize cgroups at system boot, and initialize any
 * subsystems that request early init.
2540 2541 2542 2543
 */
int __init cgroup_init_early(void)
{
	int i;
2544 2545 2546 2547
	kref_init(&init_css_set.ref);
	kref_get(&init_css_set.ref);
	INIT_LIST_HEAD(&init_css_set.cg_links);
	INIT_LIST_HEAD(&init_css_set.tasks);
2548
	INIT_HLIST_NODE(&init_css_set.hlist);
2549
	css_set_count = 1;
2550 2551
	init_cgroup_root(&rootnode);
	list_add(&rootnode.root_list, &roots);
2552 2553 2554 2555
	root_count = 1;
	init_task.cgroups = &init_css_set;

	init_css_set_link.cg = &init_css_set;
2556
	list_add(&init_css_set_link.cgrp_link_list,
2557 2558 2559
		 &rootnode.top_cgroup.css_sets);
	list_add(&init_css_set_link.cg_link_list,
		 &init_css_set.cg_links);
2560

2561 2562 2563
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
		INIT_HLIST_HEAD(&css_set_table[i]);

2564 2565 2566 2567 2568 2569 2570 2571
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];

		BUG_ON(!ss->name);
		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
		BUG_ON(!ss->create);
		BUG_ON(!ss->destroy);
		if (ss->subsys_id != i) {
D
Diego Calleja 已提交
2572
			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583
			       ss->name, ss->subsys_id);
			BUG();
		}

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
L
Li Zefan 已提交
2584 2585 2586 2587
 * cgroup_init - cgroup initialization
 *
 * Register cgroup filesystem and /proc file, and initialize
 * any subsystems that didn't request early init.
2588 2589 2590 2591 2592
 */
int __init cgroup_init(void)
{
	int err;
	int i;
2593
	struct hlist_head *hhead;
2594 2595 2596 2597

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;
2598 2599 2600 2601 2602 2603 2604

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (!ss->early_init)
			cgroup_init_subsys(ss);
	}

2605 2606 2607 2608
	/* Add init_css_set to the hash table */
	hhead = css_set_hash(init_css_set.subsys);
	hlist_add_head(&init_css_set.hlist, hhead);

2609 2610 2611 2612
	err = register_filesystem(&cgroup_fs_type);
	if (err < 0)
		goto out;

L
Li Zefan 已提交
2613
	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2614

2615
out:
2616 2617 2618
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

2619 2620
	return err;
}
2621

2622 2623 2624 2625 2626 2627
/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
2628
 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
static int proc_cgroup_show(struct seq_file *m, void *v)
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

	for_each_root(root) {
		struct cgroup_subsys *ss;
2660
		struct cgroup *cgrp;
2661 2662 2663 2664 2665 2666
		int subsys_id;
		int count = 0;

		/* Skip this hierarchy if it has no active subsystems */
		if (!root->actual_subsys_bits)
			continue;
2667
		seq_printf(m, "%lu:", root->subsys_bits);
2668 2669 2670 2671
		for_each_subsys(root, ss)
			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
		seq_putc(m, ':');
		get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
2672 2673
		cgrp = task_cgroup(tsk, subsys_id);
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

static int cgroup_open(struct inode *inode, struct file *file)
{
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cgroup_show, pid);
}

struct file_operations proc_cgroup_operations = {
	.open		= cgroup_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
	int i;

2707
	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
2708 2709 2710
	mutex_lock(&cgroup_mutex);
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
2711
		seq_printf(m, "%s\t%lu\t%d\t%d\n",
2712
			   ss->name, ss->root->subsys_bits,
2713
			   ss->root->number_of_cgroups, !ss->disabled);
2714 2715 2716 2717 2718 2719 2720
	}
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
A
Al Viro 已提交
2721
	return single_open(file, proc_cgroupstats_show, NULL);
2722 2723 2724 2725 2726 2727 2728 2729 2730
}

static struct file_operations proc_cgroupstats_operations = {
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

2731 2732
/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
L
Li Zefan 已提交
2733
 * @child: pointer to task_struct of forking parent process.
2734 2735 2736 2737 2738 2739
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
 * it was not made under the protection of RCU or cgroup_mutex, so
2740
 * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
2741 2742
 * have already changed current->cgroups, allowing the previously
 * referenced cgroup group to be removed and freed.
2743 2744 2745 2746 2747 2748
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
2749 2750 2751 2752 2753
	task_lock(current);
	child->cgroups = current->cgroups;
	get_css_set(child->cgroups);
	task_unlock(current);
	INIT_LIST_HEAD(&child->cg_list);
2754 2755 2756
}

/**
L
Li Zefan 已提交
2757 2758 2759 2760 2761 2762
 * cgroup_fork_callbacks - run fork callbacks
 * @child: the new task
 *
 * Called on a new task very soon before adding it to the
 * tasklist. No need to take any locks since no-one can
 * be operating on this task.
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
 */
void cgroup_fork_callbacks(struct task_struct *child)
{
	if (need_forkexit_callback) {
		int i;
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->fork)
				ss->fork(ss, child);
		}
	}
}

