cgroup.c 99.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
26
#include <linux/ctype.h>
27 28 29 30 31 32 33 34
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
35
#include <linux/proc_fs.h>
36 37
#include <linux/rcupdate.h>
#include <linux/sched.h>
38
#include <linux/backing-dev.h>
39 40 41 42 43
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
44
#include <linux/sort.h>
45
#include <linux/kmod.h>
B
Balbir Singh 已提交
46 47
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
48
#include <linux/hash.h>
49
#include <linux/namei.h>
50
#include <linux/smp_lock.h>
L
Li Zefan 已提交
51
#include <linux/pid_namespace.h>
B
Balbir Singh 已提交
52

53 54
#include <asm/atomic.h>

55 56
static DEFINE_MUTEX(cgroup_mutex);

57 58 59 60 61 62 63
/* Generate an array of cgroup subsystem pointers */
#define SUBSYS(_x) &_x ## _subsys,

static struct cgroup_subsys *subsys[] = {
#include <linux/cgroup_subsys.h>
};

64 65
#define MAX_CGROUP_ROOT_NAMELEN 64

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
/*
 * A cgroupfs_root represents the root of a cgroup hierarchy,
 * and may be associated with a superblock to form an active
 * hierarchy
 */
struct cgroupfs_root {
	struct super_block *sb;

	/*
	 * The bitmask of subsystems intended to be attached to this
	 * hierarchy
	 */
	unsigned long subsys_bits;

	/* The bitmask of subsystems currently attached to this hierarchy */
	unsigned long actual_subsys_bits;

	/* A list running through the attached subsystems */
	struct list_head subsys_list;

	/* The root cgroup for this hierarchy */
	struct cgroup top_cgroup;

	/* Tracks how many cgroups are currently defined in hierarchy.*/
	int number_of_cgroups;

92
	/* A list running through the active hierarchies */
93 94 95 96
	struct list_head root_list;

	/* Hierarchy-specific flags */
	unsigned long flags;
97

98
	/* The path to use for release notifications. */
99
	char release_agent_path[PATH_MAX];
100 101 102

	/* The name for this hierarchy - may be empty */
	char name[MAX_CGROUP_ROOT_NAMELEN];
103 104 105 106 107 108 109 110 111
};

/*
 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 * subsystems that are otherwise unattached - it never has more than a
 * single cgroup, and all tasks are part of that cgroup.
 */
static struct cgroupfs_root rootnode;

K
KAMEZAWA Hiroyuki 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
/*
 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
 * cgroup_subsys->use_id != 0.
 */
#define CSS_ID_MAX	(65535)
struct css_id {
	/*
	 * The css to which this ID points. This pointer is set to valid value
	 * after cgroup is populated. If cgroup is removed, this will be NULL.
	 * This pointer is expected to be RCU-safe because destroy()
	 * is called after synchronize_rcu(). But for safe use, css_is_removed()
	 * css_tryget() should be used for avoiding race.
	 */
	struct cgroup_subsys_state *css;
	/*
	 * ID of this css.
	 */
	unsigned short id;
	/*
	 * Depth in hierarchy which this ID belongs to.
	 */
	unsigned short depth;
	/*
	 * ID is freed by RCU. (and lookup routine is RCU safe.)
	 */
	struct rcu_head rcu_head;
	/*
	 * Hierarchy of CSS ID belongs to.
	 */
	unsigned short stack[0]; /* Array of Length (depth+1) */
};


145 146 147
/* The list of hierarchy roots */

static LIST_HEAD(roots);
148
static int root_count;
149 150 151 152 153

/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
#define dummytop (&rootnode.top_cgroup)

/* This flag indicates whether tasks in the fork and exit paths should
L
Li Zefan 已提交
154 155 156
 * check for fork/exit handlers to call. This avoids us having to do
 * extra work in the fork/exit path if none of the subsystems need to
 * be called.
157
 */
158
static int need_forkexit_callback __read_mostly;
159 160

/* convenient tests for these bits */
161
inline int cgroup_is_removed(const struct cgroup *cgrp)
162
{
163
	return test_bit(CGRP_REMOVED, &cgrp->flags);
164 165 166 167 168 169 170
}

/* bits in struct cgroupfs_root flags field */
enum {
	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
};

171
static int cgroup_is_releasable(const struct cgroup *cgrp)
172 173
{
	const int bits =
174 175 176
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
177 178
}

179
static int notify_on_release(const struct cgroup *cgrp)
180
{
181
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
182 183
}

184 185 186 187 188 189 190
/*
 * for_each_subsys() allows you to iterate on each subsystem attached to
 * an active hierarchy
 */
#define for_each_subsys(_root, _ss) \
list_for_each_entry(_ss, &_root->subsys_list, sibling)

191 192
/* for_each_active_root() allows you to iterate across the active hierarchies */
#define for_each_active_root(_root) \
193 194
list_for_each_entry(_root, &roots, root_list)

195 196 197 198 199 200
/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
static DEFINE_SPINLOCK(release_list_lock);
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
201
static void check_for_release(struct cgroup *cgrp);
202

203 204 205 206 207 208
/* Link structure for associating css_set objects with cgroups */
struct cg_cgroup_link {
	/*
	 * List running through cg_cgroup_links associated with a
	 * cgroup, anchored on cgroup->css_sets
	 */
209
	struct list_head cgrp_link_list;
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
	/*
	 * List running through cg_cgroup_links pointing at a
	 * single css_set object, anchored on css_set->cg_links
	 */
	struct list_head cg_link_list;
	struct css_set *cg;
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
static struct cg_cgroup_link init_css_set_link;

K
KAMEZAWA Hiroyuki 已提交
228 229
static int cgroup_subsys_init_idr(struct cgroup_subsys *ss);

230 231 232 233 234 235
/* css_set_lock protects the list of css_set objects, and the
 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 * due to cgroup_iter_start() */
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
/* hash table for cgroup groups. This improves the performance to
 * find an existing css_set */
#define CSS_SET_HASH_BITS	7
#define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS)
static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];

static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
{
	int i;
	int index;
	unsigned long tmp = 0UL;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
		tmp += (unsigned long)css[i];
	tmp = (tmp >> 16) ^ tmp;

	index = hash_long(tmp, CSS_SET_HASH_BITS);

	return &css_set_table[index];
}

257 258 259 260
/* We don't maintain the lists running through each css_set to its
 * task until after the first call to cgroup_iter_start(). This
 * reduces the fork()/exit() overhead for people who have cgroups
 * compiled into their kernel but not actually in use */
261
static int use_task_css_set_links __read_mostly;
262 263 264 265 266 267 268

/* When we create or destroy a css_set, the operation simply
 * takes/releases a reference count on all the cgroups referenced
 * by subsystems in this css_set. This can end up multiple-counting
 * some cgroups, but that's OK - the ref-count is just a
 * busy/not-busy indicator; ensuring that we only count each cgroup
 * once would require taking a global lock to ensure that no
269 270 271 272 273 274 275
 * subsystems moved between hierarchies while we were doing so.
 *
 * Possible TODO: decide at boot time based on the number of
 * registered subsystems and the number of CPUs or NUMA nodes whether
 * it's better for performance to ref-count every subsystem, or to
 * take a global lock and only add one ref count to each hierarchy.
 */
276 277 278 279

/*
 * unlink a css_set from the list and free it
 */
280
static void unlink_css_set(struct css_set *cg)
281
{
K
KOSAKI Motohiro 已提交
282 283 284
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

285
	hlist_del(&cg->hlist);
286
	css_set_count--;
K
KOSAKI Motohiro 已提交
287 288 289

	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
				 cg_link_list) {
290
		list_del(&link->cg_link_list);
291
		list_del(&link->cgrp_link_list);
292 293
		kfree(link);
	}
294 295
}

296
static void __put_css_set(struct css_set *cg, int taskexit)
297 298
{
	int i;
299 300 301 302 303 304 305 306 307 308 309 310
	/*
	 * Ensure that the refcount doesn't hit zero while any readers
	 * can see it. Similar to atomic_dec_and_lock(), but for an
	 * rwlock
	 */
	if (atomic_add_unless(&cg->refcount, -1, 1))
		return;
	write_lock(&css_set_lock);
	if (!atomic_dec_and_test(&cg->refcount)) {
		write_unlock(&css_set_lock);
		return;
	}
311
	unlink_css_set(cg);
312
	write_unlock(&css_set_lock);
313 314 315

	rcu_read_lock();
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
316
		struct cgroup *cgrp = rcu_dereference(cg->subsys[i]->cgroup);
317 318
		if (atomic_dec_and_test(&cgrp->count) &&
		    notify_on_release(cgrp)) {
319
			if (taskexit)
320 321
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
322 323 324
		}
	}
	rcu_read_unlock();
325
	kfree(cg);
326 327
}

328 329 330 331 332
/*
 * refcounted get/put for css_set objects
 */
static inline void get_css_set(struct css_set *cg)
{
333
	atomic_inc(&cg->refcount);
334 335 336 337
}

static inline void put_css_set(struct css_set *cg)
{
338
	__put_css_set(cg, 0);
339 340
}

341 342
static inline void put_css_set_taskexit(struct css_set *cg)
{
343
	__put_css_set(cg, 1);
344 345
}

346 347 348
/*
 * find_existing_css_set() is a helper for
 * find_css_set(), and checks to see whether an existing
349
 * css_set is suitable.
350 351 352 353
 *
 * oldcg: the cgroup group that we're using before the cgroup
 * transition
 *
354
 * cgrp: the cgroup that we're moving into
355 356 357 358 359 360
 *
 * template: location in which to build the desired set of subsystem
 * state objects for the new cgroup group
 */
static struct css_set *find_existing_css_set(
	struct css_set *oldcg,
361
	struct cgroup *cgrp,
362
	struct cgroup_subsys_state *template[])
363 364
{
	int i;
365
	struct cgroupfs_root *root = cgrp->root;
366 367 368
	struct hlist_head *hhead;
	struct hlist_node *node;
	struct css_set *cg;
369 370 371 372

	/* Built the set of subsystem state objects that we want to
	 * see in the new css_set */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
373
		if (root->subsys_bits & (1UL << i)) {
374 375 376
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
377
			template[i] = cgrp->subsys[i];
378 379 380 381 382 383 384
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
			template[i] = oldcg->subsys[i];
		}
	}

385 386
	hhead = css_set_hash(template);
	hlist_for_each_entry(cg, node, hhead, hlist) {
387 388 389 390
		if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
			/* All subsystems matched */
			return cg;
		}
391
	}
392 393 394 395 396

	/* No existing cgroup group matched */
	return NULL;
}

397 398 399 400 401 402 403 404 405 406 407
static void free_cg_links(struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

	list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
		list_del(&link->cgrp_link_list);
		kfree(link);
	}
}

408 409
/*
 * allocate_cg_links() allocates "count" cg_cgroup_link structures
410
 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
411 412 413 414 415 416 417 418 419 420
 * success or a negative error
 */
static int allocate_cg_links(int count, struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	int i;
	INIT_LIST_HEAD(tmp);
	for (i = 0; i < count; i++) {
		link = kmalloc(sizeof(*link), GFP_KERNEL);
		if (!link) {
421
			free_cg_links(tmp);
422 423
			return -ENOMEM;
		}
424
		list_add(&link->cgrp_link_list, tmp);
425 426 427 428
	}
	return 0;
}

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
/**
 * link_css_set - a helper function to link a css_set to a cgroup
 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
 * @cg: the css_set to be linked
 * @cgrp: the destination cgroup
 */
static void link_css_set(struct list_head *tmp_cg_links,
			 struct css_set *cg, struct cgroup *cgrp)
{
	struct cg_cgroup_link *link;

	BUG_ON(list_empty(tmp_cg_links));
	link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
				cgrp_link_list);
	link->cg = cg;
	list_move(&link->cgrp_link_list, &cgrp->css_sets);
	list_add(&link->cg_link_list, &cg->cg_links);
}

448 449 450 451 452 453 454 455
/*
 * find_css_set() takes an existing cgroup group and a
 * cgroup object, and returns a css_set object that's
 * equivalent to the old group, but with the given cgroup
 * substituted into the appropriate hierarchy. Must be called with
 * cgroup_mutex held
 */
static struct css_set *find_css_set(
456
	struct css_set *oldcg, struct cgroup *cgrp)
457 458 459 460 461 462 463
{
	struct css_set *res;
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
	int i;

	struct list_head tmp_cg_links;

464 465
	struct hlist_head *hhead;

466 467
	/* First see if we already have a cgroup group that matches
	 * the desired set */
468
	read_lock(&css_set_lock);
469
	res = find_existing_css_set(oldcg, cgrp, template);
470 471
	if (res)
		get_css_set(res);
472
	read_unlock(&css_set_lock);
473 474 475 476 477 478 479 480 481 482 483 484 485 486

	if (res)
		return res;

	res = kmalloc(sizeof(*res), GFP_KERNEL);
	if (!res)
		return NULL;

