cgroup.c 95.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
34
#include <linux/proc_fs.h>
35 36
#include <linux/rcupdate.h>
#include <linux/sched.h>
37
#include <linux/backing-dev.h>
38 39 40 41 42
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
43
#include <linux/sort.h>
44
#include <linux/kmod.h>
B
Balbir Singh 已提交
45 46
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
47
#include <linux/hash.h>
48
#include <linux/namei.h>
49
#include <linux/smp_lock.h>
L
Li Zefan 已提交
50
#include <linux/pid_namespace.h>
B
Balbir Singh 已提交
51

52 53
#include <asm/atomic.h>

54 55
static DEFINE_MUTEX(cgroup_mutex);

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
/* Generate an array of cgroup subsystem pointers */
#define SUBSYS(_x) &_x ## _subsys,

static struct cgroup_subsys *subsys[] = {
#include <linux/cgroup_subsys.h>
};

/*
 * A cgroupfs_root represents the root of a cgroup hierarchy,
 * and may be associated with a superblock to form an active
 * hierarchy
 */
struct cgroupfs_root {
	struct super_block *sb;

	/*
	 * The bitmask of subsystems intended to be attached to this
	 * hierarchy
	 */
	unsigned long subsys_bits;

	/* The bitmask of subsystems currently attached to this hierarchy */
	unsigned long actual_subsys_bits;

	/* A list running through the attached subsystems */
	struct list_head subsys_list;

	/* The root cgroup for this hierarchy */
	struct cgroup top_cgroup;

	/* Tracks how many cgroups are currently defined in hierarchy.*/
	int number_of_cgroups;

89
	/* A list running through the active hierarchies */
90 91 92 93
	struct list_head root_list;

	/* Hierarchy-specific flags */
	unsigned long flags;
94

95
	/* The path to use for release notifications. */
96
	char release_agent_path[PATH_MAX];
97 98 99 100 101 102 103 104 105
};

/*
 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 * subsystems that are otherwise unattached - it never has more than a
 * single cgroup, and all tasks are part of that cgroup.
 */
static struct cgroupfs_root rootnode;

K
KAMEZAWA Hiroyuki 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
/*
 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
 * cgroup_subsys->use_id != 0.
 */
#define CSS_ID_MAX	(65535)
struct css_id {
	/*
	 * The css to which this ID points. This pointer is set to valid value
	 * after cgroup is populated. If cgroup is removed, this will be NULL.
	 * This pointer is expected to be RCU-safe because destroy()
	 * is called after synchronize_rcu(). But for safe use, css_is_removed()
	 * css_tryget() should be used for avoiding race.
	 */
	struct cgroup_subsys_state *css;
	/*
	 * ID of this css.
	 */
	unsigned short id;
	/*
	 * Depth in hierarchy which this ID belongs to.
	 */
	unsigned short depth;
	/*
	 * ID is freed by RCU. (and lookup routine is RCU safe.)
	 */
	struct rcu_head rcu_head;
	/*
	 * Hierarchy of CSS ID belongs to.
	 */
	unsigned short stack[0]; /* Array of Length (depth+1) */
};


139 140 141
/* The list of hierarchy roots */

static LIST_HEAD(roots);
142
static int root_count;
143 144 145 146 147

/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
#define dummytop (&rootnode.top_cgroup)

/* This flag indicates whether tasks in the fork and exit paths should
L
Li Zefan 已提交
148 149 150
 * check for fork/exit handlers to call. This avoids us having to do
 * extra work in the fork/exit path if none of the subsystems need to
 * be called.
151
 */
152
static int need_forkexit_callback __read_mostly;
153 154

/* convenient tests for these bits */
155
inline int cgroup_is_removed(const struct cgroup *cgrp)
156
{
157
	return test_bit(CGRP_REMOVED, &cgrp->flags);
158 159 160 161 162 163 164
}

/* bits in struct cgroupfs_root flags field */
enum {
	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
};

165
static int cgroup_is_releasable(const struct cgroup *cgrp)
166 167
{
	const int bits =
168 169 170
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
171 172
}

173
static int notify_on_release(const struct cgroup *cgrp)
174
{
175
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
176 177
}

178 179 180 181 182 183 184
/*
 * for_each_subsys() allows you to iterate on each subsystem attached to
 * an active hierarchy
 */
#define for_each_subsys(_root, _ss) \
list_for_each_entry(_ss, &_root->subsys_list, sibling)

185 186
/* for_each_active_root() allows you to iterate across the active hierarchies */
#define for_each_active_root(_root) \
187 188
list_for_each_entry(_root, &roots, root_list)

189 190 191 192 193 194
/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
static DEFINE_SPINLOCK(release_list_lock);
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
195
static void check_for_release(struct cgroup *cgrp);
196

197 198 199 200 201 202
/* Link structure for associating css_set objects with cgroups */
struct cg_cgroup_link {
	/*
	 * List running through cg_cgroup_links associated with a
	 * cgroup, anchored on cgroup->css_sets
	 */
203
	struct list_head cgrp_link_list;
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
	/*
	 * List running through cg_cgroup_links pointing at a
	 * single css_set object, anchored on css_set->cg_links
	 */
	struct list_head cg_link_list;
	struct css_set *cg;
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
static struct cg_cgroup_link init_css_set_link;

K
KAMEZAWA Hiroyuki 已提交
222 223
static int cgroup_subsys_init_idr(struct cgroup_subsys *ss);

224 225 226 227 228 229
/* css_set_lock protects the list of css_set objects, and the
 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 * due to cgroup_iter_start() */
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
/* hash table for cgroup groups. This improves the performance to
 * find an existing css_set */
#define CSS_SET_HASH_BITS	7
#define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS)
static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];

static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
{
	int i;
	int index;
	unsigned long tmp = 0UL;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
		tmp += (unsigned long)css[i];
	tmp = (tmp >> 16) ^ tmp;

	index = hash_long(tmp, CSS_SET_HASH_BITS);

	return &css_set_table[index];
}

251 252 253 254
/* We don't maintain the lists running through each css_set to its
 * task until after the first call to cgroup_iter_start(). This
 * reduces the fork()/exit() overhead for people who have cgroups
 * compiled into their kernel but not actually in use */
255
static int use_task_css_set_links __read_mostly;
256 257 258 259 260 261 262

/* When we create or destroy a css_set, the operation simply
 * takes/releases a reference count on all the cgroups referenced
 * by subsystems in this css_set. This can end up multiple-counting
 * some cgroups, but that's OK - the ref-count is just a
 * busy/not-busy indicator; ensuring that we only count each cgroup
 * once would require taking a global lock to ensure that no
263 264 265 266 267 268 269
 * subsystems moved between hierarchies while we were doing so.
 *
 * Possible TODO: decide at boot time based on the number of
 * registered subsystems and the number of CPUs or NUMA nodes whether
 * it's better for performance to ref-count every subsystem, or to
 * take a global lock and only add one ref count to each hierarchy.
 */
270 271 272 273

/*
 * unlink a css_set from the list and free it
 */
274
static void unlink_css_set(struct css_set *cg)
275
{
K
KOSAKI Motohiro 已提交
276 277 278
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

279
	hlist_del(&cg->hlist);
280
	css_set_count--;
K
KOSAKI Motohiro 已提交
281 282 283

	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
				 cg_link_list) {
284
		list_del(&link->cg_link_list);
285
		list_del(&link->cgrp_link_list);
286 287
		kfree(link);
	}
288 289
}

290
static void __put_css_set(struct css_set *cg, int taskexit)
291 292
{
	int i;
293 294 295 296 297 298 299 300 301 302 303 304
	/*
	 * Ensure that the refcount doesn't hit zero while any readers
	 * can see it. Similar to atomic_dec_and_lock(), but for an
	 * rwlock
	 */
	if (atomic_add_unless(&cg->refcount, -1, 1))
		return;
	write_lock(&css_set_lock);
	if (!atomic_dec_and_test(&cg->refcount)) {
		write_unlock(&css_set_lock);
		return;
	}
305
	unlink_css_set(cg);
306
	write_unlock(&css_set_lock);
307 308 309

	rcu_read_lock();
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
310
		struct cgroup *cgrp = rcu_dereference(cg->subsys[i]->cgroup);
311 312
		if (atomic_dec_and_test(&cgrp->count) &&
		    notify_on_release(cgrp)) {
313
			if (taskexit)
314 315
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
316 317 318
		}
	}
	rcu_read_unlock();
319
	kfree(cg);
320 321
}

322 323 324 325 326
/*
 * refcounted get/put for css_set objects
 */
static inline void get_css_set(struct css_set *cg)
{
327
	atomic_inc(&cg->refcount);
328 329 330 331
}

static inline void put_css_set(struct css_set *cg)
{
332
	__put_css_set(cg, 0);
333 334
}

335 336
static inline void put_css_set_taskexit(struct css_set *cg)
{
337
	__put_css_set(cg, 1);
338 339
}

340 341 342
/*
 * find_existing_css_set() is a helper for
 * find_css_set(), and checks to see whether an existing
343
 * css_set is suitable.
344 345 346 347
 *
 * oldcg: the cgroup group that we're using before the cgroup
 * transition
 *
348
 * cgrp: the cgroup that we're moving into
349 350 351 352 353 354
 *
 * template: location in which to build the desired set of subsystem
 * state objects for the new cgroup group
 */
static struct css_set *find_existing_css_set(
	struct css_set *oldcg,
355
	struct cgroup *cgrp,
356
	struct cgroup_subsys_state *template[])
357 358
{
	int i;
359
	struct cgroupfs_root *root = cgrp->root;
360 361 362
	struct hlist_head *hhead;
	struct hlist_node *node;
	struct css_set *cg;
363 364 365 366

	/* Built the set of subsystem state objects that we want to
	 * see in the new css_set */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
367
		if (root->subsys_bits & (1UL << i)) {
368 369 370
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
371
			template[i] = cgrp->subsys[i];
372 373 374 375 376 377 378
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
			template[i] = oldcg->subsys[i];
		}
	}

379 380
	hhead = css_set_hash(template);
	hlist_for_each_entry(cg, node, hhead, hlist) {
381 382 383 384
		if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
			/* All subsystems matched */
			return cg;
		}
385
	}
386 387 388 389 390

	/* No existing cgroup group matched */
	return NULL;
}

391 392 393 394 395 396 397 398 399 400 401
static void free_cg_links(struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

	list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
		list_del(&link->cgrp_link_list);
		kfree(link);
	}
}

402 403
/*
 * allocate_cg_links() allocates "count" cg_cgroup_link structures
404
 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
405 406 407 408 409 410 411 412 413 414
 * success or a negative error
 */
static int allocate_cg_links(int count, struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	int i;
	INIT_LIST_HEAD(tmp);
	for (i = 0; i < count; i++) {
		link = kmalloc(sizeof(*link), GFP_KERNEL);
		if (!link) {
415
			free_cg_links(tmp);
416 417
			return -ENOMEM;
		}
418
		list_add(&link->cgrp_link_list, tmp);
419 420 421 422
	}
	return 0;
}

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
/**
 * link_css_set - a helper function to link a css_set to a cgroup
 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
 * @cg: the css_set to be linked
 * @cgrp: the destination cgroup
 */
static void link_css_set(struct list_head *tmp_cg_links,
			 struct css_set *cg, struct cgroup *cgrp)
{
	struct cg_cgroup_link *link;

	BUG_ON(list_empty(tmp_cg_links));
	link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
				cgrp_link_list);
	link->cg = cg;
	list_move(&link->cgrp_link_list, &cgrp->css_sets);
	list_add(&link->cg_link_list, &cg->cg_links);
}

442 443 444 445 446 447 448 449
/*
 * find_css_set() takes an existing cgroup group and a
 * cgroup object, and returns a css_set object that's
 * equivalent to the old group, but with the given cgroup
 * substituted into the appropriate hierarchy. Must be called with
 * cgroup_mutex held
 */
static struct css_set *find_css_set(
450
	struct css_set *oldcg, struct cgroup *cgrp)
451 452 453 454 455 456 457
{
	struct css_set *res;
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
	int i;

	struct list_head tmp_cg_links;

458 459
	struct hlist_head *hhead;

