cgroup.c 92.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
34
#include <linux/proc_fs.h>
35 36
#include <linux/rcupdate.h>
#include <linux/sched.h>
37
#include <linux/backing-dev.h>
38 39 40 41 42
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
43
#include <linux/sort.h>
44
#include <linux/kmod.h>
B
Balbir Singh 已提交
45 46
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
47
#include <linux/hash.h>
48
#include <linux/namei.h>
B
Balbir Singh 已提交
49

50 51
#include <asm/atomic.h>

52 53
static DEFINE_MUTEX(cgroup_mutex);

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
/* Generate an array of cgroup subsystem pointers */
#define SUBSYS(_x) &_x ## _subsys,

static struct cgroup_subsys *subsys[] = {
#include <linux/cgroup_subsys.h>
};

/*
 * A cgroupfs_root represents the root of a cgroup hierarchy,
 * and may be associated with a superblock to form an active
 * hierarchy
 */
struct cgroupfs_root {
	struct super_block *sb;

	/*
	 * The bitmask of subsystems intended to be attached to this
	 * hierarchy
	 */
	unsigned long subsys_bits;

	/* The bitmask of subsystems currently attached to this hierarchy */
	unsigned long actual_subsys_bits;

	/* A list running through the attached subsystems */
	struct list_head subsys_list;

	/* The root cgroup for this hierarchy */
	struct cgroup top_cgroup;

	/* Tracks how many cgroups are currently defined in hierarchy.*/
	int number_of_cgroups;

87
	/* A list running through the active hierarchies */
88 89 90 91
	struct list_head root_list;

	/* Hierarchy-specific flags */
	unsigned long flags;
92

93
	/* The path to use for release notifications. */
94
	char release_agent_path[PATH_MAX];
95 96 97 98 99 100 101 102 103
};

/*
 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 * subsystems that are otherwise unattached - it never has more than a
 * single cgroup, and all tasks are part of that cgroup.
 */
static struct cgroupfs_root rootnode;

K
KAMEZAWA Hiroyuki 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
/*
 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
 * cgroup_subsys->use_id != 0.
 */
#define CSS_ID_MAX	(65535)
struct css_id {
	/*
	 * The css to which this ID points. This pointer is set to valid value
	 * after cgroup is populated. If cgroup is removed, this will be NULL.
	 * This pointer is expected to be RCU-safe because destroy()
	 * is called after synchronize_rcu(). But for safe use, css_is_removed()
	 * css_tryget() should be used for avoiding race.
	 */
	struct cgroup_subsys_state *css;
	/*
	 * ID of this css.
	 */
	unsigned short id;
	/*
	 * Depth in hierarchy which this ID belongs to.
	 */
	unsigned short depth;
	/*
	 * ID is freed by RCU. (and lookup routine is RCU safe.)
	 */
	struct rcu_head rcu_head;
	/*
	 * Hierarchy of CSS ID belongs to.
	 */
	unsigned short stack[0]; /* Array of Length (depth+1) */
};


137 138 139
/* The list of hierarchy roots */

static LIST_HEAD(roots);
140
static int root_count;
141 142 143 144 145

/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
#define dummytop (&rootnode.top_cgroup)

/* This flag indicates whether tasks in the fork and exit paths should
L
Li Zefan 已提交
146 147 148
 * check for fork/exit handlers to call. This avoids us having to do
 * extra work in the fork/exit path if none of the subsystems need to
 * be called.
149
 */
150
static int need_forkexit_callback __read_mostly;
151 152

/* convenient tests for these bits */
153
inline int cgroup_is_removed(const struct cgroup *cgrp)
154
{
155
	return test_bit(CGRP_REMOVED, &cgrp->flags);
156 157 158 159 160 161 162
}

/* bits in struct cgroupfs_root flags field */
enum {
	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
};

163
static int cgroup_is_releasable(const struct cgroup *cgrp)
164 165
{
	const int bits =
166 167 168
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
169 170
}

171
static int notify_on_release(const struct cgroup *cgrp)
172
{
173
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
174 175
}

176 177 178 179 180 181 182
/*
 * for_each_subsys() allows you to iterate on each subsystem attached to
 * an active hierarchy
 */
#define for_each_subsys(_root, _ss) \
list_for_each_entry(_ss, &_root->subsys_list, sibling)

183 184
/* for_each_active_root() allows you to iterate across the active hierarchies */
#define for_each_active_root(_root) \
185 186
list_for_each_entry(_root, &roots, root_list)

187 188 189 190 191 192
/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
static DEFINE_SPINLOCK(release_list_lock);
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
193
static void check_for_release(struct cgroup *cgrp);
194

195 196 197 198 199 200
/* Link structure for associating css_set objects with cgroups */
struct cg_cgroup_link {
	/*
	 * List running through cg_cgroup_links associated with a
	 * cgroup, anchored on cgroup->css_sets
	 */
201
	struct list_head cgrp_link_list;
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
	/*
	 * List running through cg_cgroup_links pointing at a
	 * single css_set object, anchored on css_set->cg_links
	 */
	struct list_head cg_link_list;
	struct css_set *cg;
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
static struct cg_cgroup_link init_css_set_link;

K
KAMEZAWA Hiroyuki 已提交
220 221
static int cgroup_subsys_init_idr(struct cgroup_subsys *ss);

222 223 224 225 226 227
/* css_set_lock protects the list of css_set objects, and the
 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 * due to cgroup_iter_start() */
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
/* hash table for cgroup groups. This improves the performance to
 * find an existing css_set */
#define CSS_SET_HASH_BITS	7
#define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS)
static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];

static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
{
	int i;
	int index;
	unsigned long tmp = 0UL;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
		tmp += (unsigned long)css[i];
	tmp = (tmp >> 16) ^ tmp;

	index = hash_long(tmp, CSS_SET_HASH_BITS);

	return &css_set_table[index];
}

249 250 251 252
/* We don't maintain the lists running through each css_set to its
 * task until after the first call to cgroup_iter_start(). This
 * reduces the fork()/exit() overhead for people who have cgroups
 * compiled into their kernel but not actually in use */
253
static int use_task_css_set_links __read_mostly;
254 255 256 257 258 259 260

/* When we create or destroy a css_set, the operation simply
 * takes/releases a reference count on all the cgroups referenced
 * by subsystems in this css_set. This can end up multiple-counting
 * some cgroups, but that's OK - the ref-count is just a
 * busy/not-busy indicator; ensuring that we only count each cgroup
 * once would require taking a global lock to ensure that no
261 262 263 264 265 266 267
 * subsystems moved between hierarchies while we were doing so.
 *
 * Possible TODO: decide at boot time based on the number of
 * registered subsystems and the number of CPUs or NUMA nodes whether
 * it's better for performance to ref-count every subsystem, or to
 * take a global lock and only add one ref count to each hierarchy.
 */
268 269 270 271

/*
 * unlink a css_set from the list and free it
 */
272
static void unlink_css_set(struct css_set *cg)
273
{
K
KOSAKI Motohiro 已提交
274 275 276
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

277
	hlist_del(&cg->hlist);
278
	css_set_count--;
K
KOSAKI Motohiro 已提交
279 280 281

	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
				 cg_link_list) {
282
		list_del(&link->cg_link_list);
283
		list_del(&link->cgrp_link_list);
284 285
		kfree(link);
	}
286 287
}

288
static void __put_css_set(struct css_set *cg, int taskexit)
289 290
{
	int i;
291 292 293 294 295 296 297 298 299 300 301 302
	/*
	 * Ensure that the refcount doesn't hit zero while any readers
	 * can see it. Similar to atomic_dec_and_lock(), but for an
	 * rwlock
	 */
	if (atomic_add_unless(&cg->refcount, -1, 1))
		return;
	write_lock(&css_set_lock);
	if (!atomic_dec_and_test(&cg->refcount)) {
		write_unlock(&css_set_lock);
		return;
	}
303
	unlink_css_set(cg);
304
	write_unlock(&css_set_lock);
305 306 307

	rcu_read_lock();
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
308
		struct cgroup *cgrp = rcu_dereference(cg->subsys[i]->cgroup);
309 310
		if (atomic_dec_and_test(&cgrp->count) &&
		    notify_on_release(cgrp)) {
311
			if (taskexit)
312 313
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
314 315 316
		}
	}
	rcu_read_unlock();
317
	kfree(cg);
318 319
}

320 321 322 323 324
/*
 * refcounted get/put for css_set objects
 */
static inline void get_css_set(struct css_set *cg)
{
325
	atomic_inc(&cg->refcount);
326 327 328 329
}

static inline void put_css_set(struct css_set *cg)
{
330
	__put_css_set(cg, 0);
331 332
}

333 334
static inline void put_css_set_taskexit(struct css_set *cg)
{
335
	__put_css_set(cg, 1);
336 337
}

338 339 340
/*
 * find_existing_css_set() is a helper for
 * find_css_set(), and checks to see whether an existing
341
 * css_set is suitable.
342 343 344 345
 *
 * oldcg: the cgroup group that we're using before the cgroup
 * transition
 *
346
 * cgrp: the cgroup that we're moving into
347 348 349 350 351 352
 *
 * template: location in which to build the desired set of subsystem
 * state objects for the new cgroup group
 */
static struct css_set *find_existing_css_set(
	struct css_set *oldcg,
353
	struct cgroup *cgrp,
354
	struct cgroup_subsys_state *template[])
355 356
{
	int i;
357
	struct cgroupfs_root *root = cgrp->root;
358 359 360
	struct hlist_head *hhead;
	struct hlist_node *node;
	struct css_set *cg;
361 362 363 364

	/* Built the set of subsystem state objects that we want to
	 * see in the new css_set */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
365
		if (root->subsys_bits & (1UL << i)) {
366 367 368
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
369
			template[i] = cgrp->subsys[i];
370 371 372 373 374 375 376
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
			template[i] = oldcg->subsys[i];
		}
	}

377 378
	hhead = css_set_hash(template);
	hlist_for_each_entry(cg, node, hhead, hlist) {
379 380 381 382
		if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
			/* All subsystems matched */
			return cg;
		}
383
	}
384 385 386 387 388

	/* No existing cgroup group matched */
	return NULL;
}

389 390 391 392 393 394 395 396 397 398 399
static void free_cg_links(struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

	list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
		list_del(&link->cgrp_link_list);
		kfree(link);
	}
}

400 401
/*
 * allocate_cg_links() allocates "count" cg_cgroup_link structures
402
 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
403 404 405 406 407 408 409 410 411 412
 * success or a negative error
 */
static int allocate_cg_links(int count, struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	int i;
	INIT_LIST_HEAD(tmp);
	for (i = 0; i < count; i++) {
		link = kmalloc(sizeof(*link), GFP_KERNEL);
		if (!link) {
413
			free_cg_links(tmp);
414 415
			return -ENOMEM;
		}
416
		list_add(&link->cgrp_link_list, tmp);
417 418 419 420
	}
	return 0;
}

421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
/**
 * link_css_set - a helper function to link a css_set to a cgroup
 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
 * @cg: the css_set to be linked
 * @cgrp: the destination cgroup
 */
static void link_css_set(struct list_head *tmp_cg_links,
			 struct css_set *cg, struct cgroup *cgrp)
{
	struct cg_cgroup_link *link;

	BUG_ON(list_empty(tmp_cg_links));
	link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
				cgrp_link_list);
	link->cg = cg;
	list_move(&link->cgrp_link_list, &cgrp->css_sets);
	list_add(&link->cg_link_list, &cg->cg_links);
}