	/* Allocate all the cg_cgroup_link objects that we'll need */
	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
		kfree(res);
		return NULL;
	}

487
	atomic_set(&res->refcount, 1);
488 489
	INIT_LIST_HEAD(&res->cg_links);
	INIT_LIST_HEAD(&res->tasks);
490
	INIT_HLIST_NODE(&res->hlist);
491 492 493 494 495 496 497 498

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
	memcpy(res->subsys, template, sizeof(res->subsys));

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
499
		struct cgroup *cgrp = res->subsys[i]->cgroup;
500
		struct cgroup_subsys *ss = subsys[i];
501
		atomic_inc(&cgrp->count);
502 503 504 505 506
		/*
		 * We want to add a link once per cgroup, so we
		 * only do it for the first subsystem in each
		 * hierarchy
		 */
507 508
		if (ss->root->subsys_list.next == &ss->sibling)
			link_css_set(&tmp_cg_links, res, cgrp);
509
	}
510 511
	if (list_empty(&rootnode.subsys_list))
		link_css_set(&tmp_cg_links, res, dummytop);
512 513 514 515

	BUG_ON(!list_empty(&tmp_cg_links));

	css_set_count++;
516 517 518 519 520

	/* Add this cgroup group to the hash table */
	hhead = css_set_hash(res->subsys);
	hlist_add_head(&res->hlist, hhead);

521 522 523
	write_unlock(&css_set_lock);

	return res;
524 525
}

526 527 528 529 530 531 532 533 534 535
/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
536
 * cgroup_attach_task() can increment it again.  Because a count of zero
537 538 539 540 541 542 543 544 545 546 547 548 549
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
L
Li Zefan 已提交
550 551
 * to the release agent with the name of the cgroup (path relative to
 * the root of cgroup file system) as the argument.
552 553 554 555 556 557 558 559 560 561 562
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
563
 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
L
Li Zefan 已提交
564
 * another.  It does so using cgroup_mutex, however there are
565 566 567
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
568
 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
569 570 571 572
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
573
 * update of a tasks cgroup pointer by cgroup_attach_task()
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
 */

/**
 * cgroup_lock - lock out any changes to cgroup structures
 *
 */
void cgroup_lock(void)
{
	mutex_lock(&cgroup_mutex);
}

/**
 * cgroup_unlock - release lock on cgroup changes
 *
 * Undo the lock taken in a previous cgroup_lock() call.
 */
void cgroup_unlock(void)
{
	mutex_unlock(&cgroup_mutex);
}

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
604
static int cgroup_populate_dir(struct cgroup *cgrp);
605
static const struct inode_operations cgroup_dir_inode_operations;
606 607 608
static struct file_operations proc_cgroupstats_operations;

static struct backing_dev_info cgroup_backing_dev_info = {
609
	.name		= "cgroup",
610
	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
611
};
612

K
KAMEZAWA Hiroyuki 已提交
613 614 615
static int alloc_css_id(struct cgroup_subsys *ss,
			struct cgroup *parent, struct cgroup *child);

616 617 618 619 620 621
static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
{
	struct inode *inode = new_inode(sb);

	if (inode) {
		inode->i_mode = mode;
622 623
		inode->i_uid = current_fsuid();
		inode->i_gid = current_fsgid();
624 625 626 627 628 629
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

630 631 632 633
/*
 * Call subsys's pre_destroy handler.
 * This is called before css refcnt check.
 */
634
static int cgroup_call_pre_destroy(struct cgroup *cgrp)
635 636
{
	struct cgroup_subsys *ss;
637 638
	int ret = 0;

639
	for_each_subsys(cgrp->root, ss)
640 641 642 643 644 645
		if (ss->pre_destroy) {
			ret = ss->pre_destroy(ss, cgrp);
			if (ret)
				break;
		}
	return ret;
646 647
}

648 649 650 651 652 653 654
static void free_cgroup_rcu(struct rcu_head *obj)
{
	struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);

	kfree(cgrp);
}

655 656 657 658
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
659
		struct cgroup *cgrp = dentry->d_fsdata;
660
		struct cgroup_subsys *ss;
661
		BUG_ON(!(cgroup_is_removed(cgrp)));
662 663 664 665 666 667 668
		/* It's possible for external users to be holding css
		 * reference counts on a cgroup; css_put() needs to
		 * be able to access the cgroup after decrementing
		 * the reference count in order to know if it needs to
		 * queue the cgroup to be handled by the release
		 * agent */
		synchronize_rcu();
669 670 671 672 673

		mutex_lock(&cgroup_mutex);
		/*
		 * Release the subsystem state objects.
		 */
674 675
		for_each_subsys(cgrp->root, ss)
			ss->destroy(ss, cgrp);
676 677 678 679

		cgrp->root->number_of_cgroups--;
		mutex_unlock(&cgroup_mutex);

680 681 682 683
		/*
		 * Drop the active superblock reference that we took when we
		 * created the cgroup
		 */
684 685
		deactivate_super(cgrp->root->sb);

686
		call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
	}
	iput(inode);
}

static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

static void cgroup_clear_directory(struct dentry *dentry)
{
	struct list_head *node;

	BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
	spin_lock(&dcache_lock);
	node = dentry->d_subdirs.next;
	while (node != &dentry->d_subdirs) {
		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
		list_del_init(node);
		if (d->d_inode) {
			/* This should never be called on a cgroup
			 * directory with child cgroups */
			BUG_ON(d->d_inode->i_mode & S_IFDIR);
			d = dget_locked(d);
			spin_unlock(&dcache_lock);
			d_delete(d);
			simple_unlink(dentry->d_inode, d);
			dput(d);
			spin_lock(&dcache_lock);
		}
		node = dentry->d_subdirs.next;
	}
	spin_unlock(&dcache_lock);
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
	cgroup_clear_directory(dentry);

	spin_lock(&dcache_lock);
	list_del_init(&dentry->d_u.d_child);
	spin_unlock(&dcache_lock);
	remove_dir(dentry);
}

739 740 741 742 743 744
/*
 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
 * reference to css->refcnt. In general, this refcnt is expected to goes down
 * to zero, soon.
 *
745
 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
746 747 748
 */
DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);

749
static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
750
{
751
	if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
752 753 754
		wake_up_all(&cgroup_rmdir_waitq);
}

755 756 757 758 759 760 761 762 763 764 765 766
void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
{
	css_get(css);
}

void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
{
	cgroup_wakeup_rmdir_waiter(css->cgroup);
	css_put(css);
}


767 768 769 770
static int rebind_subsystems(struct cgroupfs_root *root,
			      unsigned long final_bits)
{
	unsigned long added_bits, removed_bits;
771
	struct cgroup *cgrp = &root->top_cgroup;
772 773 774 775 776 777
	int i;

	removed_bits = root->actual_subsys_bits & ~final_bits;
	added_bits = final_bits & ~root->actual_subsys_bits;
	/* Check that any added subsystems are currently free */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
778
		unsigned long bit = 1UL << i;
779 780 781 782 783 784 785 786 787 788 789 790 791
		struct cgroup_subsys *ss = subsys[i];
		if (!(bit & added_bits))
			continue;
		if (ss->root != &rootnode) {
			/* Subsystem isn't free */
			return -EBUSY;
		}
	}

	/* Currently we don't handle adding/removing subsystems when
	 * any child cgroups exist. This is theoretically supportable
	 * but involves complex error handling, so it's being left until
	 * later */
792
	if (root->number_of_cgroups > 1)
793 794 795 796 797 798 799 800
		return -EBUSY;

	/* Process each subsystem */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		unsigned long bit = 1UL << i;
		if (bit & added_bits) {
			/* We're binding this subsystem to this hierarchy */
801
			BUG_ON(cgrp->subsys[i]);
802 803
			BUG_ON(!dummytop->subsys[i]);
			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
804
			mutex_lock(&ss->hierarchy_mutex);
805 806
			cgrp->subsys[i] = dummytop->subsys[i];
			cgrp->subsys[i]->cgroup = cgrp;
807
			list_move(&ss->sibling, &root->subsys_list);
808
			ss->root = root;
809
			if (ss->bind)
810
				ss->bind(ss, cgrp);
811
			mutex_unlock(&ss->hierarchy_mutex);
812 813
		} else if (bit & removed_bits) {
			/* We're removing this subsystem */
814 815
			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
816
			mutex_lock(&ss->hierarchy_mutex);
817 818 819
			if (ss->bind)
				ss->bind(ss, dummytop);
			dummytop->subsys[i]->cgroup = dummytop;
820
			cgrp->subsys[i] = NULL;
821
			subsys[i]->root = &rootnode;
822
			list_move(&ss->sibling, &rootnode.subsys_list);
823
			mutex_unlock(&ss->hierarchy_mutex);
824 825
		} else if (bit & final_bits) {
			/* Subsystem state should already exist */
826
			BUG_ON(!cgrp->subsys[i]);
827 828
		} else {
			/* Subsystem state shouldn't exist */
829
			BUG_ON(cgrp->subsys[i]);
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
		}
	}
	root->subsys_bits = root->actual_subsys_bits = final_bits;
	synchronize_rcu();

	return 0;
}

static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
{
	struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
	struct cgroup_subsys *ss;

	mutex_lock(&cgroup_mutex);
	for_each_subsys(root, ss)
		seq_printf(seq, ",%s", ss->name);
	if (test_bit(ROOT_NOPREFIX, &root->flags))
		seq_puts(seq, ",noprefix");
848 849
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
850 851
	if (strlen(root->name))
		seq_printf(seq, ",name=%s", root->name);
852 853 854 855 856 857 858
	mutex_unlock(&cgroup_mutex);
	return 0;
}

struct cgroup_sb_opts {
	unsigned long subsys_bits;
	unsigned long flags;
859
	char *release_agent;
860 861 862
	char *name;

	struct cgroupfs_root *new_root;
863 864 865 866 867 868 869 870
};

/* Convert a hierarchy specifier into a bitmask of subsystems and
 * flags. */
static int parse_cgroupfs_options(char *data,
				     struct cgroup_sb_opts *opts)
{
	char *token, *o = data ?: "all";
871 872 873 874 875
	unsigned long mask = (unsigned long)-1;

#ifdef CONFIG_CPUSETS
	mask = ~(1UL << cpuset_subsys_id);
#endif
876

877
	memset(opts, 0, sizeof(*opts));
878 879 880 881 882

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
		if (!strcmp(token, "all")) {
883 884 885 886 887 888 889 890
			/* Add all non-disabled subsystems */
			int i;
			opts->subsys_bits = 0;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				struct cgroup_subsys *ss = subsys[i];
				if (!ss->disabled)
					opts->subsys_bits |= 1ul << i;
			}
891 892
		} else if (!strcmp(token, "noprefix")) {
			set_bit(ROOT_NOPREFIX, &opts->flags);
893 894 895 896
		} else if (!strncmp(token, "release_agent=", 14)) {
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
897 898
			opts->release_agent =
				kstrndup(token + 14, PATH_MAX, GFP_KERNEL);
899 900
			if (!opts->release_agent)
				return -ENOMEM;
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
		} else if (!strncmp(token, "name=", 5)) {
			int i;
			const char *name = token + 5;
			/* Can't specify an empty name */
			if (!strlen(name))
				return -EINVAL;
			/* Must match [\w.-]+ */
			for (i = 0; i < strlen(name); i++) {
				char c = name[i];
				if (isalnum(c))
					continue;
				if ((c == '.') || (c == '-') || (c == '_'))
					continue;
				return -EINVAL;
			}
			/* Specifying two names is forbidden */
			if (opts->name)
				return -EINVAL;
			opts->name = kstrndup(name,
					      MAX_CGROUP_ROOT_NAMELEN,
					      GFP_KERNEL);
			if (!opts->name)
				return -ENOMEM;
924 925 926 927 928 929
		} else {
			struct cgroup_subsys *ss;
			int i;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				ss = subsys[i];
				if (!strcmp(token, ss->name)) {
930 931
					if (!ss->disabled)
						set_bit(i, &opts->subsys_bits);
932 933 934 935 936 937 938 939
					break;
				}
			}
			if (i == CGROUP_SUBSYS_COUNT)
				return -ENOENT;
		}
	}

940 941 942 943 944 945 946 947 948
	/*
	 * Option noprefix was introduced just for backward compatibility
	 * with the old cpuset, so we allow noprefix only if mounting just
	 * the cpuset subsystem.
	 */
	if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
	    (opts->subsys_bits & mask))
		return -EINVAL;

949
	/* We can't have an empty hierarchy */
950
	if (!opts->subsys_bits && !opts->name)
951 952 953 954 955 956 957 958 959
		return -EINVAL;

	return 0;
}

static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
960
	struct cgroup *cgrp = &root->top_cgroup;
961 962
	struct cgroup_sb_opts opts;

963
	lock_kernel();
964
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
965 966 967 968 969 970 971 972 973 974 975 976 977
	mutex_lock(&cgroup_mutex);

