cgroup.c 82.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/*
 *  Generic process-grouping system.
 *
 *  Based originally on the cpuset system, extracted by Paul Menage
 *  Copyright (C) 2006 Google, Inc
 *
 *  Copyright notices from the original cpuset code:
 *  --------------------------------------------------
 *  Copyright (C) 2003 BULL SA.
 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
 *
 *  Portions derived from Patrick Mochel's sysfs code.
 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
 *
 *  2003-10-10 Written by Simon Derr.
 *  2003-10-22 Updates by Stephen Hemminger.
 *  2004 May-July Rework by Paul Jackson.
 *  ---------------------------------------------------
 *
 *  This file is subject to the terms and conditions of the GNU General Public
 *  License.  See the file COPYING in the main directory of the Linux
 *  distribution for more details.
 */

#include <linux/cgroup.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
34
#include <linux/proc_fs.h>
35 36
#include <linux/rcupdate.h>
#include <linux/sched.h>
37
#include <linux/backing-dev.h>
38 39 40 41 42
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/magic.h>
#include <linux/spinlock.h>
#include <linux/string.h>
43
#include <linux/sort.h>
44
#include <linux/kmod.h>
B
Balbir Singh 已提交
45 46
#include <linux/delayacct.h>
#include <linux/cgroupstats.h>
47
#include <linux/hash.h>
48
#include <linux/namei.h>
B
Balbir Singh 已提交
49

50 51
#include <asm/atomic.h>

52 53
static DEFINE_MUTEX(cgroup_mutex);

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
/* Generate an array of cgroup subsystem pointers */
#define SUBSYS(_x) &_x ## _subsys,

static struct cgroup_subsys *subsys[] = {
#include <linux/cgroup_subsys.h>
};

/*
 * A cgroupfs_root represents the root of a cgroup hierarchy,
 * and may be associated with a superblock to form an active
 * hierarchy
 */
struct cgroupfs_root {
	struct super_block *sb;

	/*
	 * The bitmask of subsystems intended to be attached to this
	 * hierarchy
	 */
	unsigned long subsys_bits;

	/* The bitmask of subsystems currently attached to this hierarchy */
	unsigned long actual_subsys_bits;

	/* A list running through the attached subsystems */
	struct list_head subsys_list;

	/* The root cgroup for this hierarchy */
	struct cgroup top_cgroup;

	/* Tracks how many cgroups are currently defined in hierarchy.*/
	int number_of_cgroups;

	/* A list running through the mounted hierarchies */
	struct list_head root_list;

	/* Hierarchy-specific flags */
	unsigned long flags;
92

93
	/* The path to use for release notifications. */
94
	char release_agent_path[PATH_MAX];
95 96 97 98 99 100 101 102 103 104 105 106 107
};


/*
 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 * subsystems that are otherwise unattached - it never has more than a
 * single cgroup, and all tasks are part of that cgroup.
 */
static struct cgroupfs_root rootnode;

/* The list of hierarchy roots */

static LIST_HEAD(roots);
108
static int root_count;
109 110 111 112 113

/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
#define dummytop (&rootnode.top_cgroup)

/* This flag indicates whether tasks in the fork and exit paths should
L
Li Zefan 已提交
114 115 116
 * check for fork/exit handlers to call. This avoids us having to do
 * extra work in the fork/exit path if none of the subsystems need to
 * be called.
117
 */
118
static int need_forkexit_callback __read_mostly;
119 120

/* convenient tests for these bits */
121
inline int cgroup_is_removed(const struct cgroup *cgrp)
122
{
123
	return test_bit(CGRP_REMOVED, &cgrp->flags);
124 125 126 127 128 129 130
}

/* bits in struct cgroupfs_root flags field */
enum {
	ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
};

131
static int cgroup_is_releasable(const struct cgroup *cgrp)
132 133
{
	const int bits =
134 135 136
		(1 << CGRP_RELEASABLE) |
		(1 << CGRP_NOTIFY_ON_RELEASE);
	return (cgrp->flags & bits) == bits;
137 138
}

139
static int notify_on_release(const struct cgroup *cgrp)
140
{
141
	return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
142 143
}

144 145 146 147 148 149 150 151 152 153 154
/*
 * for_each_subsys() allows you to iterate on each subsystem attached to
 * an active hierarchy
 */
#define for_each_subsys(_root, _ss) \
list_for_each_entry(_ss, &_root->subsys_list, sibling)

/* for_each_root() allows you to iterate across the active hierarchies */
#define for_each_root(_root) \
list_for_each_entry(_root, &roots, root_list)

155 156 157 158 159 160
/* the list of cgroups eligible for automatic release. Protected by
 * release_list_lock */
static LIST_HEAD(release_list);
static DEFINE_SPINLOCK(release_list_lock);
static void cgroup_release_agent(struct work_struct *work);
static DECLARE_WORK(release_agent_work, cgroup_release_agent);
161
static void check_for_release(struct cgroup *cgrp);
162

163 164 165 166 167 168
/* Link structure for associating css_set objects with cgroups */
struct cg_cgroup_link {
	/*
	 * List running through cg_cgroup_links associated with a
	 * cgroup, anchored on cgroup->css_sets
	 */
169
	struct list_head cgrp_link_list;
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
	/*
	 * List running through cg_cgroup_links pointing at a
	 * single css_set object, anchored on css_set->cg_links
	 */
	struct list_head cg_link_list;
	struct css_set *cg;
};

/* The default css_set - used by init and its children prior to any
 * hierarchies being mounted. It contains a pointer to the root state
 * for each subsystem. Also used to anchor the list of css_sets. Not
 * reference-counted, to improve performance when child cgroups
 * haven't been created.
 */

static struct css_set init_css_set;
static struct cg_cgroup_link init_css_set_link;

/* css_set_lock protects the list of css_set objects, and the
 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 * due to cgroup_iter_start() */
static DEFINE_RWLOCK(css_set_lock);
static int css_set_count;

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
/* hash table for cgroup groups. This improves the performance to
 * find an existing css_set */
#define CSS_SET_HASH_BITS	7
#define CSS_SET_TABLE_SIZE	(1 << CSS_SET_HASH_BITS)
static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];

static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
{
	int i;
	int index;
	unsigned long tmp = 0UL;

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
		tmp += (unsigned long)css[i];
	tmp = (tmp >> 16) ^ tmp;

	index = hash_long(tmp, CSS_SET_HASH_BITS);

	return &css_set_table[index];
}

215 216 217 218
/* We don't maintain the lists running through each css_set to its
 * task until after the first call to cgroup_iter_start(). This
 * reduces the fork()/exit() overhead for people who have cgroups
 * compiled into their kernel but not actually in use */
219
static int use_task_css_set_links __read_mostly;
220 221 222 223 224 225 226

/* When we create or destroy a css_set, the operation simply
 * takes/releases a reference count on all the cgroups referenced
 * by subsystems in this css_set. This can end up multiple-counting
 * some cgroups, but that's OK - the ref-count is just a
 * busy/not-busy indicator; ensuring that we only count each cgroup
 * once would require taking a global lock to ensure that no
227 228 229 230 231 232 233
 * subsystems moved between hierarchies while we were doing so.
 *
 * Possible TODO: decide at boot time based on the number of
 * registered subsystems and the number of CPUs or NUMA nodes whether
 * it's better for performance to ref-count every subsystem, or to
 * take a global lock and only add one ref count to each hierarchy.
 */
234 235 236 237

/*
 * unlink a css_set from the list and free it
 */
238
static void unlink_css_set(struct css_set *cg)
239
{
K
KOSAKI Motohiro 已提交
240 241 242
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

243
	hlist_del(&cg->hlist);
244
	css_set_count--;
K
KOSAKI Motohiro 已提交
245 246 247

	list_for_each_entry_safe(link, saved_link, &cg->cg_links,
				 cg_link_list) {
248
		list_del(&link->cg_link_list);
249
		list_del(&link->cgrp_link_list);
250 251
		kfree(link);
	}
252 253
}

254
static void __put_css_set(struct css_set *cg, int taskexit)
255 256
{
	int i;
257 258 259 260 261 262 263 264 265 266 267 268
	/*
	 * Ensure that the refcount doesn't hit zero while any readers
	 * can see it. Similar to atomic_dec_and_lock(), but for an
	 * rwlock
	 */
	if (atomic_add_unless(&cg->refcount, -1, 1))
		return;
	write_lock(&css_set_lock);
	if (!atomic_dec_and_test(&cg->refcount)) {
		write_unlock(&css_set_lock);
		return;
	}
269
	unlink_css_set(cg);
270
	write_unlock(&css_set_lock);
271 272 273

	rcu_read_lock();
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
274 275 276
		struct cgroup *cgrp = cg->subsys[i]->cgroup;
		if (atomic_dec_and_test(&cgrp->count) &&
		    notify_on_release(cgrp)) {
277
			if (taskexit)
278 279
				set_bit(CGRP_RELEASABLE, &cgrp->flags);
			check_for_release(cgrp);
280 281 282
		}
	}
	rcu_read_unlock();
283
	kfree(cg);
284 285
}

286 287 288 289 290
/*
 * refcounted get/put for css_set objects
 */
static inline void get_css_set(struct css_set *cg)
{
291
	atomic_inc(&cg->refcount);
292 293 294 295
}

static inline void put_css_set(struct css_set *cg)
{
296
	__put_css_set(cg, 0);
297 298
}

299 300
static inline void put_css_set_taskexit(struct css_set *cg)
{
301
	__put_css_set(cg, 1);
302 303
}

304 305 306
/*
 * find_existing_css_set() is a helper for
 * find_css_set(), and checks to see whether an existing
307
 * css_set is suitable.
308 309 310 311
 *
 * oldcg: the cgroup group that we're using before the cgroup
 * transition
 *
312
 * cgrp: the cgroup that we're moving into
313 314 315 316 317 318
 *
 * template: location in which to build the desired set of subsystem
 * state objects for the new cgroup group
 */
static struct css_set *find_existing_css_set(
	struct css_set *oldcg,
319
	struct cgroup *cgrp,
320
	struct cgroup_subsys_state *template[])
321 322
{
	int i;
323
	struct cgroupfs_root *root = cgrp->root;
324 325 326
	struct hlist_head *hhead;
	struct hlist_node *node;
	struct css_set *cg;
327 328 329 330

	/* Built the set of subsystem state objects that we want to
	 * see in the new css_set */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
331
		if (root->subsys_bits & (1UL << i)) {
332 333 334
			/* Subsystem is in this hierarchy. So we want
			 * the subsystem state from the new
			 * cgroup */
335
			template[i] = cgrp->subsys[i];
336 337 338 339 340 341 342
		} else {
			/* Subsystem is not in this hierarchy, so we
			 * don't want to change the subsystem state */
			template[i] = oldcg->subsys[i];
		}
	}

343 344
	hhead = css_set_hash(template);
	hlist_for_each_entry(cg, node, hhead, hlist) {
345 346 347 348
		if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
			/* All subsystems matched */
			return cg;
		}
349
	}
350 351 352 353 354

	/* No existing cgroup group matched */
	return NULL;
}

355 356 357 358 359 360 361 362 363 364 365
static void free_cg_links(struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;

	list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
		list_del(&link->cgrp_link_list);
		kfree(link);
	}
}

366 367
/*
 * allocate_cg_links() allocates "count" cg_cgroup_link structures
368
 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
369 370 371 372 373 374 375 376 377 378
 * success or a negative error
 */
static int allocate_cg_links(int count, struct list_head *tmp)
{
	struct cg_cgroup_link *link;
	int i;
	INIT_LIST_HEAD(tmp);
	for (i = 0; i < count; i++) {
		link = kmalloc(sizeof(*link), GFP_KERNEL);
		if (!link) {
379
			free_cg_links(tmp);
380 381
			return -ENOMEM;
		}
382
		list_add(&link->cgrp_link_list, tmp);
383 384 385 386 387 388 389 390 391 392 393 394
	}
	return 0;
}

/*
 * find_css_set() takes an existing cgroup group and a
 * cgroup object, and returns a css_set object that's
 * equivalent to the old group, but with the given cgroup
 * substituted into the appropriate hierarchy. Must be called with
 * cgroup_mutex held
 */
static struct css_set *find_css_set(
395
	struct css_set *oldcg, struct cgroup *cgrp)
396 397 398 399 400 401 402 403
{
	struct css_set *res;
	struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
	int i;

	struct list_head tmp_cg_links;
	struct cg_cgroup_link *link;