460 461
	/* First see if we already have a cgroup group that matches
	 * the desired set */
462
	read_lock(&css_set_lock);
463
	res = find_existing_css_set(oldcg, cgrp, template);
464 465
	if (res)
		get_css_set(res);
466
	read_unlock(&css_set_lock);
467 468 469 470 471 472 473 474 475 476 477 478 479 480

	if (res)
		return res;

	res = kmalloc(sizeof(*res), GFP_KERNEL);
	if (!res)
		return NULL;

	/* Allocate all the cg_cgroup_link objects that we'll need */
	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
		kfree(res);
		return NULL;
	}

481
	atomic_set(&res->refcount, 1);
482 483
	INIT_LIST_HEAD(&res->cg_links);
	INIT_LIST_HEAD(&res->tasks);
484
	INIT_HLIST_NODE(&res->hlist);
485 486 487 488 489 490 491 492

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
	memcpy(res->subsys, template, sizeof(res->subsys));

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
493
		struct cgroup *cgrp = res->subsys[i]->cgroup;
494
		struct cgroup_subsys *ss = subsys[i];
495
		atomic_inc(&cgrp->count);
496 497 498 499 500
		/*
		 * We want to add a link once per cgroup, so we
		 * only do it for the first subsystem in each
		 * hierarchy
		 */
501 502
		if (ss->root->subsys_list.next == &ss->sibling)
			link_css_set(&tmp_cg_links, res, cgrp);
503
	}
504 505
	if (list_empty(&rootnode.subsys_list))
		link_css_set(&tmp_cg_links, res, dummytop);
506 507 508 509

	BUG_ON(!list_empty(&tmp_cg_links));

	css_set_count++;
510 511 512 513 514

	/* Add this cgroup group to the hash table */
	hhead = css_set_hash(res->subsys);
	hlist_add_head(&res->hlist, hhead);

515 516 517
	write_unlock(&css_set_lock);

	return res;
518 519
}

520 521 522 523 524 525 526 527 528 529
/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
530
 * cgroup_attach_task() can increment it again.  Because a count of zero
531 532 533 534 535 536 537 538 539 540 541 542 543
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
L
Li Zefan 已提交
544 545
 * to the release agent with the name of the cgroup (path relative to
 * the root of cgroup file system) as the argument.
546 547 548 549 550 551 552 553 554 555 556
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
557
 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
L
Li Zefan 已提交
558
 * another.  It does so using cgroup_mutex, however there are
559 560 561
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
562
 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
563 564 565 566
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
567
 * update of a tasks cgroup pointer by cgroup_attach_task()
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
 */

/**
 * cgroup_lock - lock out any changes to cgroup structures
 *
 */
void cgroup_lock(void)
{
	mutex_lock(&cgroup_mutex);
}

/**
 * cgroup_unlock - release lock on cgroup changes
 *
 * Undo the lock taken in a previous cgroup_lock() call.
 */
void cgroup_unlock(void)
{
	mutex_unlock(&cgroup_mutex);
}

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
598
static int cgroup_populate_dir(struct cgroup *cgrp);
599
static const struct inode_operations cgroup_dir_inode_operations;
600 601 602
static struct file_operations proc_cgroupstats_operations;

static struct backing_dev_info cgroup_backing_dev_info = {
603
	.name		= "cgroup",
604
	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
605
};
606

K
KAMEZAWA Hiroyuki 已提交
607 608 609
static int alloc_css_id(struct cgroup_subsys *ss,
			struct cgroup *parent, struct cgroup *child);

610 611 612 613 614 615
static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
{
	struct inode *inode = new_inode(sb);

	if (inode) {
		inode->i_mode = mode;
616 617
		inode->i_uid = current_fsuid();
		inode->i_gid = current_fsgid();
618 619 620 621 622 623
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

624 625 626 627
/*
 * Call subsys's pre_destroy handler.
 * This is called before css refcnt check.
 */
628
static int cgroup_call_pre_destroy(struct cgroup *cgrp)
629 630
{
	struct cgroup_subsys *ss;
631 632
	int ret = 0;

633
	for_each_subsys(cgrp->root, ss)
634 635 636 637 638 639
		if (ss->pre_destroy) {
			ret = ss->pre_destroy(ss, cgrp);
			if (ret)
				break;
		}
	return ret;
640 641
}

642 643 644 645 646 647 648
static void free_cgroup_rcu(struct rcu_head *obj)
{
	struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);

	kfree(cgrp);
}

649 650 651 652
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
653
		struct cgroup *cgrp = dentry->d_fsdata;
654
		struct cgroup_subsys *ss;
655
		BUG_ON(!(cgroup_is_removed(cgrp)));
656 657 658 659 660 661 662
		/* It's possible for external users to be holding css
		 * reference counts on a cgroup; css_put() needs to
		 * be able to access the cgroup after decrementing
		 * the reference count in order to know if it needs to
		 * queue the cgroup to be handled by the release
		 * agent */
		synchronize_rcu();
663 664 665 666 667

		mutex_lock(&cgroup_mutex);
		/*
		 * Release the subsystem state objects.
		 */
668 669
		for_each_subsys(cgrp->root, ss)
			ss->destroy(ss, cgrp);
670 671 672 673

		cgrp->root->number_of_cgroups--;
		mutex_unlock(&cgroup_mutex);

674 675 676 677
		/*
		 * Drop the active superblock reference that we took when we
		 * created the cgroup
		 */
678 679
		deactivate_super(cgrp->root->sb);

680
		call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
	}
	iput(inode);
}

static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

static void cgroup_clear_directory(struct dentry *dentry)
{
	struct list_head *node;

	BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
	spin_lock(&dcache_lock);
	node = dentry->d_subdirs.next;
	while (node != &dentry->d_subdirs) {
		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
		list_del_init(node);
		if (d->d_inode) {
			/* This should never be called on a cgroup
			 * directory with child cgroups */
			BUG_ON(d->d_inode->i_mode & S_IFDIR);
			d = dget_locked(d);
			spin_unlock(&dcache_lock);
			d_delete(d);
			simple_unlink(dentry->d_inode, d);
			dput(d);
			spin_lock(&dcache_lock);
		}
		node = dentry->d_subdirs.next;
	}
	spin_unlock(&dcache_lock);
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
	cgroup_clear_directory(dentry);

	spin_lock(&dcache_lock);
	list_del_init(&dentry->d_u.d_child);
	spin_unlock(&dcache_lock);
	remove_dir(dentry);
}

733 734 735 736 737 738
/*
 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
 * reference to css->refcnt. In general, this refcnt is expected to goes down
 * to zero, soon.
 *
739
 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
740 741 742
 */
DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);

743
static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
744
{
745
	if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
746 747 748
		wake_up_all(&cgroup_rmdir_waitq);
}

749 750 751 752 753 754 755 756 757 758 759 760
void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
{
	css_get(css);
}

void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
{
	cgroup_wakeup_rmdir_waiter(css->cgroup);
	css_put(css);
}


761 762 763 764
static int rebind_subsystems(struct cgroupfs_root *root,
			      unsigned long final_bits)
{
	unsigned long added_bits, removed_bits;
765
	struct cgroup *cgrp = &root->top_cgroup;
766 767 768 769 770 771
	int i;

	removed_bits = root->actual_subsys_bits & ~final_bits;
	added_bits = final_bits & ~root->actual_subsys_bits;
	/* Check that any added subsystems are currently free */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
772
		unsigned long bit = 1UL << i;
773 774 775 776 777 778 779 780 781 782 783 784 785
		struct cgroup_subsys *ss = subsys[i];
		if (!(bit & added_bits))
			continue;
		if (ss->root != &rootnode) {
			/* Subsystem isn't free */
			return -EBUSY;
		}
	}

	/* Currently we don't handle adding/removing subsystems when
	 * any child cgroups exist. This is theoretically supportable
	 * but involves complex error handling, so it's being left until
	 * later */
786
	if (root->number_of_cgroups > 1)
787 788 789 790 791 792 793 794
		return -EBUSY;

	/* Process each subsystem */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		unsigned long bit = 1UL << i;
		if (bit & added_bits) {
			/* We're binding this subsystem to this hierarchy */
795
			BUG_ON(cgrp->subsys[i]);
796 797
			BUG_ON(!dummytop->subsys[i]);
			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
798
			mutex_lock(&ss->hierarchy_mutex);
799 800
			cgrp->subsys[i] = dummytop->subsys[i];
			cgrp->subsys[i]->cgroup = cgrp;
801
			list_move(&ss->sibling, &root->subsys_list);
802
			ss->root = root;
803
			if (ss->bind)
804
				ss->bind(ss, cgrp);
805
			mutex_unlock(&ss->hierarchy_mutex);
806 807
		} else if (bit & removed_bits) {
			/* We're removing this subsystem */
808 809
			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
810
			mutex_lock(&ss->hierarchy_mutex);
811 812 813
			if (ss->bind)
				ss->bind(ss, dummytop);
			dummytop->subsys[i]->cgroup = dummytop;
814
			cgrp->subsys[i] = NULL;
815
			subsys[i]->root = &rootnode;
816
			list_move(&ss->sibling, &rootnode.subsys_list);
817
			mutex_unlock(&ss->hierarchy_mutex);
818 819
		} else if (bit & final_bits) {
			/* Subsystem state should already exist */
820
			BUG_ON(!cgrp->subsys[i]);
821 822
		} else {
			/* Subsystem state shouldn't exist */
823
			BUG_ON(cgrp->subsys[i]);
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
		}
	}
	root->subsys_bits = root->actual_subsys_bits = final_bits;
	synchronize_rcu();

	return 0;
}

static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
{
	struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
	struct cgroup_subsys *ss;

	mutex_lock(&cgroup_mutex);
	for_each_subsys(root, ss)
		seq_printf(seq, ",%s", ss->name);
	if (test_bit(ROOT_NOPREFIX, &root->flags))
		seq_puts(seq, ",noprefix");
842 843
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
844 845 846 847 848 849 850
	mutex_unlock(&cgroup_mutex);
	return 0;
}

struct cgroup_sb_opts {
	unsigned long subsys_bits;
	unsigned long flags;
851
	char *release_agent;
852 853 854 855 856 857 858 859
};

/* Convert a hierarchy specifier into a bitmask of subsystems and
 * flags. */
static int parse_cgroupfs_options(char *data,
				     struct cgroup_sb_opts *opts)
{
	char *token, *o = data ?: "all";
860 861 862 863 864
	unsigned long mask = (unsigned long)-1;

#ifdef CONFIG_CPUSETS
	mask = ~(1UL << cpuset_subsys_id);
#endif
865 866 867

	opts->subsys_bits = 0;
	opts->flags = 0;
868
	opts->release_agent = NULL;
869 870 871 872 873

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
		if (!strcmp(token, "all")) {
874 875 876 877 878 879 880 881
			/* Add all non-disabled subsystems */
			int i;
			opts->subsys_bits = 0;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				struct cgroup_subsys *ss = subsys[i];
				if (!ss->disabled)
					opts->subsys_bits |= 1ul << i;
			}
882 883
		} else if (!strcmp(token, "noprefix")) {
			set_bit(ROOT_NOPREFIX, &opts->flags);
884 885 886 887 888 889 890 891 892
		} else if (!strncmp(token, "release_agent=", 14)) {
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
			opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
			if (!opts->release_agent)
				return -ENOMEM;
			strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
			opts->release_agent[PATH_MAX - 1] = 0;
893 894 895 896 897 898
		} else {
			struct cgroup_subsys *ss;
			int i;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				ss = subsys[i];
				if (!strcmp(token, ss->name)) {
899 900
					if (!ss->disabled)
						set_bit(i, &opts->subsys_bits);
901 902 903 904 905 906 907 908
					break;
				}
			}
			if (i == CGROUP_SUBSYS_COUNT)
				return -ENOENT;
		}
	}

909 910 911 912 913 914 915 916 917
	/*
	 * Option noprefix was introduced just for backward compatibility
	 * with the old cpuset, so we allow noprefix only if mounting just
	 * the cpuset subsystem.
	 */
	if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
	    (opts->subsys_bits & mask))
		return -EINVAL;

918 919 920 921 922 923 924 925 926 927 928
	/* We can't have an empty hierarchy */
	if (!opts->subsys_bits)
		return -EINVAL;

	return 0;
}

static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
929
	struct cgroup *cgrp = &root->top_cgroup;
930 931
	struct cgroup_sb_opts opts;