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

	/* Don't allow flags to change at remount */
	if (opts.flags != root->flags) {
		ret = -EINVAL;
		goto out_unlock;
	}

978 979 980 981 982 983
	/* Don't allow name to change at remount */
	if (opts.name && strcmp(opts.name, root->name)) {
		ret = -EINVAL;
		goto out_unlock;
	}

984
	ret = rebind_subsystems(root, opts.subsys_bits);
985 986
	if (ret)
		goto out_unlock;
987 988

	/* (re)populate subsystem files */
989
	cgroup_populate_dir(cgrp);
990

991 992
	if (opts.release_agent)
		strcpy(root->release_agent_path, opts.release_agent);
993
 out_unlock:
994
	kfree(opts.release_agent);
995
	kfree(opts.name);
996
	mutex_unlock(&cgroup_mutex);
997
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
998
	unlock_kernel();
999 1000 1001
	return ret;
}

1002
static const struct super_operations cgroup_ops = {
1003 1004 1005 1006 1007 1008
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

1009 1010 1011 1012 1013 1014
static void init_cgroup_housekeeping(struct cgroup *cgrp)
{
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
L
Li Zefan 已提交
1015
	INIT_LIST_HEAD(&cgrp->pids_list);
1016 1017
	init_rwsem(&cgrp->pids_mutex);
}
1018

1019 1020
static void init_cgroup_root(struct cgroupfs_root *root)
{
1021
	struct cgroup *cgrp = &root->top_cgroup;
1022 1023 1024
	INIT_LIST_HEAD(&root->subsys_list);
	INIT_LIST_HEAD(&root->root_list);
	root->number_of_cgroups = 1;
1025 1026
	cgrp->root = root;
	cgrp->top_cgroup = cgrp;
1027
	init_cgroup_housekeeping(cgrp);
1028 1029 1030 1031
}

static int cgroup_test_super(struct super_block *sb, void *data)
{
1032
	struct cgroup_sb_opts *opts = data;
1033 1034
	struct cgroupfs_root *root = sb->s_fs_info;

1035 1036 1037
	/* If we asked for a name then it must match */
	if (opts->name && strcmp(opts->name, root->name))
		return 0;
1038

1039 1040
	/* If we asked for subsystems then they must match */
	if (opts->subsys_bits && (opts->subsys_bits != root->subsys_bits))
1041 1042 1043 1044 1045
		return 0;

	return 1;
}

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
{
	struct cgroupfs_root *root;

	/* Empty hierarchies aren't supported */
	if (!opts->subsys_bits)
		return NULL;

	root = kzalloc(sizeof(*root), GFP_KERNEL);
	if (!root)
		return ERR_PTR(-ENOMEM);

	init_cgroup_root(root);
	root->subsys_bits = opts->subsys_bits;
	root->flags = opts->flags;
	if (opts->release_agent)
		strcpy(root->release_agent_path, opts->release_agent);
	if (opts->name)
		strcpy(root->name, opts->name);
	return root;
}

1068 1069 1070
static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
1071 1072 1073 1074 1075 1076 1077
	struct cgroup_sb_opts *opts = data;

	/* If we don't have a new root, we can't set up a new sb */
	if (!opts->new_root)
		return -EINVAL;

	BUG_ON(!opts->subsys_bits);
1078 1079 1080 1081 1082

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

1083 1084
	sb->s_fs_info = opts->new_root;
	opts->new_root->sb = sb;
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
	struct dentry *dentry;

	if (!inode)
		return -ENOMEM;

	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
	dentry = d_alloc_root(inode);
	if (!dentry) {
		iput(inode);
		return -ENOMEM;
	}
	sb->s_root = dentry;
	return 0;
}

static int cgroup_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
{
	struct cgroup_sb_opts opts;
1121
	struct cgroupfs_root *root;
1122 1123
	int ret = 0;
	struct super_block *sb;
1124
	struct cgroupfs_root *new_root;
1125 1126 1127

	/* First find the desired set of subsystems */
	ret = parse_cgroupfs_options(data, &opts);
1128 1129
	if (ret)
		goto out_err;
1130

1131 1132 1133 1134 1135 1136 1137 1138
	/*
	 * Allocate a new cgroup root. We may not need it if we're
	 * reusing an existing hierarchy.
	 */
	new_root = cgroup_root_from_opts(&opts);
	if (IS_ERR(new_root)) {
		ret = PTR_ERR(new_root);
		goto out_err;
1139
	}
1140
	opts.new_root = new_root;
1141

1142 1143
	/* Locate an existing or new sb for this hierarchy */
	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1144
	if (IS_ERR(sb)) {
1145 1146 1147
		ret = PTR_ERR(sb);
		kfree(opts.new_root);
		goto out_err;
1148 1149
	}

1150 1151 1152 1153 1154
	root = sb->s_fs_info;
	BUG_ON(!root);
	if (root == opts.new_root) {
		/* We used the new root structure, so this is a new hierarchy */
		struct list_head tmp_cg_links;
1155
		struct cgroup *root_cgrp = &root->top_cgroup;
1156
		struct inode *inode;
1157
		struct cgroupfs_root *existing_root;
1158
		int i;
1159 1160 1161 1162 1163 1164

		BUG_ON(sb->s_root != NULL);

		ret = cgroup_get_rootdir(sb);
		if (ret)
			goto drop_new_super;
1165
		inode = sb->s_root->d_inode;
1166

1167
		mutex_lock(&inode->i_mutex);
1168 1169
		mutex_lock(&cgroup_mutex);

1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
		if (strlen(root->name)) {
			/* Check for name clashes with existing mounts */
			for_each_active_root(existing_root) {
				if (!strcmp(existing_root->name, root->name)) {
					ret = -EBUSY;
					mutex_unlock(&cgroup_mutex);
					mutex_unlock(&inode->i_mutex);
					goto drop_new_super;
				}
			}
		}

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
		/*
		 * We're accessing css_set_count without locking
		 * css_set_lock here, but that's OK - it can only be
		 * increased by someone holding cgroup_lock, and
		 * that's us. The worst that can happen is that we
		 * have some link structures left over
		 */
		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
		if (ret) {
			mutex_unlock(&cgroup_mutex);
			mutex_unlock(&inode->i_mutex);
			goto drop_new_super;
		}

1196 1197 1198
		ret = rebind_subsystems(root, root->subsys_bits);
		if (ret == -EBUSY) {
			mutex_unlock(&cgroup_mutex);
1199
			mutex_unlock(&inode->i_mutex);
1200 1201
			free_cg_links(&tmp_cg_links);
			goto drop_new_super;
1202 1203 1204 1205 1206 1207
		}

		/* EBUSY should be the only error here */
		BUG_ON(ret);

		list_add(&root->root_list, &roots);
1208
		root_count++;
1209

1210
		sb->s_root->d_fsdata = root_cgrp;
1211 1212
		root->top_cgroup.dentry = sb->s_root;

1213 1214 1215
		/* Link the top cgroup in this hierarchy into all
		 * the css_set objects */
		write_lock(&css_set_lock);
1216 1217 1218
		for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
			struct hlist_head *hhead = &css_set_table[i];
			struct hlist_node *node;
1219
			struct css_set *cg;
1220

1221 1222
			hlist_for_each_entry(cg, node, hhead, hlist)
				link_css_set(&tmp_cg_links, cg, root_cgrp);
1223
		}
1224 1225 1226 1227
		write_unlock(&css_set_lock);

		free_cg_links(&tmp_cg_links);

1228 1229
		BUG_ON(!list_empty(&root_cgrp->sibling));
		BUG_ON(!list_empty(&root_cgrp->children));
1230 1231
		BUG_ON(root->number_of_cgroups != 1);

1232
		cgroup_populate_dir(root_cgrp);
1233
		mutex_unlock(&cgroup_mutex);
1234
		mutex_unlock(&inode->i_mutex);
1235 1236 1237 1238 1239 1240
	} else {
		/*
		 * We re-used an existing hierarchy - the new root (if
		 * any) is not needed
		 */
		kfree(opts.new_root);
1241 1242
	}

1243
	simple_set_mnt(mnt, sb);
1244 1245
	kfree(opts.release_agent);
	kfree(opts.name);
1246
	return 0;
1247 1248

 drop_new_super:
1249
	deactivate_locked_super(sb);
1250 1251 1252 1253
 out_err:
	kfree(opts.release_agent);
	kfree(opts.name);

1254 1255 1256 1257 1258
	return ret;
}

static void cgroup_kill_sb(struct super_block *sb) {
	struct cgroupfs_root *root = sb->s_fs_info;
1259
	struct cgroup *cgrp = &root->top_cgroup;
1260
	int ret;
K
KOSAKI Motohiro 已提交
1261 1262
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
1263 1264 1265 1266

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
1267 1268
	BUG_ON(!list_empty(&cgrp->children));
	BUG_ON(!list_empty(&cgrp->sibling));
1269 1270 1271 1272 1273 1274 1275 1276

	mutex_lock(&cgroup_mutex);

	/* Rebind all subsystems back to the default hierarchy */
	ret = rebind_subsystems(root, 0);
	/* Shouldn't be able to fail ... */
	BUG_ON(ret);

1277 1278 1279 1280 1281
	/*
	 * Release all the links from css_sets to this hierarchy's
	 * root cgroup
	 */
	write_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1282 1283 1284

	list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
				 cgrp_link_list) {
1285
		list_del(&link->cg_link_list);
1286
		list_del(&link->cgrp_link_list);
1287 1288 1289 1290
		kfree(link);
	}
	write_unlock(&css_set_lock);

1291 1292 1293 1294
	if (!list_empty(&root->root_list)) {
		list_del(&root->root_list);
		root_count--;
	}
1295

1296 1297 1298
	mutex_unlock(&cgroup_mutex);

	kill_litter_super(sb);
L
Li Zefan 已提交
1299
	kfree(root);
1300 1301 1302 1303 1304 1305 1306 1307
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
	.get_sb = cgroup_get_sb,
	.kill_sb = cgroup_kill_sb,
};

1308
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1309 1310 1311 1312 1313 1314 1315 1316 1317
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

L
Li Zefan 已提交
1318 1319 1320 1321 1322 1323
/**
 * cgroup_path - generate the path of a cgroup
 * @cgrp: the cgroup in question
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
1324 1325 1326
 * Called with cgroup_mutex held or else with an RCU-protected cgroup
 * reference.  Writes path of cgroup into buf.  Returns 0 on success,
 * -errno on error.
1327
 */
1328
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1329 1330
{
	char *start;
1331
	struct dentry *dentry = rcu_dereference(cgrp->dentry);
1332

1333
	if (!dentry || cgrp == dummytop) {
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
		/*
		 * Inactive subsystems have no dentry for their root
		 * cgroup
		 */
		strcpy(buf, "/");
		return 0;
	}

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
1346
		int len = dentry->d_name.len;
1347 1348
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
1349 1350 1351
		memcpy(start, cgrp->dentry->d_name.name, len);
		cgrp = cgrp->parent;
		if (!cgrp)
1352
			break;
1353
		dentry = rcu_dereference(cgrp->dentry);
1354
		if (!cgrp->parent)
1355 1356 1357 1358 1359 1360 1361 1362 1363
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}

1364 1365 1366 1367 1368
/*
 * Return the first subsystem attached to a cgroup's hierarchy, and
 * its subsystem id.
 */

1369
static void get_first_subsys(const struct cgroup *cgrp,
1370 1371
			struct cgroup_subsys_state **css, int *subsys_id)
{
1372
	const struct cgroupfs_root *root = cgrp->root;
1373 1374 1375 1376 1377
	const struct cgroup_subsys *test_ss;
	BUG_ON(list_empty(&root->subsys_list));
	test_ss = list_entry(root->subsys_list.next,
			     struct cgroup_subsys, sibling);
	if (css) {
1378
		*css = cgrp->subsys[test_ss->subsys_id];
1379 1380 1381 1382 1383 1384
		BUG_ON(!*css);
	}
	if (subsys_id)
		*subsys_id = test_ss->subsys_id;
}

L
Li Zefan 已提交
1385 1386 1387 1388
/**
 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
 * @cgrp: the cgroup the task is attaching to
 * @tsk: the task to be attached
1389
 *
L
Li Zefan 已提交
1390 1391
 * Call holding cgroup_mutex. May take task_lock of
 * the task 'tsk' during call.
1392
 */
1393
int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1394 1395 1396
{
	int retval = 0;
	struct cgroup_subsys *ss;
1397
	struct cgroup *oldcgrp;
1398
	struct css_set *cg;
1399
	struct css_set *newcg;
1400
	struct cgroupfs_root *root = cgrp->root;
1401 1402
	int subsys_id;

1403
	get_first_subsys(cgrp, NULL, &subsys_id);
1404 1405

	/* Nothing to do if the task is already in that cgroup */
1406 1407
	oldcgrp = task_cgroup(tsk, subsys_id);
	if (cgrp == oldcgrp)
1408 1409 1410 1411
		return 0;

	for_each_subsys(root, ss) {
		if (ss->can_attach) {
1412
			retval = ss->can_attach(ss, cgrp, tsk);
P
Paul Jackson 已提交
1413
			if (retval)
1414 1415 1416 1417
				return retval;
		}
	}