2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
#ifdef CONFIG_MM_OWNER
/**
 * cgroup_mm_owner_callbacks - run callbacks when the mm->owner changes
 * @p: the new owner
 *
 * Called on every change to mm->owner. mm_init_owner() does not
 * invoke this routine, since it assigns the mm->owner the first time
 * and does not change it.
 */
void cgroup_mm_owner_callbacks(struct task_struct *old, struct task_struct *new)
{
	struct cgroup *oldcgrp, *newcgrp;

	if (need_mm_owner_callback) {
		int i;
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			oldcgrp = task_cgroup(old, ss->subsys_id);
			newcgrp = task_cgroup(new, ss->subsys_id);
			if (oldcgrp == newcgrp)
				continue;
			if (ss->mm_owner_changed)
				ss->mm_owner_changed(ss, oldcgrp, newcgrp);
		}
	}
}
#endif /* CONFIG_MM_OWNER */

2804
/**
L
Li Zefan 已提交
2805 2806 2807 2808 2809 2810 2811 2812
 * cgroup_post_fork - called on a new task after adding it to the task list
 * @child: the task in question
 *
 * Adds the task to the list running through its css_set if necessary.
 * Has to be after the task is visible on the task list in case we race
 * with the first call to cgroup_iter_start() - to guarantee that the
 * new task ends up on its list.
 */
2813 2814 2815 2816 2817 2818 2819 2820 2821
void cgroup_post_fork(struct task_struct *child)
{
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
		if (list_empty(&child->cg_list))
			list_add(&child->cg_list, &child->cgroups->tasks);
		write_unlock(&css_set_lock);
	}
}
2822 2823 2824
/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
L
Li Zefan 已提交
2825
 * @run_callback: run exit callbacks?
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
2854 2855
 *    which wards off any cgroup_attach_task() attempts, or task is a failed
 *    fork, never visible to cgroup_attach_task.
2856 2857 2858 2859
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
	int i;
2860
	struct css_set *cg;
2861 2862 2863 2864 2865 2866 2867 2868

	if (run_callbacks && need_forkexit_callback) {
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->exit)
				ss->exit(ss, tsk);
		}
	}
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
			list_del(&tsk->cg_list);
		write_unlock(&css_set_lock);
	}

2882 2883
	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
2884 2885
	cg = tsk->cgroups;
	tsk->cgroups = &init_css_set;
2886
	task_unlock(tsk);
2887
	if (cg)
2888
		put_css_set_taskexit(cg);
2889
}
2890 2891

/**
L
Li Zefan 已提交
2892 2893 2894 2895 2896 2897 2898
 * cgroup_clone - clone the cgroup the given subsystem is attached to
 * @tsk: the task to be moved
 * @subsys: the given subsystem
 *
 * Duplicate the current cgroup in the hierarchy that the given
 * subsystem is attached to, and move this task into the new
 * child.
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
 */
int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys)
{
	struct dentry *dentry;
	int ret = 0;
	char nodename[MAX_CGROUP_TYPE_NAMELEN];
	struct cgroup *parent, *child;
	struct inode *inode;
	struct css_set *cg;
	struct cgroupfs_root *root;
	struct cgroup_subsys *ss;

	/* We shouldn't be called by an unregistered subsystem */
	BUG_ON(!subsys->active);

	/* First figure out what hierarchy and cgroup we're dealing
	 * with, and pin them so we can drop cgroup_mutex */
	mutex_lock(&cgroup_mutex);
 again:
	root = subsys->root;
	if (root == &rootnode) {
		printk(KERN_INFO
		       "Not cloning cgroup for unused subsystem %s\n",
		       subsys->name);
		mutex_unlock(&cgroup_mutex);
		return 0;
	}
2926
	cg = tsk->cgroups;
2927 2928
	parent = task_cgroup(tsk, subsys->subsys_id);

2929
	snprintf(nodename, MAX_CGROUP_TYPE_NAMELEN, "%d", tsk->pid);
2930 2931 2932 2933

	/* Pin the hierarchy */
	atomic_inc(&parent->root->sb->s_active);

2934 2935
	/* Keep the cgroup alive */
	get_css_set(cg);
2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
	mutex_unlock(&cgroup_mutex);

	/* Now do the VFS work to create a cgroup */
	inode = parent->dentry->d_inode;

	/* Hold the parent directory mutex across this operation to
	 * stop anyone else deleting the new cgroup */
	mutex_lock(&inode->i_mutex);
	dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
	if (IS_ERR(dentry)) {
		printk(KERN_INFO
D
Diego Calleja 已提交
2947
		       "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
2948 2949 2950 2951 2952 2953 2954
		       PTR_ERR(dentry));
		ret = PTR_ERR(dentry);
		goto out_release;
	}

	/* Create the cgroup directory, which also creates the cgroup */
	ret = vfs_mkdir(inode, dentry, S_IFDIR | 0755);
2955
	child = __d_cgrp(dentry);
2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
	dput(dentry);
	if (ret) {
		printk(KERN_INFO
		       "Failed to create cgroup %s: %d\n", nodename,
		       ret);
		goto out_release;
	}

	if (!child) {
		printk(KERN_INFO
		       "Couldn't find new cgroup %s\n", nodename);
		ret = -ENOMEM;
		goto out_release;
	}

