cgroup.c 81.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
34
#include <linux/proc_fs.h>
35 36
#include <linux/rcupdate.h>
#include <linux/sched.h>
37
#include <linux/backing-dev.h>
38 39 40 41 42
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
43
#include <linux/sort.h>
44
#include <linux/kmod.h>
B
Balbir Singh 已提交
45 46
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
47
#include <linux/hash.h>
48
#include <linux/namei.h>
B
Balbir Singh 已提交
49

50 51
#include <asm/atomic.h>

52 53
static DEFINE_MUTEX(cgroup_mutex);

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
/* Generate an array of cgroup subsystem pointers */
#define SUBSYS(_x) &_x ## _subsys,

static struct cgroup_subsys *subsys[] = {
#include <linux/cgroup_subsys.h>
};

/*
 * A cgroupfs_root represents the root of a cgroup hierarchy,
 * and may be associated with a superblock to form an active
 * hierarchy
 */
struct cgroupfs_root {
	struct super_block *sb;

	/*
	 * The bitmask of subsystems intended to be attached to this
	 * hierarchy
	 */
	unsigned long subsys_bits;

	/* The bitmask of subsystems currently attached to this hierarchy */
	unsigned long actual_subsys_bits;

	/* A list running through the attached subsystems */
	struct list_head subsys_list;

	/* The root cgroup for this hierarchy */
	struct cgroup top_cgroup;

	/* Tracks how many cgroups are currently defined in hierarchy.*/
	int number_of_cgroups;

	/* A list running through the mounted hierarchies */
	struct list_head root_list;

	/* Hierarchy-specific flags */
	unsigned long flags;
92

93
	/* The path to use for release notifications. */
94
	char release_agent_path[PATH_MAX];
95 96 97 98 99 100 101 102 103 104 105 106 107
};


/*
 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 * subsystems that are otherwise unattached - it never has more than a
 * single cgroup, and all tasks are part of that cgroup.
 */
static struct cgroupfs_root rootnode;

/* The list of hierarchy roots */

static LIST_HEAD(roots);
108
static int root_count;
109 110 111 112 113

/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
#define dummytop (&rootnode.top_cgroup)

/* This flag indicates whether tasks in the fork and exit paths should
L
Li Zefan 已提交
114 115 116
 * check for fork/exit handlers to call. This avoids us having to do
 * extra work in the fork/exit path if none of the subsystems need to
 * be called.
117
 */
118
static int need_forkexit_callback __read_mostly;
119 120

/* convenient tests for these bits */
121
inline int cgroup_is_removed(const struct cgroup *cgrp)
122
{
123
	return test_bit(CGRP_REMOVED, &cgrp->flags);
124 125 126 127 128 129 130
}

/* bits in struct cgroupfs_root flags field */
enum {
	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
};

131
static int cgroup_is_releasable(const struct cgroup *cgrp)
132 133
{
	const int bits =
134 135 136
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
137 138
}

139
static int notify_on_release(const struct cgroup *cgrp)
140
{
141
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
142 143
}

144 145 146 147 148 149 150 151 152 153 154
/*
 * for_each_subsys() allows you to iterate on each subsystem attached to
 * an active hierarchy
 */
#define for_each_subsys(_root, _ss) \
list_for_each_entry(_ss, &_root->subsys_list, sibling)

/* for_each_root() allows you to iterate across the active hierarchies */
#define for_each_root(_root) \
list_for_each_entry(_root, &roots, root_list)

155 156 157 158 159 160
/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
static DEFINE_SPINLOCK(release_list_lock);
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
161
static void check_for_release(struct cgroup *cgrp);
162

163 164 165 166 167 168
/* Link structure for associating css_set objects with cgroups */
struct cg_cgroup_link {
	/*
	 * List running through cg_cgroup_links associated with a
	 * cgroup, anchored on cgroup->css_sets
	 */
169
	struct list_head cgrp_link_list;
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
	/*
	 * List running through cg_cgroup_links pointing at a
	 * single css_set object, anchored on css_set->cg_links
	 */
	struct list_head cg_link_list;
	struct css_set *cg;
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
static struct cg_cgroup_link init_css_set_link;

/* css_set_lock protects the list of css_set objects, and the
 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 * due to cgroup_iter_start() */
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
/* hash table for cgroup groups. This improves the performance to
 * find an existing css_set */
#define CSS_SET_HASH_BITS	7
#define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS)
static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];

static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
{
	int i;
	int index;
	unsigned long tmp = 0UL;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
		tmp += (unsigned long)css[i];
	tmp = (tmp >> 16) ^ tmp;

	index = hash_long(tmp, CSS_SET_HASH_BITS);

	return &css_set_table[index];
}

215 216 217 218
/* We don't maintain the lists running through each css_set to its
 * task until after the first call to cgroup_iter_start(). This
 * reduces the fork()/exit() overhead for people who have cgroups
 * compiled into their kernel but not actually in use */
219
static int use_task_css_set_links __read_mostly;
220 221 222 223 224 225 226

/* When we create or destroy a css_set, the operation simply
 * takes/releases a reference count on all the cgroups referenced
 * by subsystems in this css_set. This can end up multiple-counting
 * some cgroups, but that's OK - the ref-count is just a
 * busy/not-busy indicator; ensuring that we only count each cgroup
 * once would require taking a global lock to ensure that no
227 228 229 230 231 232 233
 * subsystems moved between hierarchies while we were doing so.
 *
 * Possible TODO: decide at boot time based on the number of
 * registered subsystems and the number of CPUs or NUMA nodes whether
 * it's better for performance to ref-count every subsystem, or to
 * take a global lock and only add one ref count to each hierarchy.
 */
234 235 236 237

/*
 * unlink a css_set from the list and free it
 */
238
static void unlink_css_set(struct css_set *cg)
239
{
K
KOSAKI Motohiro 已提交
240 241 242
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

243
	hlist_del(&cg->hlist);
244
	css_set_count--;
K
KOSAKI Motohiro 已提交
245 246 247

	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
				 cg_link_list) {
248
		list_del(&link->cg_link_list);
249
		list_del(&link->cgrp_link_list);
250 251
		kfree(link);
	}
252 253
}

254
static void __put_css_set(struct css_set *cg, int taskexit)
255 256
{
	int i;
257 258 259 260 261 262 263 264 265 266 267 268
	/*
	 * Ensure that the refcount doesn't hit zero while any readers
	 * can see it. Similar to atomic_dec_and_lock(), but for an
	 * rwlock
	 */
	if (atomic_add_unless(&cg->refcount, -1, 1))
		return;
	write_lock(&css_set_lock);
	if (!atomic_dec_and_test(&cg->refcount)) {
		write_unlock(&css_set_lock);
		return;
	}
269
	unlink_css_set(cg);
270
	write_unlock(&css_set_lock);
271 272 273

	rcu_read_lock();
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
274 275 276
		struct cgroup *cgrp = cg->subsys[i]->cgroup;
		if (atomic_dec_and_test(&cgrp->count) &&
		    notify_on_release(cgrp)) {
277
			if (taskexit)
278 279
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
280 281 282
		}
	}
	rcu_read_unlock();
283
	kfree(cg);
284 285
}

286 287 288 289 290
/*
 * refcounted get/put for css_set objects
 */
static inline void get_css_set(struct css_set *cg)
{
291
	atomic_inc(&cg->refcount);
292 293 294 295
}

static inline void put_css_set(struct css_set *cg)
{
296
	__put_css_set(cg, 0);
297 298
}

299 300
static inline void put_css_set_taskexit(struct css_set *cg)
{
301
	__put_css_set(cg, 1);
302 303
}

304 305 306
/*
 * find_existing_css_set() is a helper for
 * find_css_set(), and checks to see whether an existing
307
 * css_set is suitable.
308 309 310 311
 *
 * oldcg: the cgroup group that we're using before the cgroup
 * transition
 *
312
 * cgrp: the cgroup that we're moving into
313 314 315 316 317 318
 *
 * template: location in which to build the desired set of subsystem
 * state objects for the new cgroup group
 */
static struct css_set *find_existing_css_set(
	struct css_set *oldcg,
319
	struct cgroup *cgrp,
320
	struct cgroup_subsys_state *template[])
321 322
{
	int i;
323
	struct cgroupfs_root *root = cgrp->root;
324 325 326
	struct hlist_head *hhead;
	struct hlist_node *node;
	struct css_set *cg;
327 328 329 330

	/* Built the set of subsystem state objects that we want to
	 * see in the new css_set */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
331
		if (root->subsys_bits & (1UL << i)) {
332 333 334
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
335
			template[i] = cgrp->subsys[i];
336 337 338 339 340 341 342
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
			template[i] = oldcg->subsys[i];
		}
	}

343 344
	hhead = css_set_hash(template);
	hlist_for_each_entry(cg, node, hhead, hlist) {
345 346 347 348
		if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
			/* All subsystems matched */
			return cg;
		}
349
	}
350 351 352 353 354

	/* No existing cgroup group matched */
	return NULL;
}

355 356 357 358 359 360 361 362 363 364 365
static void free_cg_links(struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

	list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
		list_del(&link->cgrp_link_list);
		kfree(link);
	}
}

366 367
/*
 * allocate_cg_links() allocates "count" cg_cgroup_link structures
368
 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
369 370 371 372 373 374 375 376 377 378
 * success or a negative error
 */
static int allocate_cg_links(int count, struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	int i;
	INIT_LIST_HEAD(tmp);
	for (i = 0; i < count; i++) {
		link = kmalloc(sizeof(*link), GFP_KERNEL);
		if (!link) {
379
			free_cg_links(tmp);
380 381
			return -ENOMEM;
		}
382
		list_add(&link->cgrp_link_list, tmp);
383 384 385 386 387 388 389 390 391 392 393 394
	}
	return 0;
}

/*
 * find_css_set() takes an existing cgroup group and a
 * cgroup object, and returns a css_set object that's
 * equivalent to the old group, but with the given cgroup
 * substituted into the appropriate hierarchy. Must be called with
 * cgroup_mutex held
 */
static struct css_set *find_css_set(
395
	struct css_set *oldcg, struct cgroup *cgrp)
396 397 398 399 400 401 402 403
{
	struct css_set *res;
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
	int i;

	struct list_head tmp_cg_links;
	struct cg_cgroup_link *link;