404 405
	struct hlist_head *hhead;

406 407
	/* First see if we already have a cgroup group that matches
	 * the desired set */
408
	read_lock(&css_set_lock);
409
	res = find_existing_css_set(oldcg, cgrp, template);
410 411
	if (res)
		get_css_set(res);
412
	read_unlock(&css_set_lock);
413 414 415 416 417 418 419 420 421 422 423 424 425 426

	if (res)
		return res;

	res = kmalloc(sizeof(*res), GFP_KERNEL);
	if (!res)
		return NULL;

	/* Allocate all the cg_cgroup_link objects that we'll need */
	if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
		kfree(res);
		return NULL;
	}

427
	atomic_set(&res->refcount, 1);
428 429
	INIT_LIST_HEAD(&res->cg_links);
	INIT_LIST_HEAD(&res->tasks);
430
	INIT_HLIST_NODE(&res->hlist);
431 432 433 434 435 436 437 438

	/* Copy the set of subsystem state objects generated in
	 * find_existing_css_set() */
	memcpy(res->subsys, template, sizeof(res->subsys));

	write_lock(&css_set_lock);
	/* Add reference counts and links from the new css_set. */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
439
		struct cgroup *cgrp = res->subsys[i]->cgroup;
440
		struct cgroup_subsys *ss = subsys[i];
441
		atomic_inc(&cgrp->count);
442 443 444 445 446 447 448 449 450
		/*
		 * We want to add a link once per cgroup, so we
		 * only do it for the first subsystem in each
		 * hierarchy
		 */
		if (ss->root->subsys_list.next == &ss->sibling) {
			BUG_ON(list_empty(&tmp_cg_links));
			link = list_entry(tmp_cg_links.next,
					  struct cg_cgroup_link,
451 452 453
					  cgrp_link_list);
			list_del(&link->cgrp_link_list);
			list_add(&link->cgrp_link_list, &cgrp->css_sets);
454 455 456 457 458 459 460
			link->cg = res;
			list_add(&link->cg_link_list, &res->cg_links);
		}
	}
	if (list_empty(&rootnode.subsys_list)) {
		link = list_entry(tmp_cg_links.next,
				  struct cg_cgroup_link,
461 462 463
				  cgrp_link_list);
		list_del(&link->cgrp_link_list);
		list_add(&link->cgrp_link_list, &dummytop->css_sets);
464 465 466 467 468 469 470
		link->cg = res;
		list_add(&link->cg_link_list, &res->cg_links);
	}

	BUG_ON(!list_empty(&tmp_cg_links));

	css_set_count++;
471 472 473 474 475

	/* Add this cgroup group to the hash table */
	hhead = css_set_hash(res->subsys);
	hlist_add_head(&res->hlist, hhead);

476 477 478
	write_unlock(&css_set_lock);

	return res;
479 480
}

481 482 483 484 485 486 487 488 489 490
/*
 * There is one global cgroup mutex. We also require taking
 * task_lock() when dereferencing a task's cgroup subsys pointers.
 * See "The task_lock() exception", at the end of this comment.
 *
 * A task must hold cgroup_mutex to modify cgroups.
 *
 * Any task can increment and decrement the count field without lock.
 * So in general, code holding cgroup_mutex can't rely on the count
 * field not changing.  However, if the count goes to zero, then only
491
 * cgroup_attach_task() can increment it again.  Because a count of zero
492 493 494 495 496 497 498 499 500 501 502 503 504
 * means that no tasks are currently attached, therefore there is no
 * way a task attached to that cgroup can fork (the other way to
 * increment the count).  So code holding cgroup_mutex can safely
 * assume that if the count is zero, it will stay zero. Similarly, if
 * a task holds cgroup_mutex on a cgroup with zero count, it
 * knows that the cgroup won't be removed, as cgroup_rmdir()
 * needs that mutex.
 *
 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 * (usually) take cgroup_mutex.  These are the two most performance
 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 * is taken, and if the cgroup count is zero, a usermode call made
L
Li Zefan 已提交
505 506
 * to the release agent with the name of the cgroup (path relative to
 * the root of cgroup file system) as the argument.
507 508 509 510 511 512 513 514 515 516 517
 *
 * A cgroup can only be deleted if both its 'count' of using tasks
 * is zero, and its list of 'children' cgroups is empty.  Since all
 * tasks in the system use _some_ cgroup, and since there is always at
 * least one task in the system (init, pid == 1), therefore, top_cgroup
 * always has either children cgroups and/or using tasks.  So we don't
 * need a special hack to ensure that top_cgroup cannot be deleted.
 *
 *	The task_lock() exception
 *
 * The need for this exception arises from the action of
518
 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
L
Li Zefan 已提交
519
 * another.  It does so using cgroup_mutex, however there are
520 521 522
 * several performance critical places that need to reference
 * task->cgroup without the expense of grabbing a system global
 * mutex.  Therefore except as noted below, when dereferencing or, as
523
 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
524 525 526 527
 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 * the task_struct routinely used for such matters.
 *
 * P.S.  One more locking exception.  RCU is used to guard the
528
 * update of a tasks cgroup pointer by cgroup_attach_task()
529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
 */

/**
 * cgroup_lock - lock out any changes to cgroup structures
 *
 */
void cgroup_lock(void)
{
	mutex_lock(&cgroup_mutex);
}

/**
 * cgroup_unlock - release lock on cgroup changes
 *
 * Undo the lock taken in a previous cgroup_lock() call.
 */
void cgroup_unlock(void)
{
	mutex_unlock(&cgroup_mutex);
}

/*
 * A couple of forward declarations required, due to cyclic reference loop:
 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 * -> cgroup_mkdir.
 */

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
559
static int cgroup_populate_dir(struct cgroup *cgrp);
560
static struct inode_operations cgroup_dir_inode_operations;
561 562 563
static struct file_operations proc_cgroupstats_operations;

static struct backing_dev_info cgroup_backing_dev_info = {
564
	.capabilities	= BDI_CAP_NO_ACCT_AND_WRITEBACK,
565
};
566 567 568 569 570 571 572

static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
{
	struct inode *inode = new_inode(sb);

	if (inode) {
		inode->i_mode = mode;
573 574
		inode->i_uid = current_fsuid();
		inode->i_gid = current_fsgid();
575 576 577 578 579 580
		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
		inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
	}
	return inode;
}

581 582 583 584 585 586 587 588 589 590 591 592 593
/*
 * Call subsys's pre_destroy handler.
 * This is called before css refcnt check.
 */
static void cgroup_call_pre_destroy(struct cgroup *cgrp)
{
	struct cgroup_subsys *ss;
	for_each_subsys(cgrp->root, ss)
		if (ss->pre_destroy && cgrp->subsys[ss->subsys_id])
			ss->pre_destroy(ss, cgrp);
	return;
}

594 595 596 597
static void cgroup_diput(struct dentry *dentry, struct inode *inode)
{
	/* is dentry a directory ? if so, kfree() associated cgroup */
	if (S_ISDIR(inode->i_mode)) {
598
		struct cgroup *cgrp = dentry->d_fsdata;
599
		struct cgroup_subsys *ss;
600
		BUG_ON(!(cgroup_is_removed(cgrp)));
601 602 603 604 605 606 607
		/* It's possible for external users to be holding css
		 * reference counts on a cgroup; css_put() needs to
		 * be able to access the cgroup after decrementing
		 * the reference count in order to know if it needs to
		 * queue the cgroup to be handled by the release
		 * agent */
		synchronize_rcu();
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624

		mutex_lock(&cgroup_mutex);
		/*
		 * Release the subsystem state objects.
		 */
		for_each_subsys(cgrp->root, ss) {
			if (cgrp->subsys[ss->subsys_id])
				ss->destroy(ss, cgrp);
		}

		cgrp->root->number_of_cgroups--;
		mutex_unlock(&cgroup_mutex);

		/* Drop the active superblock reference that we took when we
		 * created the cgroup */
		deactivate_super(cgrp->root->sb);

625
		kfree(cgrp);
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
	}
	iput(inode);
}

static void remove_dir(struct dentry *d)
{
	struct dentry *parent = dget(d->d_parent);

	d_delete(d);
	simple_rmdir(parent->d_inode, d);
	dput(parent);
}

static void cgroup_clear_directory(struct dentry *dentry)
{
	struct list_head *node;

	BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
	spin_lock(&dcache_lock);
	node = dentry->d_subdirs.next;
	while (node != &dentry->d_subdirs) {
		struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
		list_del_init(node);
		if (d->d_inode) {
			/* This should never be called on a cgroup
			 * directory with child cgroups */
			BUG_ON(d->d_inode->i_mode & S_IFDIR);
			d = dget_locked(d);
			spin_unlock(&dcache_lock);
			d_delete(d);
			simple_unlink(dentry->d_inode, d);
			dput(d);
			spin_lock(&dcache_lock);
		}
		node = dentry->d_subdirs.next;
	}
	spin_unlock(&dcache_lock);
}

/*
 * NOTE : the dentry must have been dget()'ed
 */
static void cgroup_d_remove_dir(struct dentry *dentry)
{
	cgroup_clear_directory(dentry);

	spin_lock(&dcache_lock);
	list_del_init(&dentry->d_u.d_child);
	spin_unlock(&dcache_lock);
	remove_dir(dentry);
}

static int rebind_subsystems(struct cgroupfs_root *root,
			      unsigned long final_bits)
{
	unsigned long added_bits, removed_bits;
682
	struct cgroup *cgrp = &root->top_cgroup;
683 684 685 686 687 688
	int i;

	removed_bits = root->actual_subsys_bits & ~final_bits;
	added_bits = final_bits & ~root->actual_subsys_bits;
	/* Check that any added subsystems are currently free */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
L
Li Zefan 已提交
689
		unsigned long bit = 1UL << i;
690 691 692 693 694 695 696 697 698 699 700 701 702
		struct cgroup_subsys *ss = subsys[i];
		if (!(bit & added_bits))
			continue;
		if (ss->root != &rootnode) {
			/* Subsystem isn't free */
			return -EBUSY;
		}
	}

	/* Currently we don't handle adding/removing subsystems when
	 * any child cgroups exist. This is theoretically supportable
	 * but involves complex error handling, so it's being left until
	 * later */
703
	if (root->number_of_cgroups > 1)
704 705 706 707 708 709 710 711
		return -EBUSY;

	/* Process each subsystem */
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		unsigned long bit = 1UL << i;
		if (bit & added_bits) {
			/* We're binding this subsystem to this hierarchy */
712
			BUG_ON(cgrp->subsys[i]);
713 714
			BUG_ON(!dummytop->subsys[i]);
			BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
715 716
			cgrp->subsys[i] = dummytop->subsys[i];
			cgrp->subsys[i]->cgroup = cgrp;
717 718 719
			list_add(&ss->sibling, &root->subsys_list);
			rcu_assign_pointer(ss->root, root);
			if (ss->bind)
720
				ss->bind(ss, cgrp);
721 722 723

		} else if (bit & removed_bits) {
			/* We're removing this subsystem */
724 725
			BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
			BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
726 727 728
			if (ss->bind)
				ss->bind(ss, dummytop);
			dummytop->subsys[i]->cgroup = dummytop;
729
			cgrp->subsys[i] = NULL;
730 731 732 733
			rcu_assign_pointer(subsys[i]->root, &rootnode);
			list_del(&ss->sibling);
		} else if (bit & final_bits) {
			/* Subsystem state should already exist */
734
			BUG_ON(!cgrp->subsys[i]);
735 736
		} else {
			/* Subsystem state shouldn't exist */
737
			BUG_ON(cgrp->subsys[i]);
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
		}
	}
	root->subsys_bits = root->actual_subsys_bits = final_bits;
	synchronize_rcu();

	return 0;
}

static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
{
	struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
	struct cgroup_subsys *ss;

	mutex_lock(&cgroup_mutex);
	for_each_subsys(root, ss)
		seq_printf(seq, ",%s", ss->name);
	if (test_bit(ROOT_NOPREFIX, &root->flags))
		seq_puts(seq, ",noprefix");
756 757
	if (strlen(root->release_agent_path))
		seq_printf(seq, ",release_agent=%s", root->release_agent_path);
758 759 760 761 762 763 764
	mutex_unlock(&cgroup_mutex);
	return 0;
}

struct cgroup_sb_opts {
	unsigned long subsys_bits;
	unsigned long flags;
765
	char *release_agent;
766 767 768 769 770 771 772 773 774 775 776
};