1418 1419 1420 1421
	task_lock(tsk);
	cg = tsk->cgroups;
	get_css_set(cg);
	task_unlock(tsk);
1422 1423 1424 1425
	/*
	 * Locate or allocate a new css_set for this task,
	 * based on its final set of cgroups
	 */
1426
	newcg = find_css_set(cg, cgrp);
1427
	put_css_set(cg);
P
Paul Jackson 已提交
1428
	if (!newcg)
1429 1430
		return -ENOMEM;

1431 1432 1433
	task_lock(tsk);
	if (tsk->flags & PF_EXITING) {
		task_unlock(tsk);
1434
		put_css_set(newcg);
1435 1436
		return -ESRCH;
	}
1437
	rcu_assign_pointer(tsk->cgroups, newcg);
1438 1439
	task_unlock(tsk);

1440 1441 1442 1443 1444 1445 1446 1447
	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
	if (!list_empty(&tsk->cg_list)) {
		list_del(&tsk->cg_list);
		list_add(&tsk->cg_list, &newcg->tasks);
	}
	write_unlock(&css_set_lock);

1448
	for_each_subsys(root, ss) {
P
Paul Jackson 已提交
1449
		if (ss->attach)
1450
			ss->attach(ss, cgrp, oldcgrp, tsk);
1451
	}
1452
	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1453
	synchronize_rcu();
1454
	put_css_set(cg);
1455 1456 1457 1458 1459

	/*
	 * wake up rmdir() waiter. the rmdir should fail since the cgroup
	 * is no longer empty.
	 */
1460
	cgroup_wakeup_rmdir_waiter(cgrp);
1461 1462 1463 1464
	return 0;
}

/*
1465 1466
 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
 * held. May take task_lock of task
1467
 */
1468
static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1469 1470
{
	struct task_struct *tsk;
1471
	const struct cred *cred = current_cred(), *tcred;
1472 1473 1474 1475
	int ret;

	if (pid) {
		rcu_read_lock();
1476
		tsk = find_task_by_vpid(pid);
1477 1478 1479 1480 1481
		if (!tsk || tsk->flags & PF_EXITING) {
			rcu_read_unlock();
			return -ESRCH;
		}

1482 1483 1484 1485 1486
		tcred = __task_cred(tsk);
		if (cred->euid &&
		    cred->euid != tcred->uid &&
		    cred->euid != tcred->suid) {
			rcu_read_unlock();
1487 1488
			return -EACCES;
		}
1489 1490
		get_task_struct(tsk);
		rcu_read_unlock();
1491 1492 1493 1494 1495
	} else {
		tsk = current;
		get_task_struct(tsk);
	}

1496
	ret = cgroup_attach_task(cgrp, tsk);
1497 1498 1499 1500
	put_task_struct(tsk);
	return ret;
}

1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
{
	int ret;
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	ret = attach_task_by_pid(cgrp, pid);
	cgroup_unlock();
	return ret;
}

1511 1512 1513 1514 1515
/* The various types of files and directories in a cgroup file system */
enum cgroup_filetype {
	FILE_ROOT,
	FILE_DIR,
	FILE_TASKLIST,
1516 1517
	FILE_NOTIFY_ON_RELEASE,
	FILE_RELEASE_AGENT,
1518 1519
};

1520 1521 1522 1523
/**
 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
 * @cgrp: the cgroup to be checked for liveness
 *
1524 1525
 * On success, returns true; the lock should be later released with
 * cgroup_unlock(). On failure returns false with no lock held.
1526
 */
1527
bool cgroup_lock_live_group(struct cgroup *cgrp)
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
{
	mutex_lock(&cgroup_mutex);
	if (cgroup_is_removed(cgrp)) {
		mutex_unlock(&cgroup_mutex);
		return false;
	}
	return true;
}

static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	strcpy(cgrp->root->release_agent_path, buffer);
1544
	cgroup_unlock();
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
	return 0;
}

static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
				     struct seq_file *seq)
{
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	seq_puts(seq, cgrp->root->release_agent_path);
	seq_putc(seq, '\n');
1555
	cgroup_unlock();
1556 1557 1558
	return 0;
}

1559 1560 1561
/* A buffer size big enough for numbers or short strings */
#define CGROUP_LOCAL_BUFFER_SIZE 64

1562
static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1563 1564 1565
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
1566
{
1567
	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
	int retval = 0;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */
1579
	strstrip(buffer);
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
	if (cft->write_u64) {
		u64 val = simple_strtoull(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_u64(cgrp, cft, val);
	} else {
		s64 val = simple_strtoll(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_s64(cgrp, cft, val);
	}
1591 1592 1593 1594 1595
	if (!retval)
		retval = nbytes;
	return retval;
}

1596 1597 1598 1599 1600
static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   const char __user *userbuf,
				   size_t nbytes, loff_t *unused_ppos)
{
1601
	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
	int retval = 0;
	size_t max_bytes = cft->max_write_len;
	char *buffer = local_buffer;

	if (!max_bytes)
		max_bytes = sizeof(local_buffer) - 1;
	if (nbytes >= max_bytes)
		return -E2BIG;
	/* Allocate a dynamic buffer if we need one */
	if (nbytes >= sizeof(local_buffer)) {
		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
		if (buffer == NULL)
			return -ENOMEM;
	}
L
Li Zefan 已提交
1616 1617 1618 1619
	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out;
	}
1620 1621 1622 1623 1624 1625

	buffer[nbytes] = 0;     /* nul-terminate */
	strstrip(buffer);
	retval = cft->write_string(cgrp, cft, buffer);
	if (!retval)
		retval = nbytes;
L
Li Zefan 已提交
1626
out:
1627 1628 1629 1630 1631
	if (buffer != local_buffer)
		kfree(buffer);
	return retval;
}

1632 1633 1634 1635
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1636
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1637

1638
	if (cgroup_is_removed(cgrp))
1639
		return -ENODEV;
1640
	if (cft->write)
1641
		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1642 1643
	if (cft->write_u64 || cft->write_s64)
		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1644 1645
	if (cft->write_string)
		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1646 1647 1648 1649
	if (cft->trigger) {
		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
		return ret ? ret : nbytes;
	}
1650
	return -EINVAL;
1651 1652
}

1653 1654 1655 1656
static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
1657
{
1658
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1659
	u64 val = cft->read_u64(cgrp, cft);
1660 1661 1662 1663 1664
	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1665 1666 1667 1668 1669
static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
{
1670
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1671 1672 1673 1674 1675 1676
	s64 val = cft->read_s64(cgrp, cft);
	int len = sprintf(tmp, "%lld\n", (long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1677 1678 1679 1680
static ssize_t cgroup_file_read(struct file *file, char __user *buf,
				   size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1681
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1682

1683
	if (cgroup_is_removed(cgrp))
1684 1685 1686
		return -ENODEV;

	if (cft->read)
1687
		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1688 1689
	if (cft->read_u64)
		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
1690 1691
	if (cft->read_s64)
		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
1692 1693 1694
	return -EINVAL;
}

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
/*
 * seqfile ops/methods for returning structured data. Currently just
 * supports string->u64 maps, but can be extended in future.
 */

struct cgroup_seqfile_state {
	struct cftype *cft;
	struct cgroup *cgroup;
};

static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
{
	struct seq_file *sf = cb->state;
	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
}

static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
	struct cgroup_seqfile_state *state = m->private;
	struct cftype *cft = state->cft;
1715 1716 1717 1718 1719 1720 1721 1722
	if (cft->read_map) {
		struct cgroup_map_cb cb = {
			.fill = cgroup_map_add,
			.state = m,
		};
		return cft->read_map(state->cgroup, cft, &cb);
	}
	return cft->read_seq_string(state->cgroup, cft, m);
1723 1724
}

1725
static int cgroup_seqfile_release(struct inode *inode, struct file *file)
1726 1727 1728 1729 1730 1731 1732 1733
{
	struct seq_file *seq = file->private_data;
	kfree(seq->private);
	return single_release(inode, file);
}

static struct file_operations cgroup_seqfile_operations = {
	.read = seq_read,
1734
	.write = cgroup_file_write,
1735 1736 1737 1738
	.llseek = seq_lseek,
	.release = cgroup_seqfile_release,
};

1739 1740 1741 1742 1743 1744 1745 1746 1747
static int cgroup_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;
	cft = __d_cft(file->f_dentry);
1748

1749
	if (cft->read_map || cft->read_seq_string) {
1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
		struct cgroup_seqfile_state *state =
			kzalloc(sizeof(*state), GFP_USER);
		if (!state)
			return -ENOMEM;
		state->cft = cft;
		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
		file->f_op = &cgroup_seqfile_operations;
		err = single_open(file, cgroup_seqfile_show, state);
		if (err < 0)
			kfree(state);
	} else if (cft->open)
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

static struct file_operations cgroup_file_operations = {
	.read = cgroup_file_read,
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

1799
static const struct inode_operations cgroup_dir_inode_operations = {
1800 1801 1802 1803 1804 1805
	.lookup = simple_lookup,
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
};

L
Li Zefan 已提交
1806
static int cgroup_create_file(struct dentry *dentry, mode_t mode,
1807 1808
				struct super_block *sb)
{
A
Al Viro 已提交
1809
	static const struct dentry_operations cgroup_dops = {
1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832
		.d_iput = cgroup_diput,
	};

	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);

		/* start with the directory inode held, so that we can
		 * populate it without racing with another mkdir */
1833
		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
	}
	dentry->d_op = &cgroup_dops;
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
L
Li Zefan 已提交
1845 1846 1847 1848 1849
 * cgroup_create_dir - create a directory for an object.
 * @cgrp: the cgroup we create the directory for. It must have a valid
 *        ->parent field. And we are going to fill its ->dentry field.
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new directory.
1850
 */
1851
static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
L
Li Zefan 已提交
1852
				mode_t mode)
1853 1854 1855 1856
{
	struct dentry *parent;
	int error = 0;

1857 1858
	parent = cgrp->parent->dentry;
	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1859
	if (!error) {
1860
		dentry->d_fsdata = cgrp;
1861
		inc_nlink(parent->d_inode);
1862
		rcu_assign_pointer(cgrp->dentry, dentry);
1863 1864 1865 1866 1867 1868 1869
		dget(dentry);
	}
	dput(dentry);

	return error;
}

L
Li Zefan 已提交
1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896
/**
 * cgroup_file_mode - deduce file mode of a control file
 * @cft: the control file in question
 *
 * returns cft->mode if ->mode is not 0
 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
 * returns S_IRUGO if it has only a read handler
 * returns S_IWUSR if it has only a write hander
 */
static mode_t cgroup_file_mode(const struct cftype *cft)
{
	mode_t mode = 0;

	if (cft->mode)
		return cft->mode;

	if (cft->read || cft->read_u64 || cft->read_s64 ||
	    cft->read_map || cft->read_seq_string)
		mode |= S_IRUGO;

	if (cft->write || cft->write_u64 || cft->write_s64 ||
	    cft->write_string || cft->trigger)
		mode |= S_IWUSR;

	return mode;
}

1897
int cgroup_add_file(struct cgroup *cgrp,
1898 1899 1900
		       struct cgroup_subsys *subsys,
		       const struct cftype *cft)
{
1901
	struct dentry *dir = cgrp->dentry;
1902 1903
	struct dentry *dentry;
	int error;
L
Li Zefan 已提交
1904
	mode_t mode;
1905 1906

	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1907
	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1908 1909 1910 1911 1912 1913 1914
		strcpy(name, subsys->name);
		strcat(name, ".");
	}
	strcat(name, cft->name);
	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
	dentry = lookup_one_len(name, dir, strlen(name));
	if (!IS_ERR(dentry)) {
L
Li Zefan 已提交
1915 1916
		mode = cgroup_file_mode(cft);
		error = cgroup_create_file(dentry, mode | S_IFREG,
1917
						cgrp->root->sb);
1918 1919 1920 1921 1922 1923 1924 1925
		if (!error)
			dentry->d_fsdata = (void *)cft;
		dput(dentry);
	} else
		error = PTR_ERR(dentry);
	return error;
}

1926
int cgroup_add_files(struct cgroup *cgrp,
1927 1928 1929 1930 1931 1932
			struct cgroup_subsys *subsys,
			const struct cftype cft[],
			int count)
{
	int i, err;
	for (i = 0; i < count; i++) {
1933
		err = cgroup_add_file(cgrp, subsys, &cft[i]);
1934 1935 1936 1937 1938 1939
		if (err)
			return err;
	}
	return 0;
}