404 405
	struct hlist_head *hhead;

406 407
	/* First see if we already have a cgroup group that matches
	 * the desired set */
408
	read_lock(&css_set_lock);
409
	res = find_existing_css_set(oldcg, cgrp, template);
410 411
	if (res)
		get_css_set(res);
412
	read_unlock(&css_set_lock);
413 414 415 416 417 418 419 420 421 422 423 424 425 426

	if (res)
		return res;

	res = kmalloc(sizeof(*res), GFP_KERNEL);
	if (!res)
		return NULL;

	/* Allocate all the cg_cgroup_link objects that we'll need */
	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
		kfree(res);
		return NULL;
	}

427
	atomic_set(&res->refcount, 1);
428 429
	INIT_LIST_HEAD(&res->cg_links);
	INIT_LIST_HEAD(&res->tasks);
430
	INIT_HLIST_NODE(&res->hlist);
431 432 433 434 435 436 437 438

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
	memcpy(res->subsys, template, sizeof(res->subsys));

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
439
		struct cgroup *cgrp = res->subsys[i]->cgroup;
440
		struct cgroup_subsys *ss = subsys[i];
441
		atomic_inc(&cgrp->count);
442 443 444 445 446 447 448 449 450
		/*
		 * We want to add a link once per cgroup, so we
		 * only do it for the first subsystem in each
		 * hierarchy
		 */
		if (ss->root->subsys_list.next == &ss->sibling) {
			BUG_ON(list_empty(&tmp_cg_links));
			link = list_entry(tmp_cg_links.next,
					  struct cg_cgroup_link,
451 452 453
					  cgrp_link_list);
			list_del(&link->cgrp_link_list);
			list_add(&link->cgrp_link_list, &cgrp->css_sets);
454 455 456 457 458 459 460
			link->cg = res;
			list_add(&link->cg_link_list, &res->cg_links);
		}
	}
	if (list_empty(&rootnode.subsys_list)) {
		link = list_entry(tmp_cg_links.next,
				  struct cg_cgroup_link,
461 462 463
				  cgrp_link_list);
		list_del(&link->cgrp_link_list);
		list_add(&link->cgrp_link_list, &dummytop->css_sets);
464 465 466 467 468 469 470
		link->cg = res;
		list_add(&link->cg_link_list, &res->cg_links);
	}

	BUG_ON(!list_empty(&tmp_cg_links));

	css_set_count++;
471 472 473 474 475

	/* Add this cgroup group to the hash table */
	hhead = css_set_hash(res->subsys);
	hlist_add_head(&res->hlist, hhead);

476 477 478
	write_unlock(&css_set_lock);

	return res;
479 480
}

481 482 483 484 485 486 487 488 489 490
/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
491
 * cgroup_attach_task() can increment it again.  Because a count of zero
492 493 494 495 496 497 498 499 500 501 502 503 504
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
L
Li Zefan 已提交
505 506
 * to the release agent with the name of the cgroup (path relative to
 * the root of cgroup file system) as the argument.
507 508 509 510 511 512 513 514 515 516 517
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
518
 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
L
Li Zefan 已提交
519
 * another.  It does so using cgroup_mutex, however there are
520 521 522
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
523
 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
524 525 526 527
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
528
 * update of a tasks cgroup pointer by cgroup_attach_task()
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
 */

/**
 * cgroup_lock - lock out any changes to cgroup structures
 *
 */
void cgroup_lock(void)
{
	mutex_lock(&cgroup_mutex);
}

/**
 * cgroup_unlock - release lock on cgroup changes
 *
 * Undo the lock taken in a previous cgroup_lock() call.
 */
void cgroup_unlock(void)
{
	mutex_unlock(&cgroup_mutex);
}

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
559
static int cgroup_populate_dir(struct cgroup *cgrp);
560
static struct inode_operations cgroup_dir_inode_operations;
561 562 563
static struct file_operations proc_cgroupstats_operations;

static struct backing_dev_info cgroup_backing_dev_info = {
564
	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
565
};
566 567 568 569 570 571 572

static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
{
	struct inode *inode = new_inode(sb);

	if (inode) {
		inode->i_mode = mode;
573 574
		inode->i_uid = current_fsuid();
		inode->i_gid = current_fsgid();
575 576 577 578 579 580
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

581 582 583 584 585 586 587 588
/*
 * Call subsys's pre_destroy handler.
 * This is called before css refcnt check.
 */
static void cgroup_call_pre_destroy(struct cgroup *cgrp)
{
	struct cgroup_subsys *ss;
	for_each_subsys(cgrp->root, ss)
589
		if (ss->pre_destroy)
590 591 592 593
			ss->pre_destroy(ss, cgrp);
	return;
}

594 595 596 597
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
598
		struct cgroup *cgrp = dentry->d_fsdata;
599
		struct cgroup_subsys *ss;
600
		BUG_ON(!(cgroup_is_removed(cgrp)));
601 602 603 604 605 606 607
		/* It's possible for external users to be holding css
		 * reference counts on a cgroup; css_put() needs to
		 * be able to access the cgroup after decrementing
		 * the reference count in order to know if it needs to
		 * queue the cgroup to be handled by the release
		 * agent */
		synchronize_rcu();
608 609 610 611 612

		mutex_lock(&cgroup_mutex);
		/*
		 * Release the subsystem state objects.
		 */
613 614
		for_each_subsys(cgrp->root, ss)
			ss->destroy(ss, cgrp);
615 616 617 618 619 620 621 622

		cgrp->root->number_of_cgroups--;
		mutex_unlock(&cgroup_mutex);

		/* Drop the active superblock reference that we took when we
		 * created the cgroup */
		deactivate_super(cgrp->root->sb);

623
		kfree(cgrp);
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
	}
	iput(inode);
}

static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

static void cgroup_clear_directory(struct dentry *dentry)
{
	struct list_head *node;

	BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
	spin_lock(&dcache_lock);
	node = dentry->d_subdirs.next;
	while (node != &dentry->d_subdirs) {
		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
		list_del_init(node);
		if (d->d_inode) {
			/* This should never be called on a cgroup
			 * directory with child cgroups */
			BUG_ON(d->d_inode->i_mode & S_IFDIR);
			d = dget_locked(d);
			spin_unlock(&dcache_lock);
			d_delete(d);
			simple_unlink(dentry->d_inode, d);
			dput(d);
			spin_lock(&dcache_lock);
		}
		node = dentry->d_subdirs.next;
	}
	spin_unlock(&dcache_lock);
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
	cgroup_clear_directory(dentry);

	spin_lock(&dcache_lock);
	list_del_init(&dentry->d_u.d_child);
	spin_unlock(&dcache_lock);
	remove_dir(dentry);
}

static int rebind_subsystems(struct cgroupfs_root *root,
			      unsigned long final_bits)
{
	unsigned long added_bits, removed_bits;
680
	struct cgroup *cgrp = &root->top_cgroup;
681 682 683 684 685 686
	int i;

	removed_bits = root->actual_subsys_bits & ~final_bits;
	added_bits = final_bits & ~root->actual_subsys_bits;
	/* Check that any added subsystems are currently free */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
687
		unsigned long bit = 1UL << i;
688 689 690 691 692 693 694 695 696 697 698 699 700
		struct cgroup_subsys *ss = subsys[i];
		if (!(bit & added_bits))
			continue;
		if (ss->root != &rootnode) {
			/* Subsystem isn't free */
			return -EBUSY;
		}
	}

	/* Currently we don't handle adding/removing subsystems when
	 * any child cgroups exist. This is theoretically supportable
	 * but involves complex error handling, so it's being left until
	 * later */
701
	if (root->number_of_cgroups > 1)
702 703 704 705 706 707 708 709
		return -EBUSY;

	/* Process each subsystem */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		unsigned long bit = 1UL << i;
		if (bit & added_bits) {
			/* We're binding this subsystem to this hierarchy */
710
			BUG_ON(cgrp->subsys[i]);
711 712
			BUG_ON(!dummytop->subsys[i]);
			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
713 714
			cgrp->subsys[i] = dummytop->subsys[i];
			cgrp->subsys[i]->cgroup = cgrp;
715
			list_add(&ss->sibling, &root->subsys_list);
716
			ss->root = root;
717
			if (ss->bind)
718
				ss->bind(ss, cgrp);
719 720 721

		} else if (bit & removed_bits) {
			/* We're removing this subsystem */
722 723
			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
724 725 726
			if (ss->bind)
				ss->bind(ss, dummytop);
			dummytop->subsys[i]->cgroup = dummytop;
727
			cgrp->subsys[i] = NULL;
728
			subsys[i]->root = &rootnode;
729 730 731
			list_del(&ss->sibling);
		} else if (bit & final_bits) {
			/* Subsystem state should already exist */
732
			BUG_ON(!cgrp->subsys[i]);
733 734
		} else {
			/* Subsystem state shouldn't exist */
735
			BUG_ON(cgrp->subsys[i]);
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
		}
	}
	root->subsys_bits = root->actual_subsys_bits = final_bits;
	synchronize_rcu();

	return 0;
}

static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
{
	struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
	struct cgroup_subsys *ss;

	mutex_lock(&cgroup_mutex);
	for_each_subsys(root, ss)
		seq_printf(seq, ",%s", ss->name);
	if (test_bit(ROOT_NOPREFIX, &root->flags))
		seq_puts(seq, ",noprefix");
754 755
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
756 757 758 759 760 761 762
	mutex_unlock(&cgroup_mutex);
	return 0;
}

struct cgroup_sb_opts {
	unsigned long subsys_bits;
	unsigned long flags;
763
	char *release_agent;
764 765 766 767 768 769 770 771 772 773 774
};

/* Convert a hierarchy specifier into a bitmask of subsystems and
 * flags. */
static int parse_cgroupfs_options(char *data,
				     struct cgroup_sb_opts *opts)
{
	char *token, *o = data ?: "all";

	opts->subsys_bits = 0;
	opts->flags = 0;
775
	opts->release_agent = NULL;
776 777 778 779 780