/* Convert a hierarchy specifier into a bitmask of subsystems and
 * flags. */
static int parse_cgroupfs_options(char *data,
				     struct cgroup_sb_opts *opts)
{
	char *token, *o = data ?: "all";

	opts->subsys_bits = 0;
	opts->flags = 0;
777
	opts->release_agent = NULL;
778 779 780 781 782

	while ((token = strsep(&o, ",")) != NULL) {
		if (!*token)
			return -EINVAL;
		if (!strcmp(token, "all")) {
783 784 785 786 787 788 789 790
			/* Add all non-disabled subsystems */
			int i;
			opts->subsys_bits = 0;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				struct cgroup_subsys *ss = subsys[i];
				if (!ss->disabled)
					opts->subsys_bits |= 1ul << i;
			}
791 792
		} else if (!strcmp(token, "noprefix")) {
			set_bit(ROOT_NOPREFIX, &opts->flags);
793 794 795 796 797 798 799 800 801
		} else if (!strncmp(token, "release_agent=", 14)) {
			/* Specifying two release agents is forbidden */
			if (opts->release_agent)
				return -EINVAL;
			opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
			if (!opts->release_agent)
				return -ENOMEM;
			strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
			opts->release_agent[PATH_MAX - 1] = 0;
802 803 804 805 806 807
		} else {
			struct cgroup_subsys *ss;
			int i;
			for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
				ss = subsys[i];
				if (!strcmp(token, ss->name)) {
808 809
					if (!ss->disabled)
						set_bit(i, &opts->subsys_bits);
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
					break;
				}
			}
			if (i == CGROUP_SUBSYS_COUNT)
				return -ENOENT;
		}
	}

	/* We can't have an empty hierarchy */
	if (!opts->subsys_bits)
		return -EINVAL;

	return 0;
}

static int cgroup_remount(struct super_block *sb, int *flags, char *data)
{
	int ret = 0;
	struct cgroupfs_root *root = sb->s_fs_info;
829
	struct cgroup *cgrp = &root->top_cgroup;
830 831
	struct cgroup_sb_opts opts;

832
	mutex_lock(&cgrp->dentry->d_inode->i_mutex);
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
	mutex_lock(&cgroup_mutex);

	/* See what subsystems are wanted */
	ret = parse_cgroupfs_options(data, &opts);
	if (ret)
		goto out_unlock;

	/* Don't allow flags to change at remount */
	if (opts.flags != root->flags) {
		ret = -EINVAL;
		goto out_unlock;
	}

	ret = rebind_subsystems(root, opts.subsys_bits);

	/* (re)populate subsystem files */
	if (!ret)
850
		cgroup_populate_dir(cgrp);
851

852 853
	if (opts.release_agent)
		strcpy(root->release_agent_path, opts.release_agent);
854
 out_unlock:
855 856
	if (opts.release_agent)
		kfree(opts.release_agent);
857
	mutex_unlock(&cgroup_mutex);
858
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
859 860 861 862 863 864 865 866 867 868
	return ret;
}

static struct super_operations cgroup_ops = {
	.statfs = simple_statfs,
	.drop_inode = generic_delete_inode,
	.show_options = cgroup_show_options,
	.remount_fs = cgroup_remount,
};

869 870 871 872 873 874 875 876
static void init_cgroup_housekeeping(struct cgroup *cgrp)
{
	INIT_LIST_HEAD(&cgrp->sibling);
	INIT_LIST_HEAD(&cgrp->children);
	INIT_LIST_HEAD(&cgrp->css_sets);
	INIT_LIST_HEAD(&cgrp->release_list);
	init_rwsem(&cgrp->pids_mutex);
}
877 878
static void init_cgroup_root(struct cgroupfs_root *root)
{
879
	struct cgroup *cgrp = &root->top_cgroup;
880 881 882
	INIT_LIST_HEAD(&root->subsys_list);
	INIT_LIST_HEAD(&root->root_list);
	root->number_of_cgroups = 1;
883 884
	cgrp->root = root;
	cgrp->top_cgroup = cgrp;
885
	init_cgroup_housekeeping(cgrp);
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
}

static int cgroup_test_super(struct super_block *sb, void *data)
{
	struct cgroupfs_root *new = data;
	struct cgroupfs_root *root = sb->s_fs_info;

	/* First check subsystems */
	if (new->subsys_bits != root->subsys_bits)
	    return 0;

	/* Next check flags */
	if (new->flags != root->flags)
		return 0;

	return 1;
}

static int cgroup_set_super(struct super_block *sb, void *data)
{
	int ret;
	struct cgroupfs_root *root = data;

	ret = set_anon_super(sb, NULL);
	if (ret)
		return ret;

	sb->s_fs_info = root;
	root->sb = sb;

	sb->s_blocksize = PAGE_CACHE_SIZE;
	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
	sb->s_magic = CGROUP_SUPER_MAGIC;
	sb->s_op = &cgroup_ops;

	return 0;
}

static int cgroup_get_rootdir(struct super_block *sb)
{
	struct inode *inode =
		cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
	struct dentry *dentry;

	if (!inode)
		return -ENOMEM;

	inode->i_fop = &simple_dir_operations;
	inode->i_op = &cgroup_dir_inode_operations;
	/* directories start off with i_nlink == 2 (for "." entry) */
	inc_nlink(inode);
	dentry = d_alloc_root(inode);
	if (!dentry) {
		iput(inode);
		return -ENOMEM;
	}
	sb->s_root = dentry;
	return 0;
}

static int cgroup_get_sb(struct file_system_type *fs_type,
			 int flags, const char *unused_dev_name,
			 void *data, struct vfsmount *mnt)
{
	struct cgroup_sb_opts opts;
	int ret = 0;
	struct super_block *sb;
	struct cgroupfs_root *root;
954
	struct list_head tmp_cg_links;
955 956 957

	/* First find the desired set of subsystems */
	ret = parse_cgroupfs_options(data, &opts);
958 959 960
	if (ret) {
		if (opts.release_agent)
			kfree(opts.release_agent);
961
		return ret;
962
	}
963 964

	root = kzalloc(sizeof(*root), GFP_KERNEL);
965 966 967
	if (!root) {
		if (opts.release_agent)
			kfree(opts.release_agent);
968
		return -ENOMEM;
969
	}
970 971 972 973

	init_cgroup_root(root);
	root->subsys_bits = opts.subsys_bits;
	root->flags = opts.flags;
974 975 976 977
	if (opts.release_agent) {
		strcpy(root->release_agent_path, opts.release_agent);
		kfree(opts.release_agent);
	}
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992

	sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);

	if (IS_ERR(sb)) {
		kfree(root);
		return PTR_ERR(sb);
	}

	if (sb->s_fs_info != root) {
		/* Reusing an existing superblock */
		BUG_ON(sb->s_root == NULL);
		kfree(root);
		root = NULL;
	} else {
		/* New superblock */
993
		struct cgroup *cgrp = &root->top_cgroup;
994
		struct inode *inode;
995
		int i;
996 997 998 999 1000 1001

		BUG_ON(sb->s_root != NULL);

		ret = cgroup_get_rootdir(sb);
		if (ret)
			goto drop_new_super;
1002
		inode = sb->s_root->d_inode;
1003

1004
		mutex_lock(&inode->i_mutex);
1005 1006
		mutex_lock(&cgroup_mutex);

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
		/*
		 * We're accessing css_set_count without locking
		 * css_set_lock here, but that's OK - it can only be
		 * increased by someone holding cgroup_lock, and
		 * that's us. The worst that can happen is that we
		 * have some link structures left over
		 */
		ret = allocate_cg_links(css_set_count, &tmp_cg_links);
		if (ret) {
			mutex_unlock(&cgroup_mutex);
			mutex_unlock(&inode->i_mutex);
			goto drop_new_super;
		}

1021 1022 1023
		ret = rebind_subsystems(root, root->subsys_bits);
		if (ret == -EBUSY) {
			mutex_unlock(&cgroup_mutex);
1024
			mutex_unlock(&inode->i_mutex);
1025
			goto free_cg_links;
1026 1027 1028 1029 1030 1031
		}

		/* EBUSY should be the only error here */
		BUG_ON(ret);

		list_add(&root->root_list, &roots);
1032
		root_count++;
1033 1034 1035 1036

		sb->s_root->d_fsdata = &root->top_cgroup;
		root->top_cgroup.dentry = sb->s_root;

1037 1038 1039
		/* Link the top cgroup in this hierarchy into all
		 * the css_set objects */
		write_lock(&css_set_lock);
1040 1041 1042
		for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
			struct hlist_head *hhead = &css_set_table[i];
			struct hlist_node *node;
1043
			struct css_set *cg;
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058

			hlist_for_each_entry(cg, node, hhead, hlist) {
				struct cg_cgroup_link *link;

				BUG_ON(list_empty(&tmp_cg_links));
				link = list_entry(tmp_cg_links.next,
						  struct cg_cgroup_link,
						  cgrp_link_list);
				list_del(&link->cgrp_link_list);
				link->cg = cg;
				list_add(&link->cgrp_link_list,
					 &root->top_cgroup.css_sets);
				list_add(&link->cg_link_list, &cg->cg_links);
			}
		}
1059 1060 1061 1062
		write_unlock(&css_set_lock);

		free_cg_links(&tmp_cg_links);

1063 1064
		BUG_ON(!list_empty(&cgrp->sibling));
		BUG_ON(!list_empty(&cgrp->children));
1065 1066
		BUG_ON(root->number_of_cgroups != 1);

1067
		cgroup_populate_dir(cgrp);
1068
		mutex_unlock(&inode->i_mutex);
1069 1070 1071 1072 1073
		mutex_unlock(&cgroup_mutex);
	}

	return simple_set_mnt(mnt, sb);

1074 1075
 free_cg_links:
	free_cg_links(&tmp_cg_links);
1076 1077 1078 1079 1080 1081 1082 1083
 drop_new_super:
	up_write(&sb->s_umount);
	deactivate_super(sb);
	return ret;
}

static void cgroup_kill_sb(struct super_block *sb) {
	struct cgroupfs_root *root = sb->s_fs_info;
1084
	struct cgroup *cgrp = &root->top_cgroup;
1085
	int ret;
K
KOSAKI Motohiro 已提交
1086 1087
	struct cg_cgroup_link *link;
	struct cg_cgroup_link *saved_link;
1088 1089 1090 1091

	BUG_ON(!root);

	BUG_ON(root->number_of_cgroups != 1);
1092 1093
	BUG_ON(!list_empty(&cgrp->children));
	BUG_ON(!list_empty(&cgrp->sibling));
1094 1095 1096 1097 1098 1099 1100 1101

	mutex_lock(&cgroup_mutex);

	/* Rebind all subsystems back to the default hierarchy */
	ret = rebind_subsystems(root, 0);
	/* Shouldn't be able to fail ... */
	BUG_ON(ret);

1102 1103 1104 1105 1106
	/*
	 * Release all the links from css_sets to this hierarchy's
	 * root cgroup
	 */
	write_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1107 1108 1109

	list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
				 cgrp_link_list) {
1110
		list_del(&link->cg_link_list);
1111
		list_del(&link->cgrp_link_list);
1112 1113 1114 1115 1116
		kfree(link);
	}
	write_unlock(&css_set_lock);

	if (!list_empty(&root->root_list)) {
1117
		list_del(&root->root_list);
1118 1119
		root_count--;
	}
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
	mutex_unlock(&cgroup_mutex);

	kfree(root);
	kill_litter_super(sb);
}

static struct file_system_type cgroup_fs_type = {
	.name = "cgroup",
	.get_sb = cgroup_get_sb,
	.kill_sb = cgroup_kill_sb,
};

1132
static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1133 1134 1135 1136 1137 1138 1139 1140 1141
{
	return dentry->d_fsdata;
}

static inline struct cftype *__d_cft(struct dentry *dentry)
{
	return dentry->d_fsdata;
}

L
Li Zefan 已提交
1142 1143 1144 1145 1146 1147 1148
/**
 * cgroup_path - generate the path of a cgroup
 * @cgrp: the cgroup in question
 * @buf: the buffer to write the path into
 * @buflen: the length of the buffer
 *
 * Called with cgroup_mutex held. Writes path of cgroup into buf.
1149 1150
 * Returns 0 on success, -errno on error.
 */
1151
int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1152 1153 1154
{
	char *start;

1155
	if (cgrp == dummytop) {
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
		/*
		 * Inactive subsystems have no dentry for their root
		 * cgroup
		 */
		strcpy(buf, "/");
		return 0;
	}

	start = buf + buflen;