440 441 442 443 444 445 446 447
/*
 * find_css_set() takes an existing cgroup group and a
 * cgroup object, and returns a css_set object that's
 * equivalent to the old group, but with the given cgroup
 * substituted into the appropriate hierarchy. Must be called with
 * cgroup_mutex held
 */
static struct css_set *find_css_set(
448
	struct css_set *oldcg, struct cgroup *cgrp)
449 450 451 452 453 454 455
{
	struct css_set *res;
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
	int i;

	struct list_head tmp_cg_links;

456 457
	struct hlist_head *hhead;

458 459
	/* First see if we already have a cgroup group that matches
	 * the desired set */
460
	read_lock(&css_set_lock);
461
	res = find_existing_css_set(oldcg, cgrp, template);
462 463
	if (res)
		get_css_set(res);
464
	read_unlock(&css_set_lock);
465 466 467 468 469 470 471 472 473 474 475 476 477 478

	if (res)
		return res;

	res = kmalloc(sizeof(*res), GFP_KERNEL);
	if (!res)
		return NULL;

	/* Allocate all the cg_cgroup_link objects that we'll need */
	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
		kfree(res);
		return NULL;
	}

479
	atomic_set(&res->refcount, 1);
480 481
	INIT_LIST_HEAD(&res->cg_links);
	INIT_LIST_HEAD(&res->tasks);
482
	INIT_HLIST_NODE(&res->hlist);
483 484 485 486 487 488 489 490

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
	memcpy(res->subsys, template, sizeof(res->subsys));

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
491
		struct cgroup *cgrp = res->subsys[i]->cgroup;
492
		struct cgroup_subsys *ss = subsys[i];
493
		atomic_inc(&cgrp->count);
494 495 496 497 498
		/*
		 * We want to add a link once per cgroup, so we
		 * only do it for the first subsystem in each
		 * hierarchy
		 */
499 500
		if (ss->root->subsys_list.next == &ss->sibling)
			link_css_set(&tmp_cg_links, res, cgrp);
501
	}
502 503
	if (list_empty(&rootnode.subsys_list))
		link_css_set(&tmp_cg_links, res, dummytop);
504 505 506 507

	BUG_ON(!list_empty(&tmp_cg_links));

	css_set_count++;
508 509 510 511 512

	/* Add this cgroup group to the hash table */
	hhead = css_set_hash(res->subsys);
	hlist_add_head(&res->hlist, hhead);

513 514 515
	write_unlock(&css_set_lock);

	return res;
516 517
}

518 519 520 521 522 523 524 525 526 527
/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
528
 * cgroup_attach_task() can increment it again.  Because a count of zero
529 530 531 532 533 534 535 536 537 538 539 540 541
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
L
Li Zefan 已提交
542 543
 * to the release agent with the name of the cgroup (path relative to
 * the root of cgroup file system) as the argument.
544 545 546 547 548 549 550 551 552 553 554
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
555
 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
L
Li Zefan 已提交
556
 * another.  It does so using cgroup_mutex, however there are
557 558 559
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
560
 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
561 562 563 564
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
565
 * update of a tasks cgroup pointer by cgroup_attach_task()
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
 */

/**
 * cgroup_lock - lock out any changes to cgroup structures
 *
 */
void cgroup_lock(void)
{
	mutex_lock(&cgroup_mutex);
}

/**
 * cgroup_unlock - release lock on cgroup changes
 *
 * Undo the lock taken in a previous cgroup_lock() call.
 */
void cgroup_unlock(void)
{
	mutex_unlock(&cgroup_mutex);
}

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
596
static int cgroup_populate_dir(struct cgroup *cgrp);
597
static struct inode_operations cgroup_dir_inode_operations;
598 599 600
static struct file_operations proc_cgroupstats_operations;

static struct backing_dev_info cgroup_backing_dev_info = {
601
	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
602
};
603

K
KAMEZAWA Hiroyuki 已提交
604 605 606
static int alloc_css_id(struct cgroup_subsys *ss,
			struct cgroup *parent, struct cgroup *child);

607 608 609 610 611 612
static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
{
	struct inode *inode = new_inode(sb);

	if (inode) {
		inode->i_mode = mode;
613 614
		inode->i_uid = current_fsuid();
		inode->i_gid = current_fsgid();
615 616 617 618 619 620
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

621 622 623 624
/*
 * Call subsys's pre_destroy handler.
 * This is called before css refcnt check.
 */
625
static int cgroup_call_pre_destroy(struct cgroup *cgrp)
626 627
{
	struct cgroup_subsys *ss;
628 629
	int ret = 0;

630
	for_each_subsys(cgrp->root, ss)
631 632 633 634 635 636
		if (ss->pre_destroy) {
			ret = ss->pre_destroy(ss, cgrp);
			if (ret)
				break;
		}
	return ret;
637 638
}

639 640 641 642 643 644 645
static void free_cgroup_rcu(struct rcu_head *obj)
{
	struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);

	kfree(cgrp);
}

646 647 648 649
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
650
		struct cgroup *cgrp = dentry->d_fsdata;
651
		struct cgroup_subsys *ss;
652
		BUG_ON(!(cgroup_is_removed(cgrp)));
653 654 655 656 657 658 659
		/* It's possible for external users to be holding css
		 * reference counts on a cgroup; css_put() needs to
		 * be able to access the cgroup after decrementing
		 * the reference count in order to know if it needs to
		 * queue the cgroup to be handled by the release
		 * agent */
		synchronize_rcu();
660 661 662 663 664

		mutex_lock(&cgroup_mutex);
		/*
		 * Release the subsystem state objects.
		 */
665 666
		for_each_subsys(cgrp->root, ss)
			ss->destroy(ss, cgrp);
667 668 669 670

		cgrp->root->number_of_cgroups--;
		mutex_unlock(&cgroup_mutex);

671 672 673 674
		/*
		 * Drop the active superblock reference that we took when we
		 * created the cgroup
		 */
675 676
		deactivate_super(cgrp->root->sb);

677
		call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
	}
	iput(inode);
}

static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

static void cgroup_clear_directory(struct dentry *dentry)
{
	struct list_head *node;

	BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
	spin_lock(&dcache_lock);
	node = dentry->d_subdirs.next;
	while (node != &dentry->d_subdirs) {
		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
		list_del_init(node);
		if (d->d_inode) {
			/* This should never be called on a cgroup
			 * directory with child cgroups */
			BUG_ON(d->d_inode->i_mode & S_IFDIR);
			d = dget_locked(d);
			spin_unlock(&dcache_lock);
			d_delete(d);
			simple_unlink(dentry->d_inode, d);
			dput(d);
			spin_lock(&dcache_lock);
		}
		node = dentry->d_subdirs.next;
	}
	spin_unlock(&dcache_lock);
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
	cgroup_clear_directory(dentry);

	spin_lock(&dcache_lock);
	list_del_init(&dentry->d_u.d_child);
	spin_unlock(&dcache_lock);
	remove_dir(dentry);
}

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
/*
 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
 * reference to css->refcnt. In general, this refcnt is expected to goes down
 * to zero, soon.
 *
 * CGRP_WAIT_ON_RMDIR flag is modified under cgroup's inode->i_mutex;
 */
DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);

static void cgroup_wakeup_rmdir_waiters(const struct cgroup *cgrp)
{
	if (unlikely(test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
		wake_up_all(&cgroup_rmdir_waitq);
}

746 747 748 749
static int rebind_subsystems(struct cgroupfs_root *root,
			      unsigned long final_bits)
{
	unsigned long added_bits, removed_bits;
750
	struct cgroup *cgrp = &root->top_cgroup;
751 752 753 754 755 756
	int i;

	removed_bits = root->actual_subsys_bits & ~final_bits;
	added_bits = final_bits & ~root->actual_subsys_bits;
	/* Check that any added subsystems are currently free */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
757
		unsigned long bit = 1UL << i;
758 759 760 761 762 763 764 765 766 767 768 769 770
		struct cgroup_subsys *ss = subsys[i];
		if (!(bit & added_bits))
			continue;
		if (ss->root != &rootnode) {
			/* Subsystem isn't free */
			return -EBUSY;
		}
	}

	/* Currently we don't handle adding/removing subsystems when
	 * any child cgroups exist. This is theoretically supportable
	 * but involves complex error handling, so it's being left until
	 * later */
771
	if (root->number_of_cgroups > 1)
772 773 774 775 776 777 778 779
		return -EBUSY;

	/* Process each subsystem */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		unsigned long bit = 1UL << i;
		if (bit & added_bits) {
			/* We're binding this subsystem to this hierarchy */
780
			BUG_ON(cgrp->subsys[i]);
781 782
			BUG_ON(!dummytop->subsys[i]);
			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
783
			mutex_lock(&ss->hierarchy_mutex);
784 785
			cgrp->subsys[i] = dummytop->subsys[i];
			cgrp->subsys[i]->cgroup = cgrp;
786
			list_move(&ss->sibling, &root->subsys_list);
787
			ss->root = root;
788
			if (ss->bind)
789
				ss->bind(ss, cgrp);
790
			mutex_unlock(&ss->hierarchy_mutex);
791 792
		} else if (bit & removed_bits) {
			/* We're removing this subsystem */
793 794
			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
795
			mutex_lock(&ss->hierarchy_mutex);
796 797 798
			if (ss->bind)
				ss->bind(ss, dummytop);
			dummytop->subsys[i]->cgroup = dummytop;
799
			cgrp->subsys[i] = NULL;
800
			subsys[i]->root = &rootnode;
801
			list_move(&ss->sibling, &rootnode.subsys_list);
802
			mutex_unlock(&ss->hierarchy_mutex);
803 804
		} else if (bit & final_bits) {
			/* Subsystem state should already exist */
805
			BUG_ON(!cgrp->subsys[i]);
806 807
		} else {
			/* Subsystem state shouldn't exist */
808
			BUG_ON(cgrp->subsys[i]);
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
		}
	}
	root->subsys_bits = root->actual_subsys_bits = final_bits;
	synchronize_rcu();

	return 0;
}

static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
{
	struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
	struct cgroup_subsys *ss;

	mutex_lock(&cgroup_mutex);
	for_each_subsys(root, ss)
		seq_printf(seq, ",%s", ss->name);
	if (test_bit(ROOT_NOPREFIX, &root->flags))
		seq_puts(seq, ",noprefix");
827 828
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
829 830 831 832 833 834 835
	mutex_unlock(&cgroup_mutex);
	return 0;
}

struct cgroup_sb_opts {
	unsigned long subsys_bits;
	unsigned long flags;
836
	char *release_agent;
837 838 839 840 841 842 843 844 845 846 847
};

/* Convert a hierarchy specifier into a bitmask of subsystems and
 * flags. */
static int parse_cgroupfs_options(char *data,
				     struct cgroup_sb_opts *opts)
{
	char *token, *o = data ?: "all";

	opts->subsys_bits = 0;
	opts->flags = 0;
848
	opts->release_agent = NULL;
849 850 851 852 853

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
		if (!strcmp(token, "all")) {
854 855 856 857 858 859 860 861
			/* Add all non-disabled subsystems */
			int i;
			opts->subsys_bits = 0;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				struct cgroup_subsys *ss = subsys[i];
				if (!ss->disabled)
					opts->subsys_bits |= 1ul << i;
			}
862 863
		} else if (!strcmp(token, "noprefix")) {
			set_bit(ROOT_NOPREFIX, &opts->flags);
864 865 866 867 868 869 870 871 872
		} else if (!strncmp(token, "release_agent=", 14)) {
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
			opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
			if (!opts->release_agent)
				return -ENOMEM;
			strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
			opts->release_agent[PATH_MAX - 1] = 0;
873 874 875 876 877 878
		} else {
			struct cgroup_subsys *ss;
			int i;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				ss = subsys[i];
				if (!strcmp(token, ss->name)) {
879 880
					if (!ss->disabled)
						set_bit(i, &opts->subsys_bits);
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
					break;
				}
			}
			if (i == CGROUP_SUBSYS_COUNT)
				return -ENOENT;
		}
	}