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
		if (!strcmp(token, "all")) {
781 782 783 784 785 786 787 788
			/* Add all non-disabled subsystems */
			int i;
			opts->subsys_bits = 0;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				struct cgroup_subsys *ss = subsys[i];
				if (!ss->disabled)
					opts->subsys_bits |= 1ul << i;
			}
789 790
		} else if (!strcmp(token, "noprefix")) {
			set_bit(ROOT_NOPREFIX, &opts->flags);
791 792 793 794 795 796 797 798 799
		} else if (!strncmp(token, "release_agent=", 14)) {
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
			opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
			if (!opts->release_agent)
				return -ENOMEM;
			strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
			opts->release_agent[PATH_MAX - 1] = 0;
800 801 802 803 804 805
		} else {
			struct cgroup_subsys *ss;
			int i;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				ss = subsys[i];
				if (!strcmp(token, ss->name)) {
806 807
					if (!ss->disabled)
						set_bit(i, &opts->subsys_bits);
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
					break;
				}
			}
			if (i == CGROUP_SUBSYS_COUNT)
				return -ENOENT;
		}
	}

	/* We can't have an empty hierarchy */
	if (!opts->subsys_bits)
		return -EINVAL;

	return 0;
}

static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
827
	struct cgroup *cgrp = &root->top_cgroup;
828 829
	struct cgroup_sb_opts opts;

830
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
	mutex_lock(&cgroup_mutex);

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

	/* Don't allow flags to change at remount */
	if (opts.flags != root->flags) {
		ret = -EINVAL;
		goto out_unlock;
	}

	ret = rebind_subsystems(root, opts.subsys_bits);

	/* (re)populate subsystem files */
	if (!ret)
848
		cgroup_populate_dir(cgrp);
849

850 851
	if (opts.release_agent)
		strcpy(root->release_agent_path, opts.release_agent);
852
 out_unlock:
853 854
	if (opts.release_agent)
		kfree(opts.release_agent);
855
	mutex_unlock(&cgroup_mutex);
856
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
857 858 859 860 861 862 863 864 865 866
	return ret;
}

static struct super_operations cgroup_ops = {
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

867 868 869 870 871 872 873 874
static void init_cgroup_housekeeping(struct cgroup *cgrp)
{
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
	init_rwsem(&cgrp->pids_mutex);
}
875 876
static void init_cgroup_root(struct cgroupfs_root *root)
{
877
	struct cgroup *cgrp = &root->top_cgroup;
878 879 880
	INIT_LIST_HEAD(&root->subsys_list);
	INIT_LIST_HEAD(&root->root_list);
	root->number_of_cgroups = 1;
881 882
	cgrp->root = root;
	cgrp->top_cgroup = cgrp;
883
	init_cgroup_housekeeping(cgrp);
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
}

static int cgroup_test_super(struct super_block *sb, void *data)
{
	struct cgroupfs_root *new = data;
	struct cgroupfs_root *root = sb->s_fs_info;

	/* First check subsystems */
	if (new->subsys_bits != root->subsys_bits)
	    return 0;

	/* Next check flags */
	if (new->flags != root->flags)
		return 0;

	return 1;
}

static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
	struct cgroupfs_root *root = data;

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

	sb->s_fs_info = root;
	root->sb = sb;

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
	struct dentry *dentry;

	if (!inode)
		return -ENOMEM;

	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
	dentry = d_alloc_root(inode);
	if (!dentry) {
		iput(inode);
		return -ENOMEM;
	}
	sb->s_root = dentry;
	return 0;
}

static int cgroup_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
{
	struct cgroup_sb_opts opts;
	int ret = 0;
	struct super_block *sb;
	struct cgroupfs_root *root;
952
	struct list_head tmp_cg_links;
953 954 955

	/* First find the desired set of subsystems */
	ret = parse_cgroupfs_options(data, &opts);
956 957 958
	if (ret) {
		if (opts.release_agent)
			kfree(opts.release_agent);
959
		return ret;
960
	}
961 962

	root = kzalloc(sizeof(*root), GFP_KERNEL);
963 964 965
	if (!root) {
		if (opts.release_agent)
			kfree(opts.release_agent);
966
		return -ENOMEM;
967
	}
968 969 970 971

	init_cgroup_root(root);
	root->subsys_bits = opts.subsys_bits;
	root->flags = opts.flags;
972 973 974 975
	if (opts.release_agent) {
		strcpy(root->release_agent_path, opts.release_agent);
		kfree(opts.release_agent);
	}
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990

	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);

	if (IS_ERR(sb)) {
		kfree(root);
		return PTR_ERR(sb);
	}

	if (sb->s_fs_info != root) {
		/* Reusing an existing superblock */
		BUG_ON(sb->s_root == NULL);
		kfree(root);
		root = NULL;
	} else {
		/* New superblock */
991
		struct cgroup *cgrp = &root->top_cgroup;
992
		struct inode *inode;
993
		int i;
994 995 996 997 998 999

		BUG_ON(sb->s_root != NULL);

		ret = cgroup_get_rootdir(sb);
		if (ret)
			goto drop_new_super;
1000
		inode = sb->s_root->d_inode;
1001

1002
		mutex_lock(&inode->i_mutex);
1003 1004
		mutex_lock(&cgroup_mutex);

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
		/*
		 * We're accessing css_set_count without locking
		 * css_set_lock here, but that's OK - it can only be
		 * increased by someone holding cgroup_lock, and
		 * that's us. The worst that can happen is that we
		 * have some link structures left over
		 */
		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
		if (ret) {
			mutex_unlock(&cgroup_mutex);
			mutex_unlock(&inode->i_mutex);
			goto drop_new_super;
		}

1019 1020 1021
		ret = rebind_subsystems(root, root->subsys_bits);
		if (ret == -EBUSY) {
			mutex_unlock(&cgroup_mutex);
1022
			mutex_unlock(&inode->i_mutex);
1023
			goto free_cg_links;
1024 1025 1026 1027 1028 1029
		}

		/* EBUSY should be the only error here */
		BUG_ON(ret);

		list_add(&root->root_list, &roots);
1030
		root_count++;
1031 1032 1033 1034

		sb->s_root->d_fsdata = &root->top_cgroup;
		root->top_cgroup.dentry = sb->s_root;

1035 1036 1037
		/* Link the top cgroup in this hierarchy into all
		 * the css_set objects */
		write_lock(&css_set_lock);
1038 1039 1040
		for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
			struct hlist_head *hhead = &css_set_table[i];
			struct hlist_node *node;
1041
			struct css_set *cg;
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056

			hlist_for_each_entry(cg, node, hhead, hlist) {
				struct cg_cgroup_link *link;

				BUG_ON(list_empty(&tmp_cg_links));
				link = list_entry(tmp_cg_links.next,
						  struct cg_cgroup_link,
						  cgrp_link_list);
				list_del(&link->cgrp_link_list);
				link->cg = cg;
				list_add(&link->cgrp_link_list,
					 &root->top_cgroup.css_sets);
				list_add(&link->cg_link_list, &cg->cg_links);
			}
		}
1057 1058 1059 1060
		write_unlock(&css_set_lock);

		free_cg_links(&tmp_cg_links);

1061 1062
		BUG_ON(!list_empty(&cgrp->sibling));
		BUG_ON(!list_empty(&cgrp->children));
1063 1064
		BUG_ON(root->number_of_cgroups != 1);

1065
		cgroup_populate_dir(cgrp);
1066
		mutex_unlock(&inode->i_mutex);
1067 1068 1069 1070 1071
		mutex_unlock(&cgroup_mutex);
	}

	return simple_set_mnt(mnt, sb);

1072 1073
 free_cg_links:
	free_cg_links(&tmp_cg_links);
1074 1075 1076 1077 1078 1079 1080 1081
 drop_new_super:
	up_write(&sb->s_umount);
	deactivate_super(sb);
	return ret;
}

static void cgroup_kill_sb(struct super_block *sb) {
	struct cgroupfs_root *root = sb->s_fs_info;
1082
	struct cgroup *cgrp = &root->top_cgroup;
1083
	int ret;
K
KOSAKI Motohiro 已提交
1084 1085
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
1086 1087 1088 1089

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
1090 1091
	BUG_ON(!list_empty(&cgrp->children));
	BUG_ON(!list_empty(&cgrp->sibling));
1092 1093 1094 1095 1096 1097 1098 1099

	mutex_lock(&cgroup_mutex);

	/* Rebind all subsystems back to the default hierarchy */
	ret = rebind_subsystems(root, 0);
	/* Shouldn't be able to fail ... */
	BUG_ON(ret);

1100 1101 1102 1103 1104
	/*
	 * Release all the links from css_sets to this hierarchy's
	 * root cgroup
	 */
	write_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1105 1106 1107

	list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
				 cgrp_link_list) {
1108
		list_del(&link->cg_link_list);
1109
		list_del(&link->cgrp_link_list);
1110 1111 1112 1113 1114
		kfree(link);
	}
	write_unlock(&css_set_lock);

	if (!list_empty(&root->root_list)) {
1115
		list_del(&root->root_list);
1116 1117
		root_count--;
	}
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
	mutex_unlock(&cgroup_mutex);

	kfree(root);
	kill_litter_super(sb);
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
	.get_sb = cgroup_get_sb,
	.kill_sb = cgroup_kill_sb,
};

1130
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1131 1132 1133 1134 1135 1136 1137 1138 1139
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

L
Li Zefan 已提交
1140 1141 1142 1143 1144 1145 1146
/**
 * cgroup_path - generate the path of a cgroup
 * @cgrp: the cgroup in question
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
 * Called with cgroup_mutex held. Writes path of cgroup into buf.
1147 1148
 * Returns 0 on success, -errno on error.
 */
1149
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1150 1151 1152
{
	char *start;

1153
	if (cgrp == dummytop) {
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
		/*
		 * Inactive subsystems have no dentry for their root
		 * cgroup
		 */
		strcpy(buf, "/");
		return 0;
	}