932
	lock_kernel();
933
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
934 935 936 937 938 939 940 941 942 943 944 945 946 947
	mutex_lock(&cgroup_mutex);

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

	/* Don't allow flags to change at remount */
	if (opts.flags != root->flags) {
		ret = -EINVAL;
		goto out_unlock;
	}

	ret = rebind_subsystems(root, opts.subsys_bits);
948 949
	if (ret)
		goto out_unlock;
950 951

	/* (re)populate subsystem files */
952
	cgroup_populate_dir(cgrp);
953

954 955
	if (opts.release_agent)
		strcpy(root->release_agent_path, opts.release_agent);
956
 out_unlock:
957
	kfree(opts.release_agent);
958
	mutex_unlock(&cgroup_mutex);
959
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
960
	unlock_kernel();
961 962 963
	return ret;
}

964
static const struct super_operations cgroup_ops = {
965 966 967 968 969 970
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

971 972 973 974 975 976
static void init_cgroup_housekeeping(struct cgroup *cgrp)
{
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
L
Li Zefan 已提交
977
	INIT_LIST_HEAD(&cgrp->pids_list);
978 979
	init_rwsem(&cgrp->pids_mutex);
}
980 981
static void init_cgroup_root(struct cgroupfs_root *root)
{
982
	struct cgroup *cgrp = &root->top_cgroup;
983 984 985
	INIT_LIST_HEAD(&root->subsys_list);
	INIT_LIST_HEAD(&root->root_list);
	root->number_of_cgroups = 1;
986 987
	cgrp->root = root;
	cgrp->top_cgroup = cgrp;
988
	init_cgroup_housekeeping(cgrp);
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
}

static int cgroup_test_super(struct super_block *sb, void *data)
{
	struct cgroupfs_root *new = data;
	struct cgroupfs_root *root = sb->s_fs_info;

	/* First check subsystems */
	if (new->subsys_bits != root->subsys_bits)
	    return 0;

	/* Next check flags */
	if (new->flags != root->flags)
		return 0;

	return 1;
}

static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
	struct cgroupfs_root *root = data;

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

	sb->s_fs_info = root;
	root->sb = sb;

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
	struct dentry *dentry;

	if (!inode)
		return -ENOMEM;

	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
	dentry = d_alloc_root(inode);
	if (!dentry) {
		iput(inode);
		return -ENOMEM;
	}
	sb->s_root = dentry;
	return 0;
}

static int cgroup_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
{
	struct cgroup_sb_opts opts;
	int ret = 0;
	struct super_block *sb;
	struct cgroupfs_root *root;
1057
	struct list_head tmp_cg_links;
1058 1059 1060

	/* First find the desired set of subsystems */
	ret = parse_cgroupfs_options(data, &opts);
1061
	if (ret) {
1062
		kfree(opts.release_agent);
1063
		return ret;
1064
	}
1065 1066

	root = kzalloc(sizeof(*root), GFP_KERNEL);
1067
	if (!root) {
1068
		kfree(opts.release_agent);
1069
		return -ENOMEM;
1070
	}
1071 1072 1073 1074

	init_cgroup_root(root);
	root->subsys_bits = opts.subsys_bits;
	root->flags = opts.flags;
1075 1076 1077 1078
	if (opts.release_agent) {
		strcpy(root->release_agent_path, opts.release_agent);
		kfree(opts.release_agent);
	}
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093

	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);

	if (IS_ERR(sb)) {
		kfree(root);
		return PTR_ERR(sb);
	}

	if (sb->s_fs_info != root) {
		/* Reusing an existing superblock */
		BUG_ON(sb->s_root == NULL);
		kfree(root);
		root = NULL;
	} else {
		/* New superblock */
1094
		struct cgroup *root_cgrp = &root->top_cgroup;
1095
		struct inode *inode;
1096
		int i;
1097 1098 1099 1100 1101 1102

		BUG_ON(sb->s_root != NULL);

		ret = cgroup_get_rootdir(sb);
		if (ret)
			goto drop_new_super;
1103
		inode = sb->s_root->d_inode;
1104

1105
		mutex_lock(&inode->i_mutex);
1106 1107
		mutex_lock(&cgroup_mutex);

1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
		/*
		 * We're accessing css_set_count without locking
		 * css_set_lock here, but that's OK - it can only be
		 * increased by someone holding cgroup_lock, and
		 * that's us. The worst that can happen is that we
		 * have some link structures left over
		 */
		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
		if (ret) {
			mutex_unlock(&cgroup_mutex);
			mutex_unlock(&inode->i_mutex);
			goto drop_new_super;
		}

1122 1123 1124
		ret = rebind_subsystems(root, root->subsys_bits);
		if (ret == -EBUSY) {
			mutex_unlock(&cgroup_mutex);
1125
			mutex_unlock(&inode->i_mutex);
1126
			goto free_cg_links;
1127 1128 1129 1130 1131 1132
		}

		/* EBUSY should be the only error here */
		BUG_ON(ret);

		list_add(&root->root_list, &roots);
1133
		root_count++;
1134

1135
		sb->s_root->d_fsdata = root_cgrp;
1136 1137
		root->top_cgroup.dentry = sb->s_root;

1138 1139 1140
		/* Link the top cgroup in this hierarchy into all
		 * the css_set objects */
		write_lock(&css_set_lock);
1141 1142 1143
		for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
			struct hlist_head *hhead = &css_set_table[i];
			struct hlist_node *node;
1144
			struct css_set *cg;
1145

1146 1147
			hlist_for_each_entry(cg, node, hhead, hlist)
				link_css_set(&tmp_cg_links, cg, root_cgrp);
1148
		}
1149 1150 1151 1152
		write_unlock(&css_set_lock);

		free_cg_links(&tmp_cg_links);

1153 1154
		BUG_ON(!list_empty(&root_cgrp->sibling));
		BUG_ON(!list_empty(&root_cgrp->children));
1155 1156
		BUG_ON(root->number_of_cgroups != 1);

1157
		cgroup_populate_dir(root_cgrp);
1158
		mutex_unlock(&cgroup_mutex);
1159
		mutex_unlock(&inode->i_mutex);
1160 1161
	}

1162 1163
	simple_set_mnt(mnt, sb);
	return 0;
1164

1165 1166
 free_cg_links:
	free_cg_links(&tmp_cg_links);
1167
 drop_new_super:
1168
	deactivate_locked_super(sb);
1169 1170 1171 1172 1173
	return ret;
}

static void cgroup_kill_sb(struct super_block *sb) {
	struct cgroupfs_root *root = sb->s_fs_info;
1174
	struct cgroup *cgrp = &root->top_cgroup;
1175
	int ret;
K
KOSAKI Motohiro 已提交
1176 1177
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
1178 1179 1180 1181

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
1182 1183
	BUG_ON(!list_empty(&cgrp->children));
	BUG_ON(!list_empty(&cgrp->sibling));
1184 1185 1186 1187 1188 1189 1190 1191

	mutex_lock(&cgroup_mutex);

	/* Rebind all subsystems back to the default hierarchy */
	ret = rebind_subsystems(root, 0);
	/* Shouldn't be able to fail ... */
	BUG_ON(ret);

1192 1193 1194 1195 1196
	/*
	 * Release all the links from css_sets to this hierarchy's
	 * root cgroup
	 */
	write_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1197 1198 1199

	list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
				 cgrp_link_list) {
1200
		list_del(&link->cg_link_list);
1201
		list_del(&link->cgrp_link_list);
1202 1203 1204 1205
		kfree(link);
	}
	write_unlock(&css_set_lock);

1206 1207 1208 1209
	if (!list_empty(&root->root_list)) {
		list_del(&root->root_list);
		root_count--;
	}
1210

1211 1212 1213
	mutex_unlock(&cgroup_mutex);

	kill_litter_super(sb);
L
Li Zefan 已提交
1214
	kfree(root);
1215 1216 1217 1218 1219 1220 1221 1222
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
	.get_sb = cgroup_get_sb,
	.kill_sb = cgroup_kill_sb,
};

1223
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1224 1225 1226 1227 1228 1229 1230 1231 1232
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

L
Li Zefan 已提交
1233 1234 1235 1236 1237 1238
/**
 * cgroup_path - generate the path of a cgroup
 * @cgrp: the cgroup in question
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
1239 1240 1241
 * Called with cgroup_mutex held or else with an RCU-protected cgroup
 * reference.  Writes path of cgroup into buf.  Returns 0 on success,
 * -errno on error.
1242
 */
1243
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1244 1245
{
	char *start;
1246
	struct dentry *dentry = rcu_dereference(cgrp->dentry);
1247

1248
	if (!dentry || cgrp == dummytop) {
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
		/*
		 * Inactive subsystems have no dentry for their root
		 * cgroup
		 */
		strcpy(buf, "/");
		return 0;
	}

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
1261
		int len = dentry->d_name.len;
1262 1263
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
1264 1265 1266
		memcpy(start, cgrp->dentry->d_name.name, len);
		cgrp = cgrp->parent;
		if (!cgrp)
1267
			break;
1268
		dentry = rcu_dereference(cgrp->dentry);
1269
		if (!cgrp->parent)
1270 1271 1272 1273 1274 1275 1276 1277 1278
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}

1279 1280 1281 1282 1283
/*
 * Return the first subsystem attached to a cgroup's hierarchy, and
 * its subsystem id.
 */

1284
static void get_first_subsys(const struct cgroup *cgrp,
1285 1286
			struct cgroup_subsys_state **css, int *subsys_id)
{
1287
	const struct cgroupfs_root *root = cgrp->root;
1288 1289 1290 1291 1292
	const struct cgroup_subsys *test_ss;
	BUG_ON(list_empty(&root->subsys_list));
	test_ss = list_entry(root->subsys_list.next,
			     struct cgroup_subsys, sibling);
	if (css) {
1293
		*css = cgrp->subsys[test_ss->subsys_id];
1294 1295 1296 1297 1298 1299
		BUG_ON(!*css);
	}
	if (subsys_id)
		*subsys_id = test_ss->subsys_id;
}

L
Li Zefan 已提交
1300 1301 1302 1303
/**
 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
 * @cgrp: the cgroup the task is attaching to
 * @tsk: the task to be attached
1304
 *
L
Li Zefan 已提交
1305 1306
 * Call holding cgroup_mutex. May take task_lock of
 * the task 'tsk' during call.
1307
 */
1308
int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1309 1310 1311
{
	int retval = 0;
	struct cgroup_subsys *ss;
1312
	struct cgroup *oldcgrp;
1313
	struct css_set *cg;
1314
	struct css_set *newcg;
1315
	struct cgroupfs_root *root = cgrp->root;
1316 1317
	int subsys_id;

1318
	get_first_subsys(cgrp, NULL, &subsys_id);
1319 1320

	/* Nothing to do if the task is already in that cgroup */
1321 1322
	oldcgrp = task_cgroup(tsk, subsys_id);
	if (cgrp == oldcgrp)
1323 1324 1325 1326
		return 0;

	for_each_subsys(root, ss) {
		if (ss->can_attach) {
1327
			retval = ss->can_attach(ss, cgrp, tsk);
P
Paul Jackson 已提交
1328
			if (retval)
1329 1330 1331 1332
				return retval;
		}
	}

1333 1334 1335 1336
	task_lock(tsk);
	cg = tsk->cgroups;
	get_css_set(cg);
	task_unlock(tsk);
1337 1338 1339 1340
	/*
	 * Locate or allocate a new css_set for this task,
	 * based on its final set of cgroups
	 */
1341
	newcg = find_css_set(cg, cgrp);
1342
	put_css_set(cg);
P
Paul Jackson 已提交
1343
	if (!newcg)
1344 1345
		return -ENOMEM;

1346 1347 1348
	task_lock(tsk);
	if (tsk->flags & PF_EXITING) {
		task_unlock(tsk);
1349
		put_css_set(newcg);
1350 1351
		return -ESRCH;
	}
1352
	rcu_assign_pointer(tsk->cgroups, newcg);
1353 1354
	task_unlock(tsk);

1355 1356 1357 1358 1359 1360 1361 1362
	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
	if (!list_empty(&tsk->cg_list)) {
		list_del(&tsk->cg_list);
		list_add(&tsk->cg_list, &newcg->tasks);
	}
	write_unlock(&css_set_lock);