	*--start = '\0';
	for (;;) {
1168
		int len = cgrp->dentry->d_name.len;
1169 1170
		if ((start -= len) < buf)
			return -ENAMETOOLONG;
1171 1172 1173
		memcpy(start, cgrp->dentry->d_name.name, len);
		cgrp = cgrp->parent;
		if (!cgrp)
1174
			break;
1175
		if (!cgrp->parent)
1176 1177 1178 1179 1180 1181 1182 1183 1184
			continue;
		if (--start < buf)
			return -ENAMETOOLONG;
		*start = '/';
	}
	memmove(buf, start, buf + buflen - start);
	return 0;
}

1185 1186 1187 1188 1189
/*
 * Return the first subsystem attached to a cgroup's hierarchy, and
 * its subsystem id.
 */

1190
static void get_first_subsys(const struct cgroup *cgrp,
1191 1192
			struct cgroup_subsys_state **css, int *subsys_id)
{
1193
	const struct cgroupfs_root *root = cgrp->root;
1194 1195 1196 1197 1198
	const struct cgroup_subsys *test_ss;
	BUG_ON(list_empty(&root->subsys_list));
	test_ss = list_entry(root->subsys_list.next,
			     struct cgroup_subsys, sibling);
	if (css) {
1199
		*css = cgrp->subsys[test_ss->subsys_id];
1200 1201 1202 1203 1204 1205
		BUG_ON(!*css);
	}
	if (subsys_id)
		*subsys_id = test_ss->subsys_id;
}

L
Li Zefan 已提交
1206 1207 1208 1209
/**
 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
 * @cgrp: the cgroup the task is attaching to
 * @tsk: the task to be attached
1210
 *
L
Li Zefan 已提交
1211 1212
 * Call holding cgroup_mutex. May take task_lock of
 * the task 'tsk' during call.
1213
 */
1214
int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1215 1216 1217
{
	int retval = 0;
	struct cgroup_subsys *ss;
1218
	struct cgroup *oldcgrp;
1219 1220
	struct css_set *cg = tsk->cgroups;
	struct css_set *newcg;
1221
	struct cgroupfs_root *root = cgrp->root;
1222 1223
	int subsys_id;

1224
	get_first_subsys(cgrp, NULL, &subsys_id);
1225 1226

	/* Nothing to do if the task is already in that cgroup */
1227 1228
	oldcgrp = task_cgroup(tsk, subsys_id);
	if (cgrp == oldcgrp)
1229 1230 1231 1232
		return 0;

	for_each_subsys(root, ss) {
		if (ss->can_attach) {
1233
			retval = ss->can_attach(ss, cgrp, tsk);
P
Paul Jackson 已提交
1234
			if (retval)
1235 1236 1237 1238
				return retval;
		}
	}

1239 1240 1241 1242
	/*
	 * Locate or allocate a new css_set for this task,
	 * based on its final set of cgroups
	 */
1243
	newcg = find_css_set(cg, cgrp);
P
Paul Jackson 已提交
1244
	if (!newcg)
1245 1246
		return -ENOMEM;

1247 1248 1249
	task_lock(tsk);
	if (tsk->flags & PF_EXITING) {
		task_unlock(tsk);
1250
		put_css_set(newcg);
1251 1252
		return -ESRCH;
	}
1253
	rcu_assign_pointer(tsk->cgroups, newcg);
1254 1255
	task_unlock(tsk);

1256 1257 1258 1259 1260 1261 1262 1263
	/* Update the css_set linked lists if we're using them */
	write_lock(&css_set_lock);
	if (!list_empty(&tsk->cg_list)) {
		list_del(&tsk->cg_list);
		list_add(&tsk->cg_list, &newcg->tasks);
	}
	write_unlock(&css_set_lock);

1264
	for_each_subsys(root, ss) {
P
Paul Jackson 已提交
1265
		if (ss->attach)
1266
			ss->attach(ss, cgrp, oldcgrp, tsk);
1267
	}
1268
	set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1269
	synchronize_rcu();
1270
	put_css_set(cg);
1271 1272 1273 1274
	return 0;
}

/*
1275 1276
 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
 * held. May take task_lock of task
1277
 */
1278
static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1279 1280
{
	struct task_struct *tsk;
1281
	const struct cred *cred = current_cred(), *tcred;
1282 1283 1284 1285
	int ret;

	if (pid) {
		rcu_read_lock();
1286
		tsk = find_task_by_vpid(pid);
1287 1288 1289 1290 1291
		if (!tsk || tsk->flags & PF_EXITING) {
			rcu_read_unlock();
			return -ESRCH;
		}

1292 1293 1294 1295 1296
		tcred = __task_cred(tsk);
		if (cred->euid &&
		    cred->euid != tcred->uid &&
		    cred->euid != tcred->suid) {
			rcu_read_unlock();
1297 1298
			return -EACCES;
		}
1299 1300
		get_task_struct(tsk);
		rcu_read_unlock();
1301 1302 1303 1304 1305
	} else {
		tsk = current;
		get_task_struct(tsk);
	}

1306
	ret = cgroup_attach_task(cgrp, tsk);
1307 1308 1309 1310
	put_task_struct(tsk);
	return ret;
}

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
{
	int ret;
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	ret = attach_task_by_pid(cgrp, pid);
	cgroup_unlock();
	return ret;
}

1321 1322 1323 1324 1325
/* The various types of files and directories in a cgroup file system */
enum cgroup_filetype {
	FILE_ROOT,
	FILE_DIR,
	FILE_TASKLIST,
1326 1327
	FILE_NOTIFY_ON_RELEASE,
	FILE_RELEASE_AGENT,
1328 1329
};

1330 1331 1332 1333
/**
 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
 * @cgrp: the cgroup to be checked for liveness
 *
1334 1335
 * On success, returns true; the lock should be later released with
 * cgroup_unlock(). On failure returns false with no lock held.
1336
 */
1337
bool cgroup_lock_live_group(struct cgroup *cgrp)
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
{
	mutex_lock(&cgroup_mutex);
	if (cgroup_is_removed(cgrp)) {
		mutex_unlock(&cgroup_mutex);
		return false;
	}
	return true;
}

static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
				      const char *buffer)
{
	BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	strcpy(cgrp->root->release_agent_path, buffer);
1354
	cgroup_unlock();
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
	return 0;
}

static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
				     struct seq_file *seq)
{
	if (!cgroup_lock_live_group(cgrp))
		return -ENODEV;
	seq_puts(seq, cgrp->root->release_agent_path);
	seq_putc(seq, '\n');
1365
	cgroup_unlock();
1366 1367 1368
	return 0;
}

1369 1370 1371
/* A buffer size big enough for numbers or short strings */
#define CGROUP_LOCAL_BUFFER_SIZE 64

1372
static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1373 1374 1375
				struct file *file,
				const char __user *userbuf,
				size_t nbytes, loff_t *unused_ppos)
1376
{
1377
	char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
	int retval = 0;
	char *end;

	if (!nbytes)
		return -EINVAL;
	if (nbytes >= sizeof(buffer))
		return -E2BIG;
	if (copy_from_user(buffer, userbuf, nbytes))
		return -EFAULT;

	buffer[nbytes] = 0;     /* nul-terminate */
1389
	strstrip(buffer);
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
	if (cft->write_u64) {
		u64 val = simple_strtoull(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_u64(cgrp, cft, val);
	} else {
		s64 val = simple_strtoll(buffer, &end, 0);
		if (*end)
			return -EINVAL;
		retval = cft->write_s64(cgrp, cft, val);
	}
1401 1402 1403 1404 1405
	if (!retval)
		retval = nbytes;
	return retval;
}

1406 1407 1408 1409 1410
static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
				   struct file *file,
				   const char __user *userbuf,
				   size_t nbytes, loff_t *unused_ppos)
{
1411
	char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
	int retval = 0;
	size_t max_bytes = cft->max_write_len;
	char *buffer = local_buffer;

	if (!max_bytes)
		max_bytes = sizeof(local_buffer) - 1;
	if (nbytes >= max_bytes)
		return -E2BIG;
	/* Allocate a dynamic buffer if we need one */
	if (nbytes >= sizeof(local_buffer)) {
		buffer = kmalloc(nbytes + 1, GFP_KERNEL);
		if (buffer == NULL)
			return -ENOMEM;
	}
L
Li Zefan 已提交
1426 1427 1428 1429
	if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
		retval = -EFAULT;
		goto out;
	}
1430 1431 1432 1433 1434 1435

	buffer[nbytes] = 0;     /* nul-terminate */
	strstrip(buffer);
	retval = cft->write_string(cgrp, cft, buffer);
	if (!retval)
		retval = nbytes;
L
Li Zefan 已提交
1436
out:
1437 1438 1439 1440 1441
	if (buffer != local_buffer)
		kfree(buffer);
	return retval;
}

1442 1443 1444 1445
static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
						size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1446
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1447

1448
	if (!cft || cgroup_is_removed(cgrp))
1449
		return -ENODEV;
1450
	if (cft->write)
1451
		return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1452 1453
	if (cft->write_u64 || cft->write_s64)
		return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
1454 1455
	if (cft->write_string)
		return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
1456 1457 1458 1459
	if (cft->trigger) {
		int ret = cft->trigger(cgrp, (unsigned int)cft->private);
		return ret ? ret : nbytes;
	}
1460
	return -EINVAL;
1461 1462
}

1463 1464 1465 1466
static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
1467
{
1468
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1469
	u64 val = cft->read_u64(cgrp, cft);
1470 1471 1472 1473 1474
	int len = sprintf(tmp, "%llu\n", (unsigned long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1475 1476 1477 1478 1479
static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
			       struct file *file,
			       char __user *buf, size_t nbytes,
			       loff_t *ppos)
{
1480
	char tmp[CGROUP_LOCAL_BUFFER_SIZE];
1481 1482 1483 1484 1485 1486
	s64 val = cft->read_s64(cgrp, cft);
	int len = sprintf(tmp, "%lld\n", (long long) val);

	return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
}

1487 1488 1489 1490
static ssize_t cgroup_file_read(struct file *file, char __user *buf,
				   size_t nbytes, loff_t *ppos)
{
	struct cftype *cft = __d_cft(file->f_dentry);
1491
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1492

1493
	if (!cft || cgroup_is_removed(cgrp))
1494 1495 1496
		return -ENODEV;

	if (cft->read)
1497
		return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1498 1499
	if (cft->read_u64)
		return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
1500 1501
	if (cft->read_s64)
		return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
1502 1503 1504
	return -EINVAL;
}

1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
/*
 * seqfile ops/methods for returning structured data. Currently just
 * supports string->u64 maps, but can be extended in future.
 */

struct cgroup_seqfile_state {
	struct cftype *cft;
	struct cgroup *cgroup;
};

static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
{
	struct seq_file *sf = cb->state;
	return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
}

static int cgroup_seqfile_show(struct seq_file *m, void *arg)
{
	struct cgroup_seqfile_state *state = m->private;
	struct cftype *cft = state->cft;
1525 1526 1527 1528 1529 1530 1531 1532
	if (cft->read_map) {
		struct cgroup_map_cb cb = {
			.fill = cgroup_map_add,
			.state = m,
		};
		return cft->read_map(state->cgroup, cft, &cb);
	}
	return cft->read_seq_string(state->cgroup, cft, m);
1533 1534
}

1535
static int cgroup_seqfile_release(struct inode *inode, struct file *file)
1536 1537 1538 1539 1540 1541 1542 1543
{
	struct seq_file *seq = file->private_data;
	kfree(seq->private);
	return single_release(inode, file);
}

static struct file_operations cgroup_seqfile_operations = {
	.read = seq_read,
1544
	.write = cgroup_file_write,
1545 1546 1547 1548
	.llseek = seq_lseek,
	.release = cgroup_seqfile_release,
};

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
static int cgroup_file_open(struct inode *inode, struct file *file)
{
	int err;
	struct cftype *cft;

	err = generic_file_open(inode, file);
	if (err)
		return err;

	cft = __d_cft(file->f_dentry);
	if (!cft)
		return -ENODEV;
1561
	if (cft->read_map || cft->read_seq_string) {
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
		struct cgroup_seqfile_state *state =
			kzalloc(sizeof(*state), GFP_USER);
		if (!state)
			return -ENOMEM;
		state->cft = cft;
		state->cgroup = __d_cgrp(file->f_dentry->d_parent);
		file->f_op = &cgroup_seqfile_operations;
		err = single_open(file, cgroup_seqfile_show, state);
		if (err < 0)
			kfree(state);
	} else if (cft->open)
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
		err = cft->open(inode, file);
	else
		err = 0;

	return err;
}

static int cgroup_file_release(struct inode *inode, struct file *file)
{
	struct cftype *cft = __d_cft(file->f_dentry);
	if (cft->release)
		return cft->release(inode, file);
	return 0;
}