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
1166
		int len = cgrp->dentry->d_name.len;
1167 1168
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
1169 1170 1171
		memcpy(start, cgrp->dentry->d_name.name, len);
		cgrp = cgrp->parent;
		if (!cgrp)
1172
			break;
1173
		if (!cgrp->parent)
1174 1175 1176 1177 1178 1179 1180 1181 1182
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}

1183 1184 1185 1186 1187
/*
 * Return the first subsystem attached to a cgroup's hierarchy, and
 * its subsystem id.
 */

1188
static void get_first_subsys(const struct cgroup *cgrp,
1189 1190
			struct cgroup_subsys_state **css, int *subsys_id)
{
1191
	const struct cgroupfs_root *root = cgrp->root;
1192 1193 1194 1195 1196
	const struct cgroup_subsys *test_ss;
	BUG_ON(list_empty(&root->subsys_list));
	test_ss = list_entry(root->subsys_list.next,
			     struct cgroup_subsys, sibling);
	if (css) {
1197
		*css = cgrp->subsys[test_ss->subsys_id];
1198 1199 1200 1201 1202 1203
		BUG_ON(!*css);
	}
	if (subsys_id)
		*subsys_id = test_ss->subsys_id;
}

L
Li Zefan 已提交
1204 1205 1206 1207
/**
 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
 * @cgrp: the cgroup the task is attaching to
 * @tsk: the task to be attached
1208
 *
L
Li Zefan 已提交
1209 1210
 * Call holding cgroup_mutex. May take task_lock of
 * the task 'tsk' during call.
1211
 */
1212
int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1213 1214 1215
{
	int retval = 0;
	struct cgroup_subsys *ss;
1216
	struct cgroup *oldcgrp;
1217 1218
	struct css_set *cg = tsk->cgroups;
	struct css_set *newcg;
1219
	struct cgroupfs_root *root = cgrp->root;
1220 1221
	int subsys_id;

1222
	get_first_subsys(cgrp, NULL, &subsys_id);
1223 1224

	/* Nothing to do if the task is already in that cgroup */
1225 1226
	oldcgrp = task_cgroup(tsk, subsys_id);
	if (cgrp == oldcgrp)
1227 1228 1229 1230
		return 0;

	for_each_subsys(root, ss) {
		if (ss->can_attach) {
1231
			retval = ss->can_attach(ss, cgrp, tsk);
P
Paul Jackson 已提交
1232
			if (retval)
1233 1234 1235 1236
				return retval;
		}
	}

1237 1238 1239 1240
	/*
	 * Locate or allocate a new css_set for this task,
	 * based on its final set of cgroups
	 */
1241
	newcg = find_css_set(cg, cgrp);
P
Paul Jackson 已提交
1242
	if (!newcg)
1243 1244
		return -ENOMEM;

1245 1246 1247
	task_lock(tsk);
	if (tsk->flags & PF_EXITING) {
		task_unlock(tsk);
1248
		put_css_set(newcg);
1249 1250
		return -ESRCH;
	}
1251
	rcu_assign_pointer(tsk->cgroups, newcg);
1252 1253
	task_unlock(tsk);

1254 1255 1256 1257 1258 1259 1260 1261
	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
	if (!list_empty(&tsk->cg_list)) {
		list_del(&tsk->cg_list);
		list_add(&tsk->cg_list, &newcg->tasks);
	}
	write_unlock(&css_set_lock);

1262
	for_each_subsys(root, ss) {
P
Paul Jackson 已提交
1263
		if (ss->attach)
1264
			ss->attach(ss, cgrp, oldcgrp, tsk);
1265
	}
1266
	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1267
	synchronize_rcu();
1268
	put_css_set(cg);
1269 1270 1271 1272
	return 0;
}

/*
1273 1274
 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
 * held. May take task_lock of task
1275
 */
1276
static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1277 1278
{
	struct task_struct *tsk;
1279
	const struct cred *cred = current_cred(), *tcred;
1280 1281 1282 1283
	int ret;

	if (pid) {
		rcu_read_lock();
1284
		tsk = find_task_by_vpid(pid);
1285 1286 1287 1288 1289
		if (!tsk || tsk->flags & PF_EXITING) {
			rcu_read_unlock();
			return -ESRCH;
		}

1290 1291 1292 1293 1294
		tcred = __task_cred(tsk);
		if (cred->euid &&
		    cred->euid != tcred->uid &&
		    cred->euid != tcred->suid) {
			rcu_read_unlock();
1295 1296
			return -EACCES;
		}
1297 1298
		get_task_struct(tsk);
		rcu_read_unlock();
1299 1300 1301 1302 1303
	} else {
		tsk = current;
		get_task_struct(tsk);
	}

1304
	ret = cgroup_attach_task(cgrp, tsk);
1305 1306 1307 1308
	put_task_struct(tsk);
	return ret;
}

1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
{
	int ret;
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	ret = attach_task_by_pid(cgrp, pid);
	cgroup_unlock();
	return ret;
}

1319 1320 1321 1322 1323
/* The various types of files and directories in a cgroup file system */
enum cgroup_filetype {
	FILE_ROOT,
	FILE_DIR,
	FILE_TASKLIST,
1324 1325
	FILE_NOTIFY_ON_RELEASE,
	FILE_RELEASE_AGENT,
1326 1327
};

1328 1329 1330 1331
/**
 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
 * @cgrp: the cgroup to be checked for liveness
 *
1332 1333
 * On success, returns true; the lock should be later released with
 * cgroup_unlock(). On failure returns false with no lock held.
1334
 */
1335
bool cgroup_lock_live_group(struct cgroup *cgrp)
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
{
	mutex_lock(&cgroup_mutex);
	if (cgroup_is_removed(cgrp)) {
		mutex_unlock(&cgroup_mutex);
		return false;
	}
	return true;
}

static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	strcpy(cgrp->root->release_agent_path, buffer);
1352
	cgroup_unlock();
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
	return 0;
}

static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
				     struct seq_file *seq)
{
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	seq_puts(seq, cgrp->root->release_agent_path);
	seq_putc(seq, '\n');
1363
	cgroup_unlock();
1364 1365 1366
	return 0;
}

1367 1368 1369
/* A buffer size big enough for numbers or short strings */
#define CGROUP_LOCAL_BUFFER_SIZE 64

1370
static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1371 1372 1373
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
1374
{
1375
	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
	int retval = 0;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */
1387
	strstrip(buffer);
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
	if (cft->write_u64) {
		u64 val = simple_strtoull(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_u64(cgrp, cft, val);
	} else {
		s64 val = simple_strtoll(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_s64(cgrp, cft, val);
	}
1399 1400 1401 1402 1403
	if (!retval)
		retval = nbytes;
	return retval;
}

1404 1405 1406 1407 1408
static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   const char __user *userbuf,
				   size_t nbytes, loff_t *unused_ppos)
{
1409
	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
	int retval = 0;
	size_t max_bytes = cft->max_write_len;
	char *buffer = local_buffer;

	if (!max_bytes)
		max_bytes = sizeof(local_buffer) - 1;
	if (nbytes >= max_bytes)
		return -E2BIG;
	/* Allocate a dynamic buffer if we need one */
	if (nbytes >= sizeof(local_buffer)) {
		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
		if (buffer == NULL)
			return -ENOMEM;
	}
L
Li Zefan 已提交
1424 1425 1426 1427
	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out;
	}
1428 1429 1430 1431 1432 1433

	buffer[nbytes] = 0;     /* nul-terminate */
	strstrip(buffer);
	retval = cft->write_string(cgrp, cft, buffer);
	if (!retval)
		retval = nbytes;
L
Li Zefan 已提交
1434
out:
1435 1436 1437 1438 1439
	if (buffer != local_buffer)
		kfree(buffer);
	return retval;
}

1440 1441 1442 1443
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1444
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1445

1446
	if (cgroup_is_removed(cgrp))
1447
		return -ENODEV;
1448
	if (cft->write)
1449
		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1450 1451
	if (cft->write_u64 || cft->write_s64)
		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1452 1453
	if (cft->write_string)
		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1454 1455 1456 1457
	if (cft->trigger) {
		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
		return ret ? ret : nbytes;
	}
1458
	return -EINVAL;
1459 1460
}

1461 1462 1463 1464
static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
1465
{
1466
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1467
	u64 val = cft->read_u64(cgrp, cft);
1468 1469 1470 1471 1472
	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1473 1474 1475 1476 1477
static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
{
1478
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1479 1480 1481 1482 1483 1484
	s64 val = cft->read_s64(cgrp, cft);
	int len = sprintf(tmp, "%lld\n", (long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1485 1486 1487 1488
static ssize_t cgroup_file_read(struct file *file, char __user *buf,
				   size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1489
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1490

1491
	if (cgroup_is_removed(cgrp))
1492 1493 1494
		return -ENODEV;

	if (cft->read)
1495
		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1496 1497
	if (cft->read_u64)
		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
1498 1499
	if (cft->read_s64)
		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
1500 1501 1502
	return -EINVAL;
}

1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
/*
 * seqfile ops/methods for returning structured data. Currently just
 * supports string->u64 maps, but can be extended in future.
 */

struct cgroup_seqfile_state {
	struct cftype *cft;
	struct cgroup *cgroup;
};

static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
{
	struct seq_file *sf = cb->state;
	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
}

static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
	struct cgroup_seqfile_state *state = m->private;
	struct cftype *cft = state->cft;
1523 1524 1525 1526 1527 1528 1529 1530
	if (cft->read_map) {
		struct cgroup_map_cb cb = {
			.fill = cgroup_map_add,
			.state = m,
		};
		return cft->read_map(state->cgroup, cft, &cb);
	}
	return cft->read_seq_string(state->cgroup, cft, m);
1531 1532
}

1533
static int cgroup_seqfile_release(struct inode *inode, struct file *file)
1534 1535 1536 1537 1538 1539 1540 1541
{
	struct seq_file *seq = file->private_data;
	kfree(seq->private);
	return single_release(inode, file);
}

static struct file_operations cgroup_seqfile_operations = {
	.read = seq_read,
1542
	.write = cgroup_file_write,
1543 1544 1545 1546
	.llseek = seq_lseek,
	.release = cgroup_seqfile_release,
};