1363
	for_each_subsys(root, ss) {
P
Paul Jackson 已提交
1364
		if (ss->attach)
1365
			ss->attach(ss, cgrp, oldcgrp, tsk);
1366
	}
1367
	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1368
	synchronize_rcu();
1369
	put_css_set(cg);
1370 1371 1372 1373 1374

	/*
	 * wake up rmdir() waiter. the rmdir should fail since the cgroup
	 * is no longer empty.
	 */
1375
	cgroup_wakeup_rmdir_waiter(cgrp);
1376 1377 1378 1379
	return 0;
}

/*
1380 1381
 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
 * held. May take task_lock of task
1382
 */
1383
static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1384 1385
{
	struct task_struct *tsk;
1386
	const struct cred *cred = current_cred(), *tcred;
1387 1388 1389 1390
	int ret;

	if (pid) {
		rcu_read_lock();
1391
		tsk = find_task_by_vpid(pid);
1392 1393 1394 1395 1396
		if (!tsk || tsk->flags & PF_EXITING) {
			rcu_read_unlock();
			return -ESRCH;
		}

1397 1398 1399 1400 1401
		tcred = __task_cred(tsk);
		if (cred->euid &&
		    cred->euid != tcred->uid &&
		    cred->euid != tcred->suid) {
			rcu_read_unlock();
1402 1403
			return -EACCES;
		}
1404 1405
		get_task_struct(tsk);
		rcu_read_unlock();
1406 1407 1408 1409 1410
	} else {
		tsk = current;
		get_task_struct(tsk);
	}

1411
	ret = cgroup_attach_task(cgrp, tsk);
1412 1413 1414 1415
	put_task_struct(tsk);
	return ret;
}

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
{
	int ret;
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	ret = attach_task_by_pid(cgrp, pid);
	cgroup_unlock();
	return ret;
}

1426 1427 1428 1429 1430
/* The various types of files and directories in a cgroup file system */
enum cgroup_filetype {
	FILE_ROOT,
	FILE_DIR,
	FILE_TASKLIST,
1431 1432
	FILE_NOTIFY_ON_RELEASE,
	FILE_RELEASE_AGENT,
1433 1434
};

1435 1436 1437 1438
/**
 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
 * @cgrp: the cgroup to be checked for liveness
 *
1439 1440
 * On success, returns true; the lock should be later released with
 * cgroup_unlock(). On failure returns false with no lock held.
1441
 */
1442
bool cgroup_lock_live_group(struct cgroup *cgrp)
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
{
	mutex_lock(&cgroup_mutex);
	if (cgroup_is_removed(cgrp)) {
		mutex_unlock(&cgroup_mutex);
		return false;
	}
	return true;
}

static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	strcpy(cgrp->root->release_agent_path, buffer);
1459
	cgroup_unlock();
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
	return 0;
}

static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
				     struct seq_file *seq)
{
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	seq_puts(seq, cgrp->root->release_agent_path);
	seq_putc(seq, '\n');
1470
	cgroup_unlock();
1471 1472 1473
	return 0;
}

1474 1475 1476
/* A buffer size big enough for numbers or short strings */
#define CGROUP_LOCAL_BUFFER_SIZE 64

1477
static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1478 1479 1480
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
1481
{
1482
	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
	int retval = 0;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */
1494
	strstrip(buffer);
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
	if (cft->write_u64) {
		u64 val = simple_strtoull(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_u64(cgrp, cft, val);
	} else {
		s64 val = simple_strtoll(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_s64(cgrp, cft, val);
	}
1506 1507 1508 1509 1510
	if (!retval)
		retval = nbytes;
	return retval;
}

1511 1512 1513 1514 1515
static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   const char __user *userbuf,
				   size_t nbytes, loff_t *unused_ppos)
{
1516
	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
	int retval = 0;
	size_t max_bytes = cft->max_write_len;
	char *buffer = local_buffer;

	if (!max_bytes)
		max_bytes = sizeof(local_buffer) - 1;
	if (nbytes >= max_bytes)
		return -E2BIG;
	/* Allocate a dynamic buffer if we need one */
	if (nbytes >= sizeof(local_buffer)) {
		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
		if (buffer == NULL)
			return -ENOMEM;
	}
L
Li Zefan 已提交
1531 1532 1533 1534
	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out;
	}
1535 1536 1537 1538 1539 1540

	buffer[nbytes] = 0;     /* nul-terminate */
	strstrip(buffer);
	retval = cft->write_string(cgrp, cft, buffer);
	if (!retval)
		retval = nbytes;
L
Li Zefan 已提交
1541
out:
1542 1543 1544 1545 1546
	if (buffer != local_buffer)
		kfree(buffer);
	return retval;
}

1547 1548 1549 1550
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1551
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1552

1553
	if (cgroup_is_removed(cgrp))
1554
		return -ENODEV;
1555
	if (cft->write)
1556
		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1557 1558
	if (cft->write_u64 || cft->write_s64)
		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1559 1560
	if (cft->write_string)
		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1561 1562 1563 1564
	if (cft->trigger) {
		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
		return ret ? ret : nbytes;
	}
1565
	return -EINVAL;
1566 1567
}

1568 1569 1570 1571
static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
1572
{
1573
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1574
	u64 val = cft->read_u64(cgrp, cft);
1575 1576 1577 1578 1579
	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1580 1581 1582 1583 1584
static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
{
1585
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1586 1587 1588 1589 1590 1591
	s64 val = cft->read_s64(cgrp, cft);
	int len = sprintf(tmp, "%lld\n", (long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1592 1593 1594 1595
static ssize_t cgroup_file_read(struct file *file, char __user *buf,
				   size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1596
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1597

1598
	if (cgroup_is_removed(cgrp))
1599 1600 1601
		return -ENODEV;

	if (cft->read)
1602
		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1603 1604
	if (cft->read_u64)
		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
1605 1606
	if (cft->read_s64)
		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
1607 1608 1609
	return -EINVAL;
}

1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
/*
 * seqfile ops/methods for returning structured data. Currently just
 * supports string->u64 maps, but can be extended in future.
 */

struct cgroup_seqfile_state {
	struct cftype *cft;
	struct cgroup *cgroup;
};

static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
{
	struct seq_file *sf = cb->state;
	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
}

static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
	struct cgroup_seqfile_state *state = m->private;
	struct cftype *cft = state->cft;
1630 1631 1632 1633 1634 1635 1636 1637
	if (cft->read_map) {
		struct cgroup_map_cb cb = {
			.fill = cgroup_map_add,
			.state = m,
		};
		return cft->read_map(state->cgroup, cft, &cb);
	}
	return cft->read_seq_string(state->cgroup, cft, m);
1638 1639
}

1640
static int cgroup_seqfile_release(struct inode *inode, struct file *file)
1641 1642 1643 1644 1645 1646 1647 1648
{
	struct seq_file *seq = file->private_data;
	kfree(seq->private);
	return single_release(inode, file);
}

static struct file_operations cgroup_seqfile_operations = {
	.read = seq_read,
1649
	.write = cgroup_file_write,
1650 1651 1652 1653
	.llseek = seq_lseek,
	.release = cgroup_seqfile_release,
};

1654 1655 1656 1657 1658 1659 1660 1661 1662
static int cgroup_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;
	cft = __d_cft(file->f_dentry);
1663

1664
	if (cft->read_map || cft->read_seq_string) {
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
		struct cgroup_seqfile_state *state =
			kzalloc(sizeof(*state), GFP_USER);
		if (!state)
			return -ENOMEM;
		state->cft = cft;
		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
		file->f_op = &cgroup_seqfile_operations;
		err = single_open(file, cgroup_seqfile_show, state);
		if (err < 0)
			kfree(state);
	} else if (cft->open)
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

static struct file_operations cgroup_file_operations = {
	.read = cgroup_file_read,
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

1714
static const struct inode_operations cgroup_dir_inode_operations = {
1715 1716 1717 1718 1719 1720
	.lookup = simple_lookup,
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
};

L
Li Zefan 已提交
1721
static int cgroup_create_file(struct dentry *dentry, mode_t mode,
1722 1723
				struct super_block *sb)
{
A
Al Viro 已提交
1724
	static const struct dentry_operations cgroup_dops = {
1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
		.d_iput = cgroup_diput,
	};

	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);

		/* start with the directory inode held, so that we can
		 * populate it without racing with another mkdir */
1748
		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
	}
	dentry->d_op = &cgroup_dops;
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
L
Li Zefan 已提交
1760 1761 1762 1763 1764
 * cgroup_create_dir - create a directory for an object.
 * @cgrp: the cgroup we create the directory for. It must have a valid
 *        ->parent field. And we are going to fill its ->dentry field.
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new directory.
1765
 */
1766
static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
L
Li Zefan 已提交
1767
				mode_t mode)
1768 1769 1770 1771
{
	struct dentry *parent;
	int error = 0;

1772 1773
	parent = cgrp->parent->dentry;
	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1774
	if (!error) {
1775
		dentry->d_fsdata = cgrp;
1776
		inc_nlink(parent->d_inode);
1777
		rcu_assign_pointer(cgrp->dentry, dentry);
1778 1779 1780 1781 1782 1783 1784
		dget(dentry);
	}
	dput(dentry);

	return error;
}

L
Li Zefan 已提交
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
/**
 * cgroup_file_mode - deduce file mode of a control file
 * @cft: the control file in question
 *
 * returns cft->mode if ->mode is not 0
 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
 * returns S_IRUGO if it has only a read handler
 * returns S_IWUSR if it has only a write hander
 */
static mode_t cgroup_file_mode(const struct cftype *cft)
{
	mode_t mode = 0;

	if (cft->mode)
		return cft->mode;

	if (cft->read || cft->read_u64 || cft->read_s64 ||
	    cft->read_map || cft->read_seq_string)
		mode |= S_IRUGO;

	if (cft->write || cft->write_u64 || cft->write_s64 ||
	    cft->write_string || cft->trigger)
		mode |= S_IWUSR;

	return mode;
}

1812
int cgroup_add_file(struct cgroup *cgrp,
1813 1814 1815
		       struct cgroup_subsys *subsys,
		       const struct cftype *cft)
{
1816
	struct dentry *dir = cgrp->dentry;
1817 1818
	struct dentry *dentry;
	int error;
L
Li Zefan 已提交
1819
	mode_t mode;
1820 1821

	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1822
	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1823 1824 1825 1826 1827 1828 1829
		strcpy(name, subsys->name);
		strcat(name, ".");
	}
	strcat(name, cft->name);
	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
	dentry = lookup_one_len(name, dir, strlen(name));
	if (!IS_ERR(dentry)) {
L
Li Zefan 已提交
1830 1831
		mode = cgroup_file_mode(cft);
		error = cgroup_create_file(dentry, mode | S_IFREG,
1832
						cgrp->root->sb);
1833 1834 1835 1836 1837 1838 1839 1840
		if (!error)
			dentry->d_fsdata = (void *)cft;
		dput(dentry);
	} else
		error = PTR_ERR(dentry);
	return error;
}

1841
int cgroup_add_files(struct cgroup *cgrp,
1842 1843 1844 1845 1846 1847
			struct cgroup_subsys *subsys,
			const struct cftype cft[],
			int count)
{
	int i, err;
	for (i = 0; i < count; i++) {
1848
		err = cgroup_add_file(cgrp, subsys, &cft[i]);
1849 1850 1851 1852 1853 1854
		if (err)
			return err;
	}
	return 0;
}

L
Li Zefan 已提交
1855 1856 1857 1858 1859 1860
/**
 * cgroup_task_count - count the number of tasks in a cgroup.
 * @cgrp: the cgroup in question
 *
 * Return the number of tasks in the cgroup.
 */
1861
int cgroup_task_count(const struct cgroup *cgrp)
1862 1863
{
	int count = 0;
K
KOSAKI Motohiro 已提交
1864
	struct cg_cgroup_link *link;
1865 1866

	read_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1867
	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
1868
		count += atomic_read(&link->cg->refcount);
1869 1870
	}
	read_unlock(&css_set_lock);
1871 1872 1873
	return count;
}

1874 1875 1876 1877
/*
 * Advance a list_head iterator.  The iterator should be positioned at
 * the start of a css_set
 */
1878
static void cgroup_advance_iter(struct cgroup *cgrp,
1879 1880 1881 1882 1883 1884 1885 1886 1887
					  struct cgroup_iter *it)
{
	struct list_head *l = it->cg_link;
	struct cg_cgroup_link *link;
	struct css_set *cg;