L
Li Zefan 已提交
1940 1941 1942 1943 1944 1945
/**
 * cgroup_task_count - count the number of tasks in a cgroup.
 * @cgrp: the cgroup in question
 *
 * Return the number of tasks in the cgroup.
 */
1946
int cgroup_task_count(const struct cgroup *cgrp)
1947 1948
{
	int count = 0;
K
KOSAKI Motohiro 已提交
1949
	struct cg_cgroup_link *link;
1950 1951

	read_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1952
	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
1953
		count += atomic_read(&link->cg->refcount);
1954 1955
	}
	read_unlock(&css_set_lock);
1956 1957 1958
	return count;
}

1959 1960 1961 1962
/*
 * Advance a list_head iterator.  The iterator should be positioned at
 * the start of a css_set
 */
1963
static void cgroup_advance_iter(struct cgroup *cgrp,
1964 1965 1966 1967 1968 1969 1970 1971 1972
					  struct cgroup_iter *it)
{
	struct list_head *l = it->cg_link;
	struct cg_cgroup_link *link;
	struct css_set *cg;

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
1973
		if (l == &cgrp->css_sets) {
1974 1975 1976
			it->cg_link = NULL;
			return;
		}
1977
		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1978 1979 1980 1981 1982 1983
		cg = link->cg;
	} while (list_empty(&cg->tasks));
	it->cg_link = l;
	it->task = cg->tasks.next;
}

1984 1985 1986 1987 1988 1989 1990 1991 1992
/*
 * To reduce the fork() overhead for systems that are not actually
 * using their cgroups capability, we don't maintain the lists running
 * through each css_set to its tasks until we see the list actually
 * used - in other words after the first call to cgroup_iter_start().
 *
 * The tasklist_lock is not held here, as do_each_thread() and
 * while_each_thread() are protected by RCU.
 */
1993
static void cgroup_enable_task_cg_lists(void)
1994 1995 1996 1997 1998 1999
{
	struct task_struct *p, *g;
	write_lock(&css_set_lock);
	use_task_css_set_links = 1;
	do_each_thread(g, p) {
		task_lock(p);
2000 2001 2002 2003 2004 2005
		/*
		 * We should check if the process is exiting, otherwise
		 * it will race with cgroup_exit() in that the list
		 * entry won't be deleted though the process has exited.
		 */
		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2006 2007 2008 2009 2010 2011
			list_add(&p->cg_list, &p->cgroups->tasks);
		task_unlock(p);
	} while_each_thread(g, p);
	write_unlock(&css_set_lock);
}

2012
void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2013 2014 2015 2016 2017 2018
{
	/*
	 * The first time anyone tries to iterate across a cgroup,
	 * we need to enable the list linking each css_set to its
	 * tasks, and fix up all existing tasks.
	 */
2019 2020 2021
	if (!use_task_css_set_links)
		cgroup_enable_task_cg_lists();

2022
	read_lock(&css_set_lock);
2023 2024
	it->cg_link = &cgrp->css_sets;
	cgroup_advance_iter(cgrp, it);
2025 2026
}

2027
struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2028 2029 2030 2031
					struct cgroup_iter *it)
{
	struct task_struct *res;
	struct list_head *l = it->task;
2032
	struct cg_cgroup_link *link;
2033 2034 2035 2036 2037 2038 2039

	/* If the iterator cg is NULL, we have no tasks */
	if (!it->cg_link)
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
2040 2041
	link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
	if (l == &link->cg->tasks) {
2042 2043
		/* We reached the end of this task list - move on to
		 * the next cg_cgroup_link */
2044
		cgroup_advance_iter(cgrp, it);
2045 2046 2047 2048 2049 2050
	} else {
		it->task = l;
	}
	return res;
}

2051
void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2052 2053 2054 2055
{
	read_unlock(&css_set_lock);
}

2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively) simultaneously.
		 */
		return t1 > t2;
	}
}

/*
 * This function is a callback from heap_insert() and is used to order
 * the heap.
 * In this case we order the heap in descending task start time.
 */
static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

/**
 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
 * @scan: struct cgroup_scanner containing arguments for the scan
 *
 * Arguments include pointers to callback functions test_task() and
 * process_task().
 * Iterate through all the tasks in a cgroup, calling test_task() for each,
 * and if it returns true, call process_task() for it also.
 * The test_task pointer may be NULL, meaning always true (select all tasks).
 * Effectively duplicates cgroup_iter_{start,next,end}()
 * but does not lock css_set_lock for the call to process_task().
 * The struct cgroup_scanner may be embedded in any structure of the caller's
 * creation.
 * It is guaranteed that process_task() will act on every task that
 * is a member of the cgroup for the duration of this call. This
 * function may or may not call process_task() for tasks that exit
 * or move to a different cgroup during the call, or are forked or
 * move into the cgroup during the call.
 *
 * Note that test_task() may be called with locks held, and may in some
 * situations be called multiple times for the same task, so it should
 * be cheap.
 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
 * pre-allocated and will be used for heap operations (and its "gt" member will
 * be overwritten), else a temporary heap will be used (allocation of which
 * may cause this function to fail).
 */
int cgroup_scan_tasks(struct cgroup_scanner *scan)
{
	int retval, i;
	struct cgroup_iter it;
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap tmp_heap;
	struct ptr_heap *heap;
	struct timespec latest_time = { 0, 0 };

	if (scan->heap) {
		/* The caller supplied our heap and pre-allocated its memory */
		heap = scan->heap;
		heap->gt = &started_after;
	} else {
		/* We need to allocate our own heap memory */
		heap = &tmp_heap;
		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
		if (retval)
			/* cannot allocate the heap */
			return retval;
	}

 again:
	/*
	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
	 * to determine which are of interest, and using the scanner's
	 * "process_task" callback to process any of them that need an update.
	 * Since we don't want to hold any locks during the task updates,
	 * gather tasks to be processed in a heap structure.
	 * The heap is sorted by descending task start time.
	 * If the statically-sized heap fills up, we overflow tasks that
	 * started later, and in future iterations only consider tasks that
	 * started after the latest task in the previous pass. This
	 * guarantees forward progress and that we don't miss any tasks.
	 */
	heap->size = 0;
	cgroup_iter_start(scan->cg, &it);
	while ((p = cgroup_iter_next(scan->cg, &it))) {
		/*
		 * Only affect tasks that qualify per the caller's callback,
		 * if he provided one
		 */
		if (scan->test_task && !scan->test_task(p, scan))
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(heap, p);
		if (dropped == NULL) {
			/*
			 * The new task was inserted; the heap wasn't
			 * previously full
			 */
			get_task_struct(p);
		} else if (dropped != p) {
			/*
			 * The new task was inserted, and pushed out a
			 * different task
			 */
			get_task_struct(p);
			put_task_struct(dropped);
		}
		/*
		 * Else the new task was newer than anything already in
		 * the heap and wasn't inserted
		 */
	}
	cgroup_iter_end(scan->cg, &it);

	if (heap->size) {
		for (i = 0; i < heap->size; i++) {
2193
			struct task_struct *q = heap->ptrs[i];
2194
			if (i == 0) {
2195 2196
				latest_time = q->start_time;
				latest_task = q;
2197 2198
			}
			/* Process the task per the caller's callback */
2199 2200
			scan->process_task(q, scan);
			put_task_struct(q);
2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't get processed.
		 * Not the most efficient way to do it, but it avoids
		 * having to take callback_mutex in the fork path
		 */
		goto again;
	}
	if (heap == &tmp_heap)
		heap_free(&tmp_heap);
	return 0;
}

2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
/*
 * Stuff for reading the 'tasks' file.
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 */

/*
 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2228
 * 'cgrp'.  Return actual number of pids loaded.  No need to
2229 2230 2231 2232
 * task_lock(p) when reading out p->cgroup, since we're in an RCU
 * read section, so the css_set can't go away, and is
 * immutable after creation.
 */
2233
static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
2234
{
2235
	int n = 0, pid;
2236 2237
	struct cgroup_iter it;
	struct task_struct *tsk;
2238 2239
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
2240 2241
		if (unlikely(n == npids))
			break;
2242 2243 2244
		pid = task_pid_vnr(tsk);
		if (pid > 0)
			pidarray[n++] = pid;
2245
	}
2246
	cgroup_iter_end(cgrp, &it);
2247 2248 2249
	return n;
}

B
Balbir Singh 已提交
2250
/**
L
Li Zefan 已提交
2251
 * cgroupstats_build - build and fill cgroupstats
B
Balbir Singh 已提交
2252 2253 2254
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
L
Li Zefan 已提交
2255 2256 2257
 *
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
B
Balbir Singh 已提交
2258 2259 2260 2261
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
2262
	struct cgroup *cgrp;
B
Balbir Singh 已提交
2263 2264
	struct cgroup_iter it;
	struct task_struct *tsk;
2265

B
Balbir Singh 已提交
2266
	/*
2267 2268
	 * Validate dentry by checking the superblock operations,
	 * and make sure it's a directory.
B
Balbir Singh 已提交
2269
	 */
2270 2271
	if (dentry->d_sb->s_op != &cgroup_ops ||
	    !S_ISDIR(dentry->d_inode->i_mode))
B
Balbir Singh 已提交
2272 2273 2274
		 goto err;

	ret = 0;
2275
	cgrp = dentry->d_fsdata;
B
Balbir Singh 已提交
2276

2277 2278
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
B
Balbir Singh 已提交
2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
2298
	cgroup_iter_end(cgrp, &it);
B
Balbir Singh 已提交
2299 2300 2301 2302 2303

err:
	return ret;
}

L
Li Zefan 已提交
2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
/*
 * Cache pids for all threads in the same pid namespace that are
 * opening the same "tasks" file.
 */
struct cgroup_pids {
	/* The node in cgrp->pids_list */
	struct list_head list;
	/* The cgroup those pids belong to */
	struct cgroup *cgrp;
	/* The namepsace those pids belong to */
	struct pid_namespace *ns;
	/* Array of process ids in the cgroup */
	pid_t *tasks_pids;
	/* How many files are using the this tasks_pids array */
	int use_count;
	/* Length of the current tasks_pids array */
	int length;
};

2323 2324 2325 2326 2327 2328
static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

/*
2329 2330 2331
 * seq_file methods for the "tasks" file. The seq_file position is the
 * next pid to display; the seq_file iterator is a pointer to the pid
 * in the cgroup->tasks_pids array.
2332
 */
2333 2334

static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos)
2335
{
2336 2337 2338 2339 2340 2341
	/*
	 * Initially we receive a position value that corresponds to
	 * one more than the last pid shown (or 0 on the first call or
	 * after a seek to the start). Use a binary-search to find the
	 * next pid to display, if any
	 */
L
Li Zefan 已提交
2342 2343
	struct cgroup_pids *cp = s->private;
	struct cgroup *cgrp = cp->cgrp;
2344 2345 2346 2347 2348
	int index = 0, pid = *pos;
	int *iter;

	down_read(&cgrp->pids_mutex);
	if (pid) {
L
Li Zefan 已提交
2349
		int end = cp->length;
S
Stephen Rothwell 已提交
2350

2351 2352
		while (index < end) {
			int mid = (index + end) / 2;
L
Li Zefan 已提交
2353
			if (cp->tasks_pids[mid] == pid) {
2354 2355
				index = mid;
				break;
L
Li Zefan 已提交
2356
			} else if (cp->tasks_pids[mid] <= pid)
2357 2358 2359 2360 2361 2362
				index = mid + 1;
			else
				end = mid;
		}
	}
	/* If we're off the end of the array, we're done */
L
Li Zefan 已提交
2363
	if (index >= cp->length)
2364 2365
		return NULL;
	/* Update the abstract position to be the actual pid that we found */
L
Li Zefan 已提交
2366
	iter = cp->tasks_pids + index;
2367 2368 2369 2370 2371 2372
	*pos = *iter;
	return iter;
}

static void cgroup_tasks_stop(struct seq_file *s, void *v)
{
L
Li Zefan 已提交
2373 2374
	struct cgroup_pids *cp = s->private;
	struct cgroup *cgrp = cp->cgrp;
2375 2376 2377 2378 2379
	up_read(&cgrp->pids_mutex);
}

static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos)
{
L
Li Zefan 已提交
2380
	struct cgroup_pids *cp = s->private;
2381
	int *p = v;
L
Li Zefan 已提交
2382
	int *end = cp->tasks_pids + cp->length;
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400

	/*
	 * Advance to the next pid in the array. If this goes off the
	 * end, we're done
	 */
	p++;
	if (p >= end) {
		return NULL;
	} else {
		*pos = *p;
		return p;
	}
}

static int cgroup_tasks_show(struct seq_file *s, void *v)
{
	return seq_printf(s, "%d\n", *(int *)v);
}
2401

J
James Morris 已提交
2402
static const struct seq_operations cgroup_tasks_seq_operations = {
2403 2404 2405 2406 2407 2408
	.start = cgroup_tasks_start,
	.stop = cgroup_tasks_stop,
	.next = cgroup_tasks_next,
	.show = cgroup_tasks_show,
};