1547 1548 1549 1550 1551 1552 1553 1554 1555
static int cgroup_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;
	cft = __d_cft(file->f_dentry);
1556

1557
	if (cft->read_map || cft->read_seq_string) {
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
		struct cgroup_seqfile_state *state =
			kzalloc(sizeof(*state), GFP_USER);
		if (!state)
			return -ENOMEM;
		state->cft = cft;
		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
		file->f_op = &cgroup_seqfile_operations;
		err = single_open(file, cgroup_seqfile_show, state);
		if (err < 0)
			kfree(state);
	} else if (cft->open)
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

static struct file_operations cgroup_file_operations = {
	.read = cgroup_file_read,
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

static struct inode_operations cgroup_dir_inode_operations = {
	.lookup = simple_lookup,
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
};

static int cgroup_create_file(struct dentry *dentry, int mode,
				struct super_block *sb)
{
	static struct dentry_operations cgroup_dops = {
		.d_iput = cgroup_diput,
	};

	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);

		/* start with the directory inode held, so that we can
		 * populate it without racing with another mkdir */
1641
		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
	}
	dentry->d_op = &cgroup_dops;
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
L
Li Zefan 已提交
1653 1654 1655 1656 1657
 * cgroup_create_dir - create a directory for an object.
 * @cgrp: the cgroup we create the directory for. It must have a valid
 *        ->parent field. And we are going to fill its ->dentry field.
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new directory.
1658
 */
1659
static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
1660 1661 1662 1663 1664
				int mode)
{
	struct dentry *parent;
	int error = 0;

1665 1666
	parent = cgrp->parent->dentry;
	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1667
	if (!error) {
1668
		dentry->d_fsdata = cgrp;
1669
		inc_nlink(parent->d_inode);
1670
		cgrp->dentry = dentry;
1671 1672 1673 1674 1675 1676 1677
		dget(dentry);
	}
	dput(dentry);

	return error;
}

1678
int cgroup_add_file(struct cgroup *cgrp,
1679 1680 1681
		       struct cgroup_subsys *subsys,
		       const struct cftype *cft)
{
1682
	struct dentry *dir = cgrp->dentry;
1683 1684 1685 1686
	struct dentry *dentry;
	int error;

	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1687
	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1688 1689 1690 1691 1692 1693 1694 1695
		strcpy(name, subsys->name);
		strcat(name, ".");
	}
	strcat(name, cft->name);
	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
	dentry = lookup_one_len(name, dir, strlen(name));
	if (!IS_ERR(dentry)) {
		error = cgroup_create_file(dentry, 0644 | S_IFREG,
1696
						cgrp->root->sb);
1697 1698 1699 1700 1701 1702 1703 1704
		if (!error)
			dentry->d_fsdata = (void *)cft;
		dput(dentry);
	} else
		error = PTR_ERR(dentry);
	return error;
}

1705
int cgroup_add_files(struct cgroup *cgrp,
1706 1707 1708 1709 1710 1711
			struct cgroup_subsys *subsys,
			const struct cftype cft[],
			int count)
{
	int i, err;
	for (i = 0; i < count; i++) {
1712
		err = cgroup_add_file(cgrp, subsys, &cft[i]);
1713 1714 1715 1716 1717 1718
		if (err)
			return err;
	}
	return 0;
}

L
Li Zefan 已提交
1719 1720 1721 1722 1723 1724
/**
 * cgroup_task_count - count the number of tasks in a cgroup.
 * @cgrp: the cgroup in question
 *
 * Return the number of tasks in the cgroup.
 */
1725
int cgroup_task_count(const struct cgroup *cgrp)
1726 1727
{
	int count = 0;
K
KOSAKI Motohiro 已提交
1728
	struct cg_cgroup_link *link;
1729 1730

	read_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1731
	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
1732
		count += atomic_read(&link->cg->refcount);
1733 1734
	}
	read_unlock(&css_set_lock);
1735 1736 1737
	return count;
}

1738 1739 1740 1741
/*
 * Advance a list_head iterator.  The iterator should be positioned at
 * the start of a css_set
 */
1742
static void cgroup_advance_iter(struct cgroup *cgrp,
1743 1744 1745 1746 1747 1748 1749 1750 1751
					  struct cgroup_iter *it)
{
	struct list_head *l = it->cg_link;
	struct cg_cgroup_link *link;
	struct css_set *cg;

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
1752
		if (l == &cgrp->css_sets) {
1753 1754 1755
			it->cg_link = NULL;
			return;
		}
1756
		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1757 1758 1759 1760 1761 1762
		cg = link->cg;
	} while (list_empty(&cg->tasks));
	it->cg_link = l;
	it->task = cg->tasks.next;
}

1763 1764 1765 1766 1767 1768 1769 1770 1771
/*
 * To reduce the fork() overhead for systems that are not actually
 * using their cgroups capability, we don't maintain the lists running
 * through each css_set to its tasks until we see the list actually
 * used - in other words after the first call to cgroup_iter_start().
 *
 * The tasklist_lock is not held here, as do_each_thread() and
 * while_each_thread() are protected by RCU.
 */
1772
static void cgroup_enable_task_cg_lists(void)
1773 1774 1775 1776 1777 1778
{
	struct task_struct *p, *g;
	write_lock(&css_set_lock);
	use_task_css_set_links = 1;
	do_each_thread(g, p) {
		task_lock(p);
1779 1780 1781 1782 1783 1784
		/*
		 * We should check if the process is exiting, otherwise
		 * it will race with cgroup_exit() in that the list
		 * entry won't be deleted though the process has exited.
		 */
		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
1785 1786 1787 1788 1789 1790
			list_add(&p->cg_list, &p->cgroups->tasks);
		task_unlock(p);
	} while_each_thread(g, p);
	write_unlock(&css_set_lock);
}

1791
void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
1792 1793 1794 1795 1796 1797
{
	/*
	 * The first time anyone tries to iterate across a cgroup,
	 * we need to enable the list linking each css_set to its
	 * tasks, and fix up all existing tasks.
	 */
1798 1799 1800
	if (!use_task_css_set_links)
		cgroup_enable_task_cg_lists();

1801
	read_lock(&css_set_lock);
1802 1803
	it->cg_link = &cgrp->css_sets;
	cgroup_advance_iter(cgrp, it);
1804 1805
}

1806
struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1807 1808 1809 1810
					struct cgroup_iter *it)
{
	struct task_struct *res;
	struct list_head *l = it->task;
1811
	struct cg_cgroup_link *link;
1812 1813 1814 1815 1816 1817 1818

	/* If the iterator cg is NULL, we have no tasks */
	if (!it->cg_link)
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
1819 1820
	link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
	if (l == &link->cg->tasks) {
1821 1822
		/* We reached the end of this task list - move on to
		 * the next cg_cgroup_link */
1823
		cgroup_advance_iter(cgrp, it);
1824 1825 1826 1827 1828 1829
	} else {
		it->task = l;
	}
	return res;
}

1830
void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
1831 1832 1833 1834
{
	read_unlock(&css_set_lock);
}

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively) simultaneously.
		 */
		return t1 > t2;
	}
}

/*
 * This function is a callback from heap_insert() and is used to order
 * the heap.
 * In this case we order the heap in descending task start time.
 */
static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

/**
 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
 * @scan: struct cgroup_scanner containing arguments for the scan
 *
 * Arguments include pointers to callback functions test_task() and
 * process_task().
 * Iterate through all the tasks in a cgroup, calling test_task() for each,
 * and if it returns true, call process_task() for it also.
 * The test_task pointer may be NULL, meaning always true (select all tasks).
 * Effectively duplicates cgroup_iter_{start,next,end}()
 * but does not lock css_set_lock for the call to process_task().
 * The struct cgroup_scanner may be embedded in any structure of the caller's
 * creation.
 * It is guaranteed that process_task() will act on every task that
 * is a member of the cgroup for the duration of this call. This
 * function may or may not call process_task() for tasks that exit
 * or move to a different cgroup during the call, or are forked or
 * move into the cgroup during the call.
 *
 * Note that test_task() may be called with locks held, and may in some
 * situations be called multiple times for the same task, so it should
 * be cheap.
 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
 * pre-allocated and will be used for heap operations (and its "gt" member will
 * be overwritten), else a temporary heap will be used (allocation of which
 * may cause this function to fail).
 */
int cgroup_scan_tasks(struct cgroup_scanner *scan)
{
	int retval, i;
	struct cgroup_iter it;
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap tmp_heap;
	struct ptr_heap *heap;
	struct timespec latest_time = { 0, 0 };

	if (scan->heap) {
		/* The caller supplied our heap and pre-allocated its memory */
		heap = scan->heap;
		heap->gt = &started_after;
	} else {
		/* We need to allocate our own heap memory */
		heap = &tmp_heap;
		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
		if (retval)
			/* cannot allocate the heap */
			return retval;
	}

 again:
	/*
	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
	 * to determine which are of interest, and using the scanner's
	 * "process_task" callback to process any of them that need an update.
	 * Since we don't want to hold any locks during the task updates,
	 * gather tasks to be processed in a heap structure.
	 * The heap is sorted by descending task start time.
	 * If the statically-sized heap fills up, we overflow tasks that
	 * started later, and in future iterations only consider tasks that
	 * started after the latest task in the previous pass. This
	 * guarantees forward progress and that we don't miss any tasks.
	 */
	heap->size = 0;
	cgroup_iter_start(scan->cg, &it);
	while ((p = cgroup_iter_next(scan->cg, &it))) {
		/*
		 * Only affect tasks that qualify per the caller's callback,
		 * if he provided one
		 */
		if (scan->test_task && !scan->test_task(p, scan))
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(heap, p);
		if (dropped == NULL) {
			/*
			 * The new task was inserted; the heap wasn't
			 * previously full
			 */
			get_task_struct(p);
		} else if (dropped != p) {
			/*
			 * The new task was inserted, and pushed out a
			 * different task
			 */
			get_task_struct(p);
			put_task_struct(dropped);
		}
		/*
		 * Else the new task was newer than anything already in
		 * the heap and wasn't inserted
		 */
	}
	cgroup_iter_end(scan->cg, &it);

	if (heap->size) {
		for (i = 0; i < heap->size; i++) {
1972
			struct task_struct *q = heap->ptrs[i];
1973
			if (i == 0) {
1974 1975
				latest_time = q->start_time;
				latest_task = q;
1976 1977
			}
			/* Process the task per the caller's callback */
1978 1979
			scan->process_task(q, scan);
			put_task_struct(q);
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't get processed.
		 * Not the most efficient way to do it, but it avoids
		 * having to take callback_mutex in the fork path
		 */
		goto again;
	}
	if (heap == &tmp_heap)
		heap_free(&tmp_heap);
	return 0;
}