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
1888
		if (l == &cgrp->css_sets) {
1889 1890 1891
			it->cg_link = NULL;
			return;
		}
1892
		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1893 1894 1895 1896 1897 1898
		cg = link->cg;
	} while (list_empty(&cg->tasks));
	it->cg_link = l;
	it->task = cg->tasks.next;
}

1899 1900 1901 1902 1903 1904 1905 1906 1907
/*
 * To reduce the fork() overhead for systems that are not actually
 * using their cgroups capability, we don't maintain the lists running
 * through each css_set to its tasks until we see the list actually
 * used - in other words after the first call to cgroup_iter_start().
 *
 * The tasklist_lock is not held here, as do_each_thread() and
 * while_each_thread() are protected by RCU.
 */
1908
static void cgroup_enable_task_cg_lists(void)
1909 1910 1911 1912 1913 1914
{
	struct task_struct *p, *g;
	write_lock(&css_set_lock);
	use_task_css_set_links = 1;
	do_each_thread(g, p) {
		task_lock(p);
1915 1916 1917 1918 1919 1920
		/*
		 * We should check if the process is exiting, otherwise
		 * it will race with cgroup_exit() in that the list
		 * entry won't be deleted though the process has exited.
		 */
		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
1921 1922 1923 1924 1925 1926
			list_add(&p->cg_list, &p->cgroups->tasks);
		task_unlock(p);
	} while_each_thread(g, p);
	write_unlock(&css_set_lock);
}

1927
void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
1928 1929 1930 1931 1932 1933
{
	/*
	 * The first time anyone tries to iterate across a cgroup,
	 * we need to enable the list linking each css_set to its
	 * tasks, and fix up all existing tasks.
	 */
1934 1935 1936
	if (!use_task_css_set_links)
		cgroup_enable_task_cg_lists();

1937
	read_lock(&css_set_lock);
1938 1939
	it->cg_link = &cgrp->css_sets;
	cgroup_advance_iter(cgrp, it);
1940 1941
}

1942
struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1943 1944 1945 1946
					struct cgroup_iter *it)
{
	struct task_struct *res;
	struct list_head *l = it->task;
1947
	struct cg_cgroup_link *link;
1948 1949 1950 1951 1952 1953 1954

	/* If the iterator cg is NULL, we have no tasks */
	if (!it->cg_link)
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
1955 1956
	link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
	if (l == &link->cg->tasks) {
1957 1958
		/* We reached the end of this task list - move on to
		 * the next cg_cgroup_link */
1959
		cgroup_advance_iter(cgrp, it);
1960 1961 1962 1963 1964 1965
	} else {
		it->task = l;
	}
	return res;
}

1966
void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
1967 1968 1969 1970
{
	read_unlock(&css_set_lock);
}

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively) simultaneously.
		 */
		return t1 > t2;
	}
}

/*
 * This function is a callback from heap_insert() and is used to order
 * the heap.
 * In this case we order the heap in descending task start time.
 */
static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

/**
 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
 * @scan: struct cgroup_scanner containing arguments for the scan
 *
 * Arguments include pointers to callback functions test_task() and
 * process_task().
 * Iterate through all the tasks in a cgroup, calling test_task() for each,
 * and if it returns true, call process_task() for it also.
 * The test_task pointer may be NULL, meaning always true (select all tasks).
 * Effectively duplicates cgroup_iter_{start,next,end}()
 * but does not lock css_set_lock for the call to process_task().
 * The struct cgroup_scanner may be embedded in any structure of the caller's
 * creation.
 * It is guaranteed that process_task() will act on every task that
 * is a member of the cgroup for the duration of this call. This
 * function may or may not call process_task() for tasks that exit
 * or move to a different cgroup during the call, or are forked or
 * move into the cgroup during the call.
 *
 * Note that test_task() may be called with locks held, and may in some
 * situations be called multiple times for the same task, so it should
 * be cheap.
 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
 * pre-allocated and will be used for heap operations (and its "gt" member will
 * be overwritten), else a temporary heap will be used (allocation of which
 * may cause this function to fail).
 */
int cgroup_scan_tasks(struct cgroup_scanner *scan)
{
	int retval, i;
	struct cgroup_iter it;
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap tmp_heap;
	struct ptr_heap *heap;
	struct timespec latest_time = { 0, 0 };

	if (scan->heap) {
		/* The caller supplied our heap and pre-allocated its memory */
		heap = scan->heap;
		heap->gt = &started_after;
	} else {
		/* We need to allocate our own heap memory */
		heap = &tmp_heap;
		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
		if (retval)
			/* cannot allocate the heap */
			return retval;
	}

 again:
	/*
	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
	 * to determine which are of interest, and using the scanner's
	 * "process_task" callback to process any of them that need an update.
	 * Since we don't want to hold any locks during the task updates,
	 * gather tasks to be processed in a heap structure.
	 * The heap is sorted by descending task start time.
	 * If the statically-sized heap fills up, we overflow tasks that
	 * started later, and in future iterations only consider tasks that
	 * started after the latest task in the previous pass. This
	 * guarantees forward progress and that we don't miss any tasks.
	 */
	heap->size = 0;
	cgroup_iter_start(scan->cg, &it);
	while ((p = cgroup_iter_next(scan->cg, &it))) {
		/*
		 * Only affect tasks that qualify per the caller's callback,
		 * if he provided one
		 */
		if (scan->test_task && !scan->test_task(p, scan))
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(heap, p);
		if (dropped == NULL) {
			/*
			 * The new task was inserted; the heap wasn't
			 * previously full
			 */
			get_task_struct(p);
		} else if (dropped != p) {
			/*
			 * The new task was inserted, and pushed out a
			 * different task
			 */
			get_task_struct(p);
			put_task_struct(dropped);
		}
		/*
		 * Else the new task was newer than anything already in
		 * the heap and wasn't inserted
		 */
	}
	cgroup_iter_end(scan->cg, &it);

	if (heap->size) {
		for (i = 0; i < heap->size; i++) {
2108
			struct task_struct *q = heap->ptrs[i];
2109
			if (i == 0) {
2110 2111
				latest_time = q->start_time;
				latest_task = q;
2112 2113
			}
			/* Process the task per the caller's callback */
2114 2115
			scan->process_task(q, scan);
			put_task_struct(q);
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't get processed.
		 * Not the most efficient way to do it, but it avoids
		 * having to take callback_mutex in the fork path
		 */
		goto again;
	}
	if (heap == &tmp_heap)
		heap_free(&tmp_heap);
	return 0;
}

2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142
/*
 * Stuff for reading the 'tasks' file.
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 */

/*
 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2143
 * 'cgrp'.  Return actual number of pids loaded.  No need to
2144 2145 2146 2147
 * task_lock(p) when reading out p->cgroup, since we're in an RCU
 * read section, so the css_set can't go away, and is
 * immutable after creation.
 */
2148
static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
2149
{
2150
	int n = 0, pid;
2151 2152
	struct cgroup_iter it;
	struct task_struct *tsk;
2153 2154
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
2155 2156
		if (unlikely(n == npids))
			break;
2157 2158 2159
		pid = task_pid_vnr(tsk);
		if (pid > 0)
			pidarray[n++] = pid;
2160
	}
2161
	cgroup_iter_end(cgrp, &it);
2162 2163 2164
	return n;
}

B
Balbir Singh 已提交
2165
/**
L
Li Zefan 已提交
2166
 * cgroupstats_build - build and fill cgroupstats
B
Balbir Singh 已提交
2167 2168 2169
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
L
Li Zefan 已提交
2170 2171 2172
 *
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
B
Balbir Singh 已提交
2173 2174 2175 2176
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
2177
	struct cgroup *cgrp;
B
Balbir Singh 已提交
2178 2179
	struct cgroup_iter it;
	struct task_struct *tsk;
2180

B
Balbir Singh 已提交
2181
	/*
2182 2183
	 * Validate dentry by checking the superblock operations,
	 * and make sure it's a directory.
B
Balbir Singh 已提交
2184
	 */
2185 2186
	if (dentry->d_sb->s_op != &cgroup_ops ||
	    !S_ISDIR(dentry->d_inode->i_mode))
B
Balbir Singh 已提交
2187 2188 2189
		 goto err;

	ret = 0;
2190
	cgrp = dentry->d_fsdata;
B
Balbir Singh 已提交
2191

2192 2193
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
B
Balbir Singh 已提交
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
2213
	cgroup_iter_end(cgrp, &it);
B
Balbir Singh 已提交
2214 2215 2216 2217 2218

err:
	return ret;
}

L
Li Zefan 已提交
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237
/*
 * Cache pids for all threads in the same pid namespace that are
 * opening the same "tasks" file.
 */
struct cgroup_pids {
	/* The node in cgrp->pids_list */
	struct list_head list;
	/* The cgroup those pids belong to */
	struct cgroup *cgrp;
	/* The namepsace those pids belong to */
	struct pid_namespace *ns;
	/* Array of process ids in the cgroup */
	pid_t *tasks_pids;
	/* How many files are using the this tasks_pids array */
	int use_count;
	/* Length of the current tasks_pids array */
	int length;
};

2238 2239 2240 2241 2242 2243
static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

/*
2244 2245 2246
 * seq_file methods for the "tasks" file. The seq_file position is the
 * next pid to display; the seq_file iterator is a pointer to the pid
 * in the cgroup->tasks_pids array.
2247
 */
2248 2249

static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos)
2250
{
2251 2252 2253 2254 2255 2256
	/*
	 * Initially we receive a position value that corresponds to
	 * one more than the last pid shown (or 0 on the first call or
	 * after a seek to the start). Use a binary-search to find the
	 * next pid to display, if any
	 */
L
Li Zefan 已提交
2257 2258
	struct cgroup_pids *cp = s->private;
	struct cgroup *cgrp = cp->cgrp;
2259 2260 2261 2262 2263
	int index = 0, pid = *pos;
	int *iter;

	down_read(&cgrp->pids_mutex);
	if (pid) {
L
Li Zefan 已提交
2264
		int end = cp->length;
S
Stephen Rothwell 已提交
2265

2266 2267
		while (index < end) {
			int mid = (index + end) / 2;
L
Li Zefan 已提交
2268
			if (cp->tasks_pids[mid] == pid) {
2269 2270
				index = mid;
				break;
L
Li Zefan 已提交
2271
			} else if (cp->tasks_pids[mid] <= pid)
2272 2273 2274 2275 2276 2277
				index = mid + 1;
			else
				end = mid;
		}
	}
	/* If we're off the end of the array, we're done */
L
Li Zefan 已提交
2278
	if (index >= cp->length)
2279 2280
		return NULL;
	/* Update the abstract position to be the actual pid that we found */
L
Li Zefan 已提交
2281
	iter = cp->tasks_pids + index;
2282 2283 2284 2285 2286 2287
	*pos = *iter;
	return iter;
}

static void cgroup_tasks_stop(struct seq_file *s, void *v)
{
L
Li Zefan 已提交
2288 2289
	struct cgroup_pids *cp = s->private;
	struct cgroup *cgrp = cp->cgrp;
2290 2291 2292 2293 2294
	up_read(&cgrp->pids_mutex);
}

static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos)
{
L
Li Zefan 已提交
2295
	struct cgroup_pids *cp = s->private;
2296
	int *p = v;
L
Li Zefan 已提交
2297
	int *end = cp->tasks_pids + cp->length;
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315

	/*
	 * Advance to the next pid in the array. If this goes off the
	 * end, we're done
	 */
	p++;
	if (p >= end) {
		return NULL;
	} else {
		*pos = *p;
		return p;
	}
}

static int cgroup_tasks_show(struct seq_file *s, void *v)
{
	return seq_printf(s, "%d\n", *(int *)v);
}
2316

J
James Morris 已提交
2317
static const struct seq_operations cgroup_tasks_seq_operations = {
2318 2319 2320 2321 2322 2323
	.start = cgroup_tasks_start,
	.stop = cgroup_tasks_stop,
	.next = cgroup_tasks_next,
	.show = cgroup_tasks_show,
};

L
Li Zefan 已提交
2324
static void release_cgroup_pid_array(struct cgroup_pids *cp)
2325
{
L
Li Zefan 已提交
2326 2327
	struct cgroup *cgrp = cp->cgrp;