	/* We can't have an empty hierarchy */
	if (!opts->subsys_bits)
		return -EINVAL;

	return 0;
}

static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
900
	struct cgroup *cgrp = &root->top_cgroup;
901 902
	struct cgroup_sb_opts opts;

903
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
	mutex_lock(&cgroup_mutex);

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

	/* Don't allow flags to change at remount */
	if (opts.flags != root->flags) {
		ret = -EINVAL;
		goto out_unlock;
	}

	ret = rebind_subsystems(root, opts.subsys_bits);

	/* (re)populate subsystem files */
	if (!ret)
921
		cgroup_populate_dir(cgrp);
922

923 924
	if (opts.release_agent)
		strcpy(root->release_agent_path, opts.release_agent);
925
 out_unlock:
926 927
	if (opts.release_agent)
		kfree(opts.release_agent);
928
	mutex_unlock(&cgroup_mutex);
929
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
930 931 932 933 934 935 936 937 938 939
	return ret;
}

static struct super_operations cgroup_ops = {
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

940 941 942 943 944 945 946 947
static void init_cgroup_housekeeping(struct cgroup *cgrp)
{
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
	init_rwsem(&cgrp->pids_mutex);
}
948 949
static void init_cgroup_root(struct cgroupfs_root *root)
{
950
	struct cgroup *cgrp = &root->top_cgroup;
951 952 953
	INIT_LIST_HEAD(&root->subsys_list);
	INIT_LIST_HEAD(&root->root_list);
	root->number_of_cgroups = 1;
954 955
	cgrp->root = root;
	cgrp->top_cgroup = cgrp;
956
	init_cgroup_housekeeping(cgrp);
957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
}

static int cgroup_test_super(struct super_block *sb, void *data)
{
	struct cgroupfs_root *new = data;
	struct cgroupfs_root *root = sb->s_fs_info;

	/* First check subsystems */
	if (new->subsys_bits != root->subsys_bits)
	    return 0;

	/* Next check flags */
	if (new->flags != root->flags)
		return 0;

	return 1;
}

static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
	struct cgroupfs_root *root = data;

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

	sb->s_fs_info = root;
	root->sb = sb;

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
	struct dentry *dentry;

	if (!inode)
		return -ENOMEM;

	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
	dentry = d_alloc_root(inode);
	if (!dentry) {
		iput(inode);
		return -ENOMEM;
	}
	sb->s_root = dentry;
	return 0;
}

static int cgroup_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
{
	struct cgroup_sb_opts opts;
	int ret = 0;
	struct super_block *sb;
	struct cgroupfs_root *root;
1025
	struct list_head tmp_cg_links;
1026 1027 1028

	/* First find the desired set of subsystems */
	ret = parse_cgroupfs_options(data, &opts);
1029 1030 1031
	if (ret) {
		if (opts.release_agent)
			kfree(opts.release_agent);
1032
		return ret;
1033
	}
1034 1035

	root = kzalloc(sizeof(*root), GFP_KERNEL);
1036 1037 1038
	if (!root) {
		if (opts.release_agent)
			kfree(opts.release_agent);
1039
		return -ENOMEM;
1040
	}
1041 1042 1043 1044

	init_cgroup_root(root);
	root->subsys_bits = opts.subsys_bits;
	root->flags = opts.flags;
1045 1046 1047 1048
	if (opts.release_agent) {
		strcpy(root->release_agent_path, opts.release_agent);
		kfree(opts.release_agent);
	}
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063

	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);

	if (IS_ERR(sb)) {
		kfree(root);
		return PTR_ERR(sb);
	}

	if (sb->s_fs_info != root) {
		/* Reusing an existing superblock */
		BUG_ON(sb->s_root == NULL);
		kfree(root);
		root = NULL;
	} else {
		/* New superblock */
1064
		struct cgroup *root_cgrp = &root->top_cgroup;
1065
		struct inode *inode;
1066
		int i;
1067 1068 1069 1070 1071 1072

		BUG_ON(sb->s_root != NULL);

		ret = cgroup_get_rootdir(sb);
		if (ret)
			goto drop_new_super;
1073
		inode = sb->s_root->d_inode;
1074

1075
		mutex_lock(&inode->i_mutex);
1076 1077
		mutex_lock(&cgroup_mutex);

1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
		/*
		 * We're accessing css_set_count without locking
		 * css_set_lock here, but that's OK - it can only be
		 * increased by someone holding cgroup_lock, and
		 * that's us. The worst that can happen is that we
		 * have some link structures left over
		 */
		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
		if (ret) {
			mutex_unlock(&cgroup_mutex);
			mutex_unlock(&inode->i_mutex);
			goto drop_new_super;
		}

1092 1093 1094
		ret = rebind_subsystems(root, root->subsys_bits);
		if (ret == -EBUSY) {
			mutex_unlock(&cgroup_mutex);
1095
			mutex_unlock(&inode->i_mutex);
1096
			goto free_cg_links;
1097 1098 1099 1100 1101 1102
		}

		/* EBUSY should be the only error here */
		BUG_ON(ret);

		list_add(&root->root_list, &roots);
1103
		root_count++;
1104

1105
		sb->s_root->d_fsdata = root_cgrp;
1106 1107
		root->top_cgroup.dentry = sb->s_root;

1108 1109 1110
		/* Link the top cgroup in this hierarchy into all
		 * the css_set objects */
		write_lock(&css_set_lock);
1111 1112 1113
		for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
			struct hlist_head *hhead = &css_set_table[i];
			struct hlist_node *node;
1114
			struct css_set *cg;
1115

1116 1117
			hlist_for_each_entry(cg, node, hhead, hlist)
				link_css_set(&tmp_cg_links, cg, root_cgrp);
1118
		}
1119 1120 1121 1122
		write_unlock(&css_set_lock);

		free_cg_links(&tmp_cg_links);

1123 1124
		BUG_ON(!list_empty(&root_cgrp->sibling));
		BUG_ON(!list_empty(&root_cgrp->children));
1125 1126
		BUG_ON(root->number_of_cgroups != 1);

1127
		cgroup_populate_dir(root_cgrp);
1128
		mutex_unlock(&inode->i_mutex);
1129 1130 1131
		mutex_unlock(&cgroup_mutex);
	}

1132 1133
	simple_set_mnt(mnt, sb);
	return 0;
1134

1135 1136
 free_cg_links:
	free_cg_links(&tmp_cg_links);
1137 1138 1139 1140 1141 1142 1143 1144
 drop_new_super:
	up_write(&sb->s_umount);
	deactivate_super(sb);
	return ret;
}

static void cgroup_kill_sb(struct super_block *sb) {
	struct cgroupfs_root *root = sb->s_fs_info;
1145
	struct cgroup *cgrp = &root->top_cgroup;
1146
	int ret;
K
KOSAKI Motohiro 已提交
1147 1148
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
1149 1150 1151 1152

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
1153 1154
	BUG_ON(!list_empty(&cgrp->children));
	BUG_ON(!list_empty(&cgrp->sibling));
1155 1156 1157 1158 1159 1160 1161 1162

	mutex_lock(&cgroup_mutex);

	/* Rebind all subsystems back to the default hierarchy */
	ret = rebind_subsystems(root, 0);
	/* Shouldn't be able to fail ... */
	BUG_ON(ret);

1163 1164 1165 1166 1167
	/*
	 * Release all the links from css_sets to this hierarchy's
	 * root cgroup
	 */
	write_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1168 1169 1170

	list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
				 cgrp_link_list) {
1171
		list_del(&link->cg_link_list);
1172
		list_del(&link->cgrp_link_list);
1173 1174 1175 1176
		kfree(link);
	}
	write_unlock(&css_set_lock);

1177 1178 1179 1180
	if (!list_empty(&root->root_list)) {
		list_del(&root->root_list);
		root_count--;
	}
1181

1182 1183 1184
	mutex_unlock(&cgroup_mutex);

	kill_litter_super(sb);
L
Li Zefan 已提交
1185
	kfree(root);
1186 1187 1188 1189 1190 1191 1192 1193
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
	.get_sb = cgroup_get_sb,
	.kill_sb = cgroup_kill_sb,
};

1194
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1195 1196 1197 1198 1199 1200 1201 1202 1203
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

L
Li Zefan 已提交
1204 1205 1206 1207 1208 1209
/**
 * cgroup_path - generate the path of a cgroup
 * @cgrp: the cgroup in question
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
1210 1211 1212
 * Called with cgroup_mutex held or else with an RCU-protected cgroup
 * reference.  Writes path of cgroup into buf.  Returns 0 on success,
 * -errno on error.
1213
 */
1214
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1215 1216
{
	char *start;
1217
	struct dentry *dentry = rcu_dereference(cgrp->dentry);
1218

1219
	if (!dentry || cgrp == dummytop) {
1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
		/*
		 * Inactive subsystems have no dentry for their root
		 * cgroup
		 */
		strcpy(buf, "/");
		return 0;
	}

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
1232
		int len = dentry->d_name.len;
1233 1234
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
1235 1236 1237
		memcpy(start, cgrp->dentry->d_name.name, len);
		cgrp = cgrp->parent;
		if (!cgrp)
1238
			break;
1239
		dentry = rcu_dereference(cgrp->dentry);
1240
		if (!cgrp->parent)
1241 1242 1243 1244 1245 1246 1247 1248 1249
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}

1250 1251 1252 1253 1254
/*
 * Return the first subsystem attached to a cgroup's hierarchy, and
 * its subsystem id.
 */

1255
static void get_first_subsys(const struct cgroup *cgrp,
1256 1257
			struct cgroup_subsys_state **css, int *subsys_id)
{
1258
	const struct cgroupfs_root *root = cgrp->root;
1259 1260 1261 1262 1263
	const struct cgroup_subsys *test_ss;
	BUG_ON(list_empty(&root->subsys_list));
	test_ss = list_entry(root->subsys_list.next,
			     struct cgroup_subsys, sibling);
	if (css) {
1264
		*css = cgrp->subsys[test_ss->subsys_id];
1265 1266 1267 1268 1269 1270
		BUG_ON(!*css);
	}
	if (subsys_id)
		*subsys_id = test_ss->subsys_id;
}

L
Li Zefan 已提交
1271 1272 1273 1274
/**
 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
 * @cgrp: the cgroup the task is attaching to
 * @tsk: the task to be attached
1275
 *
L
Li Zefan 已提交
1276 1277
 * Call holding cgroup_mutex. May take task_lock of
 * the task 'tsk' during call.
1278
 */
1279
int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1280 1281 1282
{
	int retval = 0;
	struct cgroup_subsys *ss;
1283
	struct cgroup *oldcgrp;
1284
	struct css_set *cg;
1285
	struct css_set *newcg;
1286
	struct cgroupfs_root *root = cgrp->root;
1287 1288
	int subsys_id;

1289
	get_first_subsys(cgrp, NULL, &subsys_id);
1290 1291

	/* Nothing to do if the task is already in that cgroup */
1292 1293
	oldcgrp = task_cgroup(tsk, subsys_id);
	if (cgrp == oldcgrp)
1294 1295 1296 1297
		return 0;

	for_each_subsys(root, ss) {
		if (ss->can_attach) {
1298
			retval = ss->can_attach(ss, cgrp, tsk);
P
Paul Jackson 已提交
1299
			if (retval)
1300 1301 1302 1303
				return retval;
		}
	}