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
/*
 * Stuff for reading the 'tasks' file.
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 */

/*
 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2007
 * 'cgrp'.  Return actual number of pids loaded.  No need to
2008 2009 2010 2011
 * task_lock(p) when reading out p->cgroup, since we're in an RCU
 * read section, so the css_set can't go away, and is
 * immutable after creation.
 */
2012
static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
2013 2014
{
	int n = 0;
2015 2016
	struct cgroup_iter it;
	struct task_struct *tsk;
2017 2018
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
2019 2020
		if (unlikely(n == npids))
			break;
2021
		pidarray[n++] = task_pid_vnr(tsk);
2022
	}
2023
	cgroup_iter_end(cgrp, &it);
2024 2025 2026
	return n;
}

B
Balbir Singh 已提交
2027
/**
L
Li Zefan 已提交
2028
 * cgroupstats_build - build and fill cgroupstats
B
Balbir Singh 已提交
2029 2030 2031
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
L
Li Zefan 已提交
2032 2033 2034
 *
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
B
Balbir Singh 已提交
2035 2036 2037 2038
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
2039
	struct cgroup *cgrp;
B
Balbir Singh 已提交
2040 2041
	struct cgroup_iter it;
	struct task_struct *tsk;
2042

B
Balbir Singh 已提交
2043
	/*
2044 2045
	 * Validate dentry by checking the superblock operations,
	 * and make sure it's a directory.
B
Balbir Singh 已提交
2046
	 */
2047 2048
	if (dentry->d_sb->s_op != &cgroup_ops ||
	    !S_ISDIR(dentry->d_inode->i_mode))
B
Balbir Singh 已提交
2049 2050 2051
		 goto err;

	ret = 0;
2052
	cgrp = dentry->d_fsdata;
B
Balbir Singh 已提交
2053 2054
	rcu_read_lock();

2055 2056
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
B
Balbir Singh 已提交
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
2076
	cgroup_iter_end(cgrp, &it);
B
Balbir Singh 已提交
2077 2078 2079 2080 2081 2082

	rcu_read_unlock();
err:
	return ret;
}

2083 2084 2085 2086 2087
static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

2088

2089
/*
2090 2091 2092
 * seq_file methods for the "tasks" file. The seq_file position is the
 * next pid to display; the seq_file iterator is a pointer to the pid
 * in the cgroup->tasks_pids array.
2093
 */
2094 2095

static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos)
2096
{
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
	/*
	 * Initially we receive a position value that corresponds to
	 * one more than the last pid shown (or 0 on the first call or
	 * after a seek to the start). Use a binary-search to find the
	 * next pid to display, if any
	 */
	struct cgroup *cgrp = s->private;
	int index = 0, pid = *pos;
	int *iter;

	down_read(&cgrp->pids_mutex);
	if (pid) {
		int end = cgrp->pids_length;
S
Stephen Rothwell 已提交
2110

2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
		while (index < end) {
			int mid = (index + end) / 2;
			if (cgrp->tasks_pids[mid] == pid) {
				index = mid;
				break;
			} else if (cgrp->tasks_pids[mid] <= pid)
				index = mid + 1;
			else
				end = mid;
		}
	}
	/* If we're off the end of the array, we're done */
	if (index >= cgrp->pids_length)
		return NULL;
	/* Update the abstract position to be the actual pid that we found */
	iter = cgrp->tasks_pids + index;
	*pos = *iter;
	return iter;
}

static void cgroup_tasks_stop(struct seq_file *s, void *v)
{
	struct cgroup *cgrp = s->private;
	up_read(&cgrp->pids_mutex);
}

static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos)
{
	struct cgroup *cgrp = s->private;
	int *p = v;
	int *end = cgrp->tasks_pids + cgrp->pids_length;

	/*
	 * Advance to the next pid in the array. If this goes off the
	 * end, we're done
	 */
	p++;
	if (p >= end) {
		return NULL;
	} else {
		*pos = *p;
		return p;
	}
}

static int cgroup_tasks_show(struct seq_file *s, void *v)
{
	return seq_printf(s, "%d\n", *(int *)v);
}
2160

2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177
static struct seq_operations cgroup_tasks_seq_operations = {
	.start = cgroup_tasks_start,
	.stop = cgroup_tasks_stop,
	.next = cgroup_tasks_next,
	.show = cgroup_tasks_show,
};

static void release_cgroup_pid_array(struct cgroup *cgrp)
{
	down_write(&cgrp->pids_mutex);
	BUG_ON(!cgrp->pids_use_count);
	if (!--cgrp->pids_use_count) {
		kfree(cgrp->tasks_pids);
		cgrp->tasks_pids = NULL;
		cgrp->pids_length = 0;
	}
	up_write(&cgrp->pids_mutex);
2178 2179
}

2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
static int cgroup_tasks_release(struct inode *inode, struct file *file)
{
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);

	if (!(file->f_mode & FMODE_READ))
		return 0;

	release_cgroup_pid_array(cgrp);
	return seq_release(inode, file);
}

static struct file_operations cgroup_tasks_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.write = cgroup_file_write,
	.release = cgroup_tasks_release,
};

2198
/*
2199
 * Handle an open on 'tasks' file.  Prepare an array containing the
2200 2201
 * process id's of tasks currently attached to the cgroup being opened.
 */
2202

2203 2204
static int cgroup_tasks_open(struct inode *unused, struct file *file)
{
2205
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2206 2207
	pid_t *pidarray;
	int npids;
2208
	int retval;
2209

2210
	/* Nothing to do for write-only files */
2211 2212 2213 2214 2215 2216 2217 2218 2219
	if (!(file->f_mode & FMODE_READ))
		return 0;

	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
2220
	npids = cgroup_task_count(cgrp);
2221 2222 2223 2224 2225
	pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
	if (!pidarray)
		return -ENOMEM;
	npids = pid_array_load(pidarray, npids, cgrp);
	sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2226

2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
	/*
	 * Store the array in the cgroup, freeing the old
	 * array if necessary
	 */
	down_write(&cgrp->pids_mutex);
	kfree(cgrp->tasks_pids);
	cgrp->tasks_pids = pidarray;
	cgrp->pids_length = npids;
	cgrp->pids_use_count++;
	up_write(&cgrp->pids_mutex);

	file->f_op = &cgroup_tasks_operations;

	retval = seq_open(file, &cgroup_tasks_seq_operations);
	if (retval) {
		release_cgroup_pid_array(cgrp);
		return retval;
2244
	}
2245
	((struct seq_file *)file->private_data)->private = cgrp;
2246 2247 2248
	return 0;
}

2249
static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2250 2251
					    struct cftype *cft)
{
2252
	return notify_on_release(cgrp);
2253 2254
}

2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
static int cgroup_write_notify_on_release(struct cgroup *cgrp,
					  struct cftype *cft,
					  u64 val)
{
	clear_bit(CGRP_RELEASABLE, &cgrp->flags);
	if (val)
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	else
		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	return 0;
}

2267 2268 2269
/*
 * for the common functions, 'private' gives the type of file
 */
2270 2271 2272 2273
static struct cftype files[] = {
	{
		.name = "tasks",
		.open = cgroup_tasks_open,
2274
		.write_u64 = cgroup_tasks_write,
2275 2276 2277 2278 2279 2280
		.release = cgroup_tasks_release,
		.private = FILE_TASKLIST,
	},

	{
		.name = "notify_on_release",
2281
		.read_u64 = cgroup_read_notify_on_release,
2282
		.write_u64 = cgroup_write_notify_on_release,
2283 2284 2285 2286 2287 2288
		.private = FILE_NOTIFY_ON_RELEASE,
	},
};

static struct cftype cft_release_agent = {
	.name = "release_agent",
2289 2290 2291
	.read_seq_string = cgroup_release_agent_show,
	.write_string = cgroup_release_agent_write,
	.max_write_len = PATH_MAX,
2292
	.private = FILE_RELEASE_AGENT,
2293 2294
};

2295
static int cgroup_populate_dir(struct cgroup *cgrp)
2296 2297 2298 2299 2300
{
	int err;
	struct cgroup_subsys *ss;

	/* First clear out any existing files */
2301
	cgroup_clear_directory(cgrp->dentry);
2302

2303
	err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2304 2305 2306
	if (err < 0)
		return err;

2307 2308
	if (cgrp == cgrp->top_cgroup) {
		if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2309 2310 2311
			return err;
	}

2312 2313
	for_each_subsys(cgrp->root, ss) {
		if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2314 2315 2316 2317 2318 2319 2320 2321
			return err;
	}

	return 0;
}

static void init_cgroup_css(struct cgroup_subsys_state *css,
			       struct cgroup_subsys *ss,
2322
			       struct cgroup *cgrp)
2323
{
2324
	css->cgroup = cgrp;
2325 2326
	atomic_set(&css->refcnt, 0);
	css->flags = 0;
2327
	if (cgrp == dummytop)
2328
		set_bit(CSS_ROOT, &css->flags);
2329 2330
	BUG_ON(cgrp->subsys[ss->subsys_id]);
	cgrp->subsys[ss->subsys_id] = css;
2331 2332 2333
}

/*
L
Li Zefan 已提交
2334 2335 2336 2337
 * cgroup_create - create a cgroup
 * @parent: cgroup that will be parent of the new cgroup
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new inode
2338
 *
L
Li Zefan 已提交
2339
 * Must be called with the mutex on the parent inode held
2340 2341 2342 2343
 */
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
			     int mode)
{
2344
	struct cgroup *cgrp;
2345 2346 2347 2348 2349
	struct cgroupfs_root *root = parent->root;
	int err = 0;
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