L
Li Zefan 已提交
2409
static void release_cgroup_pid_array(struct cgroup_pids *cp)
2410
{
L
Li Zefan 已提交
2411 2412
	struct cgroup *cgrp = cp->cgrp;

2413
	down_write(&cgrp->pids_mutex);
L
Li Zefan 已提交
2414 2415 2416 2417 2418 2419
	BUG_ON(!cp->use_count);
	if (!--cp->use_count) {
		list_del(&cp->list);
		put_pid_ns(cp->ns);
		kfree(cp->tasks_pids);
		kfree(cp);
2420 2421
	}
	up_write(&cgrp->pids_mutex);
2422 2423
}

2424 2425
static int cgroup_tasks_release(struct inode *inode, struct file *file)
{
L
Li Zefan 已提交
2426 2427
	struct seq_file *seq;
	struct cgroup_pids *cp;
2428 2429 2430 2431

	if (!(file->f_mode & FMODE_READ))
		return 0;

L
Li Zefan 已提交
2432 2433 2434 2435
	seq = file->private_data;
	cp = seq->private;

	release_cgroup_pid_array(cp);
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
	return seq_release(inode, file);
}

static struct file_operations cgroup_tasks_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.write = cgroup_file_write,
	.release = cgroup_tasks_release,
};

2446
/*
2447
 * Handle an open on 'tasks' file.  Prepare an array containing the
2448 2449
 * process id's of tasks currently attached to the cgroup being opened.
 */
2450

2451 2452
static int cgroup_tasks_open(struct inode *unused, struct file *file)
{
2453
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
L
Li Zefan 已提交
2454 2455
	struct pid_namespace *ns = current->nsproxy->pid_ns;
	struct cgroup_pids *cp;
2456 2457
	pid_t *pidarray;
	int npids;
2458
	int retval;
2459

2460
	/* Nothing to do for write-only files */
2461 2462 2463 2464 2465 2466 2467 2468 2469
	if (!(file->f_mode & FMODE_READ))
		return 0;

	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
2470
	npids = cgroup_task_count(cgrp);
2471 2472 2473 2474 2475
	pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
	if (!pidarray)
		return -ENOMEM;
	npids = pid_array_load(pidarray, npids, cgrp);
	sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2476

2477 2478 2479 2480 2481
	/*
	 * Store the array in the cgroup, freeing the old
	 * array if necessary
	 */
	down_write(&cgrp->pids_mutex);
L
Li Zefan 已提交
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502

	list_for_each_entry(cp, &cgrp->pids_list, list) {
		if (ns == cp->ns)
			goto found;
	}

	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
	if (!cp) {
		up_write(&cgrp->pids_mutex);
		kfree(pidarray);
		return -ENOMEM;
	}
	cp->cgrp = cgrp;
	cp->ns = ns;
	get_pid_ns(ns);
	list_add(&cp->list, &cgrp->pids_list);
found:
	kfree(cp->tasks_pids);
	cp->tasks_pids = pidarray;
	cp->length = npids;
	cp->use_count++;
2503 2504 2505 2506 2507 2508
	up_write(&cgrp->pids_mutex);

	file->f_op = &cgroup_tasks_operations;

	retval = seq_open(file, &cgroup_tasks_seq_operations);
	if (retval) {
L
Li Zefan 已提交
2509
		release_cgroup_pid_array(cp);
2510
		return retval;
2511
	}
L
Li Zefan 已提交
2512
	((struct seq_file *)file->private_data)->private = cp;
2513 2514 2515
	return 0;
}

2516
static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2517 2518
					    struct cftype *cft)
{
2519
	return notify_on_release(cgrp);
2520 2521
}

2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533
static int cgroup_write_notify_on_release(struct cgroup *cgrp,
					  struct cftype *cft,
					  u64 val)
{
	clear_bit(CGRP_RELEASABLE, &cgrp->flags);
	if (val)
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	else
		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	return 0;
}

2534 2535 2536
/*
 * for the common functions, 'private' gives the type of file
 */
2537 2538 2539 2540
static struct cftype files[] = {
	{
		.name = "tasks",
		.open = cgroup_tasks_open,
2541
		.write_u64 = cgroup_tasks_write,
2542 2543
		.release = cgroup_tasks_release,
		.private = FILE_TASKLIST,
L
Li Zefan 已提交
2544
		.mode = S_IRUGO | S_IWUSR,
2545 2546 2547 2548
	},

	{
		.name = "notify_on_release",
2549
		.read_u64 = cgroup_read_notify_on_release,
2550
		.write_u64 = cgroup_write_notify_on_release,
2551 2552 2553 2554 2555 2556
		.private = FILE_NOTIFY_ON_RELEASE,
	},
};

static struct cftype cft_release_agent = {
	.name = "release_agent",
2557 2558 2559
	.read_seq_string = cgroup_release_agent_show,
	.write_string = cgroup_release_agent_write,
	.max_write_len = PATH_MAX,
2560
	.private = FILE_RELEASE_AGENT,
2561 2562
};

2563
static int cgroup_populate_dir(struct cgroup *cgrp)
2564 2565 2566 2567 2568
{
	int err;
	struct cgroup_subsys *ss;

	/* First clear out any existing files */
2569
	cgroup_clear_directory(cgrp->dentry);
2570

2571
	err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2572 2573 2574
	if (err < 0)
		return err;

2575 2576
	if (cgrp == cgrp->top_cgroup) {
		if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2577 2578 2579
			return err;
	}

2580 2581
	for_each_subsys(cgrp->root, ss) {
		if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2582 2583
			return err;
	}
K
KAMEZAWA Hiroyuki 已提交
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594
	/* This cgroup is ready now */
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		/*
		 * Update id->css pointer and make this css visible from
		 * CSS ID functions. This pointer will be dereferened
		 * from RCU-read-side without locks.
		 */
		if (css->id)
			rcu_assign_pointer(css->id->css, css);
	}
2595 2596 2597 2598 2599 2600

	return 0;
}

static void init_cgroup_css(struct cgroup_subsys_state *css,
			       struct cgroup_subsys *ss,
2601
			       struct cgroup *cgrp)
2602
{
2603
	css->cgroup = cgrp;
P
Paul Menage 已提交
2604
	atomic_set(&css->refcnt, 1);
2605
	css->flags = 0;
K
KAMEZAWA Hiroyuki 已提交
2606
	css->id = NULL;
2607
	if (cgrp == dummytop)
2608
		set_bit(CSS_ROOT, &css->flags);
2609 2610
	BUG_ON(cgrp->subsys[ss->subsys_id]);
	cgrp->subsys[ss->subsys_id] = css;
2611 2612
}

2613 2614 2615 2616 2617 2618 2619 2620
static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
{
	/* We need to take each hierarchy_mutex in a consistent order */
	int i;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (ss->root == root)
2621
			mutex_lock(&ss->hierarchy_mutex);
2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
	}
}

static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
{
	int i;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (ss->root == root)
			mutex_unlock(&ss->hierarchy_mutex);
	}
}

2636
/*
L
Li Zefan 已提交
2637 2638 2639 2640
 * cgroup_create - create a cgroup
 * @parent: cgroup that will be parent of the new cgroup
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new inode
2641
 *
L
Li Zefan 已提交
2642
 * Must be called with the mutex on the parent inode held
2643 2644
 */
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
L
Li Zefan 已提交
2645
			     mode_t mode)
2646
{
2647
	struct cgroup *cgrp;
2648 2649 2650 2651 2652
	struct cgroupfs_root *root = parent->root;
	int err = 0;
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

2653 2654
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
		return -ENOMEM;

	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
	atomic_inc(&sb->s_active);

	mutex_lock(&cgroup_mutex);

2666
	init_cgroup_housekeeping(cgrp);
2667

2668 2669 2670
	cgrp->parent = parent;
	cgrp->root = parent->root;
	cgrp->top_cgroup = parent->top_cgroup;
2671

2672 2673 2674
	if (notify_on_release(parent))
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);

2675
	for_each_subsys(root, ss) {
2676
		struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2677 2678 2679 2680
		if (IS_ERR(css)) {
			err = PTR_ERR(css);
			goto err_destroy;
		}
2681
		init_cgroup_css(css, ss, cgrp);
K
KAMEZAWA Hiroyuki 已提交
2682 2683 2684 2685
		if (ss->use_id)
			if (alloc_css_id(ss, parent, cgrp))
				goto err_destroy;
		/* At error, ->destroy() callback has to free assigned ID. */
2686 2687
	}

2688
	cgroup_lock_hierarchy(root);
2689
	list_add(&cgrp->sibling, &cgrp->parent->children);
2690
	cgroup_unlock_hierarchy(root);
2691 2692
	root->number_of_cgroups++;

2693
	err = cgroup_create_dir(cgrp, dentry, mode);
2694 2695 2696 2697
	if (err < 0)
		goto err_remove;

	/* The cgroup directory was pre-locked for us */
2698
	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2699

2700
	err = cgroup_populate_dir(cgrp);
2701 2702 2703
	/* If err < 0, we have a half-filled directory - oh well ;) */

	mutex_unlock(&cgroup_mutex);
2704
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2705 2706 2707 2708 2709

	return 0;

 err_remove:

2710
	cgroup_lock_hierarchy(root);
2711
	list_del(&cgrp->sibling);
2712
	cgroup_unlock_hierarchy(root);
2713 2714 2715 2716 2717
	root->number_of_cgroups--;

 err_destroy:

	for_each_subsys(root, ss) {
2718 2719
		if (cgrp->subsys[ss->subsys_id])
			ss->destroy(ss, cgrp);
2720 2721 2722 2723 2724 2725 2726
	}

	mutex_unlock(&cgroup_mutex);

	/* Release the reference count that we took on the superblock */
	deactivate_super(sb);

2727
	kfree(cgrp);
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738
	return err;
}

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

2739
static int cgroup_has_css_refs(struct cgroup *cgrp)
2740 2741 2742
{
	/* Check the reference count on each subsystem. Since we
	 * already established that there are no tasks in the
P
Paul Menage 已提交
2743
	 * cgroup, if the css refcount is also 1, then there should
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
	 * be no outstanding references, so the subsystem is safe to
	 * destroy. We scan across all subsystems rather than using
	 * the per-hierarchy linked list of mounted subsystems since
	 * we can be called via check_for_release() with no
	 * synchronization other than RCU, and the subsystem linked
	 * list isn't RCU-safe */
	int i;
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		struct cgroup_subsys_state *css;
		/* Skip subsystems not in this hierarchy */
2755
		if (ss->root != cgrp->root)
2756
			continue;
2757
		css = cgrp->subsys[ss->subsys_id];
2758 2759 2760 2761 2762 2763
		/* When called from check_for_release() it's possible
		 * that by this point the cgroup has been removed
		 * and the css deleted. But a false-positive doesn't
		 * matter, since it can only happen if the cgroup
		 * has been deleted and hence no longer needs the
		 * release agent to be called anyway. */
P
Paul Menage 已提交
2764
		if (css && (atomic_read(&css->refcnt) > 1))
2765 2766 2767 2768 2769
			return 1;
	}
	return 0;
}

P
Paul Menage 已提交
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784
/*
 * Atomically mark all (or else none) of the cgroup's CSS objects as
 * CSS_REMOVED. Return true on success, or false if the cgroup has
 * busy subsystems. Call with cgroup_mutex held
 */

static int cgroup_clear_css_refs(struct cgroup *cgrp)
{
	struct cgroup_subsys *ss;
	unsigned long flags;
	bool failed = false;
	local_irq_save(flags);
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		int refcnt;
2785
		while (1) {
P
Paul Menage 已提交
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
			/* We can only remove a CSS with a refcnt==1 */
			refcnt = atomic_read(&css->refcnt);
			if (refcnt > 1) {
				failed = true;
				goto done;
			}
			BUG_ON(!refcnt);
			/*
			 * Drop the refcnt to 0 while we check other
			 * subsystems. This will cause any racing
			 * css_tryget() to spin until we set the
			 * CSS_REMOVED bits or abort
			 */
2799 2800 2801 2802
			if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
				break;
			cpu_relax();
		}
P
Paul Menage 已提交
2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
	}
 done:
	for_each_subsys(cgrp->root, ss) {
		struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
		if (failed) {
			/*
			 * Restore old refcnt if we previously managed
			 * to clear it from 1 to 0
			 */
			if (!atomic_read(&css->refcnt))
				atomic_set(&css->refcnt, 1);
		} else {
			/* Commit the fact that the CSS is removed */
			set_bit(CSS_REMOVED, &css->flags);
		}
	}
	local_irq_restore(flags);
	return !failed;
}

2823 2824
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
2825
	struct cgroup *cgrp = dentry->d_fsdata;
2826 2827
	struct dentry *d;
	struct cgroup *parent;
2828 2829
	DEFINE_WAIT(wait);
	int ret;
2830 2831