1304 1305 1306 1307
	task_lock(tsk);
	cg = tsk->cgroups;
	get_css_set(cg);
	task_unlock(tsk);
1308 1309 1310 1311
	/*
	 * Locate or allocate a new css_set for this task,
	 * based on its final set of cgroups
	 */
1312
	newcg = find_css_set(cg, cgrp);
1313
	put_css_set(cg);
P
Paul Jackson 已提交
1314
	if (!newcg)
1315 1316
		return -ENOMEM;

1317 1318 1319
	task_lock(tsk);
	if (tsk->flags & PF_EXITING) {
		task_unlock(tsk);
1320
		put_css_set(newcg);
1321 1322
		return -ESRCH;
	}
1323
	rcu_assign_pointer(tsk->cgroups, newcg);
1324 1325
	task_unlock(tsk);

1326 1327 1328 1329 1330 1331 1332 1333
	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
	if (!list_empty(&tsk->cg_list)) {
		list_del(&tsk->cg_list);
		list_add(&tsk->cg_list, &newcg->tasks);
	}
	write_unlock(&css_set_lock);

1334
	for_each_subsys(root, ss) {
P
Paul Jackson 已提交
1335
		if (ss->attach)
1336
			ss->attach(ss, cgrp, oldcgrp, tsk);
1337
	}
1338
	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1339
	synchronize_rcu();
1340
	put_css_set(cg);
1341 1342 1343 1344 1345 1346

	/*
	 * wake up rmdir() waiter. the rmdir should fail since the cgroup
	 * is no longer empty.
	 */
	cgroup_wakeup_rmdir_waiters(cgrp);
1347 1348 1349 1350
	return 0;
}

/*
1351 1352
 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
 * held. May take task_lock of task
1353
 */
1354
static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1355 1356
{
	struct task_struct *tsk;
1357
	const struct cred *cred = current_cred(), *tcred;
1358 1359 1360 1361
	int ret;

	if (pid) {
		rcu_read_lock();
1362
		tsk = find_task_by_vpid(pid);
1363 1364 1365 1366 1367
		if (!tsk || tsk->flags & PF_EXITING) {
			rcu_read_unlock();
			return -ESRCH;
		}

1368 1369 1370 1371 1372
		tcred = __task_cred(tsk);
		if (cred->euid &&
		    cred->euid != tcred->uid &&
		    cred->euid != tcred->suid) {
			rcu_read_unlock();
1373 1374
			return -EACCES;
		}
1375 1376
		get_task_struct(tsk);
		rcu_read_unlock();
1377 1378 1379 1380 1381
	} else {
		tsk = current;
		get_task_struct(tsk);
	}

1382
	ret = cgroup_attach_task(cgrp, tsk);
1383 1384 1385 1386
	put_task_struct(tsk);
	return ret;
}

1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
{
	int ret;
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	ret = attach_task_by_pid(cgrp, pid);
	cgroup_unlock();
	return ret;
}

1397 1398 1399 1400 1401
/* The various types of files and directories in a cgroup file system */
enum cgroup_filetype {
	FILE_ROOT,
	FILE_DIR,
	FILE_TASKLIST,
1402 1403
	FILE_NOTIFY_ON_RELEASE,
	FILE_RELEASE_AGENT,
1404 1405
};

1406 1407 1408 1409
/**
 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
 * @cgrp: the cgroup to be checked for liveness
 *
1410 1411
 * On success, returns true; the lock should be later released with
 * cgroup_unlock(). On failure returns false with no lock held.
1412
 */
1413
bool cgroup_lock_live_group(struct cgroup *cgrp)
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
{
	mutex_lock(&cgroup_mutex);
	if (cgroup_is_removed(cgrp)) {
		mutex_unlock(&cgroup_mutex);
		return false;
	}
	return true;
}

static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	strcpy(cgrp->root->release_agent_path, buffer);
1430
	cgroup_unlock();
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
	return 0;
}

static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
				     struct seq_file *seq)
{
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	seq_puts(seq, cgrp->root->release_agent_path);
	seq_putc(seq, '\n');
1441
	cgroup_unlock();
1442 1443 1444
	return 0;
}

1445 1446 1447
/* A buffer size big enough for numbers or short strings */
#define CGROUP_LOCAL_BUFFER_SIZE 64

1448
static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1449 1450 1451
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
1452
{
1453
	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
	int retval = 0;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */
1465
	strstrip(buffer);
1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
	if (cft->write_u64) {
		u64 val = simple_strtoull(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_u64(cgrp, cft, val);
	} else {
		s64 val = simple_strtoll(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_s64(cgrp, cft, val);
	}
1477 1478 1479 1480 1481
	if (!retval)
		retval = nbytes;
	return retval;
}

1482 1483 1484 1485 1486
static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   const char __user *userbuf,
				   size_t nbytes, loff_t *unused_ppos)
{
1487
	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
	int retval = 0;
	size_t max_bytes = cft->max_write_len;
	char *buffer = local_buffer;

	if (!max_bytes)
		max_bytes = sizeof(local_buffer) - 1;
	if (nbytes >= max_bytes)
		return -E2BIG;
	/* Allocate a dynamic buffer if we need one */
	if (nbytes >= sizeof(local_buffer)) {
		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
		if (buffer == NULL)
			return -ENOMEM;
	}
L
Li Zefan 已提交
1502 1503 1504 1505
	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out;
	}
1506 1507 1508 1509 1510 1511

	buffer[nbytes] = 0;     /* nul-terminate */
	strstrip(buffer);
	retval = cft->write_string(cgrp, cft, buffer);
	if (!retval)
		retval = nbytes;
L
Li Zefan 已提交
1512
out:
1513 1514 1515 1516 1517
	if (buffer != local_buffer)
		kfree(buffer);
	return retval;
}

1518 1519 1520 1521
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1522
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1523

1524
	if (cgroup_is_removed(cgrp))
1525
		return -ENODEV;
1526
	if (cft->write)
1527
		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1528 1529
	if (cft->write_u64 || cft->write_s64)
		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1530 1531
	if (cft->write_string)
		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1532 1533 1534 1535
	if (cft->trigger) {
		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
		return ret ? ret : nbytes;
	}
1536
	return -EINVAL;
1537 1538
}

1539 1540 1541 1542
static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
1543
{
1544
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1545
	u64 val = cft->read_u64(cgrp, cft);
1546 1547 1548 1549 1550
	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1551 1552 1553 1554 1555
static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
{
1556
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1557 1558 1559 1560 1561 1562
	s64 val = cft->read_s64(cgrp, cft);
	int len = sprintf(tmp, "%lld\n", (long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1563 1564 1565 1566
static ssize_t cgroup_file_read(struct file *file, char __user *buf,
				   size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1567
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1568

1569
	if (cgroup_is_removed(cgrp))
1570 1571 1572
		return -ENODEV;

	if (cft->read)
1573
		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1574 1575
	if (cft->read_u64)
		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
1576 1577
	if (cft->read_s64)
		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
1578 1579 1580
	return -EINVAL;
}

1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
/*
 * seqfile ops/methods for returning structured data. Currently just
 * supports string->u64 maps, but can be extended in future.
 */

struct cgroup_seqfile_state {
	struct cftype *cft;
	struct cgroup *cgroup;
};

static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
{
	struct seq_file *sf = cb->state;
	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
}

static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
	struct cgroup_seqfile_state *state = m->private;
	struct cftype *cft = state->cft;
1601 1602 1603 1604 1605 1606 1607 1608
	if (cft->read_map) {
		struct cgroup_map_cb cb = {
			.fill = cgroup_map_add,
			.state = m,
		};
		return cft->read_map(state->cgroup, cft, &cb);
	}
	return cft->read_seq_string(state->cgroup, cft, m);
1609 1610
}

1611
static int cgroup_seqfile_release(struct inode *inode, struct file *file)
1612 1613 1614 1615 1616 1617 1618 1619
{
	struct seq_file *seq = file->private_data;
	kfree(seq->private);
	return single_release(inode, file);
}

static struct file_operations cgroup_seqfile_operations = {
	.read = seq_read,
1620
	.write = cgroup_file_write,
1621 1622 1623 1624
	.llseek = seq_lseek,
	.release = cgroup_seqfile_release,
};

1625 1626 1627 1628 1629 1630 1631 1632 1633
static int cgroup_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;
	cft = __d_cft(file->f_dentry);
1634

1635
	if (cft->read_map || cft->read_seq_string) {
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646
		struct cgroup_seqfile_state *state =
			kzalloc(sizeof(*state), GFP_USER);
		if (!state)
			return -ENOMEM;
		state->cft = cft;
		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
		file->f_op = &cgroup_seqfile_operations;
		err = single_open(file, cgroup_seqfile_show, state);
		if (err < 0)
			kfree(state);
	} else if (cft->open)
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

static struct file_operations cgroup_file_operations = {
	.read = cgroup_file_read,
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

static struct inode_operations cgroup_dir_inode_operations = {
	.lookup = simple_lookup,
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
};

static int cgroup_create_file(struct dentry *dentry, int mode,
				struct super_block *sb)
{
A
Al Viro 已提交
1695
	static const struct dentry_operations cgroup_dops = {
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
		.d_iput = cgroup_diput,
	};

	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);

		/* start with the directory inode held, so that we can
		 * populate it without racing with another mkdir */
1719
		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
	}
	dentry->d_op = &cgroup_dops;
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
L
Li Zefan 已提交
1731 1732 1733 1734 1735
 * cgroup_create_dir - create a directory for an object.
 * @cgrp: the cgroup we create the directory for. It must have a valid
 *        ->parent field. And we are going to fill its ->dentry field.
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new directory.
1736
 */
1737
static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
1738 1739 1740 1741 1742
				int mode)
{
	struct dentry *parent;
	int error = 0;

1743 1744
	parent = cgrp->parent->dentry;
	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1745
	if (!error) {
1746
		dentry->d_fsdata = cgrp;
1747
		inc_nlink(parent->d_inode);
1748
		rcu_assign_pointer(cgrp->dentry, dentry);
1749 1750 1751 1752 1753 1754 1755
		dget(dentry);
	}
	dput(dentry);

	return error;
}

1756
int cgroup_add_file(struct cgroup *cgrp,
1757 1758 1759
		       struct cgroup_subsys *subsys,
		       const struct cftype *cft)
{
1760
	struct dentry *dir = cgrp->dentry;
1761 1762 1763 1764
	struct dentry *dentry;
	int error;

	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1765
	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1766 1767 1768 1769 1770 1771 1772 1773
		strcpy(name, subsys->name);
		strcat(name, ".");
	}
	strcat(name, cft->name);
	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
	dentry = lookup_one_len(name, dir, strlen(name));
	if (!IS_ERR(dentry)) {
		error = cgroup_create_file(dentry, 0644 | S_IFREG,
1774
						cgrp->root->sb);
1775 1776 1777 1778 1779 1780 1781 1782
		if (!error)
			dentry->d_fsdata = (void *)cft;
		dput(dentry);
	} else
		error = PTR_ERR(dentry);
	return error;
}

1783
int cgroup_add_files(struct cgroup *cgrp,
1784 1785 1786 1787 1788 1789
			struct cgroup_subsys *subsys,
			const struct cftype cft[],
			int count)
{
	int i, err;
	for (i = 0; i < count; i++) {
1790
		err = cgroup_add_file(cgrp, subsys, &cft[i]);
1791 1792 1793 1794 1795 1796
		if (err)
			return err;
	}
	return 0;
}

L
Li Zefan 已提交
1797 1798 1799 1800 1801 1802
/**
 * cgroup_task_count - count the number of tasks in a cgroup.
 * @cgrp: the cgroup in question
 *
 * Return the number of tasks in the cgroup.
 */
1803
int cgroup_task_count(const struct cgroup *cgrp)
1804 1805
{
	int count = 0;
K
KOSAKI Motohiro 已提交
1806
	struct cg_cgroup_link *link;
1807 1808

	read_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1809
	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
1810
		count += atomic_read(&link->cg->refcount);
1811 1812
	}
	read_unlock(&css_set_lock);
1813 1814 1815
	return count;
}