2328
	down_write(&cgrp->pids_mutex);
L
Li Zefan 已提交
2329 2330 2331 2332 2333 2334
	BUG_ON(!cp->use_count);
	if (!--cp->use_count) {
		list_del(&cp->list);
		put_pid_ns(cp->ns);
		kfree(cp->tasks_pids);
		kfree(cp);
2335 2336
	}
	up_write(&cgrp->pids_mutex);
2337 2338
}

2339 2340
static int cgroup_tasks_release(struct inode *inode, struct file *file)
{
L
Li Zefan 已提交
2341 2342
	struct seq_file *seq;
	struct cgroup_pids *cp;
2343 2344 2345 2346

	if (!(file->f_mode & FMODE_READ))
		return 0;

L
Li Zefan 已提交
2347 2348 2349 2350
	seq = file->private_data;
	cp = seq->private;

	release_cgroup_pid_array(cp);
2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
	return seq_release(inode, file);
}

static struct file_operations cgroup_tasks_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.write = cgroup_file_write,
	.release = cgroup_tasks_release,
};

2361
/*
2362
 * Handle an open on 'tasks' file.  Prepare an array containing the
2363 2364
 * process id's of tasks currently attached to the cgroup being opened.
 */
2365

2366 2367
static int cgroup_tasks_open(struct inode *unused, struct file *file)
{
2368
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
L
Li Zefan 已提交
2369 2370
	struct pid_namespace *ns = current->nsproxy->pid_ns;
	struct cgroup_pids *cp;
2371 2372
	pid_t *pidarray;
	int npids;
2373
	int retval;
2374

2375
	/* Nothing to do for write-only files */
2376 2377 2378 2379 2380 2381 2382 2383 2384
	if (!(file->f_mode & FMODE_READ))
		return 0;

	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
2385
	npids = cgroup_task_count(cgrp);
2386 2387 2388 2389 2390
	pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
	if (!pidarray)
		return -ENOMEM;
	npids = pid_array_load(pidarray, npids, cgrp);
	sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2391

2392 2393 2394 2395 2396
	/*
	 * Store the array in the cgroup, freeing the old
	 * array if necessary
	 */
	down_write(&cgrp->pids_mutex);
L
Li Zefan 已提交
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417

	list_for_each_entry(cp, &cgrp->pids_list, list) {
		if (ns == cp->ns)
			goto found;
	}

	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
	if (!cp) {
		up_write(&cgrp->pids_mutex);
		kfree(pidarray);
		return -ENOMEM;
	}
	cp->cgrp = cgrp;
	cp->ns = ns;
	get_pid_ns(ns);
	list_add(&cp->list, &cgrp->pids_list);
found:
	kfree(cp->tasks_pids);
	cp->tasks_pids = pidarray;
	cp->length = npids;
	cp->use_count++;
2418 2419 2420 2421 2422 2423
	up_write(&cgrp->pids_mutex);

	file->f_op = &cgroup_tasks_operations;

	retval = seq_open(file, &cgroup_tasks_seq_operations);
	if (retval) {
L
Li Zefan 已提交
2424
		release_cgroup_pid_array(cp);
2425
		return retval;
2426
	}
L
Li Zefan 已提交
2427
	((struct seq_file *)file->private_data)->private = cp;
2428 2429 2430
	return 0;
}

2431
static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2432 2433
					    struct cftype *cft)
{
2434
	return notify_on_release(cgrp);
2435 2436
}

2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448
static int cgroup_write_notify_on_release(struct cgroup *cgrp,
					  struct cftype *cft,
					  u64 val)
{
	clear_bit(CGRP_RELEASABLE, &cgrp->flags);
	if (val)
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	else
		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	return 0;
}

2449 2450 2451
/*
 * for the common functions, 'private' gives the type of file
 */
2452 2453 2454 2455
static struct cftype files[] = {
	{
		.name = "tasks",
		.open = cgroup_tasks_open,
2456
		.write_u64 = cgroup_tasks_write,
2457 2458
		.release = cgroup_tasks_release,
		.private = FILE_TASKLIST,
L
Li Zefan 已提交
2459
		.mode = S_IRUGO | S_IWUSR,
2460 2461 2462 2463
	},

	{
		.name = "notify_on_release",
2464
		.read_u64 = cgroup_read_notify_on_release,
2465
		.write_u64 = cgroup_write_notify_on_release,
2466 2467 2468 2469 2470 2471
		.private = FILE_NOTIFY_ON_RELEASE,
	},
};

static struct cftype cft_release_agent = {
	.name = "release_agent",
2472 2473 2474
	.read_seq_string = cgroup_release_agent_show,
	.write_string = cgroup_release_agent_write,
	.max_write_len = PATH_MAX,
2475
	.private = FILE_RELEASE_AGENT,
2476 2477
};

2478
static int cgroup_populate_dir(struct cgroup *cgrp)
2479 2480 2481 2482 2483
{
	int err;
	struct cgroup_subsys *ss;

	/* First clear out any existing files */
2484
	cgroup_clear_directory(cgrp->dentry);
2485

2486
	err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2487 2488 2489
	if (err < 0)
		return err;

2490 2491
	if (cgrp == cgrp->top_cgroup) {
		if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2492 2493 2494
			return err;
	}

2495 2496
	for_each_subsys(cgrp->root, ss) {
		if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2497 2498
			return err;
	}
K
KAMEZAWA Hiroyuki 已提交
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
	/* This cgroup is ready now */
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		/*
		 * Update id->css pointer and make this css visible from
		 * CSS ID functions. This pointer will be dereferened
		 * from RCU-read-side without locks.
		 */
		if (css->id)
			rcu_assign_pointer(css->id->css, css);
	}
2510 2511 2512 2513 2514 2515

	return 0;
}

static void init_cgroup_css(struct cgroup_subsys_state *css,
			       struct cgroup_subsys *ss,
2516
			       struct cgroup *cgrp)
2517
{
2518
	css->cgroup = cgrp;
P
Paul Menage 已提交
2519
	atomic_set(&css->refcnt, 1);
2520
	css->flags = 0;
K
KAMEZAWA Hiroyuki 已提交
2521
	css->id = NULL;
2522
	if (cgrp == dummytop)
2523
		set_bit(CSS_ROOT, &css->flags);
2524 2525
	BUG_ON(cgrp->subsys[ss->subsys_id]);
	cgrp->subsys[ss->subsys_id] = css;
2526 2527
}

2528 2529 2530 2531 2532 2533 2534 2535
static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
{
	/* We need to take each hierarchy_mutex in a consistent order */
	int i;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (ss->root == root)
2536
			mutex_lock(&ss->hierarchy_mutex);
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
	}
}

static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
{
	int i;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (ss->root == root)
			mutex_unlock(&ss->hierarchy_mutex);
	}
}

2551
/*
L
Li Zefan 已提交
2552 2553 2554 2555
 * cgroup_create - create a cgroup
 * @parent: cgroup that will be parent of the new cgroup
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new inode
2556
 *
L
Li Zefan 已提交
2557
 * Must be called with the mutex on the parent inode held
2558 2559
 */
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
L
Li Zefan 已提交
2560
			     mode_t mode)
2561
{
2562
	struct cgroup *cgrp;
2563 2564 2565 2566 2567
	struct cgroupfs_root *root = parent->root;
	int err = 0;
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

2568 2569
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
		return -ENOMEM;

	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
	atomic_inc(&sb->s_active);

	mutex_lock(&cgroup_mutex);

2581
	init_cgroup_housekeeping(cgrp);
2582

2583 2584 2585
	cgrp->parent = parent;
	cgrp->root = parent->root;
	cgrp->top_cgroup = parent->top_cgroup;
2586

2587 2588 2589
	if (notify_on_release(parent))
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);

2590
	for_each_subsys(root, ss) {
2591
		struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2592 2593 2594 2595
		if (IS_ERR(css)) {
			err = PTR_ERR(css);
			goto err_destroy;
		}
2596
		init_cgroup_css(css, ss, cgrp);
K
KAMEZAWA Hiroyuki 已提交
2597 2598 2599 2600
		if (ss->use_id)
			if (alloc_css_id(ss, parent, cgrp))
				goto err_destroy;
		/* At error, ->destroy() callback has to free assigned ID. */
2601 2602
	}

2603
	cgroup_lock_hierarchy(root);
2604
	list_add(&cgrp->sibling, &cgrp->parent->children);
2605
	cgroup_unlock_hierarchy(root);
2606 2607
	root->number_of_cgroups++;

2608
	err = cgroup_create_dir(cgrp, dentry, mode);
2609 2610 2611 2612
	if (err < 0)
		goto err_remove;

	/* The cgroup directory was pre-locked for us */
2613
	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2614

2615
	err = cgroup_populate_dir(cgrp);
2616 2617 2618
	/* If err < 0, we have a half-filled directory - oh well ;) */

	mutex_unlock(&cgroup_mutex);
2619
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2620 2621 2622 2623 2624

	return 0;

 err_remove:

2625
	cgroup_lock_hierarchy(root);
2626
	list_del(&cgrp->sibling);
2627
	cgroup_unlock_hierarchy(root);
2628 2629 2630 2631 2632
	root->number_of_cgroups--;

 err_destroy:

	for_each_subsys(root, ss) {
2633 2634
		if (cgrp->subsys[ss->subsys_id])
			ss->destroy(ss, cgrp);
2635 2636 2637 2638 2639 2640 2641
	}

	mutex_unlock(&cgroup_mutex);

	/* Release the reference count that we took on the superblock */
	deactivate_super(sb);

2642
	kfree(cgrp);
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
	return err;
}

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

2654
static int cgroup_has_css_refs(struct cgroup *cgrp)
2655 2656 2657
{
	/* Check the reference count on each subsystem. Since we
	 * already established that there are no tasks in the
P
Paul Menage 已提交
2658
	 * cgroup, if the css refcount is also 1, then there should
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669
	 * be no outstanding references, so the subsystem is safe to
	 * destroy. We scan across all subsystems rather than using
	 * the per-hierarchy linked list of mounted subsystems since
	 * we can be called via check_for_release() with no
	 * synchronization other than RCU, and the subsystem linked
	 * list isn't RCU-safe */
	int i;
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		struct cgroup_subsys_state *css;
		/* Skip subsystems not in this hierarchy */
2670
		if (ss->root != cgrp->root)
2671
			continue;
2672
		css = cgrp->subsys[ss->subsys_id];
2673 2674 2675 2676 2677 2678
		/* When called from check_for_release() it's possible
		 * that by this point the cgroup has been removed
		 * and the css deleted. But a false-positive doesn't
		 * matter, since it can only happen if the cgroup
		 * has been deleted and hence no longer needs the
		 * release agent to be called anyway. */
P
Paul Menage 已提交
2679
		if (css && (atomic_read(&css->refcnt) > 1))
2680 2681 2682 2683 2684
			return 1;
	}
	return 0;
}

P
Paul Menage 已提交
2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699
/*
 * Atomically mark all (or else none) of the cgroup's CSS objects as
 * CSS_REMOVED. Return true on success, or false if the cgroup has
 * busy subsystems. Call with cgroup_mutex held
 */

static int cgroup_clear_css_refs(struct cgroup *cgrp)
{
	struct cgroup_subsys *ss;
	unsigned long flags;
	bool failed = false;
	local_irq_save(flags);
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		int refcnt;
2700
		while (1) {
P
Paul Menage 已提交
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
			/* We can only remove a CSS with a refcnt==1 */
			refcnt = atomic_read(&css->refcnt);
			if (refcnt > 1) {
				failed = true;
				goto done;
			}
			BUG_ON(!refcnt);
			/*
			 * Drop the refcnt to 0 while we check other
			 * subsystems. This will cause any racing
			 * css_tryget() to spin until we set the
			 * CSS_REMOVED bits or abort
			 */
2714 2715 2716 2717
			if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
				break;
			cpu_relax();
		}
P
Paul Menage 已提交
2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
	}
 done:
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		if (failed) {
			/*
			 * Restore old refcnt if we previously managed
			 * to clear it from 1 to 0
			 */
			if (!atomic_read(&css->refcnt))
				atomic_set(&css->refcnt, 1);
		} else {
			/* Commit the fact that the CSS is removed */
			set_bit(CSS_REMOVED, &css->flags);
		}
	}
	local_irq_restore(flags);
	return !failed;
}