/*
 * cgroup_rename - Only allow simple rename of directories in place.
 */
static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
			    struct inode *new_dir, struct dentry *new_dentry)
{
	if (!S_ISDIR(old_dentry->d_inode->i_mode))
		return -ENOTDIR;
	if (new_dentry->d_inode)
		return -EEXIST;
	if (old_dir != new_dir)
		return -EIO;
	return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
}

static struct file_operations cgroup_file_operations = {
	.read = cgroup_file_read,
	.write = cgroup_file_write,
	.llseek = generic_file_llseek,
	.open = cgroup_file_open,
	.release = cgroup_file_release,
};

static struct inode_operations cgroup_dir_inode_operations = {
	.lookup = simple_lookup,
	.mkdir = cgroup_mkdir,
	.rmdir = cgroup_rmdir,
	.rename = cgroup_rename,
};

static int cgroup_create_file(struct dentry *dentry, int mode,
				struct super_block *sb)
{
	static struct dentry_operations cgroup_dops = {
		.d_iput = cgroup_diput,
	};

	struct inode *inode;

	if (!dentry)
		return -ENOENT;
	if (dentry->d_inode)
		return -EEXIST;

	inode = cgroup_new_inode(mode, sb);
	if (!inode)
		return -ENOMEM;

	if (S_ISDIR(mode)) {
		inode->i_op = &cgroup_dir_inode_operations;
		inode->i_fop = &simple_dir_operations;

		/* start off with i_nlink == 2 (for "." entry) */
		inc_nlink(inode);

		/* start with the directory inode held, so that we can
		 * populate it without racing with another mkdir */
1645
		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
	} else if (S_ISREG(mode)) {
		inode->i_size = 0;
		inode->i_fop = &cgroup_file_operations;
	}
	dentry->d_op = &cgroup_dops;
	d_instantiate(dentry, inode);
	dget(dentry);	/* Extra count - pin the dentry in core */
	return 0;
}

/*
L
Li Zefan 已提交
1657 1658 1659 1660 1661
 * cgroup_create_dir - create a directory for an object.
 * @cgrp: the cgroup we create the directory for. It must have a valid
 *        ->parent field. And we are going to fill its ->dentry field.
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new directory.
1662
 */
1663
static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
1664 1665 1666 1667 1668
				int mode)
{
	struct dentry *parent;
	int error = 0;

1669 1670
	parent = cgrp->parent->dentry;
	error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1671
	if (!error) {
1672
		dentry->d_fsdata = cgrp;
1673
		inc_nlink(parent->d_inode);
1674
		cgrp->dentry = dentry;
1675 1676 1677 1678 1679 1680 1681
		dget(dentry);
	}
	dput(dentry);

	return error;
}

1682
int cgroup_add_file(struct cgroup *cgrp,
1683 1684 1685
		       struct cgroup_subsys *subsys,
		       const struct cftype *cft)
{
1686
	struct dentry *dir = cgrp->dentry;
1687 1688 1689 1690
	struct dentry *dentry;
	int error;

	char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1691
	if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1692 1693 1694 1695 1696 1697 1698 1699
		strcpy(name, subsys->name);
		strcat(name, ".");
	}
	strcat(name, cft->name);
	BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
	dentry = lookup_one_len(name, dir, strlen(name));
	if (!IS_ERR(dentry)) {
		error = cgroup_create_file(dentry, 0644 | S_IFREG,
1700
						cgrp->root->sb);
1701 1702 1703 1704 1705 1706 1707 1708
		if (!error)
			dentry->d_fsdata = (void *)cft;
		dput(dentry);
	} else
		error = PTR_ERR(dentry);
	return error;
}

1709
int cgroup_add_files(struct cgroup *cgrp,
1710 1711 1712 1713 1714 1715
			struct cgroup_subsys *subsys,
			const struct cftype cft[],
			int count)
{
	int i, err;
	for (i = 0; i < count; i++) {
1716
		err = cgroup_add_file(cgrp, subsys, &cft[i]);
1717 1718 1719 1720 1721 1722
		if (err)
			return err;
	}
	return 0;
}

L
Li Zefan 已提交
1723 1724 1725 1726 1727 1728
/**
 * cgroup_task_count - count the number of tasks in a cgroup.
 * @cgrp: the cgroup in question
 *
 * Return the number of tasks in the cgroup.
 */
1729
int cgroup_task_count(const struct cgroup *cgrp)
1730 1731
{
	int count = 0;
K
KOSAKI Motohiro 已提交
1732
	struct cg_cgroup_link *link;
1733 1734

	read_lock(&css_set_lock);
K
KOSAKI Motohiro 已提交
1735
	list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
1736
		count += atomic_read(&link->cg->refcount);
1737 1738
	}
	read_unlock(&css_set_lock);
1739 1740 1741
	return count;
}

1742 1743 1744 1745
/*
 * Advance a list_head iterator.  The iterator should be positioned at
 * the start of a css_set
 */
1746
static void cgroup_advance_iter(struct cgroup *cgrp,
1747 1748 1749 1750 1751 1752 1753 1754 1755
					  struct cgroup_iter *it)
{
	struct list_head *l = it->cg_link;
	struct cg_cgroup_link *link;
	struct css_set *cg;

	/* Advance to the next non-empty css_set */
	do {
		l = l->next;
1756
		if (l == &cgrp->css_sets) {
1757 1758 1759
			it->cg_link = NULL;
			return;
		}
1760
		link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1761 1762 1763 1764 1765 1766
		cg = link->cg;
	} while (list_empty(&cg->tasks));
	it->cg_link = l;
	it->task = cg->tasks.next;
}

1767 1768 1769 1770 1771 1772 1773 1774 1775
/*
 * To reduce the fork() overhead for systems that are not actually
 * using their cgroups capability, we don't maintain the lists running
 * through each css_set to its tasks until we see the list actually
 * used - in other words after the first call to cgroup_iter_start().
 *
 * The tasklist_lock is not held here, as do_each_thread() and
 * while_each_thread() are protected by RCU.
 */
1776
static void cgroup_enable_task_cg_lists(void)
1777 1778 1779 1780 1781 1782
{
	struct task_struct *p, *g;
	write_lock(&css_set_lock);
	use_task_css_set_links = 1;
	do_each_thread(g, p) {
		task_lock(p);
1783 1784 1785 1786 1787 1788
		/*
		 * We should check if the process is exiting, otherwise
		 * it will race with cgroup_exit() in that the list
		 * entry won't be deleted though the process has exited.
		 */
		if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
1789 1790 1791 1792 1793 1794
			list_add(&p->cg_list, &p->cgroups->tasks);
		task_unlock(p);
	} while_each_thread(g, p);
	write_unlock(&css_set_lock);
}

1795
void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
1796 1797 1798 1799 1800 1801
{
	/*
	 * The first time anyone tries to iterate across a cgroup,
	 * we need to enable the list linking each css_set to its
	 * tasks, and fix up all existing tasks.
	 */
1802 1803 1804
	if (!use_task_css_set_links)
		cgroup_enable_task_cg_lists();

1805
	read_lock(&css_set_lock);
1806 1807
	it->cg_link = &cgrp->css_sets;
	cgroup_advance_iter(cgrp, it);
1808 1809
}

1810
struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
					struct cgroup_iter *it)
{
	struct task_struct *res;
	struct list_head *l = it->task;

	/* If the iterator cg is NULL, we have no tasks */
	if (!it->cg_link)
		return NULL;
	res = list_entry(l, struct task_struct, cg_list);
	/* Advance iterator to find next entry */
	l = l->next;
	if (l == &res->cgroups->tasks) {
		/* We reached the end of this task list - move on to
		 * the next cg_cgroup_link */
1825
		cgroup_advance_iter(cgrp, it);
1826 1827 1828 1829 1830 1831
	} else {
		it->task = l;
	}
	return res;
}

1832
void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
1833 1834 1835 1836
{
	read_unlock(&css_set_lock);
}

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973
static inline int started_after_time(struct task_struct *t1,
				     struct timespec *time,
				     struct task_struct *t2)
{
	int start_diff = timespec_compare(&t1->start_time, time);
	if (start_diff > 0) {
		return 1;
	} else if (start_diff < 0) {
		return 0;
	} else {
		/*
		 * Arbitrarily, if two processes started at the same
		 * time, we'll say that the lower pointer value
		 * started first. Note that t2 may have exited by now
		 * so this may not be a valid pointer any longer, but
		 * that's fine - it still serves to distinguish
		 * between two tasks started (effectively) simultaneously.
		 */
		return t1 > t2;
	}
}

/*
 * This function is a callback from heap_insert() and is used to order
 * the heap.
 * In this case we order the heap in descending task start time.
 */
static inline int started_after(void *p1, void *p2)
{
	struct task_struct *t1 = p1;
	struct task_struct *t2 = p2;
	return started_after_time(t1, &t2->start_time, t2);
}

/**
 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
 * @scan: struct cgroup_scanner containing arguments for the scan
 *
 * Arguments include pointers to callback functions test_task() and
 * process_task().
 * Iterate through all the tasks in a cgroup, calling test_task() for each,
 * and if it returns true, call process_task() for it also.
 * The test_task pointer may be NULL, meaning always true (select all tasks).
 * Effectively duplicates cgroup_iter_{start,next,end}()
 * but does not lock css_set_lock for the call to process_task().
 * The struct cgroup_scanner may be embedded in any structure of the caller's
 * creation.
 * It is guaranteed that process_task() will act on every task that
 * is a member of the cgroup for the duration of this call. This
 * function may or may not call process_task() for tasks that exit
 * or move to a different cgroup during the call, or are forked or
 * move into the cgroup during the call.
 *
 * Note that test_task() may be called with locks held, and may in some
 * situations be called multiple times for the same task, so it should
 * be cheap.
 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
 * pre-allocated and will be used for heap operations (and its "gt" member will
 * be overwritten), else a temporary heap will be used (allocation of which
 * may cause this function to fail).
 */
int cgroup_scan_tasks(struct cgroup_scanner *scan)
{
	int retval, i;
	struct cgroup_iter it;
	struct task_struct *p, *dropped;
	/* Never dereference latest_task, since it's not refcounted */
	struct task_struct *latest_task = NULL;
	struct ptr_heap tmp_heap;
	struct ptr_heap *heap;
	struct timespec latest_time = { 0, 0 };

	if (scan->heap) {
		/* The caller supplied our heap and pre-allocated its memory */
		heap = scan->heap;
		heap->gt = &started_after;
	} else {
		/* We need to allocate our own heap memory */
		heap = &tmp_heap;
		retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
		if (retval)
			/* cannot allocate the heap */
			return retval;
	}

 again:
	/*
	 * Scan tasks in the cgroup, using the scanner's "test_task" callback
	 * to determine which are of interest, and using the scanner's
	 * "process_task" callback to process any of them that need an update.
	 * Since we don't want to hold any locks during the task updates,
	 * gather tasks to be processed in a heap structure.
	 * The heap is sorted by descending task start time.
	 * If the statically-sized heap fills up, we overflow tasks that
	 * started later, and in future iterations only consider tasks that
	 * started after the latest task in the previous pass. This
	 * guarantees forward progress and that we don't miss any tasks.
	 */
	heap->size = 0;
	cgroup_iter_start(scan->cg, &it);
	while ((p = cgroup_iter_next(scan->cg, &it))) {
		/*
		 * Only affect tasks that qualify per the caller's callback,
		 * if he provided one
		 */
		if (scan->test_task && !scan->test_task(p, scan))
			continue;
		/*
		 * Only process tasks that started after the last task
		 * we processed
		 */
		if (!started_after_time(p, &latest_time, latest_task))
			continue;
		dropped = heap_insert(heap, p);
		if (dropped == NULL) {
			/*
			 * The new task was inserted; the heap wasn't
			 * previously full
			 */
			get_task_struct(p);
		} else if (dropped != p) {
			/*
			 * The new task was inserted, and pushed out a
			 * different task
			 */
			get_task_struct(p);
			put_task_struct(dropped);
		}
		/*
		 * Else the new task was newer than anything already in
		 * the heap and wasn't inserted
		 */
	}
	cgroup_iter_end(scan->cg, &it);

	if (heap->size) {
		for (i = 0; i < heap->size; i++) {
1974
			struct task_struct *q = heap->ptrs[i];
1975
			if (i == 0) {
1976 1977
				latest_time = q->start_time;
				latest_task = q;
1978 1979
			}
			/* Process the task per the caller's callback */
1980 1981
			scan->process_task(q, scan);
			put_task_struct(q);
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
		}
		/*
		 * If we had to process any tasks at all, scan again
		 * in case some of them were in the middle of forking
		 * children that didn't get processed.
		 * Not the most efficient way to do it, but it avoids
		 * having to take callback_mutex in the fork path
		 */
		goto again;
	}
	if (heap == &tmp_heap)
		heap_free(&tmp_heap);
	return 0;
}