	/* The cgroup now exists. Retake cgroup_mutex and check
	 * that we're still in the same state that we thought we
	 * were. */
	mutex_lock(&cgroup_mutex);
	if ((root != subsys->root) ||
	    (parent != task_cgroup(tsk, subsys->subsys_id))) {
		/* Aargh, we raced ... */
		mutex_unlock(&inode->i_mutex);
2979
		put_css_set(cg);
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997

		deactivate_super(parent->root->sb);
		/* The cgroup is still accessible in the VFS, but
		 * we're not going to try to rmdir() it at this
		 * point. */
		printk(KERN_INFO
		       "Race in cgroup_clone() - leaking cgroup %s\n",
		       nodename);
		goto again;
	}

	/* do any required auto-setup */
	for_each_subsys(root, ss) {
		if (ss->post_clone)
			ss->post_clone(ss, child);
	}

	/* All seems fine. Finish by moving the task into the new cgroup */
2998
	ret = cgroup_attach_task(child, tsk);
2999 3000 3001 3002
	mutex_unlock(&cgroup_mutex);

 out_release:
	mutex_unlock(&inode->i_mutex);
3003 3004

	mutex_lock(&cgroup_mutex);
3005
	put_css_set(cg);
3006
	mutex_unlock(&cgroup_mutex);
3007 3008 3009 3010
	deactivate_super(parent->root->sb);
	return ret;
}

L
Li Zefan 已提交
3011 3012 3013 3014 3015 3016
/**
 * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp
 * @cgrp: the cgroup in question
 *
 * See if @cgrp is a descendant of the current task's cgroup in
 * the appropriate hierarchy.
3017 3018 3019 3020 3021 3022
 *
 * If we are sending in dummytop, then presumably we are creating
 * the top cgroup in the subsystem.
 *
 * Called only by the ns (nsproxy) cgroup.
 */
3023
int cgroup_is_descendant(const struct cgroup *cgrp)
3024 3025 3026 3027 3028
{
	int ret;
	struct cgroup *target;
	int subsys_id;

3029
	if (cgrp == dummytop)
3030 3031
		return 1;

3032
	get_first_subsys(cgrp, NULL, &subsys_id);
3033
	target = task_cgroup(current, subsys_id);
3034 3035 3036
	while (cgrp != target && cgrp!= cgrp->top_cgroup)
		cgrp = cgrp->parent;
	ret = (cgrp == target);
3037 3038
	return ret;
}
3039

3040
static void check_for_release(struct cgroup *cgrp)
3041 3042 3043
{
	/* All of these checks rely on RCU to keep the cgroup
	 * structure alive */
3044 3045
	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
3046 3047 3048 3049 3050
		/* Control Group is currently removeable. If it's not
		 * already queued for a userspace notification, queue
		 * it now */
		int need_schedule_work = 0;
		spin_lock(&release_list_lock);
3051 3052 3053
		if (!cgroup_is_removed(cgrp) &&
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063
			need_schedule_work = 1;
		}
		spin_unlock(&release_list_lock);
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

void __css_put(struct cgroup_subsys_state *css)
{
3064
	struct cgroup *cgrp = css->cgroup;
3065
	rcu_read_lock();
3066 3067 3068
	if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) {
		set_bit(CGRP_RELEASABLE, &cgrp->flags);
		check_for_release(cgrp);
3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
	}
	rcu_read_unlock();
}

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 */
static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
	spin_lock(&release_list_lock);
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
3104
		char *pathbuf = NULL, *agentbuf = NULL;
3105
		struct cgroup *cgrp = list_entry(release_list.next,
3106 3107
						    struct cgroup,
						    release_list);
3108
		list_del_init(&cgrp->release_list);
3109 3110
		spin_unlock(&release_list_lock);
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3111 3112 3113 3114 3115 3116 3117
		if (!pathbuf)
			goto continue_free;
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
			goto continue_free;
		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
		if (!agentbuf)
			goto continue_free;
3118 3119

		i = 0;
3120 3121
		argv[i++] = agentbuf;
		argv[i++] = pathbuf;
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		mutex_lock(&cgroup_mutex);
3136 3137 3138
 continue_free:
		kfree(pathbuf);
		kfree(agentbuf);
3139 3140 3141 3142 3143
		spin_lock(&release_list_lock);
	}
	spin_unlock(&release_list_lock);
	mutex_unlock(&cgroup_mutex);
}
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167

static int __init cgroup_disable(char *str)
{
	int i;
	char *token;

	while ((token = strsep(&str, ",")) != NULL) {
		if (!*token)
			continue;

		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];

			if (!strcmp(token, ss->name)) {
				ss->disabled = 1;
				printk(KERN_INFO "Disabling %s control group"
					" subsystem\n", ss->name);
				break;
			}
		}
	}
	return 1;
}
__setup("cgroup_disable=", cgroup_disable);