2738 2739
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
2740
	struct cgroup *cgrp = dentry->d_fsdata;
2741 2742
	struct dentry *d;
	struct cgroup *parent;
2743 2744
	DEFINE_WAIT(wait);
	int ret;
2745 2746

	/* the vfs holds both inode->i_mutex already */
2747
again:
2748
	mutex_lock(&cgroup_mutex);
2749
	if (atomic_read(&cgrp->count) != 0) {
2750 2751 2752
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2753
	if (!list_empty(&cgrp->children)) {
2754 2755 2756
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2757
	mutex_unlock(&cgroup_mutex);
L
Li Zefan 已提交
2758

2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
	/*
	 * In general, subsystem has no css->refcnt after pre_destroy(). But
	 * in racy cases, subsystem may have to get css->refcnt after
	 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
	 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
	 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
	 * and subsystem's reference count handling. Please see css_get/put
	 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
	 */
	set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);

2770
	/*
L
Li Zefan 已提交
2771 2772
	 * Call pre_destroy handlers of subsys. Notify subsystems
	 * that rmdir() request comes.
2773
	 */
2774
	ret = cgroup_call_pre_destroy(cgrp);
2775 2776
	if (ret) {
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2777
		return ret;
2778
	}
2779

2780 2781
	mutex_lock(&cgroup_mutex);
	parent = cgrp->parent;
2782
	if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
2783
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2784 2785 2786
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2787 2788 2789
	prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
	if (!cgroup_clear_css_refs(cgrp)) {
		mutex_unlock(&cgroup_mutex);
2790 2791 2792 2793 2794 2795
		/*
		 * Because someone may call cgroup_wakeup_rmdir_waiter() before
		 * prepare_to_wait(), we need to check this flag.
		 */
		if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
			schedule();
2796 2797 2798 2799 2800 2801 2802 2803 2804
		finish_wait(&cgroup_rmdir_waitq, &wait);
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
		if (signal_pending(current))
			return -EINTR;
		goto again;
	}
	/* NO css_tryget() can success after here. */
	finish_wait(&cgroup_rmdir_waitq, &wait);
	clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2805

2806
	spin_lock(&release_list_lock);
2807 2808 2809
	set_bit(CGRP_REMOVED, &cgrp->flags);
	if (!list_empty(&cgrp->release_list))
		list_del(&cgrp->release_list);
2810
	spin_unlock(&release_list_lock);
2811 2812 2813

	cgroup_lock_hierarchy(cgrp->root);
	/* delete this cgroup from parent->children */
2814
	list_del(&cgrp->sibling);
2815 2816
	cgroup_unlock_hierarchy(cgrp->root);

2817 2818
	spin_lock(&cgrp->dentry->d_lock);
	d = dget(cgrp->dentry);
2819 2820 2821 2822 2823
	spin_unlock(&d->d_lock);

	cgroup_d_remove_dir(d);
	dput(d);

2824
	set_bit(CGRP_RELEASABLE, &parent->flags);
2825 2826
	check_for_release(parent);

2827 2828 2829 2830
	mutex_unlock(&cgroup_mutex);
	return 0;
}

2831
static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
2832 2833
{
	struct cgroup_subsys_state *css;
D
Diego Calleja 已提交
2834 2835

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2836 2837

	/* Create the top cgroup state for this subsystem */
2838
	list_add(&ss->sibling, &rootnode.subsys_list);
2839 2840 2841 2842 2843 2844
	ss->root = &rootnode;
	css = ss->create(ss, dummytop);
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
	init_cgroup_css(css, ss, dummytop);

L
Li Zefan 已提交
2845
	/* Update the init_css_set to contain a subsys
2846
	 * pointer to this state - since the subsystem is
L
Li Zefan 已提交
2847 2848 2849
	 * newly registered, all tasks and hence the
	 * init_css_set is in the subsystem's top cgroup. */
	init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2850 2851 2852

	need_forkexit_callback |= ss->fork || ss->exit;

L
Li Zefan 已提交
2853 2854 2855 2856 2857
	/* At system boot, before all subsystems have been
	 * registered, no tasks have been forked, so we don't
	 * need to invoke fork callbacks here. */
	BUG_ON(!list_empty(&init_task.tasks));

2858
	mutex_init(&ss->hierarchy_mutex);
2859
	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
2860 2861 2862 2863
	ss->active = 1;
}

/**
L
Li Zefan 已提交
2864 2865 2866 2867
 * cgroup_init_early - cgroup initialization at system boot
 *
 * Initialize cgroups at system boot, and initialize any
 * subsystems that request early init.
2868 2869 2870 2871
 */
int __init cgroup_init_early(void)
{
	int i;
2872
	atomic_set(&init_css_set.refcount, 1);
2873 2874
	INIT_LIST_HEAD(&init_css_set.cg_links);
	INIT_LIST_HEAD(&init_css_set.tasks);
2875
	INIT_HLIST_NODE(&init_css_set.hlist);
2876
	css_set_count = 1;
2877
	init_cgroup_root(&rootnode);
2878 2879 2880 2881
	root_count = 1;
	init_task.cgroups = &init_css_set;

	init_css_set_link.cg = &init_css_set;
2882
	list_add(&init_css_set_link.cgrp_link_list,
2883 2884 2885
		 &rootnode.top_cgroup.css_sets);
	list_add(&init_css_set_link.cg_link_list,
		 &init_css_set.cg_links);
2886

2887 2888 2889
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
		INIT_HLIST_HEAD(&css_set_table[i]);

2890 2891 2892 2893 2894 2895 2896 2897
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];

		BUG_ON(!ss->name);
		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
		BUG_ON(!ss->create);
		BUG_ON(!ss->destroy);
		if (ss->subsys_id != i) {
D
Diego Calleja 已提交
2898
			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
			       ss->name, ss->subsys_id);
			BUG();
		}

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
L
Li Zefan 已提交
2910 2911 2912 2913
 * cgroup_init - cgroup initialization
 *
 * Register cgroup filesystem and /proc file, and initialize
 * any subsystems that didn't request early init.
2914 2915 2916 2917 2918
 */
int __init cgroup_init(void)
{
	int err;
	int i;
2919
	struct hlist_head *hhead;
2920 2921 2922 2923

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;
2924 2925 2926 2927 2928

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (!ss->early_init)
			cgroup_init_subsys(ss);
K
KAMEZAWA Hiroyuki 已提交
2929 2930
		if (ss->use_id)
			cgroup_subsys_init_idr(ss);
2931 2932
	}

2933 2934 2935 2936
	/* Add init_css_set to the hash table */
	hhead = css_set_hash(init_css_set.subsys);
	hlist_add_head(&init_css_set.hlist, hhead);

2937 2938 2939 2940
	err = register_filesystem(&cgroup_fs_type);
	if (err < 0)
		goto out;

L
Li Zefan 已提交
2941
	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2942

2943
out:
2944 2945 2946
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

2947 2948
	return err;
}
2949

2950 2951 2952 2953 2954 2955
/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
2956
 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
static int proc_cgroup_show(struct seq_file *m, void *v)
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

2986
	for_each_active_root(root) {
2987
		struct cgroup_subsys *ss;
2988
		struct cgroup *cgrp;
2989 2990 2991
		int subsys_id;
		int count = 0;

2992
		seq_printf(m, "%lu:", root->subsys_bits);
2993 2994 2995 2996
		for_each_subsys(root, ss)
			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
		seq_putc(m, ':');
		get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
2997 2998
		cgrp = task_cgroup(tsk, subsys_id);
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

static int cgroup_open(struct inode *inode, struct file *file)
{
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cgroup_show, pid);
}

struct file_operations proc_cgroup_operations = {
	.open		= cgroup_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
	int i;

3032
	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
3033 3034 3035
	mutex_lock(&cgroup_mutex);
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
3036
		seq_printf(m, "%s\t%lu\t%d\t%d\n",
3037
			   ss->name, ss->root->subsys_bits,
3038
			   ss->root->number_of_cgroups, !ss->disabled);
3039 3040 3041 3042 3043 3044 3045
	}
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
A
Al Viro 已提交
3046
	return single_open(file, proc_cgroupstats_show, NULL);
3047 3048 3049 3050 3051 3052 3053 3054 3055
}

static struct file_operations proc_cgroupstats_operations = {
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

3056 3057
/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
L
Li Zefan 已提交
3058
 * @child: pointer to task_struct of forking parent process.
3059 3060 3061 3062 3063 3064
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
 * it was not made under the protection of RCU or cgroup_mutex, so
3065
 * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
3066 3067
 * have already changed current->cgroups, allowing the previously
 * referenced cgroup group to be removed and freed.
3068 3069 3070 3071 3072 3073
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
3074 3075 3076 3077 3078
	task_lock(current);
	child->cgroups = current->cgroups;
	get_css_set(child->cgroups);
	task_unlock(current);
	INIT_LIST_HEAD(&child->cg_list);
3079 3080 3081
}

/**
L
Li Zefan 已提交
3082 3083 3084 3085 3086 3087
 * cgroup_fork_callbacks - run fork callbacks
 * @child: the new task
 *
 * Called on a new task very soon before adding it to the
 * tasklist. No need to take any locks since no-one can
 * be operating on this task.
3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100
 */
void cgroup_fork_callbacks(struct task_struct *child)
{
	if (need_forkexit_callback) {
		int i;
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->fork)
				ss->fork(ss, child);
		}
	}
}

3101
/**
L
Li Zefan 已提交
3102 3103 3104 3105 3106 3107 3108 3109
 * cgroup_post_fork - called on a new task after adding it to the task list
 * @child: the task in question
 *
 * Adds the task to the list running through its css_set if necessary.
 * Has to be after the task is visible on the task list in case we race
 * with the first call to cgroup_iter_start() - to guarantee that the
 * new task ends up on its list.
 */
3110 3111 3112 3113
void cgroup_post_fork(struct task_struct *child)
{
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
3114
		task_lock(child);
3115 3116
		if (list_empty(&child->cg_list))
			list_add(&child->cg_list, &child->cgroups->tasks);
3117
		task_unlock(child);
3118 3119 3120
		write_unlock(&css_set_lock);
	}
}
3121 3122 3123
/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
L
Li Zefan 已提交
3124
 * @run_callback: run exit callbacks?
3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
3153 3154
 *    which wards off any cgroup_attach_task() attempts, or task is a failed
 *    fork, never visible to cgroup_attach_task.
3155 3156 3157 3158
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
	int i;
3159
	struct css_set *cg;
3160 3161 3162 3163 3164 3165 3166 3167

	if (run_callbacks && need_forkexit_callback) {
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->exit)
				ss->exit(ss, tsk);
		}
	}
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
			list_del(&tsk->cg_list);
		write_unlock(&css_set_lock);
	}

3181 3182
	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
3183 3184
	cg = tsk->cgroups;
	tsk->cgroups = &init_css_set;
3185
	task_unlock(tsk);
3186
	if (cg)
3187
		put_css_set_taskexit(cg);
3188
}
3189 3190

/**
L
Li Zefan 已提交
3191 3192 3193
 * cgroup_clone - clone the cgroup the given subsystem is attached to
 * @tsk: the task to be moved
 * @subsys: the given subsystem
3194
 * @nodename: the name for the new cgroup
L
Li Zefan 已提交
3195 3196 3197 3198
 *
 * Duplicate the current cgroup in the hierarchy that the given
 * subsystem is attached to, and move this task into the new
 * child.
3199
 */
3200 3201
int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
							char *nodename)
3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224
{
	struct dentry *dentry;
	int ret = 0;
	struct cgroup *parent, *child;
	struct inode *inode;
	struct css_set *cg;
	struct cgroupfs_root *root;
	struct cgroup_subsys *ss;

	/* We shouldn't be called by an unregistered subsystem */
	BUG_ON(!subsys->active);

	/* First figure out what hierarchy and cgroup we're dealing
	 * with, and pin them so we can drop cgroup_mutex */
	mutex_lock(&cgroup_mutex);
 again:
	root = subsys->root;
	if (root == &rootnode) {
		mutex_unlock(&cgroup_mutex);
		return 0;
	}