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
/*
 * Stuff for reading the 'tasks' file.
 *
 * Reading this file can return large amounts of data if a cgroup has
 * *lots* of attached tasks. So it may need several calls to read(),
 * but we cannot guarantee that the information we produce is correct
 * unless we produce it entirely atomically.
 *
 */

/*
 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2009
 * 'cgrp'.  Return actual number of pids loaded.  No need to
2010 2011 2012 2013
 * task_lock(p) when reading out p->cgroup, since we're in an RCU
 * read section, so the css_set can't go away, and is
 * immutable after creation.
 */
2014
static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
2015 2016
{
	int n = 0;
2017 2018
	struct cgroup_iter it;
	struct task_struct *tsk;
2019 2020
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
2021 2022
		if (unlikely(n == npids))
			break;
2023
		pidarray[n++] = task_pid_vnr(tsk);
2024
	}
2025
	cgroup_iter_end(cgrp, &it);
2026 2027 2028
	return n;
}

B
Balbir Singh 已提交
2029
/**
L
Li Zefan 已提交
2030
 * cgroupstats_build - build and fill cgroupstats
B
Balbir Singh 已提交
2031 2032 2033
 * @stats: cgroupstats to fill information into
 * @dentry: A dentry entry belonging to the cgroup for which stats have
 * been requested.
L
Li Zefan 已提交
2034 2035 2036
 *
 * Build and fill cgroupstats so that taskstats can export it to user
 * space.
B
Balbir Singh 已提交
2037 2038 2039 2040
 */
int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
{
	int ret = -EINVAL;
2041
	struct cgroup *cgrp;
B
Balbir Singh 已提交
2042 2043
	struct cgroup_iter it;
	struct task_struct *tsk;
2044

B
Balbir Singh 已提交
2045
	/*
2046 2047
	 * Validate dentry by checking the superblock operations,
	 * and make sure it's a directory.
B
Balbir Singh 已提交
2048
	 */
2049 2050
	if (dentry->d_sb->s_op != &cgroup_ops ||
	    !S_ISDIR(dentry->d_inode->i_mode))
B
Balbir Singh 已提交
2051 2052 2053
		 goto err;

	ret = 0;
2054
	cgrp = dentry->d_fsdata;
B
Balbir Singh 已提交
2055 2056
	rcu_read_lock();

2057 2058
	cgroup_iter_start(cgrp, &it);
	while ((tsk = cgroup_iter_next(cgrp, &it))) {
B
Balbir Singh 已提交
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077
		switch (tsk->state) {
		case TASK_RUNNING:
			stats->nr_running++;
			break;
		case TASK_INTERRUPTIBLE:
			stats->nr_sleeping++;
			break;
		case TASK_UNINTERRUPTIBLE:
			stats->nr_uninterruptible++;
			break;
		case TASK_STOPPED:
			stats->nr_stopped++;
			break;
		default:
			if (delayacct_is_task_waiting_on_io(tsk))
				stats->nr_io_wait++;
			break;
		}
	}
2078
	cgroup_iter_end(cgrp, &it);
B
Balbir Singh 已提交
2079 2080 2081 2082 2083 2084

	rcu_read_unlock();
err:
	return ret;
}

2085 2086 2087 2088 2089
static int cmppid(const void *a, const void *b)
{
	return *(pid_t *)a - *(pid_t *)b;
}

2090

2091
/*
2092 2093 2094
 * seq_file methods for the "tasks" file. The seq_file position is the
 * next pid to display; the seq_file iterator is a pointer to the pid
 * in the cgroup->tasks_pids array.
2095
 */
2096 2097

static void *cgroup_tasks_start(struct seq_file *s, loff_t *pos)
2098
{
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
	/*
	 * Initially we receive a position value that corresponds to
	 * one more than the last pid shown (or 0 on the first call or
	 * after a seek to the start). Use a binary-search to find the
	 * next pid to display, if any
	 */
	struct cgroup *cgrp = s->private;
	int index = 0, pid = *pos;
	int *iter;

	down_read(&cgrp->pids_mutex);
	if (pid) {
		int end = cgrp->pids_length;
S
Stephen Rothwell 已提交
2112

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
		while (index < end) {
			int mid = (index + end) / 2;
			if (cgrp->tasks_pids[mid] == pid) {
				index = mid;
				break;
			} else if (cgrp->tasks_pids[mid] <= pid)
				index = mid + 1;
			else
				end = mid;
		}
	}
	/* If we're off the end of the array, we're done */
	if (index >= cgrp->pids_length)
		return NULL;
	/* Update the abstract position to be the actual pid that we found */
	iter = cgrp->tasks_pids + index;
	*pos = *iter;
	return iter;
}

static void cgroup_tasks_stop(struct seq_file *s, void *v)
{
	struct cgroup *cgrp = s->private;
	up_read(&cgrp->pids_mutex);
}

static void *cgroup_tasks_next(struct seq_file *s, void *v, loff_t *pos)
{
	struct cgroup *cgrp = s->private;
	int *p = v;
	int *end = cgrp->tasks_pids + cgrp->pids_length;

	/*
	 * Advance to the next pid in the array. If this goes off the
	 * end, we're done
	 */
	p++;
	if (p >= end) {
		return NULL;
	} else {
		*pos = *p;
		return p;
	}
}

static int cgroup_tasks_show(struct seq_file *s, void *v)
{
	return seq_printf(s, "%d\n", *(int *)v);
}
2162

2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
static struct seq_operations cgroup_tasks_seq_operations = {
	.start = cgroup_tasks_start,
	.stop = cgroup_tasks_stop,
	.next = cgroup_tasks_next,
	.show = cgroup_tasks_show,
};

static void release_cgroup_pid_array(struct cgroup *cgrp)
{
	down_write(&cgrp->pids_mutex);
	BUG_ON(!cgrp->pids_use_count);
	if (!--cgrp->pids_use_count) {
		kfree(cgrp->tasks_pids);
		cgrp->tasks_pids = NULL;
		cgrp->pids_length = 0;
	}
	up_write(&cgrp->pids_mutex);
2180 2181
}

2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
static int cgroup_tasks_release(struct inode *inode, struct file *file)
{
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);

	if (!(file->f_mode & FMODE_READ))
		return 0;

	release_cgroup_pid_array(cgrp);
	return seq_release(inode, file);
}

static struct file_operations cgroup_tasks_operations = {
	.read = seq_read,
	.llseek = seq_lseek,
	.write = cgroup_file_write,
	.release = cgroup_tasks_release,
};

2200
/*
2201
 * Handle an open on 'tasks' file.  Prepare an array containing the
2202 2203
 * process id's of tasks currently attached to the cgroup being opened.
 */
2204

2205 2206
static int cgroup_tasks_open(struct inode *unused, struct file *file)
{
2207
	struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2208 2209
	pid_t *pidarray;
	int npids;
2210
	int retval;
2211

2212
	/* Nothing to do for write-only files */
2213 2214 2215 2216 2217 2218 2219 2220 2221
	if (!(file->f_mode & FMODE_READ))
		return 0;

	/*
	 * If cgroup gets more users after we read count, we won't have
	 * enough space - tough.  This race is indistinguishable to the
	 * caller from the case that the additional cgroup users didn't
	 * show up until sometime later on.
	 */
2222
	npids = cgroup_task_count(cgrp);
2223 2224 2225 2226 2227
	pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
	if (!pidarray)
		return -ENOMEM;
	npids = pid_array_load(pidarray, npids, cgrp);
	sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
2228

2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
	/*
	 * Store the array in the cgroup, freeing the old
	 * array if necessary
	 */
	down_write(&cgrp->pids_mutex);
	kfree(cgrp->tasks_pids);
	cgrp->tasks_pids = pidarray;
	cgrp->pids_length = npids;
	cgrp->pids_use_count++;
	up_write(&cgrp->pids_mutex);

	file->f_op = &cgroup_tasks_operations;

	retval = seq_open(file, &cgroup_tasks_seq_operations);
	if (retval) {
		release_cgroup_pid_array(cgrp);
		return retval;
2246
	}
2247
	((struct seq_file *)file->private_data)->private = cgrp;
2248 2249 2250
	return 0;
}

2251
static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
2252 2253
					    struct cftype *cft)
{
2254
	return notify_on_release(cgrp);
2255 2256
}

2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
static int cgroup_write_notify_on_release(struct cgroup *cgrp,
					  struct cftype *cft,
					  u64 val)
{
	clear_bit(CGRP_RELEASABLE, &cgrp->flags);
	if (val)
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	else
		clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
	return 0;
}

2269 2270 2271
/*
 * for the common functions, 'private' gives the type of file
 */
2272 2273 2274 2275
static struct cftype files[] = {
	{
		.name = "tasks",
		.open = cgroup_tasks_open,
2276
		.write_u64 = cgroup_tasks_write,
2277 2278 2279 2280 2281 2282
		.release = cgroup_tasks_release,
		.private = FILE_TASKLIST,
	},

	{
		.name = "notify_on_release",
2283
		.read_u64 = cgroup_read_notify_on_release,
2284
		.write_u64 = cgroup_write_notify_on_release,
2285 2286 2287 2288 2289 2290
		.private = FILE_NOTIFY_ON_RELEASE,
	},
};

static struct cftype cft_release_agent = {
	.name = "release_agent",
2291 2292 2293
	.read_seq_string = cgroup_release_agent_show,
	.write_string = cgroup_release_agent_write,
	.max_write_len = PATH_MAX,
2294
	.private = FILE_RELEASE_AGENT,
2295 2296
};

2297
static int cgroup_populate_dir(struct cgroup *cgrp)
2298 2299 2300 2301 2302
{
	int err;
	struct cgroup_subsys *ss;

	/* First clear out any existing files */
2303
	cgroup_clear_directory(cgrp->dentry);
2304

2305
	err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
2306 2307 2308
	if (err < 0)
		return err;

2309 2310
	if (cgrp == cgrp->top_cgroup) {
		if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
2311 2312 2313
			return err;
	}

2314 2315
	for_each_subsys(cgrp->root, ss) {
		if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
2316 2317 2318 2319 2320 2321 2322 2323
			return err;
	}

	return 0;
}

static void init_cgroup_css(struct cgroup_subsys_state *css,
			       struct cgroup_subsys *ss,
2324
			       struct cgroup *cgrp)
2325
{
2326
	css->cgroup = cgrp;
2327 2328
	atomic_set(&css->refcnt, 0);
	css->flags = 0;
2329
	if (cgrp == dummytop)
2330
		set_bit(CSS_ROOT, &css->flags);
2331 2332
	BUG_ON(cgrp->subsys[ss->subsys_id]);
	cgrp->subsys[ss->subsys_id] = css;
2333 2334 2335
}

/*
L
Li Zefan 已提交
2336 2337 2338 2339
 * cgroup_create - create a cgroup
 * @parent: cgroup that will be parent of the new cgroup
 * @dentry: dentry of the new cgroup
 * @mode: mode to set on new inode
2340
 *
L
Li Zefan 已提交
2341
 * Must be called with the mutex on the parent inode held
2342 2343 2344 2345
 */
static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
			     int mode)
{
2346
	struct cgroup *cgrp;
2347 2348 2349 2350 2351
	struct cgroupfs_root *root = parent->root;
	int err = 0;
	struct cgroup_subsys *ss;
	struct super_block *sb = root->sb;

2352 2353
	cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
	if (!cgrp)
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364
		return -ENOMEM;

	/* Grab a reference on the superblock so the hierarchy doesn't
	 * get deleted on unmount if there are child cgroups.  This
	 * can be done outside cgroup_mutex, since the sb can't
	 * disappear while someone has an open control file on the
	 * fs */
	atomic_inc(&sb->s_active);

	mutex_lock(&cgroup_mutex);