1816 1817 1818 1819
/*
 * Advance a list_head iterator.  The iterator should be positioned at
 * the start of a css_set
 */
1820
static void cgroup_advance_iter(struct cgroup *cgrp,
1821 1822 1823 1824 1825 1826 1827 1828 1829
					  struct cgroup_iter *it)
{
	struct list_head *l = it->cg_link;
	struct cg_cgroup_link *link;
	struct css_set *cg;

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
1830
		if (l == &cgrp->css_sets) {
1831 1832 1833
			it->cg_link = NULL;
			return;
		}
1834
		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1835 1836 1837 1838 1839 1840
		cg = link->cg;
	} while (list_empty(&cg->tasks));
	it->cg_link = l;
	it->task = cg->tasks.next;
}

1841 1842 1843 1844 1845 1846 1847 1848 1849
/*
 * To reduce the fork() overhead for systems that are not actually
 * using their cgroups capability, we don't maintain the lists running
 * through each css_set to its tasks until we see the list actually
 * used - in other words after the first call to cgroup_iter_start().
 *
 * The tasklist_lock is not held here, as do_each_thread() and
 * while_each_thread() are protected by RCU.
 */
1850
static void cgroup_enable_task_cg_lists(void)
1851 1852 1853 1854 1855 1856
{
	struct task_struct *p, *g;
	write_lock(&css_set_lock);
	use_task_css_set_links = 1;
	do_each_thread(g, p) {
		task_lock(p);
1857 1858 1859 1860 1861 1862
		/*
		 * We should check if the process is exiting, otherwise
		 * it will race with cgroup_exit() in that the list
		 * entry won't be deleted though the process has exited.
		 */
		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
1863 1864 1865 1866 1867 1868
			list_add(&p->cg_list, &p->cgroups->tasks);
		task_unlock(p);
	} while_each_thread(g, p);
	write_unlock(&css_set_lock);
}

1869
void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
1870 1871 1872 1873 1874 1875
{
	/*
	 * The first time anyone tries to iterate across a cgroup,
	 * we need to enable the list linking each css_set to its
	 * tasks, and fix up all existing tasks.
	 */
1876 1877 1878
	if (!use_task_css_set_links)
		cgroup_enable_task_cg_lists();

1879
	read_lock(&css_set_lock);
1880 1881
	it->cg_link = &cgrp->css_sets;
	cgroup_advance_iter(cgrp, it);
1882 1883
}

1884
struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1885 1886 1887 1888
					struct cgroup_iter *it)
{
	struct task_struct *res;
	struct list_head *l = it->task;
1889
	struct cg_cgroup_link *link;
1890 1891 1892 1893 1894 1895 1896

	/* If the iterator cg is NULL, we have no tasks */
	if (!it->cg_link)
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
1897 1898
	link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
	if (l == &link->cg->tasks) {
1899 1900
		/* We reached the end of this task list - move on to
		 * the next cg_cgroup_link */
1901
		cgroup_advance_iter(cgrp, it);
1902 1903 1904 1905 1906 1907
	} else {
		it->task = l;
	}
	return res;
}

1908
void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
1909 1910 1911 1912
{
	read_unlock(&css_set_lock);
}

1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively) simultaneously.
		 */
		return t1 > t2;
	}
}

/*
 * This function is a callback from heap_insert() and is used to order
 * the heap.
 * In this case we order the heap in descending task start time.
 */
static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

/**
 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
 * @scan: struct cgroup_scanner containing arguments for the scan
 *
 * Arguments include pointers to callback functions test_task() and
 * process_task().
 * Iterate through all the tasks in a cgroup, calling test_task() for each,
 * and if it returns true, call process_task() for it also.
 * The test_task pointer may be NULL, meaning always true (select all tasks).
 * Effectively duplicates cgroup_iter_{start,next,end}()
 * but does not lock css_set_lock for the call to process_task().
 * The struct cgroup_scanner may be embedded in any structure of the caller's
 * creation.
 * It is guaranteed that process_task() will act on every task that
 * is a member of the cgroup for the duration of this call. This
 * function may or may not call process_task() for tasks that exit
 * or move to a different cgroup during the call, or are forked or
 * move into the cgroup during the call.
 *
 * Note that test_task() may be called with locks held, and may in some
 * situations be called multiple times for the same task, so it should
 * be cheap.
 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
 * pre-allocated and will be used for heap operations (and its "gt" member will
 * be overwritten), else a temporary heap will be used (allocation of which
 * may cause this function to fail).
 */
int cgroup_scan_tasks(struct cgroup_scanner *scan)
{
	int retval, i;
	struct cgroup_iter it;
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap tmp_heap;
	struct ptr_heap *heap;
	struct timespec latest_time = { 0, 0 };

	if (scan->heap) {
		/* The caller supplied our heap and pre-allocated its memory */
		heap = scan->heap;
		heap->gt = &started_after;
	} else {
		/* We need to allocate our own heap memory */
		heap = &tmp_heap;
		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
		if (retval)
			/* cannot allocate the heap */
			return retval;
	}

 again:
	/*
	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
	 * to determine which are of interest, and using the scanner's
	 * "process_task" callback to process any of them that need an update.
	 * Since we don't want to hold any locks during the task updates,
	 * gather tasks to be processed in a heap structure.
	 * The heap is sorted by descending task start time.
	 * If the statically-sized heap fills up, we overflow tasks that
	 * started later, and in future iterations only consider tasks that
	 * started after the latest task in the previous pass. This
	 * guarantees forward progress and that we don't miss any tasks.
	 */
	heap->size = 0;
	cgroup_iter_start(scan->cg, &it);
	while ((p = cgroup_iter_next(scan->cg, &it))) {
		/*
		 * Only affect tasks that qualify per the caller's callback,
		 * if he provided one
		 */
		if (scan->test_task && !scan->test_task(p, scan))
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(heap, p);
		if (dropped == NULL) {
			/*
			 * The new task was inserted; the heap wasn't
			 * previously full
			 */
			get_task_struct(p);
		} else if (dropped != p) {
			/*
			 * The new task was inserted, and pushed out a
			 * different task
			 */
			get_task_struct(p);
			put_task_struct(dropped);
		}
		/*
		 * Else the new task was newer than anything already in
		 * the heap and wasn't inserted
		 */
	}
	cgroup_iter_end(scan->cg, &it);

	if (heap->size) {
		for (i = 0; i < heap->size; i++) {
2050
			struct task_struct *q = heap->ptrs[i];
2051
			if (i == 0) {
2052 2053
				latest_time = q->start_time;
				latest_task = q;
2054 2055
			}
			/* Process the task per the caller's callback */
2056 2057
			scan->process_task(q, scan);
			put_task_struct(q);
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't get processed.
		 * Not the most efficient way to do it, but it avoids
		 * having to take callback_mutex in the fork path
		 */
		goto again;
	}
	if (heap == &tmp_heap)
		heap_free(&tmp_heap);
	return 0;
}

2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084
/*
 * Stuff for reading the 'tasks' file.
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 */

/*
 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2085
 * 'cgrp'.  Return actual number of pids loaded.  No need to
2086 2087 2088 2089
 * task_lock(p) when reading out p->cgroup, since we're in an RCU
 * read section, so the css_set can't go away, and is
 * immutable after creation.
 */
2090
static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
2091
{
2092
	int n = 0, pid;
2093 2094
	struct cgroup_iter it;
	struct task_struct *tsk;
2095 2096
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
2097 2098
		if (unlikely(n == npids))
			break;
2099 2100 2101
		pid = task_pid_vnr(tsk);
		if (pid > 0)
			pidarray[n++] = pid;
2102
	}
2103
	cgroup_iter_end(cgrp, &it);
2104 2105 2106
	return n;
}

B
Balbir Singh 已提交
2107
/**
L
Li Zefan 已提交
2108
 * cgroupstats_build - build and fill cgroupstats
B
Balbir Singh 已提交
2109 2110 2111
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
L
Li Zefan 已提交
2112 2113 2114
 *
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
B
Balbir Singh 已提交
2115 2116 2117 2118
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
2119
	struct cgroup *cgrp;
B
Balbir Singh 已提交
2120 2121
	struct cgroup_iter it;
	struct task_struct *tsk;
2122

B
Balbir Singh 已提交
2123
	/*
2124 2125
	 * Validate dentry by checking the superblock operations,
	 * and make sure it's a directory.
B
Balbir Singh 已提交
2126
	 */
2127 2128
	if (dentry->d_sb->s_op != &cgroup_ops ||
	    !S_ISDIR(dentry->d_inode->i_mode))
B
Balbir Singh 已提交
2129 2130 2131
		 goto err;

	ret = 0;
2132
	cgrp = dentry->d_fsdata;
B
Balbir Singh 已提交
2133

2134 2135
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
B
Balbir Singh 已提交
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
2155
	cgroup_iter_end(cgrp, &it);
B
Balbir Singh 已提交
2156 2157 2158 2159 2160

err:
	return ret;
}

2161 2162 2163 2164 2165
static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

2166

2167
/*
2168 2169 2170
 * seq_file methods for the "tasks" file. The seq_file position is the
 * next pid to display; the seq_file iterator is a pointer to the pid
 * in the cgroup->tasks_pids array.
2171
 */
2172 2173

static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos)
2174
{
2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187
	/*
	 * Initially we receive a position value that corresponds to
	 * one more than the last pid shown (or 0 on the first call or
	 * after a seek to the start). Use a binary-search to find the
	 * next pid to display, if any
	 */
	struct cgroup *cgrp = s->private;
	int index = 0, pid = *pos;
	int *iter;

	down_read(&cgrp->pids_mutex);
	if (pid) {
		int end = cgrp->pids_length;
S
Stephen Rothwell 已提交
2188

2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
		while (index < end) {
			int mid = (index + end) / 2;
			if (cgrp->tasks_pids[mid] == pid) {
				index = mid;
				break;
			} else if (cgrp->tasks_pids[mid] <= pid)
				index = mid + 1;
			else
				end = mid;
		}
	}
	/* If we're off the end of the array, we're done */
	if (index >= cgrp->pids_length)
		return NULL;
	/* Update the abstract position to be the actual pid that we found */
	iter = cgrp->tasks_pids + index;
	*pos = *iter;
	return iter;
}

static void cgroup_tasks_stop(struct seq_file *s, void *v)
{
	struct cgroup *cgrp = s->private;
	up_read(&cgrp->pids_mutex);
}

static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos)
{
	struct cgroup *cgrp = s->private;
	int *p = v;
	int *end = cgrp->tasks_pids + cgrp->pids_length;

	/*
	 * Advance to the next pid in the array. If this goes off the
	 * end, we're done
	 */
	p++;
	if (p >= end) {
		return NULL;
	} else {
		*pos = *p;
		return p;
	}
}

static int cgroup_tasks_show(struct seq_file *s, void *v)
{
	return seq_printf(s, "%d\n", *(int *)v);
}
2238

2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
static struct seq_operations cgroup_tasks_seq_operations = {
	.start = cgroup_tasks_start,
	.stop = cgroup_tasks_stop,
	.next = cgroup_tasks_next,
	.show = cgroup_tasks_show,
};

static void release_cgroup_pid_array(struct cgroup *cgrp)
{
	down_write(&cgrp->pids_mutex);
	BUG_ON(!cgrp->pids_use_count);
	if (!--cgrp->pids_use_count) {
		kfree(cgrp->tasks_pids);
		cgrp->tasks_pids = NULL;
		cgrp->pids_length = 0;
	}
	up_write(&cgrp->pids_mutex);
2256 2257
}