	/* Pin the hierarchy */
3225
	if (!atomic_inc_not_zero(&root->sb->s_active)) {
3226 3227 3228 3229
		/* We race with the final deactivate_super() */
		mutex_unlock(&cgroup_mutex);
		return 0;
	}
3230

3231
	/* Keep the cgroup alive */
3232 3233 3234
	task_lock(tsk);
	parent = task_cgroup(tsk, subsys->subsys_id);
	cg = tsk->cgroups;
3235
	get_css_set(cg);
3236
	task_unlock(tsk);
3237

3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
	mutex_unlock(&cgroup_mutex);

	/* Now do the VFS work to create a cgroup */
	inode = parent->dentry->d_inode;

	/* Hold the parent directory mutex across this operation to
	 * stop anyone else deleting the new cgroup */
	mutex_lock(&inode->i_mutex);
	dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
	if (IS_ERR(dentry)) {
		printk(KERN_INFO
D
Diego Calleja 已提交
3249
		       "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
3250 3251 3252 3253 3254 3255
		       PTR_ERR(dentry));
		ret = PTR_ERR(dentry);
		goto out_release;
	}

	/* Create the cgroup directory, which also creates the cgroup */
3256
	ret = vfs_mkdir(inode, dentry, 0755);
3257
	child = __d_cgrp(dentry);
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273
	dput(dentry);
	if (ret) {
		printk(KERN_INFO
		       "Failed to create cgroup %s: %d\n", nodename,
		       ret);
		goto out_release;
	}

	/* The cgroup now exists. Retake cgroup_mutex and check
	 * that we're still in the same state that we thought we
	 * were. */
	mutex_lock(&cgroup_mutex);
	if ((root != subsys->root) ||
	    (parent != task_cgroup(tsk, subsys->subsys_id))) {
		/* Aargh, we raced ... */
		mutex_unlock(&inode->i_mutex);
3274
		put_css_set(cg);
3275

3276
		deactivate_super(root->sb);
3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
		/* The cgroup is still accessible in the VFS, but
		 * we're not going to try to rmdir() it at this
		 * point. */
		printk(KERN_INFO
		       "Race in cgroup_clone() - leaking cgroup %s\n",
		       nodename);
		goto again;
	}

	/* do any required auto-setup */
	for_each_subsys(root, ss) {
		if (ss->post_clone)
			ss->post_clone(ss, child);
	}

	/* All seems fine. Finish by moving the task into the new cgroup */
3293
	ret = cgroup_attach_task(child, tsk);
3294 3295 3296 3297
	mutex_unlock(&cgroup_mutex);

 out_release:
	mutex_unlock(&inode->i_mutex);
3298 3299

	mutex_lock(&cgroup_mutex);
3300
	put_css_set(cg);
3301
	mutex_unlock(&cgroup_mutex);
3302
	deactivate_super(root->sb);
3303 3304 3305
	return ret;
}

L
Li Zefan 已提交
3306
/**
3307
 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
L
Li Zefan 已提交
3308
 * @cgrp: the cgroup in question
3309
 * @task: the task in question
L
Li Zefan 已提交
3310
 *
3311 3312
 * See if @cgrp is a descendant of @task's cgroup in the appropriate
 * hierarchy.
3313 3314 3315 3316 3317 3318
 *
 * If we are sending in dummytop, then presumably we are creating
 * the top cgroup in the subsystem.
 *
 * Called only by the ns (nsproxy) cgroup.
 */
3319
int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
3320 3321 3322 3323 3324
{
	int ret;
	struct cgroup *target;
	int subsys_id;

3325
	if (cgrp == dummytop)
3326 3327
		return 1;

3328
	get_first_subsys(cgrp, NULL, &subsys_id);
3329
	target = task_cgroup(task, subsys_id);
3330 3331 3332
	while (cgrp != target && cgrp!= cgrp->top_cgroup)
		cgrp = cgrp->parent;
	ret = (cgrp == target);
3333 3334
	return ret;
}
3335

3336
static void check_for_release(struct cgroup *cgrp)
3337 3338 3339
{
	/* All of these checks rely on RCU to keep the cgroup
	 * structure alive */
3340 3341
	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
3342 3343 3344 3345 3346
		/* Control Group is currently removeable. If it's not
		 * already queued for a userspace notification, queue
		 * it now */
		int need_schedule_work = 0;
		spin_lock(&release_list_lock);
3347 3348 3349
		if (!cgroup_is_removed(cgrp) &&
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
			need_schedule_work = 1;
		}
		spin_unlock(&release_list_lock);
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

void __css_put(struct cgroup_subsys_state *css)
{
3360
	struct cgroup *cgrp = css->cgroup;
3361
	rcu_read_lock();
3362 3363 3364 3365 3366
	if (atomic_dec_return(&css->refcnt) == 1) {
		if (notify_on_release(cgrp)) {
			set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
		}
3367
		cgroup_wakeup_rmdir_waiter(cgrp);
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402
	}
	rcu_read_unlock();
}

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 */
static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
	spin_lock(&release_list_lock);
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
3403
		char *pathbuf = NULL, *agentbuf = NULL;
3404
		struct cgroup *cgrp = list_entry(release_list.next,
3405 3406
						    struct cgroup,
						    release_list);
3407
		list_del_init(&cgrp->release_list);
3408 3409
		spin_unlock(&release_list_lock);
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3410 3411 3412 3413 3414 3415 3416
		if (!pathbuf)
			goto continue_free;
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
			goto continue_free;
		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
		if (!agentbuf)
			goto continue_free;
3417 3418

		i = 0;
3419 3420
		argv[i++] = agentbuf;
		argv[i++] = pathbuf;
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		mutex_lock(&cgroup_mutex);
3435 3436 3437
 continue_free:
		kfree(pathbuf);
		kfree(agentbuf);
3438 3439 3440 3441 3442
		spin_lock(&release_list_lock);
	}
	spin_unlock(&release_list_lock);
	mutex_unlock(&cgroup_mutex);
}
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466

static int __init cgroup_disable(char *str)
{
	int i;
	char *token;

	while ((token = strsep(&str, ",")) != NULL) {
		if (!*token)
			continue;

		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];

			if (!strcmp(token, ss->name)) {
				ss->disabled = 1;
				printk(KERN_INFO "Disabling %s control group"
					" subsystem\n", ss->name);
				break;
			}
		}
	}
	return 1;
}
__setup("cgroup_disable=", cgroup_disable);
K
KAMEZAWA Hiroyuki 已提交
3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493

/*
 * Functons for CSS ID.
 */

/*
 *To get ID other than 0, this should be called when !cgroup_is_removed().
 */
unsigned short css_id(struct cgroup_subsys_state *css)
{
	struct css_id *cssid = rcu_dereference(css->id);

	if (cssid)
		return cssid->id;
	return 0;
}

unsigned short css_depth(struct cgroup_subsys_state *css)
{
	struct css_id *cssid = rcu_dereference(css->id);

	if (cssid)
		return cssid->depth;
	return 0;
}

bool css_is_ancestor(struct cgroup_subsys_state *child,
3494
		    const struct cgroup_subsys_state *root)
K
KAMEZAWA Hiroyuki 已提交
3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
{
	struct css_id *child_id = rcu_dereference(child->id);
	struct css_id *root_id = rcu_dereference(root->id);

	if (!child_id || !root_id || (child_id->depth < root_id->depth))
		return false;
	return child_id->stack[root_id->depth] == root_id->id;
}

static void __free_css_id_cb(struct rcu_head *head)
{
	struct css_id *id;

	id = container_of(head, struct css_id, rcu_head);
	kfree(id);
}

void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
{
	struct css_id *id = css->id;
	/* When this is called before css_id initialization, id can be NULL */
	if (!id)
		return;

	BUG_ON(!ss->use_id);

	rcu_assign_pointer(id->css, NULL);
	rcu_assign_pointer(css->id, NULL);
	spin_lock(&ss->id_lock);
	idr_remove(&ss->idr, id->id);
	spin_unlock(&ss->id_lock);
	call_rcu(&id->rcu_head, __free_css_id_cb);
}

/*
 * This is called by init or create(). Then, calls to this function are
 * always serialized (By cgroup_mutex() at create()).
 */

static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
{
	struct css_id *newid;
	int myid, error, size;

	BUG_ON(!ss->use_id);

	size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
	newid = kzalloc(size, GFP_KERNEL);
	if (!newid)
		return ERR_PTR(-ENOMEM);
	/* get id */
	if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
		error = -ENOMEM;
		goto err_out;
	}
	spin_lock(&ss->id_lock);
	/* Don't use 0. allocates an ID of 1-65535 */
	error = idr_get_new_above(&ss->idr, newid, 1, &myid);
	spin_unlock(&ss->id_lock);

	/* Returns error when there are no free spaces for new ID.*/
	if (error) {
		error = -ENOSPC;
		goto err_out;
	}
	if (myid > CSS_ID_MAX)
		goto remove_idr;

	newid->id = myid;
	newid->depth = depth;
	return newid;
remove_idr:
	error = -ENOSPC;
	spin_lock(&ss->id_lock);
	idr_remove(&ss->idr, myid);
	spin_unlock(&ss->id_lock);
err_out:
	kfree(newid);
	return ERR_PTR(error);

}

static int __init cgroup_subsys_init_idr(struct cgroup_subsys *ss)
{
	struct css_id *newid;
	struct cgroup_subsys_state *rootcss;

	spin_lock_init(&ss->id_lock);
	idr_init(&ss->idr);

	rootcss = init_css_set.subsys[ss->subsys_id];
	newid = get_new_cssid(ss, 0);
	if (IS_ERR(newid))
		return PTR_ERR(newid);

	newid->stack[0] = newid->id;
	newid->css = rootcss;
	rootcss->id = newid;
	return 0;
}

static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
			struct cgroup *child)
{
	int subsys_id, i, depth = 0;
	struct cgroup_subsys_state *parent_css, *child_css;
	struct css_id *child_id, *parent_id = NULL;

	subsys_id = ss->subsys_id;
	parent_css = parent->subsys[subsys_id];
	child_css = child->subsys[subsys_id];
	depth = css_depth(parent_css) + 1;
	parent_id = parent_css->id;

	child_id = get_new_cssid(ss, depth);
	if (IS_ERR(child_id))
		return PTR_ERR(child_id);

	for (i = 0; i < depth; i++)
		child_id->stack[i] = parent_id->stack[i];
	child_id->stack[depth] = child_id->id;
	/*
	 * child_id->css pointer will be set after this cgroup is available
	 * see cgroup_populate_dir()
	 */
	rcu_assign_pointer(child_css->id, child_id);

	return 0;
}

/**
 * css_lookup - lookup css by id
 * @ss: cgroup subsys to be looked into.
 * @id: the id
 *
 * Returns pointer to cgroup_subsys_state if there is valid one with id.
 * NULL if not. Should be called under rcu_read_lock()
 */
struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
{
	struct css_id *cssid = NULL;

	BUG_ON(!ss->use_id);
	cssid = idr_find(&ss->idr, id);

	if (unlikely(!cssid))
		return NULL;

	return rcu_dereference(cssid->css);
}

/**
 * css_get_next - lookup next cgroup under specified hierarchy.
 * @ss: pointer to subsystem
 * @id: current position of iteration.
 * @root: pointer to css. search tree under this.
 * @foundid: position of found object.
 *
 * Search next css under the specified hierarchy of rootid. Calling under
 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
 */
struct cgroup_subsys_state *
css_get_next(struct cgroup_subsys *ss, int id,
	     struct cgroup_subsys_state *root, int *foundid)
{
	struct cgroup_subsys_state *ret = NULL;
	struct css_id *tmp;
	int tmpid;
	int rootid = css_id(root);
	int depth = css_depth(root);

	if (!rootid)
		return NULL;

	BUG_ON(!ss->use_id);
	/* fill start point for scan */
	tmpid = id;
	while (1) {
		/*
		 * scan next entry from bitmap(tree), tmpid is updated after
		 * idr_get_next().
		 */
		spin_lock(&ss->id_lock);
		tmp = idr_get_next(&ss->idr, &tmpid);
		spin_unlock(&ss->id_lock);

		if (!tmp)
			break;
		if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
			ret = rcu_dereference(tmp->css);
			if (ret) {
				*foundid = tmpid;
				break;
			}
		}
		/* continue to scan from next id */
		tmpid = tmpid + 1;
	}
	return ret;
}