2365
	init_cgroup_housekeeping(cgrp);
2366

2367 2368 2369
	cgrp->parent = parent;
	cgrp->root = parent->root;
	cgrp->top_cgroup = parent->top_cgroup;
2370

2371 2372 2373
	if (notify_on_release(parent))
		set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);

2374
	for_each_subsys(root, ss) {
2375
		struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2376 2377 2378 2379
		if (IS_ERR(css)) {
			err = PTR_ERR(css);
			goto err_destroy;
		}
2380
		init_cgroup_css(css, ss, cgrp);
2381 2382
	}

2383
	list_add(&cgrp->sibling, &cgrp->parent->children);
2384 2385
	root->number_of_cgroups++;

2386
	err = cgroup_create_dir(cgrp, dentry, mode);
2387 2388 2389 2390
	if (err < 0)
		goto err_remove;

	/* The cgroup directory was pre-locked for us */
2391
	BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2392

2393
	err = cgroup_populate_dir(cgrp);
2394 2395 2396
	/* If err < 0, we have a half-filled directory - oh well ;) */

	mutex_unlock(&cgroup_mutex);
2397
	mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2398 2399 2400 2401 2402

	return 0;

 err_remove:

2403
	list_del(&cgrp->sibling);
2404 2405 2406 2407 2408
	root->number_of_cgroups--;

 err_destroy:

	for_each_subsys(root, ss) {
2409 2410
		if (cgrp->subsys[ss->subsys_id])
			ss->destroy(ss, cgrp);
2411 2412 2413 2414 2415 2416 2417
	}

	mutex_unlock(&cgroup_mutex);

	/* Release the reference count that we took on the superblock */
	deactivate_super(sb);

2418
	kfree(cgrp);
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
	return err;
}

static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
	struct cgroup *c_parent = dentry->d_parent->d_fsdata;

	/* the vfs holds inode->i_mutex already */
	return cgroup_create(c_parent, dentry, mode | S_IFDIR);
}

2430
static int cgroup_has_css_refs(struct cgroup *cgrp)
2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
{
	/* Check the reference count on each subsystem. Since we
	 * already established that there are no tasks in the
	 * cgroup, if the css refcount is also 0, then there should
	 * be no outstanding references, so the subsystem is safe to
	 * destroy. We scan across all subsystems rather than using
	 * the per-hierarchy linked list of mounted subsystems since
	 * we can be called via check_for_release() with no
	 * synchronization other than RCU, and the subsystem linked
	 * list isn't RCU-safe */
	int i;
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		struct cgroup_subsys_state *css;
		/* Skip subsystems not in this hierarchy */
2446
		if (ss->root != cgrp->root)
2447
			continue;
2448
		css = cgrp->subsys[ss->subsys_id];
2449 2450 2451 2452 2453 2454
		/* When called from check_for_release() it's possible
		 * that by this point the cgroup has been removed
		 * and the css deleted. But a false-positive doesn't
		 * matter, since it can only happen if the cgroup
		 * has been deleted and hence no longer needs the
		 * release agent to be called anyway. */
P
Paul Jackson 已提交
2455
		if (css && atomic_read(&css->refcnt))
2456 2457 2458 2459 2460
			return 1;
	}
	return 0;
}

2461 2462
static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
{
2463
	struct cgroup *cgrp = dentry->d_fsdata;
2464 2465 2466 2467 2468 2469 2470 2471
	struct dentry *d;
	struct cgroup *parent;
	struct super_block *sb;
	struct cgroupfs_root *root;

	/* the vfs holds both inode->i_mutex already */

	mutex_lock(&cgroup_mutex);
2472
	if (atomic_read(&cgrp->count) != 0) {
2473 2474 2475
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2476
	if (!list_empty(&cgrp->children)) {
2477 2478 2479
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}
2480
	mutex_unlock(&cgroup_mutex);
L
Li Zefan 已提交
2481

2482
	/*
L
Li Zefan 已提交
2483 2484
	 * Call pre_destroy handlers of subsys. Notify subsystems
	 * that rmdir() request comes.
2485 2486
	 */
	cgroup_call_pre_destroy(cgrp);
2487

2488 2489 2490 2491 2492 2493 2494 2495
	mutex_lock(&cgroup_mutex);
	parent = cgrp->parent;
	root = cgrp->root;
	sb = root->sb;

	if (atomic_read(&cgrp->count)
	    || !list_empty(&cgrp->children)
	    || cgroup_has_css_refs(cgrp)) {
2496 2497 2498 2499
		mutex_unlock(&cgroup_mutex);
		return -EBUSY;
	}

2500
	spin_lock(&release_list_lock);
2501 2502 2503
	set_bit(CGRP_REMOVED, &cgrp->flags);
	if (!list_empty(&cgrp->release_list))
		list_del(&cgrp->release_list);
2504
	spin_unlock(&release_list_lock);
2505
	/* delete my sibling from parent->children */
2506 2507 2508
	list_del(&cgrp->sibling);
	spin_lock(&cgrp->dentry->d_lock);
	d = dget(cgrp->dentry);
2509 2510 2511 2512 2513
	spin_unlock(&d->d_lock);

	cgroup_d_remove_dir(d);
	dput(d);

2514
	set_bit(CGRP_RELEASABLE, &parent->flags);
2515 2516
	check_for_release(parent);

2517 2518 2519 2520
	mutex_unlock(&cgroup_mutex);
	return 0;
}

2521
static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
2522 2523
{
	struct cgroup_subsys_state *css;
D
Diego Calleja 已提交
2524 2525

	printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2526 2527 2528 2529 2530 2531 2532 2533

	/* Create the top cgroup state for this subsystem */
	ss->root = &rootnode;
	css = ss->create(ss, dummytop);
	/* We don't handle early failures gracefully */
	BUG_ON(IS_ERR(css));
	init_cgroup_css(css, ss, dummytop);

L
Li Zefan 已提交
2534
	/* Update the init_css_set to contain a subsys
2535
	 * pointer to this state - since the subsystem is
L
Li Zefan 已提交
2536 2537 2538
	 * newly registered, all tasks and hence the
	 * init_css_set is in the subsystem's top cgroup. */
	init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2539 2540 2541

	need_forkexit_callback |= ss->fork || ss->exit;

L
Li Zefan 已提交
2542 2543 2544 2545 2546
	/* At system boot, before all subsystems have been
	 * registered, no tasks have been forked, so we don't
	 * need to invoke fork callbacks here. */
	BUG_ON(!list_empty(&init_task.tasks));

2547 2548 2549 2550
	ss->active = 1;
}

/**
L
Li Zefan 已提交
2551 2552 2553 2554
 * cgroup_init_early - cgroup initialization at system boot
 *
 * Initialize cgroups at system boot, and initialize any
 * subsystems that request early init.
2555 2556 2557 2558
 */
int __init cgroup_init_early(void)
{
	int i;
2559
	atomic_set(&init_css_set.refcount, 1);
2560 2561
	INIT_LIST_HEAD(&init_css_set.cg_links);
	INIT_LIST_HEAD(&init_css_set.tasks);
2562
	INIT_HLIST_NODE(&init_css_set.hlist);
2563
	css_set_count = 1;
2564 2565
	init_cgroup_root(&rootnode);
	list_add(&rootnode.root_list, &roots);
2566 2567 2568 2569
	root_count = 1;
	init_task.cgroups = &init_css_set;

	init_css_set_link.cg = &init_css_set;
2570
	list_add(&init_css_set_link.cgrp_link_list,
2571 2572 2573
		 &rootnode.top_cgroup.css_sets);
	list_add(&init_css_set_link.cg_link_list,
		 &init_css_set.cg_links);
2574

2575 2576 2577
	for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
		INIT_HLIST_HEAD(&css_set_table[i]);

2578 2579 2580 2581 2582 2583 2584 2585
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];

		BUG_ON(!ss->name);
		BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
		BUG_ON(!ss->create);
		BUG_ON(!ss->destroy);
		if (ss->subsys_id != i) {
D
Diego Calleja 已提交
2586
			printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
			       ss->name, ss->subsys_id);
			BUG();
		}

		if (ss->early_init)
			cgroup_init_subsys(ss);
	}
	return 0;
}

/**
L
Li Zefan 已提交
2598 2599 2600 2601
 * cgroup_init - cgroup initialization
 *
 * Register cgroup filesystem and /proc file, and initialize
 * any subsystems that didn't request early init.
2602 2603 2604 2605 2606
 */
int __init cgroup_init(void)
{
	int err;
	int i;
2607
	struct hlist_head *hhead;
2608 2609 2610 2611

	err = bdi_init(&cgroup_backing_dev_info);
	if (err)
		return err;
2612 2613 2614 2615 2616 2617 2618

	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
		if (!ss->early_init)
			cgroup_init_subsys(ss);
	}

2619 2620 2621 2622
	/* Add init_css_set to the hash table */
	hhead = css_set_hash(init_css_set.subsys);
	hlist_add_head(&init_css_set.hlist, hhead);

2623 2624 2625 2626
	err = register_filesystem(&cgroup_fs_type);
	if (err < 0)
		goto out;

L
Li Zefan 已提交
2627
	proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
2628

2629
out:
2630 2631 2632
	if (err)
		bdi_destroy(&cgroup_backing_dev_info);

2633 2634
	return err;
}
2635

2636 2637 2638 2639 2640 2641
/*
 * proc_cgroup_show()
 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
 *  - Used for /proc/<pid>/cgroup.
 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
 *    doesn't really matter if tsk->cgroup changes after we read it,
2642
 *    and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
 *    cgroup to top_cgroup.
 */

/* TODO: Use a proper seq_file iterator */
static int proc_cgroup_show(struct seq_file *m, void *v)
{
	struct pid *pid;
	struct task_struct *tsk;
	char *buf;
	int retval;
	struct cgroupfs_root *root;

	retval = -ENOMEM;
	buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
	if (!buf)
		goto out;

	retval = -ESRCH;
	pid = m->private;
	tsk = get_pid_task(pid, PIDTYPE_PID);
	if (!tsk)
		goto out_free;

	retval = 0;

	mutex_lock(&cgroup_mutex);

	for_each_root(root) {
		struct cgroup_subsys *ss;
2674
		struct cgroup *cgrp;
2675 2676 2677 2678 2679 2680
		int subsys_id;
		int count = 0;

		/* Skip this hierarchy if it has no active subsystems */
		if (!root->actual_subsys_bits)
			continue;
2681
		seq_printf(m, "%lu:", root->subsys_bits);
2682 2683 2684 2685
		for_each_subsys(root, ss)
			seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
		seq_putc(m, ':');
		get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
2686 2687
		cgrp = task_cgroup(tsk, subsys_id);
		retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720
		if (retval < 0)
			goto out_unlock;
		seq_puts(m, buf);
		seq_putc(m, '\n');
	}

out_unlock:
	mutex_unlock(&cgroup_mutex);
	put_task_struct(tsk);
out_free:
	kfree(buf);
out:
	return retval;
}

static int cgroup_open(struct inode *inode, struct file *file)
{
	struct pid *pid = PROC_I(inode)->pid;
	return single_open(file, proc_cgroup_show, pid);
}

struct file_operations proc_cgroup_operations = {
	.open		= cgroup_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/* Display information about each subsystem and each hierarchy */
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
	int i;

2721
	seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
2722 2723 2724
	mutex_lock(&cgroup_mutex);
	for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
		struct cgroup_subsys *ss = subsys[i];
2725
		seq_printf(m, "%s\t%lu\t%d\t%d\n",
2726
			   ss->name, ss->root->subsys_bits,
2727
			   ss->root->number_of_cgroups, !ss->disabled);
2728 2729 2730 2731 2732 2733 2734
	}
	mutex_unlock(&cgroup_mutex);
	return 0;
}

static int cgroupstats_open(struct inode *inode, struct file *file)
{
A
Al Viro 已提交
2735
	return single_open(file, proc_cgroupstats_show, NULL);
2736 2737 2738 2739 2740 2741 2742 2743 2744
}

static struct file_operations proc_cgroupstats_operations = {
	.open = cgroupstats_open,
	.read = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