2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
static int cgroup_tasks_release(struct inode *inode, struct file *file)
{
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);

	if (!(file->f_mode & FMODE_READ))
		return 0;

	release_cgroup_pid_array(cgrp);
	return seq_release(inode, file);
}

static struct file_operations cgroup_tasks_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.write = cgroup_file_write,
	.release = cgroup_tasks_release,
};

2276
/*
2277
 * Handle an open on 'tasks' file.  Prepare an array containing the
2278 2279
 * process id's of tasks currently attached to the cgroup being opened.
 */
2280

2281 2282
static int cgroup_tasks_open(struct inode *unused, struct file *file)
{
2283
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2284 2285
	pid_t *pidarray;
	int npids;
2286
	int retval;
2287

2288
	/* Nothing to do for write-only files */
2289 2290 2291 2292 2293 2294 2295 2296 2297
	if (!(file->f_mode & FMODE_READ))
		return 0;

	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
2298
	npids = cgroup_task_count(cgrp);
2299 2300 2301 2302 2303
	pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
	if (!pidarray)
		return -ENOMEM;
	npids = pid_array_load(pidarray, npids, cgrp);
	sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2304

2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
	/*
	 * Store the array in the cgroup, freeing the old
	 * array if necessary
	 */
	down_write(&cgrp->pids_mutex);
	kfree(cgrp->tasks_pids);
	cgrp->tasks_pids = pidarray;
	cgrp->pids_length = npids;
	cgrp->pids_use_count++;
	up_write(&cgrp->pids_mutex);

	file->f_op = &cgroup_tasks_operations;

	retval = seq_open(file, &cgroup_tasks_seq_operations);
	if (retval) {
		release_cgroup_pid_array(cgrp);
		return retval;
2322
	}
2323
	((struct seq_file *)file->private_data)->private = cgrp;
2324 2325 2326
	return 0;
}

2327
static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2328 2329
					    struct cftype *cft)
{
2330
	return notify_on_release(cgrp);
2331 2332
}

2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344
static int cgroup_write_notify_on_release(struct cgroup *cgrp,
					  struct cftype *cft,
					  u64 val)
{
	clear_bit(CGRP_RELEASABLE, &cgrp->flags);
	if (val)
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	else
		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	return 0;
}

2345 2346 2347
/*
 * for the common functions, 'private' gives the type of file
 */
2348 2349 2350 2351
static struct cftype files[] = {
	{
		.name = "tasks",
		.open = cgroup_tasks_open,
2352
		.write_u64 = cgroup_tasks_write,
2353 2354 2355 2356 2357 2358
		.release = cgroup_tasks_release,
		.private = FILE_TASKLIST,
	},

	{
		.name = "notify_on_release",
2359
		.read_u64 = cgroup_read_notify_on_release,
2360
		.write_u64 = cgroup_write_notify_on_release,
2361 2362 2363 2364 2365 2366
		.private = FILE_NOTIFY_ON_RELEASE,
	},
};

static struct cftype cft_release_agent = {
	.name = "release_agent",
2367 2368 2369
	.read_seq_string = cgroup_release_agent_show,
	.write_string = cgroup_release_agent_write,
	.max_write_len = PATH_MAX,
2370
	.private = FILE_RELEASE_AGENT,
2371 2372
};

2373
static int cgroup_populate_dir(struct cgroup *cgrp)
2374 2375 2376 2377 2378
{
	int err;
	struct cgroup_subsys *ss;

	/* First clear out any existing files */
2379
	cgroup_clear_directory(cgrp->dentry);
2380

2381
	err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2382 2383 2384
	if (err < 0)
		return err;

2385 2386
	if (cgrp == cgrp->top_cgroup) {
		if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2387 2388 2389
			return err;
	}

2390 2391
	for_each_subsys(cgrp->root, ss) {
		if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2392 2393
			return err;
	}
K
KAMEZAWA Hiroyuki 已提交
2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
	/* This cgroup is ready now */
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		/*
		 * Update id->css pointer and make this css visible from
		 * CSS ID functions. This pointer will be dereferened
		 * from RCU-read-side without locks.
		 */
		if (css->id)
			rcu_assign_pointer(css->id->css, css);
	}
2405 2406 2407 2408 2409 2410

	return 0;
}

static void init_cgroup_css(struct cgroup_subsys_state *css,
			       struct cgroup_subsys *ss,
2411
			       struct cgroup *cgrp)
2412
{
2413
	css->cgroup = cgrp;
P
Paul Menage 已提交
2414
	atomic_set(&css->refcnt, 1);
2415
	css->flags = 0;
K
KAMEZAWA Hiroyuki 已提交
2416
	css->id = NULL;
2417
	if (cgrp == dummytop)
2418
		set_bit(CSS_ROOT, &css->flags);
2419 2420
	BUG_ON(cgrp->subsys[ss->subsys_id]);
	cgrp->subsys[ss->subsys_id] = css;
2421 2422
}

2423 2424 2425 2426 2427 2428 2429 2430
static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
{
	/* We need to take each hierarchy_mutex in a consistent order */
	int i;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (ss->root == root)
2431
			mutex_lock(&ss->hierarchy_mutex);
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
	}
}

static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
{
	int i;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (ss->root == root)
			mutex_unlock(&ss->hierarchy_mutex);
	}
}

2446
/*
L
Li Zefan 已提交
2447 2448 2449 2450
 * cgroup_create - create a cgroup
 * @parent: cgroup that will be parent of the new cgroup
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new inode
2451
 *
L
Li Zefan 已提交
2452
 * Must be called with the mutex on the parent inode held
2453 2454 2455 2456
 */
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
			     int mode)
{
2457
	struct cgroup *cgrp;
2458 2459 2460 2461 2462
	struct cgroupfs_root *root = parent->root;
	int err = 0;
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

2463 2464
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
		return -ENOMEM;

	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
	atomic_inc(&sb->s_active);

	mutex_lock(&cgroup_mutex);

2476
	init_cgroup_housekeeping(cgrp);
2477

2478 2479 2480
	cgrp->parent = parent;
	cgrp->root = parent->root;
	cgrp->top_cgroup = parent->top_cgroup;
2481

2482 2483 2484
	if (notify_on_release(parent))
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);

2485
	for_each_subsys(root, ss) {
2486
		struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2487 2488 2489 2490
		if (IS_ERR(css)) {
			err = PTR_ERR(css);
			goto err_destroy;
		}
2491
		init_cgroup_css(css, ss, cgrp);
K
KAMEZAWA Hiroyuki 已提交
2492 2493 2494 2495
		if (ss->use_id)
			if (alloc_css_id(ss, parent, cgrp))
				goto err_destroy;
		/* At error, ->destroy() callback has to free assigned ID. */
2496 2497
	}

2498
	cgroup_lock_hierarchy(root);
2499
	list_add(&cgrp->sibling, &cgrp->parent->children);
2500
	cgroup_unlock_hierarchy(root);
2501 2502
	root->number_of_cgroups++;

2503
	err = cgroup_create_dir(cgrp, dentry, mode);
2504 2505 2506 2507
	if (err < 0)
		goto err_remove;

	/* The cgroup directory was pre-locked for us */
2508
	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2509

2510
	err = cgroup_populate_dir(cgrp);
2511 2512 2513
	/* If err < 0, we have a half-filled directory - oh well ;) */

	mutex_unlock(&cgroup_mutex);
2514
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2515 2516 2517 2518 2519

	return 0;

 err_remove:

2520
	cgroup_lock_hierarchy(root);
2521
	list_del(&cgrp->sibling);
2522
	cgroup_unlock_hierarchy(root);
2523 2524 2525 2526 2527
	root->number_of_cgroups--;

 err_destroy:

	for_each_subsys(root, ss) {
2528 2529
		if (cgrp->subsys[ss->subsys_id])
			ss->destroy(ss, cgrp);
2530 2531 2532 2533 2534 2535 2536
	}

	mutex_unlock(&cgroup_mutex);

	/* Release the reference count that we took on the superblock */
	deactivate_super(sb);

2537
	kfree(cgrp);
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
	return err;
}

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

2549
static int cgroup_has_css_refs(struct cgroup *cgrp)
2550 2551 2552
{
	/* Check the reference count on each subsystem. Since we
	 * already established that there are no tasks in the
P
Paul Menage 已提交
2553
	 * cgroup, if the css refcount is also 1, then there should
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564
	 * be no outstanding references, so the subsystem is safe to
	 * destroy. We scan across all subsystems rather than using
	 * the per-hierarchy linked list of mounted subsystems since
	 * we can be called via check_for_release() with no
	 * synchronization other than RCU, and the subsystem linked
	 * list isn't RCU-safe */
	int i;
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		struct cgroup_subsys_state *css;
		/* Skip subsystems not in this hierarchy */
2565
		if (ss->root != cgrp->root)
2566
			continue;
2567
		css = cgrp->subsys[ss->subsys_id];
2568 2569 2570 2571 2572 2573
		/* When called from check_for_release() it's possible
		 * that by this point the cgroup has been removed
		 * and the css deleted. But a false-positive doesn't
		 * matter, since it can only happen if the cgroup
		 * has been deleted and hence no longer needs the
		 * release agent to be called anyway. */
P
Paul Menage 已提交
2574
		if (css && (atomic_read(&css->refcnt) > 1))
2575 2576 2577 2578 2579
			return 1;
	}
	return 0;
}

P
Paul Menage 已提交
2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
/*
 * Atomically mark all (or else none) of the cgroup's CSS objects as
 * CSS_REMOVED. Return true on success, or false if the cgroup has
 * busy subsystems. Call with cgroup_mutex held
 */

static int cgroup_clear_css_refs(struct cgroup *cgrp)
{
	struct cgroup_subsys *ss;
	unsigned long flags;
	bool failed = false;
	local_irq_save(flags);
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		int refcnt;
2595
		while (1) {
P
Paul Menage 已提交
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
			/* We can only remove a CSS with a refcnt==1 */
			refcnt = atomic_read(&css->refcnt);
			if (refcnt > 1) {
				failed = true;
				goto done;
			}
			BUG_ON(!refcnt);
			/*
			 * Drop the refcnt to 0 while we check other
			 * subsystems. This will cause any racing
			 * css_tryget() to spin until we set the
			 * CSS_REMOVED bits or abort
			 */
2609 2610 2611 2612
			if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
				break;
			cpu_relax();
		}
P
Paul Menage 已提交
2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
	}
 done:
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		if (failed) {
			/*
			 * Restore old refcnt if we previously managed
			 * to clear it from 1 to 0
			 */
			if (!atomic_read(&css->refcnt))
				atomic_set(&css->refcnt, 1);
		} else {
			/* Commit the fact that the CSS is removed */
			set_bit(CSS_REMOVED, &css->flags);
		}
	}
	local_irq_restore(flags);
	return !failed;
}

2633 2634
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
2635
	struct cgroup *cgrp = dentry->d_fsdata;
2636 2637
	struct dentry *d;
	struct cgroup *parent;
2638 2639
	DEFINE_WAIT(wait);
	int ret;
2640 2641

	/* the vfs holds both inode->i_mutex already */
2642
again:
2643
	mutex_lock(&cgroup_mutex);
2644
	if (atomic_read(&cgrp->count) != 0) {
2645 2646 2647
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2648
	if (!list_empty(&cgrp->children)) {
2649 2650 2651
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2652
	mutex_unlock(&cgroup_mutex);
L
Li Zefan 已提交
2653

2654
	/*
L
Li Zefan 已提交
2655 2656
	 * Call pre_destroy handlers of subsys. Notify subsystems
	 * that rmdir() request comes.
2657
	 */
2658 2659 2660
	ret = cgroup_call_pre_destroy(cgrp);
	if (ret)
		return ret;
2661