	/* the vfs holds both inode->i_mutex already */
2832
again:
2833
	mutex_lock(&cgroup_mutex);
2834
	if (atomic_read(&cgrp->count) != 0) {
2835 2836 2837
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2838
	if (!list_empty(&cgrp->children)) {
2839 2840 2841
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2842
	mutex_unlock(&cgroup_mutex);
L
Li Zefan 已提交
2843

2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
	/*
	 * In general, subsystem has no css->refcnt after pre_destroy(). But
	 * in racy cases, subsystem may have to get css->refcnt after
	 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
	 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
	 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
	 * and subsystem's reference count handling. Please see css_get/put
	 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
	 */
	set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);

2855
	/*
L
Li Zefan 已提交
2856 2857
	 * Call pre_destroy handlers of subsys. Notify subsystems
	 * that rmdir() request comes.
2858
	 */
2859
	ret = cgroup_call_pre_destroy(cgrp);
2860 2861
	if (ret) {
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2862
		return ret;
2863
	}
2864

2865 2866
	mutex_lock(&cgroup_mutex);
	parent = cgrp->parent;
2867
	if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
2868
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2869 2870 2871
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2872 2873 2874
	prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
	if (!cgroup_clear_css_refs(cgrp)) {
		mutex_unlock(&cgroup_mutex);
2875 2876 2877 2878 2879 2880
		/*
		 * Because someone may call cgroup_wakeup_rmdir_waiter() before
		 * prepare_to_wait(), we need to check this flag.
		 */
		if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
			schedule();
2881 2882 2883 2884 2885 2886 2887 2888 2889
		finish_wait(&cgroup_rmdir_waitq, &wait);
		clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
		if (signal_pending(current))
			return -EINTR;
		goto again;
	}
	/* NO css_tryget() can success after here. */
	finish_wait(&cgroup_rmdir_waitq, &wait);
	clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
2890

2891
	spin_lock(&release_list_lock);
2892 2893 2894
	set_bit(CGRP_REMOVED, &cgrp->flags);
	if (!list_empty(&cgrp->release_list))
		list_del(&cgrp->release_list);
2895
	spin_unlock(&release_list_lock);
2896 2897 2898

	cgroup_lock_hierarchy(cgrp->root);
	/* delete this cgroup from parent->children */
2899
	list_del(&cgrp->sibling);
2900 2901
	cgroup_unlock_hierarchy(cgrp->root);

2902 2903
	spin_lock(&cgrp->dentry->d_lock);
	d = dget(cgrp->dentry);
2904 2905 2906 2907 2908
	spin_unlock(&d->d_lock);

	cgroup_d_remove_dir(d);
	dput(d);

2909
	set_bit(CGRP_RELEASABLE, &parent->flags);
2910 2911
	check_for_release(parent);

2912 2913 2914 2915
	mutex_unlock(&cgroup_mutex);
	return 0;
}

2916
static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
2917 2918
{
	struct cgroup_subsys_state *css;
D
Diego Calleja 已提交
2919 2920

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2921 2922

	/* Create the top cgroup state for this subsystem */
2923
	list_add(&ss->sibling, &rootnode.subsys_list);
2924 2925 2926 2927 2928 2929
	ss->root = &rootnode;
	css = ss->create(ss, dummytop);
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
	init_cgroup_css(css, ss, dummytop);

L
Li Zefan 已提交
2930
	/* Update the init_css_set to contain a subsys
2931
	 * pointer to this state - since the subsystem is
L
Li Zefan 已提交
2932 2933 2934
	 * newly registered, all tasks and hence the
	 * init_css_set is in the subsystem's top cgroup. */
	init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2935 2936 2937

	need_forkexit_callback |= ss->fork || ss->exit;

L
Li Zefan 已提交
2938 2939 2940 2941 2942
	/* At system boot, before all subsystems have been
	 * registered, no tasks have been forked, so we don't
	 * need to invoke fork callbacks here. */
	BUG_ON(!list_empty(&init_task.tasks));

2943
	mutex_init(&ss->hierarchy_mutex);
2944
	lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
2945 2946 2947 2948
	ss->active = 1;
}

/**
L
Li Zefan 已提交
2949 2950 2951 2952
 * cgroup_init_early - cgroup initialization at system boot
 *
 * Initialize cgroups at system boot, and initialize any
 * subsystems that request early init.
2953 2954 2955 2956
 */
int __init cgroup_init_early(void)
{
	int i;
2957
	atomic_set(&init_css_set.refcount, 1);
2958 2959
	INIT_LIST_HEAD(&init_css_set.cg_links);
	INIT_LIST_HEAD(&init_css_set.tasks);
2960
	INIT_HLIST_NODE(&init_css_set.hlist);
2961
	css_set_count = 1;
2962
	init_cgroup_root(&rootnode);
2963 2964 2965 2966
	root_count = 1;
	init_task.cgroups = &init_css_set;

	init_css_set_link.cg = &init_css_set;
2967
	list_add(&init_css_set_link.cgrp_link_list,
2968 2969 2970
		 &rootnode.top_cgroup.css_sets);
	list_add(&init_css_set_link.cg_link_list,
		 &init_css_set.cg_links);
2971

2972 2973 2974
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
		INIT_HLIST_HEAD(&css_set_table[i]);

2975 2976 2977 2978 2979 2980 2981 2982
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];

		BUG_ON(!ss->name);
		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
		BUG_ON(!ss->create);
		BUG_ON(!ss->destroy);
		if (ss->subsys_id != i) {
D
Diego Calleja 已提交
2983
			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
			       ss->name, ss->subsys_id);
			BUG();
		}

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
L
Li Zefan 已提交
2995 2996 2997 2998
 * cgroup_init - cgroup initialization
 *
 * Register cgroup filesystem and /proc file, and initialize
 * any subsystems that didn't request early init.
2999 3000 3001 3002 3003
 */
int __init cgroup_init(void)
{
	int err;
	int i;
3004
	struct hlist_head *hhead;
3005 3006 3007 3008

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;
3009 3010 3011 3012 3013

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (!ss->early_init)
			cgroup_init_subsys(ss);
K
KAMEZAWA Hiroyuki 已提交
3014 3015
		if (ss->use_id)
			cgroup_subsys_init_idr(ss);
3016 3017
	}

3018 3019 3020 3021
	/* Add init_css_set to the hash table */
	hhead = css_set_hash(init_css_set.subsys);
	hlist_add_head(&init_css_set.hlist, hhead);

3022 3023 3024 3025
	err = register_filesystem(&cgroup_fs_type);
	if (err < 0)
		goto out;

L
Li Zefan 已提交
3026
	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
3027

3028
out:
3029 3030 3031
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

3032 3033
	return err;
}
3034

3035 3036 3037 3038 3039 3040
/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
3041
 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
static int proc_cgroup_show(struct seq_file *m, void *v)
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

3071
	for_each_active_root(root) {
3072
		struct cgroup_subsys *ss;
3073
		struct cgroup *cgrp;
3074 3075 3076
		int subsys_id;
		int count = 0;

3077
		seq_printf(m, "%lu:", root->subsys_bits);
3078 3079
		for_each_subsys(root, ss)
			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
3080 3081 3082
		if (strlen(root->name))
			seq_printf(m, "%sname=%s", count ? "," : "",
				   root->name);
3083 3084
		seq_putc(m, ':');
		get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
3085 3086
		cgrp = task_cgroup(tsk, subsys_id);
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

static int cgroup_open(struct inode *inode, struct file *file)
{
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cgroup_show, pid);
}

struct file_operations proc_cgroup_operations = {
	.open		= cgroup_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
	int i;

3120
	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
3121 3122 3123
	mutex_lock(&cgroup_mutex);
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
3124
		seq_printf(m, "%s\t%lu\t%d\t%d\n",
3125
			   ss->name, ss->root->subsys_bits,
3126
			   ss->root->number_of_cgroups, !ss->disabled);
3127 3128 3129 3130 3131 3132 3133
	}
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
A
Al Viro 已提交
3134
	return single_open(file, proc_cgroupstats_show, NULL);
3135 3136 3137 3138 3139 3140 3141 3142 3143
}

static struct file_operations proc_cgroupstats_operations = {
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

3144 3145
/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
L
Li Zefan 已提交
3146
 * @child: pointer to task_struct of forking parent process.
3147 3148 3149 3150 3151 3152
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
 * it was not made under the protection of RCU or cgroup_mutex, so
3153
 * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
3154 3155
 * have already changed current->cgroups, allowing the previously
 * referenced cgroup group to be removed and freed.
3156 3157 3158 3159 3160 3161
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
3162 3163 3164 3165 3166
	task_lock(current);
	child->cgroups = current->cgroups;
	get_css_set(child->cgroups);
	task_unlock(current);
	INIT_LIST_HEAD(&child->cg_list);
3167 3168 3169
}

/**
L
Li Zefan 已提交
3170 3171 3172 3173 3174 3175
 * cgroup_fork_callbacks - run fork callbacks
 * @child: the new task
 *
 * Called on a new task very soon before adding it to the
 * tasklist. No need to take any locks since no-one can
 * be operating on this task.
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
 */
void cgroup_fork_callbacks(struct task_struct *child)
{
	if (need_forkexit_callback) {
		int i;
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->fork)
				ss->fork(ss, child);
		}
	}
}

3189
/**
L
Li Zefan 已提交
3190 3191 3192 3193 3194 3195 3196 3197
 * cgroup_post_fork - called on a new task after adding it to the task list
 * @child: the task in question
 *
 * Adds the task to the list running through its css_set if necessary.
 * Has to be after the task is visible on the task list in case we race
 * with the first call to cgroup_iter_start() - to guarantee that the
 * new task ends up on its list.
 */
3198 3199 3200 3201
void cgroup_post_fork(struct task_struct *child)
{
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
3202
		task_lock(child);
3203 3204
		if (list_empty(&child->cg_list))
			list_add(&child->cg_list, &child->cgroups->tasks);
3205
		task_unlock(child);
3206 3207 3208
		write_unlock(&css_set_lock);
	}
}
3209 3210 3211
/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
L
Li Zefan 已提交
3212
 * @run_callback: run exit callbacks?
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
3241 3242
 *    which wards off any cgroup_attach_task() attempts, or task is a failed
 *    fork, never visible to cgroup_attach_task.
3243 3244 3245 3246
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
	int i;
3247
	struct css_set *cg;
3248 3249 3250 3251 3252 3253 3254 3255

	if (run_callbacks && need_forkexit_callback) {
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->exit)
				ss->exit(ss, tsk);
		}
	}
3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
			list_del(&tsk->cg_list);
		write_unlock(&css_set_lock);
	}

3269 3270
	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
3271 3272
	cg = tsk->cgroups;
	tsk->cgroups = &init_css_set;
3273
	task_unlock(tsk);
3274
	if (cg)
3275
		put_css_set_taskexit(cg);
3276
}
3277 3278

/**
L
Li Zefan 已提交
3279 3280 3281
 * cgroup_clone - clone the cgroup the given subsystem is attached to
 * @tsk: the task to be moved
 * @subsys: the given subsystem
3282
 * @nodename: the name for the new cgroup
L
Li Zefan 已提交
3283 3284 3285 3286
 *
 * Duplicate the current cgroup in the hierarchy that the given
 * subsystem is attached to, and move this task into the new
 * child.
3287
 */
3288 3289
int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
							char *nodename)
3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
{
	struct dentry *dentry;
	int ret = 0;
	struct cgroup *parent, *child;
	struct inode *inode;
	struct css_set *cg;
	struct cgroupfs_root *root;
	struct cgroup_subsys *ss;

	/* We shouldn't be called by an unregistered subsystem */
	BUG_ON(!subsys->active);

	/* First figure out what hierarchy and cgroup we're dealing
	 * with, and pin them so we can drop cgroup_mutex */
	mutex_lock(&cgroup_mutex);
 again:
	root = subsys->root;
	if (root == &rootnode) {
		mutex_unlock(&cgroup_mutex);
		return 0;
	}

	/* Pin the hierarchy */
3313
	if (!atomic_inc_not_zero(&root->sb->s_active)) {
3314 3315 3316 3317
		/* We race with the final deactivate_super() */
		mutex_unlock(&cgroup_mutex);
		return 0;
	}
3318

3319
	/* Keep the cgroup alive */
3320 3321 3322
	task_lock(tsk);
	parent = task_cgroup(tsk, subsys->subsys_id);
	cg = tsk->cgroups;
3323
	get_css_set(cg);
3324
	task_unlock(tsk);
3325

3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
	mutex_unlock(&cgroup_mutex);

	/* Now do the VFS work to create a cgroup */
	inode = parent->dentry->d_inode;

	/* Hold the parent directory mutex across this operation to
	 * stop anyone else deleting the new cgroup */
	mutex_lock(&inode->i_mutex);
	dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
	if (IS_ERR(dentry)) {
		printk(KERN_INFO
D
Diego Calleja 已提交
3337
		       "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
3338 3339 3340 3341 3342 3343
		       PTR_ERR(dentry));
		ret = PTR_ERR(dentry);
		goto out_release;
	}