2350 2351
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362
		return -ENOMEM;

	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
	atomic_inc(&sb->s_active);

	mutex_lock(&cgroup_mutex);

2363
	init_cgroup_housekeeping(cgrp);
2364

2365 2366 2367
	cgrp->parent = parent;
	cgrp->root = parent->root;
	cgrp->top_cgroup = parent->top_cgroup;
2368

2369 2370 2371
	if (notify_on_release(parent))
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);

2372
	for_each_subsys(root, ss) {
2373
		struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2374 2375 2376 2377
		if (IS_ERR(css)) {
			err = PTR_ERR(css);
			goto err_destroy;
		}
2378
		init_cgroup_css(css, ss, cgrp);
2379 2380
	}

2381
	list_add(&cgrp->sibling, &cgrp->parent->children);
2382 2383
	root->number_of_cgroups++;

2384
	err = cgroup_create_dir(cgrp, dentry, mode);
2385 2386 2387 2388
	if (err < 0)
		goto err_remove;

	/* The cgroup directory was pre-locked for us */
2389
	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2390

2391
	err = cgroup_populate_dir(cgrp);
2392 2393 2394
	/* If err < 0, we have a half-filled directory - oh well ;) */

	mutex_unlock(&cgroup_mutex);
2395
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2396 2397 2398 2399 2400

	return 0;

 err_remove:

2401
	list_del(&cgrp->sibling);
2402 2403 2404 2405 2406
	root->number_of_cgroups--;

 err_destroy:

	for_each_subsys(root, ss) {
2407 2408
		if (cgrp->subsys[ss->subsys_id])
			ss->destroy(ss, cgrp);
2409 2410 2411 2412 2413 2414 2415
	}

	mutex_unlock(&cgroup_mutex);

	/* Release the reference count that we took on the superblock */
	deactivate_super(sb);

2416
	kfree(cgrp);
2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
	return err;
}

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

2428
static int cgroup_has_css_refs(struct cgroup *cgrp)
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443
{
	/* Check the reference count on each subsystem. Since we
	 * already established that there are no tasks in the
	 * cgroup, if the css refcount is also 0, then there should
	 * be no outstanding references, so the subsystem is safe to
	 * destroy. We scan across all subsystems rather than using
	 * the per-hierarchy linked list of mounted subsystems since
	 * we can be called via check_for_release() with no
	 * synchronization other than RCU, and the subsystem linked
	 * list isn't RCU-safe */
	int i;
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		struct cgroup_subsys_state *css;
		/* Skip subsystems not in this hierarchy */
2444
		if (ss->root != cgrp->root)
2445
			continue;
2446
		css = cgrp->subsys[ss->subsys_id];
2447 2448 2449 2450 2451 2452
		/* When called from check_for_release() it's possible
		 * that by this point the cgroup has been removed
		 * and the css deleted. But a false-positive doesn't
		 * matter, since it can only happen if the cgroup
		 * has been deleted and hence no longer needs the
		 * release agent to be called anyway. */
P
Paul Jackson 已提交
2453
		if (css && atomic_read(&css->refcnt))
2454 2455 2456 2457 2458
			return 1;
	}
	return 0;
}

2459 2460
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
2461
	struct cgroup *cgrp = dentry->d_fsdata;
2462 2463 2464 2465 2466 2467
	struct dentry *d;
	struct cgroup *parent;

	/* the vfs holds both inode->i_mutex already */

	mutex_lock(&cgroup_mutex);
2468
	if (atomic_read(&cgrp->count) != 0) {
2469 2470 2471
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2472
	if (!list_empty(&cgrp->children)) {
2473 2474 2475
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2476
	mutex_unlock(&cgroup_mutex);
L
Li Zefan 已提交
2477

2478
	/*
L
Li Zefan 已提交
2479 2480
	 * Call pre_destroy handlers of subsys. Notify subsystems
	 * that rmdir() request comes.
2481 2482
	 */
	cgroup_call_pre_destroy(cgrp);
2483

2484 2485 2486 2487 2488 2489
	mutex_lock(&cgroup_mutex);
	parent = cgrp->parent;

	if (atomic_read(&cgrp->count)
	    || !list_empty(&cgrp->children)
	    || cgroup_has_css_refs(cgrp)) {
2490 2491 2492 2493
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}

2494
	spin_lock(&release_list_lock);
2495 2496 2497
	set_bit(CGRP_REMOVED, &cgrp->flags);
	if (!list_empty(&cgrp->release_list))
		list_del(&cgrp->release_list);
2498
	spin_unlock(&release_list_lock);
2499
	/* delete my sibling from parent->children */
2500 2501 2502
	list_del(&cgrp->sibling);
	spin_lock(&cgrp->dentry->d_lock);
	d = dget(cgrp->dentry);
2503 2504 2505 2506 2507
	spin_unlock(&d->d_lock);

	cgroup_d_remove_dir(d);
	dput(d);

2508
	set_bit(CGRP_RELEASABLE, &parent->flags);
2509 2510
	check_for_release(parent);

2511 2512 2513 2514
	mutex_unlock(&cgroup_mutex);
	return 0;
}

2515
static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
2516 2517
{
	struct cgroup_subsys_state *css;
D
Diego Calleja 已提交
2518 2519

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2520 2521 2522 2523 2524 2525 2526 2527

	/* Create the top cgroup state for this subsystem */
	ss->root = &rootnode;
	css = ss->create(ss, dummytop);
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
	init_cgroup_css(css, ss, dummytop);

L
Li Zefan 已提交
2528
	/* Update the init_css_set to contain a subsys
2529
	 * pointer to this state - since the subsystem is
L
Li Zefan 已提交
2530 2531 2532
	 * newly registered, all tasks and hence the
	 * init_css_set is in the subsystem's top cgroup. */
	init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2533 2534 2535

	need_forkexit_callback |= ss->fork || ss->exit;

L
Li Zefan 已提交
2536 2537 2538 2539 2540
	/* At system boot, before all subsystems have been
	 * registered, no tasks have been forked, so we don't
	 * need to invoke fork callbacks here. */
	BUG_ON(!list_empty(&init_task.tasks));

2541 2542 2543 2544
	ss->active = 1;
}

/**
L
Li Zefan 已提交
2545 2546 2547 2548
 * cgroup_init_early - cgroup initialization at system boot
 *
 * Initialize cgroups at system boot, and initialize any
 * subsystems that request early init.
2549 2550 2551 2552
 */
int __init cgroup_init_early(void)
{
	int i;
2553
	atomic_set(&init_css_set.refcount, 1);
2554 2555
	INIT_LIST_HEAD(&init_css_set.cg_links);
	INIT_LIST_HEAD(&init_css_set.tasks);
2556
	INIT_HLIST_NODE(&init_css_set.hlist);
2557
	css_set_count = 1;
2558 2559
	init_cgroup_root(&rootnode);
	list_add(&rootnode.root_list, &roots);
2560 2561 2562 2563
	root_count = 1;
	init_task.cgroups = &init_css_set;

	init_css_set_link.cg = &init_css_set;
2564
	list_add(&init_css_set_link.cgrp_link_list,
2565 2566 2567
		 &rootnode.top_cgroup.css_sets);
	list_add(&init_css_set_link.cg_link_list,
		 &init_css_set.cg_links);
2568

2569 2570 2571
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
		INIT_HLIST_HEAD(&css_set_table[i]);

2572 2573 2574 2575 2576 2577 2578 2579
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];

		BUG_ON(!ss->name);
		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
		BUG_ON(!ss->create);
		BUG_ON(!ss->destroy);
		if (ss->subsys_id != i) {
D
Diego Calleja 已提交
2580
			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
			       ss->name, ss->subsys_id);
			BUG();
		}

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
L
Li Zefan 已提交
2592 2593 2594 2595
 * cgroup_init - cgroup initialization
 *
 * Register cgroup filesystem and /proc file, and initialize
 * any subsystems that didn't request early init.
2596 2597 2598 2599 2600
 */
int __init cgroup_init(void)
{
	int err;
	int i;
2601
	struct hlist_head *hhead;
2602 2603 2604 2605

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;
2606 2607 2608 2609 2610 2611 2612

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (!ss->early_init)
			cgroup_init_subsys(ss);
	}

2613 2614 2615 2616
	/* Add init_css_set to the hash table */
	hhead = css_set_hash(init_css_set.subsys);
	hlist_add_head(&init_css_set.hlist, hhead);

2617 2618 2619 2620
	err = register_filesystem(&cgroup_fs_type);
	if (err < 0)
		goto out;

L
Li Zefan 已提交
2621
	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2622

2623
out:
2624 2625 2626
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

2627 2628
	return err;
}
2629

2630 2631 2632 2633 2634 2635
/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
2636
 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
static int proc_cgroup_show(struct seq_file *m, void *v)
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

	for_each_root(root) {
		struct cgroup_subsys *ss;
2668
		struct cgroup *cgrp;
2669 2670 2671 2672 2673 2674
		int subsys_id;
		int count = 0;

		/* Skip this hierarchy if it has no active subsystems */
		if (!root->actual_subsys_bits)
			continue;
2675
		seq_printf(m, "%lu:", root->subsys_bits);
2676 2677 2678 2679
		for_each_subsys(root, ss)
			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
		seq_putc(m, ':');
		get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
2680 2681
		cgrp = task_cgroup(tsk, subsys_id);
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

static int cgroup_open(struct inode *inode, struct file *file)
{
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cgroup_show, pid);
}

struct file_operations proc_cgroup_operations = {
	.open		= cgroup_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
	int i;

2715
	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
2716 2717 2718
	mutex_lock(&cgroup_mutex);
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
2719
		seq_printf(m, "%s\t%lu\t%d\t%d\n",
2720
			   ss->name, ss->root->subsys_bits,
2721
			   ss->root->number_of_cgroups, !ss->disabled);
2722 2723 2724 2725 2726 2727 2728
	}
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
A
Al Viro 已提交
2729
	return single_open(file, proc_cgroupstats_show, NULL);
2730 2731 2732 2733 2734 2735 2736 2737 2738
}

static struct file_operations proc_cgroupstats_operations = {
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