2662 2663
	mutex_lock(&cgroup_mutex);
	parent = cgrp->parent;
2664
	if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
2665 2666 2667
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
	/*
	 * css_put/get is provided for subsys to grab refcnt to css. In typical
	 * case, subsystem has no reference after pre_destroy(). But, under
	 * hierarchy management, some *temporal* refcnt can be hold.
	 * To avoid returning -EBUSY to a user, waitqueue is used. If subsys
	 * is really busy, it should return -EBUSY at pre_destroy(). wake_up
	 * is called when css_put() is called and refcnt goes down to 0.
	 */
	set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
	prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);

	if (!cgroup_clear_css_refs(cgrp)) {
		mutex_unlock(&cgroup_mutex);
		schedule();
		finish_wait(&cgroup_rmdir_waitq, &wait);
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
		if (signal_pending(current))
			return -EINTR;
		goto again;
	}
	/* NO css_tryget() can success after here. */
	finish_wait(&cgroup_rmdir_waitq, &wait);
	clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2691

2692
	spin_lock(&release_list_lock);
2693 2694 2695
	set_bit(CGRP_REMOVED, &cgrp->flags);
	if (!list_empty(&cgrp->release_list))
		list_del(&cgrp->release_list);
2696
	spin_unlock(&release_list_lock);
2697 2698 2699

	cgroup_lock_hierarchy(cgrp->root);
	/* delete this cgroup from parent->children */
2700
	list_del(&cgrp->sibling);
2701 2702
	cgroup_unlock_hierarchy(cgrp->root);

2703 2704
	spin_lock(&cgrp->dentry->d_lock);
	d = dget(cgrp->dentry);
2705 2706 2707 2708 2709
	spin_unlock(&d->d_lock);

	cgroup_d_remove_dir(d);
	dput(d);

2710
	set_bit(CGRP_RELEASABLE, &parent->flags);
2711 2712
	check_for_release(parent);

2713 2714 2715 2716
	mutex_unlock(&cgroup_mutex);
	return 0;
}

2717
static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
2718 2719
{
	struct cgroup_subsys_state *css;
D
Diego Calleja 已提交
2720 2721

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2722 2723

	/* Create the top cgroup state for this subsystem */
2724
	list_add(&ss->sibling, &rootnode.subsys_list);
2725 2726 2727 2728 2729 2730
	ss->root = &rootnode;
	css = ss->create(ss, dummytop);
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
	init_cgroup_css(css, ss, dummytop);

L
Li Zefan 已提交
2731
	/* Update the init_css_set to contain a subsys
2732
	 * pointer to this state - since the subsystem is
L
Li Zefan 已提交
2733 2734 2735
	 * newly registered, all tasks and hence the
	 * init_css_set is in the subsystem's top cgroup. */
	init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2736 2737 2738

	need_forkexit_callback |= ss->fork || ss->exit;

L
Li Zefan 已提交
2739 2740 2741 2742 2743
	/* At system boot, before all subsystems have been
	 * registered, no tasks have been forked, so we don't
	 * need to invoke fork callbacks here. */
	BUG_ON(!list_empty(&init_task.tasks));

2744
	mutex_init(&ss->hierarchy_mutex);
2745
	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
2746 2747 2748 2749
	ss->active = 1;
}

/**
L
Li Zefan 已提交
2750 2751 2752 2753
 * cgroup_init_early - cgroup initialization at system boot
 *
 * Initialize cgroups at system boot, and initialize any
 * subsystems that request early init.
2754 2755 2756 2757
 */
int __init cgroup_init_early(void)
{
	int i;
2758
	atomic_set(&init_css_set.refcount, 1);
2759 2760
	INIT_LIST_HEAD(&init_css_set.cg_links);
	INIT_LIST_HEAD(&init_css_set.tasks);
2761
	INIT_HLIST_NODE(&init_css_set.hlist);
2762
	css_set_count = 1;
2763
	init_cgroup_root(&rootnode);
2764 2765 2766 2767
	root_count = 1;
	init_task.cgroups = &init_css_set;

	init_css_set_link.cg = &init_css_set;
2768
	list_add(&init_css_set_link.cgrp_link_list,
2769 2770 2771
		 &rootnode.top_cgroup.css_sets);
	list_add(&init_css_set_link.cg_link_list,
		 &init_css_set.cg_links);
2772

2773 2774 2775
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
		INIT_HLIST_HEAD(&css_set_table[i]);

2776 2777 2778 2779 2780 2781 2782 2783
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];

		BUG_ON(!ss->name);
		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
		BUG_ON(!ss->create);
		BUG_ON(!ss->destroy);
		if (ss->subsys_id != i) {
D
Diego Calleja 已提交
2784
			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
			       ss->name, ss->subsys_id);
			BUG();
		}

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
L
Li Zefan 已提交
2796 2797 2798 2799
 * cgroup_init - cgroup initialization
 *
 * Register cgroup filesystem and /proc file, and initialize
 * any subsystems that didn't request early init.
2800 2801 2802 2803 2804
 */
int __init cgroup_init(void)
{
	int err;
	int i;
2805
	struct hlist_head *hhead;
2806 2807 2808 2809

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;
2810 2811 2812 2813 2814

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (!ss->early_init)
			cgroup_init_subsys(ss);
K
KAMEZAWA Hiroyuki 已提交
2815 2816
		if (ss->use_id)
			cgroup_subsys_init_idr(ss);
2817 2818
	}

2819 2820 2821 2822
	/* Add init_css_set to the hash table */
	hhead = css_set_hash(init_css_set.subsys);
	hlist_add_head(&init_css_set.hlist, hhead);

2823 2824 2825 2826
	err = register_filesystem(&cgroup_fs_type);
	if (err < 0)
		goto out;

L
Li Zefan 已提交
2827
	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2828

2829
out:
2830 2831 2832
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

2833 2834
	return err;
}
2835

2836 2837 2838 2839 2840 2841
/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
2842
 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
static int proc_cgroup_show(struct seq_file *m, void *v)
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

2872
	for_each_active_root(root) {
2873
		struct cgroup_subsys *ss;
2874
		struct cgroup *cgrp;
2875 2876 2877
		int subsys_id;
		int count = 0;

2878
		seq_printf(m, "%lu:", root->subsys_bits);
2879 2880 2881 2882
		for_each_subsys(root, ss)
			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
		seq_putc(m, ':');
		get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
2883 2884
		cgrp = task_cgroup(tsk, subsys_id);
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

static int cgroup_open(struct inode *inode, struct file *file)
{
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cgroup_show, pid);
}

struct file_operations proc_cgroup_operations = {
	.open		= cgroup_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
	int i;

2918
	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
2919 2920 2921
	mutex_lock(&cgroup_mutex);
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
2922
		seq_printf(m, "%s\t%lu\t%d\t%d\n",
2923
			   ss->name, ss->root->subsys_bits,
2924
			   ss->root->number_of_cgroups, !ss->disabled);
2925 2926 2927 2928 2929 2930 2931
	}
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
A
Al Viro 已提交
2932
	return single_open(file, proc_cgroupstats_show, NULL);
2933 2934 2935 2936 2937 2938 2939 2940 2941
}

static struct file_operations proc_cgroupstats_operations = {
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

2942 2943
/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
L
Li Zefan 已提交
2944
 * @child: pointer to task_struct of forking parent process.
2945 2946 2947 2948 2949 2950
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
 * it was not made under the protection of RCU or cgroup_mutex, so
2951
 * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
2952 2953
 * have already changed current->cgroups, allowing the previously
 * referenced cgroup group to be removed and freed.
2954 2955 2956 2957 2958 2959
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
2960 2961 2962 2963 2964
	task_lock(current);
	child->cgroups = current->cgroups;
	get_css_set(child->cgroups);
	task_unlock(current);
	INIT_LIST_HEAD(&child->cg_list);
2965 2966 2967
}

/**
L
Li Zefan 已提交
2968 2969 2970 2971 2972 2973
 * cgroup_fork_callbacks - run fork callbacks
 * @child: the new task
 *
 * Called on a new task very soon before adding it to the
 * tasklist. No need to take any locks since no-one can
 * be operating on this task.
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
 */
void cgroup_fork_callbacks(struct task_struct *child)
{
	if (need_forkexit_callback) {
		int i;
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->fork)
				ss->fork(ss, child);
		}
	}
}

2987
/**
L
Li Zefan 已提交
2988 2989 2990 2991 2992 2993 2994 2995
 * cgroup_post_fork - called on a new task after adding it to the task list
 * @child: the task in question
 *
 * Adds the task to the list running through its css_set if necessary.
 * Has to be after the task is visible on the task list in case we race
 * with the first call to cgroup_iter_start() - to guarantee that the
 * new task ends up on its list.
 */
2996 2997 2998 2999
void cgroup_post_fork(struct task_struct *child)
{
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
3000
		task_lock(child);
3001 3002
		if (list_empty(&child->cg_list))
			list_add(&child->cg_list, &child->cgroups->tasks);
3003
		task_unlock(child);
3004 3005 3006
		write_unlock(&css_set_lock);
	}
}
3007 3008 3009
/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
L
Li Zefan 已提交
3010
 * @run_callback: run exit callbacks?
3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
3039 3040
 *    which wards off any cgroup_attach_task() attempts, or task is a failed
 *    fork, never visible to cgroup_attach_task.
3041 3042 3043 3044
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
	int i;
3045
	struct css_set *cg;
3046 3047 3048 3049 3050 3051 3052 3053

	if (run_callbacks && need_forkexit_callback) {
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->exit)
				ss->exit(ss, tsk);
		}
	}
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
			list_del(&tsk->cg_list);
		write_unlock(&css_set_lock);
	}

3067 3068
	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
3069 3070
	cg = tsk->cgroups;
	tsk->cgroups = &init_css_set;
3071
	task_unlock(tsk);
3072
	if (cg)
3073
		put_css_set_taskexit(cg);
3074
}
3075 3076

/**
L
Li Zefan 已提交
3077 3078 3079
 * cgroup_clone - clone the cgroup the given subsystem is attached to
 * @tsk: the task to be moved
 * @subsys: the given subsystem
3080
 * @nodename: the name for the new cgroup
L
Li Zefan 已提交
3081 3082 3083 3084
 *
 * Duplicate the current cgroup in the hierarchy that the given
 * subsystem is attached to, and move this task into the new
 * child.
3085
 */
3086 3087
int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
							char *nodename)
3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
{
	struct dentry *dentry;
	int ret = 0;
	struct cgroup *parent, *child;
	struct inode *inode;
	struct css_set *cg;
	struct cgroupfs_root *root;
	struct cgroup_subsys *ss;

	/* We shouldn't be called by an unregistered subsystem */
	BUG_ON(!subsys->active);

	/* First figure out what hierarchy and cgroup we're dealing
	 * with, and pin them so we can drop cgroup_mutex */
	mutex_lock(&cgroup_mutex);
 again:
	root = subsys->root;
	if (root == &rootnode) {
		mutex_unlock(&cgroup_mutex);
		return 0;
	}

	/* Pin the hierarchy */
3111
	if (!atomic_inc_not_zero(&root->sb->s_active)) {
3112 3113 3114 3115
		/* We race with the final deactivate_super() */
		mutex_unlock(&cgroup_mutex);
		return 0;
	}
3116

3117
	/* Keep the cgroup alive */
3118 3119 3120
	task_lock(tsk);
	parent = task_cgroup(tsk, subsys->subsys_id);
	cg = tsk->cgroups;
3121
	get_css_set(cg);
3122
	task_unlock(tsk);
3123

3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134
	mutex_unlock(&cgroup_mutex);