	/* Create the cgroup directory, which also creates the cgroup */
3344
	ret = vfs_mkdir(inode, dentry, 0755);
3345
	child = __d_cgrp(dentry);
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
	dput(dentry);
	if (ret) {
		printk(KERN_INFO
		       "Failed to create cgroup %s: %d\n", nodename,
		       ret);
		goto out_release;
	}

	/* The cgroup now exists. Retake cgroup_mutex and check
	 * that we're still in the same state that we thought we
	 * were. */
	mutex_lock(&cgroup_mutex);
	if ((root != subsys->root) ||
	    (parent != task_cgroup(tsk, subsys->subsys_id))) {
		/* Aargh, we raced ... */
		mutex_unlock(&inode->i_mutex);
3362
		put_css_set(cg);
3363

3364
		deactivate_super(root->sb);
3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
		/* The cgroup is still accessible in the VFS, but
		 * we're not going to try to rmdir() it at this
		 * point. */
		printk(KERN_INFO
		       "Race in cgroup_clone() - leaking cgroup %s\n",
		       nodename);
		goto again;
	}

	/* do any required auto-setup */
	for_each_subsys(root, ss) {
		if (ss->post_clone)
			ss->post_clone(ss, child);
	}

	/* All seems fine. Finish by moving the task into the new cgroup */
3381
	ret = cgroup_attach_task(child, tsk);
3382 3383 3384 3385
	mutex_unlock(&cgroup_mutex);

 out_release:
	mutex_unlock(&inode->i_mutex);
3386 3387

	mutex_lock(&cgroup_mutex);
3388
	put_css_set(cg);
3389
	mutex_unlock(&cgroup_mutex);
3390
	deactivate_super(root->sb);
3391 3392 3393
	return ret;
}

L
Li Zefan 已提交
3394
/**
3395
 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
L
Li Zefan 已提交
3396
 * @cgrp: the cgroup in question
3397
 * @task: the task in question
L
Li Zefan 已提交
3398
 *
3399 3400
 * See if @cgrp is a descendant of @task's cgroup in the appropriate
 * hierarchy.
3401 3402 3403 3404 3405 3406
 *
 * If we are sending in dummytop, then presumably we are creating
 * the top cgroup in the subsystem.
 *
 * Called only by the ns (nsproxy) cgroup.
 */
3407
int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
3408 3409 3410 3411 3412
{
	int ret;
	struct cgroup *target;
	int subsys_id;

3413
	if (cgrp == dummytop)
3414 3415
		return 1;

3416
	get_first_subsys(cgrp, NULL, &subsys_id);
3417
	target = task_cgroup(task, subsys_id);
3418 3419 3420
	while (cgrp != target && cgrp!= cgrp->top_cgroup)
		cgrp = cgrp->parent;
	ret = (cgrp == target);
3421 3422
	return ret;
}
3423

3424
static void check_for_release(struct cgroup *cgrp)
3425 3426 3427
{
	/* All of these checks rely on RCU to keep the cgroup
	 * structure alive */
3428 3429
	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
3430 3431 3432 3433 3434
		/* Control Group is currently removeable. If it's not
		 * already queued for a userspace notification, queue
		 * it now */
		int need_schedule_work = 0;
		spin_lock(&release_list_lock);
3435 3436 3437
		if (!cgroup_is_removed(cgrp) &&
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
			need_schedule_work = 1;
		}
		spin_unlock(&release_list_lock);
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

void __css_put(struct cgroup_subsys_state *css)
{
3448
	struct cgroup *cgrp = css->cgroup;
3449
	rcu_read_lock();
3450 3451 3452 3453 3454
	if (atomic_dec_return(&css->refcnt) == 1) {
		if (notify_on_release(cgrp)) {
			set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
		}
3455
		cgroup_wakeup_rmdir_waiter(cgrp);
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
	}
	rcu_read_unlock();
}

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 */
static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
	spin_lock(&release_list_lock);
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
3491
		char *pathbuf = NULL, *agentbuf = NULL;
3492
		struct cgroup *cgrp = list_entry(release_list.next,
3493 3494
						    struct cgroup,
						    release_list);
3495
		list_del_init(&cgrp->release_list);
3496 3497
		spin_unlock(&release_list_lock);
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3498 3499 3500 3501 3502 3503 3504
		if (!pathbuf)
			goto continue_free;
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
			goto continue_free;
		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
		if (!agentbuf)
			goto continue_free;
3505 3506

		i = 0;
3507 3508
		argv[i++] = agentbuf;
		argv[i++] = pathbuf;
3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		mutex_lock(&cgroup_mutex);
3523 3524 3525
 continue_free:
		kfree(pathbuf);
		kfree(agentbuf);
3526 3527 3528 3529 3530
		spin_lock(&release_list_lock);
	}
	spin_unlock(&release_list_lock);
	mutex_unlock(&cgroup_mutex);
}
3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554

static int __init cgroup_disable(char *str)
{
	int i;
	char *token;

	while ((token = strsep(&str, ",")) != NULL) {
		if (!*token)
			continue;

		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];

			if (!strcmp(token, ss->name)) {
				ss->disabled = 1;
				printk(KERN_INFO "Disabling %s control group"
					" subsystem\n", ss->name);
				break;
			}
		}
	}
	return 1;
}
__setup("cgroup_disable=", cgroup_disable);
K
KAMEZAWA Hiroyuki 已提交
3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581

/*
 * Functons for CSS ID.
 */

/*
 *To get ID other than 0, this should be called when !cgroup_is_removed().
 */
unsigned short css_id(struct cgroup_subsys_state *css)
{
	struct css_id *cssid = rcu_dereference(css->id);

	if (cssid)
		return cssid->id;
	return 0;
}

unsigned short css_depth(struct cgroup_subsys_state *css)
{
	struct css_id *cssid = rcu_dereference(css->id);

	if (cssid)
		return cssid->depth;
	return 0;
}

bool css_is_ancestor(struct cgroup_subsys_state *child,
3582
		    const struct cgroup_subsys_state *root)
K
KAMEZAWA Hiroyuki 已提交
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783
{
	struct css_id *child_id = rcu_dereference(child->id);
	struct css_id *root_id = rcu_dereference(root->id);

	if (!child_id || !root_id || (child_id->depth < root_id->depth))
		return false;
	return child_id->stack[root_id->depth] == root_id->id;
}

static void __free_css_id_cb(struct rcu_head *head)
{
	struct css_id *id;

	id = container_of(head, struct css_id, rcu_head);
	kfree(id);
}

void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
{
	struct css_id *id = css->id;
	/* When this is called before css_id initialization, id can be NULL */
	if (!id)
		return;

	BUG_ON(!ss->use_id);

	rcu_assign_pointer(id->css, NULL);
	rcu_assign_pointer(css->id, NULL);
	spin_lock(&ss->id_lock);
	idr_remove(&ss->idr, id->id);
	spin_unlock(&ss->id_lock);
	call_rcu(&id->rcu_head, __free_css_id_cb);
}

/*
 * This is called by init or create(). Then, calls to this function are
 * always serialized (By cgroup_mutex() at create()).
 */

static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
{
	struct css_id *newid;
	int myid, error, size;

	BUG_ON(!ss->use_id);

	size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
	newid = kzalloc(size, GFP_KERNEL);
	if (!newid)
		return ERR_PTR(-ENOMEM);
	/* get id */
	if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
		error = -ENOMEM;
		goto err_out;
	}
	spin_lock(&ss->id_lock);
	/* Don't use 0. allocates an ID of 1-65535 */
	error = idr_get_new_above(&ss->idr, newid, 1, &myid);
	spin_unlock(&ss->id_lock);

	/* Returns error when there are no free spaces for new ID.*/
	if (error) {
		error = -ENOSPC;
		goto err_out;
	}
	if (myid > CSS_ID_MAX)
		goto remove_idr;

	newid->id = myid;
	newid->depth = depth;
	return newid;
remove_idr:
	error = -ENOSPC;
	spin_lock(&ss->id_lock);
	idr_remove(&ss->idr, myid);
	spin_unlock(&ss->id_lock);
err_out:
	kfree(newid);
	return ERR_PTR(error);

}

static int __init cgroup_subsys_init_idr(struct cgroup_subsys *ss)
{
	struct css_id *newid;
	struct cgroup_subsys_state *rootcss;

	spin_lock_init(&ss->id_lock);
	idr_init(&ss->idr);

	rootcss = init_css_set.subsys[ss->subsys_id];
	newid = get_new_cssid(ss, 0);
	if (IS_ERR(newid))
		return PTR_ERR(newid);

	newid->stack[0] = newid->id;
	newid->css = rootcss;
	rootcss->id = newid;
	return 0;
}

static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
			struct cgroup *child)
{
	int subsys_id, i, depth = 0;
	struct cgroup_subsys_state *parent_css, *child_css;
	struct css_id *child_id, *parent_id = NULL;

	subsys_id = ss->subsys_id;
	parent_css = parent->subsys[subsys_id];
	child_css = child->subsys[subsys_id];
	depth = css_depth(parent_css) + 1;
	parent_id = parent_css->id;

	child_id = get_new_cssid(ss, depth);
	if (IS_ERR(child_id))
		return PTR_ERR(child_id);

	for (i = 0; i < depth; i++)
		child_id->stack[i] = parent_id->stack[i];
	child_id->stack[depth] = child_id->id;
	/*
	 * child_id->css pointer will be set after this cgroup is available
	 * see cgroup_populate_dir()
	 */
	rcu_assign_pointer(child_css->id, child_id);

	return 0;
}

/**
 * css_lookup - lookup css by id
 * @ss: cgroup subsys to be looked into.
 * @id: the id
 *
 * Returns pointer to cgroup_subsys_state if there is valid one with id.
 * NULL if not. Should be called under rcu_read_lock()
 */
struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
{
	struct css_id *cssid = NULL;

	BUG_ON(!ss->use_id);
	cssid = idr_find(&ss->idr, id);

	if (unlikely(!cssid))
		return NULL;

	return rcu_dereference(cssid->css);
}

/**
 * css_get_next - lookup next cgroup under specified hierarchy.
 * @ss: pointer to subsystem
 * @id: current position of iteration.
 * @root: pointer to css. search tree under this.
 * @foundid: position of found object.
 *
 * Search next css under the specified hierarchy of rootid. Calling under
 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
 */
struct cgroup_subsys_state *
css_get_next(struct cgroup_subsys *ss, int id,
	     struct cgroup_subsys_state *root, int *foundid)
{
	struct cgroup_subsys_state *ret = NULL;
	struct css_id *tmp;
	int tmpid;
	int rootid = css_id(root);
	int depth = css_depth(root);

	if (!rootid)
		return NULL;

	BUG_ON(!ss->use_id);
	/* fill start point for scan */
	tmpid = id;
	while (1) {
		/*
		 * scan next entry from bitmap(tree), tmpid is updated after
		 * idr_get_next().
		 */
		spin_lock(&ss->id_lock);
		tmp = idr_get_next(&ss->idr, &tmpid);
		spin_unlock(&ss->id_lock);

		if (!tmp)
			break;
		if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
			ret = rcu_dereference(tmp->css);
			if (ret) {
				*foundid = tmpid;
				break;
			}
		}
		/* continue to scan from next id */
		tmpid = tmpid + 1;
	}
	return ret;
}

3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
#ifdef CONFIG_CGROUP_DEBUG
static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
						   struct cgroup *cont)
{
	struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);

	if (!css)
		return ERR_PTR(-ENOMEM);

	return css;
}

static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
{
	kfree(cont->subsys[debug_subsys_id]);
}

static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
{
	return atomic_read(&cont->count);
}

static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
{
	return cgroup_task_count(cont);
}

static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
{
	return (u64)(unsigned long)current->cgroups;
}

static u64 current_css_set_refcount_read(struct cgroup *cont,
					   struct cftype *cft)
{
	u64 count;

	rcu_read_lock();
	count = atomic_read(&current->cgroups->refcount);
	rcu_read_unlock();
	return count;
}

static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
{
	return test_bit(CGRP_RELEASABLE, &cgrp->flags);
}

static struct cftype debug_files[] =  {
	{
		.name = "cgroup_refcount",
		.read_u64 = cgroup_refcount_read,
	},
	{
		.name = "taskcount",
		.read_u64 = debug_taskcount_read,
	},

	{
		.name = "current_css_set",
		.read_u64 = current_css_set_read,
	},

	{
		.name = "current_css_set_refcount",
		.read_u64 = current_css_set_refcount_read,
	},

	{
		.name = "releasable",
		.read_u64 = releasable_read,
	},
};

static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
{
	return cgroup_add_files(cont, ss, debug_files,
				ARRAY_SIZE(debug_files));
}

struct cgroup_subsys debug_subsys = {
	.name = "debug",
	.create = debug_create,
	.destroy = debug_destroy,
	.populate = debug_populate,
	.subsys_id = debug_subsys_id,
};
#endif /* CONFIG_CGROUP_DEBUG */