2739 2740
/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
L
Li Zefan 已提交
2741
 * @child: pointer to task_struct of forking parent process.
2742 2743 2744 2745 2746 2747
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
 * it was not made under the protection of RCU or cgroup_mutex, so
2748
 * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
2749 2750
 * have already changed current->cgroups, allowing the previously
 * referenced cgroup group to be removed and freed.
2751 2752 2753 2754 2755 2756
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
2757 2758 2759 2760 2761
	task_lock(current);
	child->cgroups = current->cgroups;
	get_css_set(child->cgroups);
	task_unlock(current);
	INIT_LIST_HEAD(&child->cg_list);
2762 2763 2764
}

/**
L
Li Zefan 已提交
2765 2766 2767 2768 2769 2770
 * cgroup_fork_callbacks - run fork callbacks
 * @child: the new task
 *
 * Called on a new task very soon before adding it to the
 * tasklist. No need to take any locks since no-one can
 * be operating on this task.
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
 */
void cgroup_fork_callbacks(struct task_struct *child)
{
	if (need_forkexit_callback) {
		int i;
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->fork)
				ss->fork(ss, child);
		}
	}
}

2784
/**
L
Li Zefan 已提交
2785 2786 2787 2788 2789 2790 2791 2792
 * cgroup_post_fork - called on a new task after adding it to the task list
 * @child: the task in question
 *
 * Adds the task to the list running through its css_set if necessary.
 * Has to be after the task is visible on the task list in case we race
 * with the first call to cgroup_iter_start() - to guarantee that the
 * new task ends up on its list.
 */
2793 2794 2795 2796
void cgroup_post_fork(struct task_struct *child)
{
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
2797
		task_lock(child);
2798 2799
		if (list_empty(&child->cg_list))
			list_add(&child->cg_list, &child->cgroups->tasks);
2800
		task_unlock(child);
2801 2802 2803
		write_unlock(&css_set_lock);
	}
}
2804 2805 2806
/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
L
Li Zefan 已提交
2807
 * @run_callback: run exit callbacks?
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
2836 2837
 *    which wards off any cgroup_attach_task() attempts, or task is a failed
 *    fork, never visible to cgroup_attach_task.
2838 2839 2840 2841
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
	int i;
2842
	struct css_set *cg;
2843 2844 2845 2846 2847 2848 2849 2850

	if (run_callbacks && need_forkexit_callback) {
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->exit)
				ss->exit(ss, tsk);
		}
	}
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
			list_del(&tsk->cg_list);
		write_unlock(&css_set_lock);
	}

2864 2865
	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
2866 2867
	cg = tsk->cgroups;
	tsk->cgroups = &init_css_set;
2868
	task_unlock(tsk);
2869
	if (cg)
2870
		put_css_set_taskexit(cg);
2871
}
2872 2873

/**
L
Li Zefan 已提交
2874 2875 2876
 * cgroup_clone - clone the cgroup the given subsystem is attached to
 * @tsk: the task to be moved
 * @subsys: the given subsystem
2877
 * @nodename: the name for the new cgroup
L
Li Zefan 已提交
2878 2879 2880 2881
 *
 * Duplicate the current cgroup in the hierarchy that the given
 * subsystem is attached to, and move this task into the new
 * child.
2882
 */
2883 2884
int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
							char *nodename)
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
{
	struct dentry *dentry;
	int ret = 0;
	struct cgroup *parent, *child;
	struct inode *inode;
	struct css_set *cg;
	struct cgroupfs_root *root;
	struct cgroup_subsys *ss;

	/* We shouldn't be called by an unregistered subsystem */
	BUG_ON(!subsys->active);

	/* First figure out what hierarchy and cgroup we're dealing
	 * with, and pin them so we can drop cgroup_mutex */
	mutex_lock(&cgroup_mutex);
 again:
	root = subsys->root;
	if (root == &rootnode) {
		mutex_unlock(&cgroup_mutex);
		return 0;
	}
2906
	cg = tsk->cgroups;
2907 2908 2909
	parent = task_cgroup(tsk, subsys->subsys_id);

	/* Pin the hierarchy */
2910 2911 2912 2913 2914
	if (!atomic_inc_not_zero(&parent->root->sb->s_active)) {
		/* We race with the final deactivate_super() */
		mutex_unlock(&cgroup_mutex);
		return 0;
	}
2915

2916 2917
	/* Keep the cgroup alive */
	get_css_set(cg);
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
	mutex_unlock(&cgroup_mutex);

	/* Now do the VFS work to create a cgroup */
	inode = parent->dentry->d_inode;

	/* Hold the parent directory mutex across this operation to
	 * stop anyone else deleting the new cgroup */
	mutex_lock(&inode->i_mutex);
	dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
	if (IS_ERR(dentry)) {
		printk(KERN_INFO
D
Diego Calleja 已提交
2929
		       "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
2930 2931 2932 2933 2934 2935
		       PTR_ERR(dentry));
		ret = PTR_ERR(dentry);
		goto out_release;
	}

	/* Create the cgroup directory, which also creates the cgroup */
2936
	ret = vfs_mkdir(inode, dentry, 0755);
2937
	child = __d_cgrp(dentry);
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
	dput(dentry);
	if (ret) {
		printk(KERN_INFO
		       "Failed to create cgroup %s: %d\n", nodename,
		       ret);
		goto out_release;
	}

	/* The cgroup now exists. Retake cgroup_mutex and check
	 * that we're still in the same state that we thought we
	 * were. */
	mutex_lock(&cgroup_mutex);
	if ((root != subsys->root) ||
	    (parent != task_cgroup(tsk, subsys->subsys_id))) {
		/* Aargh, we raced ... */
		mutex_unlock(&inode->i_mutex);
2954
		put_css_set(cg);
2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972

		deactivate_super(parent->root->sb);
		/* The cgroup is still accessible in the VFS, but
		 * we're not going to try to rmdir() it at this
		 * point. */
		printk(KERN_INFO
		       "Race in cgroup_clone() - leaking cgroup %s\n",
		       nodename);
		goto again;
	}

	/* do any required auto-setup */
	for_each_subsys(root, ss) {
		if (ss->post_clone)
			ss->post_clone(ss, child);
	}

	/* All seems fine. Finish by moving the task into the new cgroup */
2973
	ret = cgroup_attach_task(child, tsk);
2974 2975 2976 2977
	mutex_unlock(&cgroup_mutex);

 out_release:
	mutex_unlock(&inode->i_mutex);
2978 2979

	mutex_lock(&cgroup_mutex);
2980
	put_css_set(cg);
2981
	mutex_unlock(&cgroup_mutex);
2982 2983 2984 2985
	deactivate_super(parent->root->sb);
	return ret;
}

L
Li Zefan 已提交
2986 2987 2988 2989 2990 2991
/**
 * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp
 * @cgrp: the cgroup in question
 *
 * See if @cgrp is a descendant of the current task's cgroup in
 * the appropriate hierarchy.
2992 2993 2994 2995 2996 2997
 *
 * If we are sending in dummytop, then presumably we are creating
 * the top cgroup in the subsystem.
 *
 * Called only by the ns (nsproxy) cgroup.
 */
2998
int cgroup_is_descendant(const struct cgroup *cgrp)
2999 3000 3001 3002 3003
{
	int ret;
	struct cgroup *target;
	int subsys_id;

3004
	if (cgrp == dummytop)
3005 3006
		return 1;

3007
	get_first_subsys(cgrp, NULL, &subsys_id);
3008
	target = task_cgroup(current, subsys_id);
3009 3010 3011
	while (cgrp != target && cgrp!= cgrp->top_cgroup)
		cgrp = cgrp->parent;
	ret = (cgrp == target);
3012 3013
	return ret;
}
3014

3015
static void check_for_release(struct cgroup *cgrp)
3016 3017 3018
{
	/* All of these checks rely on RCU to keep the cgroup
	 * structure alive */
3019 3020
	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
3021 3022 3023 3024 3025
		/* Control Group is currently removeable. If it's not
		 * already queued for a userspace notification, queue
		 * it now */
		int need_schedule_work = 0;
		spin_lock(&release_list_lock);
3026 3027 3028
		if (!cgroup_is_removed(cgrp) &&
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
			need_schedule_work = 1;
		}
		spin_unlock(&release_list_lock);
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

void __css_put(struct cgroup_subsys_state *css)
{
3039
	struct cgroup *cgrp = css->cgroup;
3040
	rcu_read_lock();
3041 3042 3043
	if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) {
		set_bit(CGRP_RELEASABLE, &cgrp->flags);
		check_for_release(cgrp);
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
	}
	rcu_read_unlock();
}

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 */
static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
	spin_lock(&release_list_lock);
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
3079
		char *pathbuf = NULL, *agentbuf = NULL;
3080
		struct cgroup *cgrp = list_entry(release_list.next,
3081 3082
						    struct cgroup,
						    release_list);
3083
		list_del_init(&cgrp->release_list);
3084 3085
		spin_unlock(&release_list_lock);
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3086 3087 3088 3089 3090 3091 3092
		if (!pathbuf)
			goto continue_free;
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
			goto continue_free;
		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
		if (!agentbuf)
			goto continue_free;
3093 3094

		i = 0;
3095 3096
		argv[i++] = agentbuf;
		argv[i++] = pathbuf;
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		mutex_lock(&cgroup_mutex);
3111 3112 3113
 continue_free:
		kfree(pathbuf);
		kfree(agentbuf);
3114 3115 3116 3117 3118
		spin_lock(&release_list_lock);
	}
	spin_unlock(&release_list_lock);
	mutex_unlock(&cgroup_mutex);
}
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142

static int __init cgroup_disable(char *str)
{
	int i;
	char *token;

	while ((token = strsep(&str, ",")) != NULL) {
		if (!*token)
			continue;

		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];

			if (!strcmp(token, ss->name)) {
				ss->disabled = 1;
				printk(KERN_INFO "Disabling %s control group"
					" subsystem\n", ss->name);
				break;
			}
		}
	}
	return 1;
}
__setup("cgroup_disable=", cgroup_disable);