	/* Now do the VFS work to create a cgroup */
	inode = parent->dentry->d_inode;

	/* Hold the parent directory mutex across this operation to
	 * stop anyone else deleting the new cgroup */
	mutex_lock(&inode->i_mutex);
	dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
	if (IS_ERR(dentry)) {
		printk(KERN_INFO
D
Diego Calleja 已提交
3135
		       "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
3136 3137 3138 3139 3140 3141
		       PTR_ERR(dentry));
		ret = PTR_ERR(dentry);
		goto out_release;
	}

	/* Create the cgroup directory, which also creates the cgroup */
3142
	ret = vfs_mkdir(inode, dentry, 0755);
3143
	child = __d_cgrp(dentry);
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
	dput(dentry);
	if (ret) {
		printk(KERN_INFO
		       "Failed to create cgroup %s: %d\n", nodename,
		       ret);
		goto out_release;
	}

	/* The cgroup now exists. Retake cgroup_mutex and check
	 * that we're still in the same state that we thought we
	 * were. */
	mutex_lock(&cgroup_mutex);
	if ((root != subsys->root) ||
	    (parent != task_cgroup(tsk, subsys->subsys_id))) {
		/* Aargh, we raced ... */
		mutex_unlock(&inode->i_mutex);
3160
		put_css_set(cg);
3161

3162
		deactivate_super(root->sb);
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
		/* The cgroup is still accessible in the VFS, but
		 * we're not going to try to rmdir() it at this
		 * point. */
		printk(KERN_INFO
		       "Race in cgroup_clone() - leaking cgroup %s\n",
		       nodename);
		goto again;
	}

	/* do any required auto-setup */
	for_each_subsys(root, ss) {
		if (ss->post_clone)
			ss->post_clone(ss, child);
	}

	/* All seems fine. Finish by moving the task into the new cgroup */
3179
	ret = cgroup_attach_task(child, tsk);
3180 3181 3182 3183
	mutex_unlock(&cgroup_mutex);

 out_release:
	mutex_unlock(&inode->i_mutex);
3184 3185

	mutex_lock(&cgroup_mutex);
3186
	put_css_set(cg);
3187
	mutex_unlock(&cgroup_mutex);
3188
	deactivate_super(root->sb);
3189 3190 3191
	return ret;
}

L
Li Zefan 已提交
3192
/**
3193
 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
L
Li Zefan 已提交
3194
 * @cgrp: the cgroup in question
3195
 * @task: the task in question
L
Li Zefan 已提交
3196
 *
3197 3198
 * See if @cgrp is a descendant of @task's cgroup in the appropriate
 * hierarchy.
3199 3200 3201 3202 3203 3204
 *
 * If we are sending in dummytop, then presumably we are creating
 * the top cgroup in the subsystem.
 *
 * Called only by the ns (nsproxy) cgroup.
 */
3205
int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
3206 3207 3208 3209 3210
{
	int ret;
	struct cgroup *target;
	int subsys_id;

3211
	if (cgrp == dummytop)
3212 3213
		return 1;

3214
	get_first_subsys(cgrp, NULL, &subsys_id);
3215
	target = task_cgroup(task, subsys_id);
3216 3217 3218
	while (cgrp != target && cgrp!= cgrp->top_cgroup)
		cgrp = cgrp->parent;
	ret = (cgrp == target);
3219 3220
	return ret;
}
3221

3222
static void check_for_release(struct cgroup *cgrp)
3223 3224 3225
{
	/* All of these checks rely on RCU to keep the cgroup
	 * structure alive */
3226 3227
	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
3228 3229 3230 3231 3232
		/* Control Group is currently removeable. If it's not
		 * already queued for a userspace notification, queue
		 * it now */
		int need_schedule_work = 0;
		spin_lock(&release_list_lock);
3233 3234 3235
		if (!cgroup_is_removed(cgrp) &&
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
			need_schedule_work = 1;
		}
		spin_unlock(&release_list_lock);
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

void __css_put(struct cgroup_subsys_state *css)
{
3246
	struct cgroup *cgrp = css->cgroup;
3247
	rcu_read_lock();
3248 3249 3250 3251 3252 3253
	if (atomic_dec_return(&css->refcnt) == 1) {
		if (notify_on_release(cgrp)) {
			set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
		}
		cgroup_wakeup_rmdir_waiters(cgrp);
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
	}
	rcu_read_unlock();
}

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 */
static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
	spin_lock(&release_list_lock);
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
3289
		char *pathbuf = NULL, *agentbuf = NULL;
3290
		struct cgroup *cgrp = list_entry(release_list.next,
3291 3292
						    struct cgroup,
						    release_list);
3293
		list_del_init(&cgrp->release_list);
3294 3295
		spin_unlock(&release_list_lock);
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3296 3297 3298 3299 3300 3301 3302
		if (!pathbuf)
			goto continue_free;
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
			goto continue_free;
		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
		if (!agentbuf)
			goto continue_free;
3303 3304

		i = 0;
3305 3306
		argv[i++] = agentbuf;
		argv[i++] = pathbuf;
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		mutex_lock(&cgroup_mutex);
3321 3322 3323
 continue_free:
		kfree(pathbuf);
		kfree(agentbuf);
3324 3325 3326 3327 3328
		spin_lock(&release_list_lock);
	}
	spin_unlock(&release_list_lock);
	mutex_unlock(&cgroup_mutex);
}
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352

static int __init cgroup_disable(char *str)
{
	int i;
	char *token;

	while ((token = strsep(&str, ",")) != NULL) {
		if (!*token)
			continue;

		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];

			if (!strcmp(token, ss->name)) {
				ss->disabled = 1;
				printk(KERN_INFO "Disabling %s control group"
					" subsystem\n", ss->name);
				break;
			}
		}
	}
	return 1;
}
__setup("cgroup_disable=", cgroup_disable);
K
KAMEZAWA Hiroyuki 已提交
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581

/*
 * Functons for CSS ID.
 */

/*
 *To get ID other than 0, this should be called when !cgroup_is_removed().
 */
unsigned short css_id(struct cgroup_subsys_state *css)
{
	struct css_id *cssid = rcu_dereference(css->id);

	if (cssid)
		return cssid->id;
	return 0;
}

unsigned short css_depth(struct cgroup_subsys_state *css)
{
	struct css_id *cssid = rcu_dereference(css->id);

	if (cssid)
		return cssid->depth;
	return 0;
}

bool css_is_ancestor(struct cgroup_subsys_state *child,
		    struct cgroup_subsys_state *root)
{
	struct css_id *child_id = rcu_dereference(child->id);
	struct css_id *root_id = rcu_dereference(root->id);

	if (!child_id || !root_id || (child_id->depth < root_id->depth))
		return false;
	return child_id->stack[root_id->depth] == root_id->id;
}

static void __free_css_id_cb(struct rcu_head *head)
{
	struct css_id *id;

	id = container_of(head, struct css_id, rcu_head);
	kfree(id);
}

void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
{
	struct css_id *id = css->id;
	/* When this is called before css_id initialization, id can be NULL */
	if (!id)
		return;

	BUG_ON(!ss->use_id);

	rcu_assign_pointer(id->css, NULL);
	rcu_assign_pointer(css->id, NULL);
	spin_lock(&ss->id_lock);
	idr_remove(&ss->idr, id->id);
	spin_unlock(&ss->id_lock);
	call_rcu(&id->rcu_head, __free_css_id_cb);
}

/*
 * This is called by init or create(). Then, calls to this function are
 * always serialized (By cgroup_mutex() at create()).
 */

static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
{
	struct css_id *newid;
	int myid, error, size;

	BUG_ON(!ss->use_id);

	size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
	newid = kzalloc(size, GFP_KERNEL);
	if (!newid)
		return ERR_PTR(-ENOMEM);
	/* get id */
	if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
		error = -ENOMEM;
		goto err_out;
	}
	spin_lock(&ss->id_lock);
	/* Don't use 0. allocates an ID of 1-65535 */
	error = idr_get_new_above(&ss->idr, newid, 1, &myid);
	spin_unlock(&ss->id_lock);

	/* Returns error when there are no free spaces for new ID.*/
	if (error) {
		error = -ENOSPC;
		goto err_out;
	}
	if (myid > CSS_ID_MAX)
		goto remove_idr;

	newid->id = myid;
	newid->depth = depth;
	return newid;
remove_idr:
	error = -ENOSPC;
	spin_lock(&ss->id_lock);
	idr_remove(&ss->idr, myid);
	spin_unlock(&ss->id_lock);
err_out:
	kfree(newid);
	return ERR_PTR(error);

}

static int __init cgroup_subsys_init_idr(struct cgroup_subsys *ss)
{
	struct css_id *newid;
	struct cgroup_subsys_state *rootcss;

	spin_lock_init(&ss->id_lock);
	idr_init(&ss->idr);

	rootcss = init_css_set.subsys[ss->subsys_id];
	newid = get_new_cssid(ss, 0);
	if (IS_ERR(newid))
		return PTR_ERR(newid);

	newid->stack[0] = newid->id;
	newid->css = rootcss;
	rootcss->id = newid;
	return 0;
}

static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
			struct cgroup *child)
{
	int subsys_id, i, depth = 0;
	struct cgroup_subsys_state *parent_css, *child_css;
	struct css_id *child_id, *parent_id = NULL;

	subsys_id = ss->subsys_id;
	parent_css = parent->subsys[subsys_id];
	child_css = child->subsys[subsys_id];
	depth = css_depth(parent_css) + 1;
	parent_id = parent_css->id;

	child_id = get_new_cssid(ss, depth);
	if (IS_ERR(child_id))
		return PTR_ERR(child_id);

	for (i = 0; i < depth; i++)
		child_id->stack[i] = parent_id->stack[i];
	child_id->stack[depth] = child_id->id;
	/*
	 * child_id->css pointer will be set after this cgroup is available
	 * see cgroup_populate_dir()
	 */
	rcu_assign_pointer(child_css->id, child_id);

	return 0;
}

/**
 * css_lookup - lookup css by id
 * @ss: cgroup subsys to be looked into.
 * @id: the id
 *
 * Returns pointer to cgroup_subsys_state if there is valid one with id.
 * NULL if not. Should be called under rcu_read_lock()
 */
struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
{
	struct css_id *cssid = NULL;

	BUG_ON(!ss->use_id);
	cssid = idr_find(&ss->idr, id);

	if (unlikely(!cssid))
		return NULL;

	return rcu_dereference(cssid->css);
}

/**
 * css_get_next - lookup next cgroup under specified hierarchy.
 * @ss: pointer to subsystem
 * @id: current position of iteration.
 * @root: pointer to css. search tree under this.
 * @foundid: position of found object.
 *
 * Search next css under the specified hierarchy of rootid. Calling under
 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
 */
struct cgroup_subsys_state *
css_get_next(struct cgroup_subsys *ss, int id,
	     struct cgroup_subsys_state *root, int *foundid)
{
	struct cgroup_subsys_state *ret = NULL;
	struct css_id *tmp;
	int tmpid;
	int rootid = css_id(root);
	int depth = css_depth(root);

	if (!rootid)
		return NULL;

	BUG_ON(!ss->use_id);
	/* fill start point for scan */
	tmpid = id;
	while (1) {
		/*
		 * scan next entry from bitmap(tree), tmpid is updated after
		 * idr_get_next().
		 */
		spin_lock(&ss->id_lock);
		tmp = idr_get_next(&ss->idr, &tmpid);
		spin_unlock(&ss->id_lock);

		if (!tmp)
			break;
		if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
			ret = rcu_dereference(tmp->css);
			if (ret) {
				*foundid = tmpid;
				break;
			}
		}
		/* continue to scan from next id */
		tmpid = tmpid + 1;
	}
	return ret;
}