2745 2746
/**
 * cgroup_fork - attach newly forked task to its parents cgroup.
L
Li Zefan 已提交
2747
 * @child: pointer to task_struct of forking parent process.
2748 2749 2750 2751 2752 2753
 *
 * Description: A task inherits its parent's cgroup at fork().
 *
 * A pointer to the shared css_set was automatically copied in
 * fork.c by dup_task_struct().  However, we ignore that copy, since
 * it was not made under the protection of RCU or cgroup_mutex, so
2754
 * might no longer be a valid cgroup pointer.  cgroup_attach_task() might
2755 2756
 * have already changed current->cgroups, allowing the previously
 * referenced cgroup group to be removed and freed.
2757 2758 2759 2760 2761 2762
 *
 * At the point that cgroup_fork() is called, 'current' is the parent
 * task, and the passed argument 'child' points to the child task.
 */
void cgroup_fork(struct task_struct *child)
{
2763 2764 2765 2766 2767
	task_lock(current);
	child->cgroups = current->cgroups;
	get_css_set(child->cgroups);
	task_unlock(current);
	INIT_LIST_HEAD(&child->cg_list);
2768 2769 2770
}

/**
L
Li Zefan 已提交
2771 2772 2773 2774 2775 2776
 * cgroup_fork_callbacks - run fork callbacks
 * @child: the new task
 *
 * Called on a new task very soon before adding it to the
 * tasklist. No need to take any locks since no-one can
 * be operating on this task.
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
 */
void cgroup_fork_callbacks(struct task_struct *child)
{
	if (need_forkexit_callback) {
		int i;
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->fork)
				ss->fork(ss, child);
		}
	}
}

2790
/**
L
Li Zefan 已提交
2791 2792 2793 2794 2795 2796 2797 2798
 * cgroup_post_fork - called on a new task after adding it to the task list
 * @child: the task in question
 *
 * Adds the task to the list running through its css_set if necessary.
 * Has to be after the task is visible on the task list in case we race
 * with the first call to cgroup_iter_start() - to guarantee that the
 * new task ends up on its list.
 */
2799 2800 2801 2802 2803 2804 2805 2806 2807
void cgroup_post_fork(struct task_struct *child)
{
	if (use_task_css_set_links) {
		write_lock(&css_set_lock);
		if (list_empty(&child->cg_list))
			list_add(&child->cg_list, &child->cgroups->tasks);
		write_unlock(&css_set_lock);
	}
}
2808 2809 2810
/**
 * cgroup_exit - detach cgroup from exiting task
 * @tsk: pointer to task_struct of exiting process
L
Li Zefan 已提交
2811
 * @run_callback: run exit callbacks?
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
 *
 * Description: Detach cgroup from @tsk and release it.
 *
 * Note that cgroups marked notify_on_release force every task in
 * them to take the global cgroup_mutex mutex when exiting.
 * This could impact scaling on very large systems.  Be reluctant to
 * use notify_on_release cgroups where very high task exit scaling
 * is required on large systems.
 *
 * the_top_cgroup_hack:
 *
 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
 *
 *    We call cgroup_exit() while the task is still competent to
 *    handle notify_on_release(), then leave the task attached to the
 *    root cgroup in each hierarchy for the remainder of its exit.
 *
 *    To do this properly, we would increment the reference count on
 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
 *    code we would add a second cgroup function call, to drop that
 *    reference.  This would just create an unnecessary hot spot on
 *    the top_cgroup reference count, to no avail.
 *
 *    Normally, holding a reference to a cgroup without bumping its
 *    count is unsafe.   The cgroup could go away, or someone could
 *    attach us to a different cgroup, decrementing the count on
 *    the first cgroup that we never incremented.  But in this case,
 *    top_cgroup isn't going away, and either task has PF_EXITING set,
2840 2841
 *    which wards off any cgroup_attach_task() attempts, or task is a failed
 *    fork, never visible to cgroup_attach_task.
2842 2843 2844 2845
 */
void cgroup_exit(struct task_struct *tsk, int run_callbacks)
{
	int i;
2846
	struct css_set *cg;
2847 2848 2849 2850 2851 2852 2853 2854

	if (run_callbacks && need_forkexit_callback) {
		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];
			if (ss->exit)
				ss->exit(ss, tsk);
		}
	}
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867

	/*
	 * Unlink from the css_set task list if necessary.
	 * Optimistically check cg_list before taking
	 * css_set_lock
	 */
	if (!list_empty(&tsk->cg_list)) {
		write_lock(&css_set_lock);
		if (!list_empty(&tsk->cg_list))
			list_del(&tsk->cg_list);
		write_unlock(&css_set_lock);
	}

2868 2869
	/* Reassign the task to the init_css_set. */
	task_lock(tsk);
2870 2871
	cg = tsk->cgroups;
	tsk->cgroups = &init_css_set;
2872
	task_unlock(tsk);
2873
	if (cg)
2874
		put_css_set_taskexit(cg);
2875
}
2876 2877

/**
L
Li Zefan 已提交
2878 2879 2880
 * cgroup_clone - clone the cgroup the given subsystem is attached to
 * @tsk: the task to be moved
 * @subsys: the given subsystem
2881
 * @nodename: the name for the new cgroup
L
Li Zefan 已提交
2882 2883 2884 2885
 *
 * Duplicate the current cgroup in the hierarchy that the given
 * subsystem is attached to, and move this task into the new
 * child.
2886
 */
2887 2888
int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
							char *nodename)
2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
{
	struct dentry *dentry;
	int ret = 0;
	struct cgroup *parent, *child;
	struct inode *inode;
	struct css_set *cg;
	struct cgroupfs_root *root;
	struct cgroup_subsys *ss;

	/* We shouldn't be called by an unregistered subsystem */
	BUG_ON(!subsys->active);

	/* First figure out what hierarchy and cgroup we're dealing
	 * with, and pin them so we can drop cgroup_mutex */
	mutex_lock(&cgroup_mutex);
 again:
	root = subsys->root;
	if (root == &rootnode) {
		mutex_unlock(&cgroup_mutex);
		return 0;
	}
2910
	cg = tsk->cgroups;
2911 2912 2913
	parent = task_cgroup(tsk, subsys->subsys_id);

	/* Pin the hierarchy */
2914 2915 2916 2917 2918
	if (!atomic_inc_not_zero(&parent->root->sb->s_active)) {
		/* We race with the final deactivate_super() */
		mutex_unlock(&cgroup_mutex);
		return 0;
	}
2919

2920 2921
	/* Keep the cgroup alive */
	get_css_set(cg);
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
	mutex_unlock(&cgroup_mutex);

	/* Now do the VFS work to create a cgroup */
	inode = parent->dentry->d_inode;

	/* Hold the parent directory mutex across this operation to
	 * stop anyone else deleting the new cgroup */
	mutex_lock(&inode->i_mutex);
	dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
	if (IS_ERR(dentry)) {
		printk(KERN_INFO
D
Diego Calleja 已提交
2933
		       "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
2934 2935 2936 2937 2938 2939 2940
		       PTR_ERR(dentry));
		ret = PTR_ERR(dentry);
		goto out_release;
	}

	/* Create the cgroup directory, which also creates the cgroup */
	ret = vfs_mkdir(inode, dentry, S_IFDIR | 0755);
2941
	child = __d_cgrp(dentry);
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
	dput(dentry);
	if (ret) {
		printk(KERN_INFO
		       "Failed to create cgroup %s: %d\n", nodename,
		       ret);
		goto out_release;
	}

	if (!child) {
		printk(KERN_INFO
		       "Couldn't find new cgroup %s\n", nodename);
		ret = -ENOMEM;
		goto out_release;
	}

	/* The cgroup now exists. Retake cgroup_mutex and check
	 * that we're still in the same state that we thought we
	 * were. */
	mutex_lock(&cgroup_mutex);
	if ((root != subsys->root) ||
	    (parent != task_cgroup(tsk, subsys->subsys_id))) {
		/* Aargh, we raced ... */
		mutex_unlock(&inode->i_mutex);
2965
		put_css_set(cg);
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983

		deactivate_super(parent->root->sb);
		/* The cgroup is still accessible in the VFS, but
		 * we're not going to try to rmdir() it at this
		 * point. */
		printk(KERN_INFO
		       "Race in cgroup_clone() - leaking cgroup %s\n",
		       nodename);
		goto again;
	}

	/* do any required auto-setup */
	for_each_subsys(root, ss) {
		if (ss->post_clone)
			ss->post_clone(ss, child);
	}

	/* All seems fine. Finish by moving the task into the new cgroup */
2984
	ret = cgroup_attach_task(child, tsk);
2985 2986 2987 2988
	mutex_unlock(&cgroup_mutex);

 out_release:
	mutex_unlock(&inode->i_mutex);
2989 2990

	mutex_lock(&cgroup_mutex);
2991
	put_css_set(cg);
2992
	mutex_unlock(&cgroup_mutex);
2993 2994 2995 2996
	deactivate_super(parent->root->sb);
	return ret;
}

L
Li Zefan 已提交
2997 2998 2999 3000 3001 3002
/**
 * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp
 * @cgrp: the cgroup in question
 *
 * See if @cgrp is a descendant of the current task's cgroup in
 * the appropriate hierarchy.
3003 3004 3005 3006 3007 3008
 *
 * If we are sending in dummytop, then presumably we are creating
 * the top cgroup in the subsystem.
 *
 * Called only by the ns (nsproxy) cgroup.
 */
3009
int cgroup_is_descendant(const struct cgroup *cgrp)
3010 3011 3012 3013 3014
{
	int ret;
	struct cgroup *target;
	int subsys_id;

3015
	if (cgrp == dummytop)
3016 3017
		return 1;

3018
	get_first_subsys(cgrp, NULL, &subsys_id);
3019
	target = task_cgroup(current, subsys_id);
3020 3021 3022
	while (cgrp != target && cgrp!= cgrp->top_cgroup)
		cgrp = cgrp->parent;
	ret = (cgrp == target);
3023 3024
	return ret;
}
3025

3026
static void check_for_release(struct cgroup *cgrp)
3027 3028 3029
{
	/* All of these checks rely on RCU to keep the cgroup
	 * structure alive */
3030 3031
	if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
	    && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
3032 3033 3034 3035 3036
		/* Control Group is currently removeable. If it's not
		 * already queued for a userspace notification, queue
		 * it now */
		int need_schedule_work = 0;
		spin_lock(&release_list_lock);
3037 3038 3039
		if (!cgroup_is_removed(cgrp) &&
		    list_empty(&cgrp->release_list)) {
			list_add(&cgrp->release_list, &release_list);
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
			need_schedule_work = 1;
		}
		spin_unlock(&release_list_lock);
		if (need_schedule_work)
			schedule_work(&release_agent_work);
	}
}

void __css_put(struct cgroup_subsys_state *css)
{
3050
	struct cgroup *cgrp = css->cgroup;
3051
	rcu_read_lock();
3052 3053 3054
	if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) {
		set_bit(CGRP_RELEASABLE, &cgrp->flags);
		check_for_release(cgrp);
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
	}
	rcu_read_unlock();
}

/*
 * Notify userspace when a cgroup is released, by running the
 * configured release agent with the name of the cgroup (path
 * relative to the root of cgroup file system) as the argument.
 *
 * Most likely, this user command will try to rmdir this cgroup.
 *
 * This races with the possibility that some other task will be
 * attached to this cgroup before it is removed, or that some other
 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
 * unused, and this cgroup will be reprieved from its death sentence,
 * to continue to serve a useful existence.  Next time it's released,
 * we will get notified again, if it still has 'notify_on_release' set.
 *
 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
 * means only wait until the task is successfully execve()'d.  The
 * separate release agent task is forked by call_usermodehelper(),
 * then control in this thread returns here, without waiting for the
 * release agent task.  We don't bother to wait because the caller of
 * this routine has no use for the exit status of the release agent
 * task, so no sense holding our caller up for that.
 */
static void cgroup_release_agent(struct work_struct *work)
{
	BUG_ON(work != &release_agent_work);
	mutex_lock(&cgroup_mutex);
	spin_lock(&release_list_lock);
	while (!list_empty(&release_list)) {
		char *argv[3], *envp[3];
		int i;
3090
		char *pathbuf = NULL, *agentbuf = NULL;
3091
		struct cgroup *cgrp = list_entry(release_list.next,
3092 3093
						    struct cgroup,
						    release_list);
3094
		list_del_init(&cgrp->release_list);
3095 3096
		spin_unlock(&release_list_lock);
		pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
3097 3098 3099 3100 3101 3102 3103
		if (!pathbuf)
			goto continue_free;
		if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
			goto continue_free;
		agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
		if (!agentbuf)
			goto continue_free;
3104 3105

		i = 0;
3106 3107
		argv[i++] = agentbuf;
		argv[i++] = pathbuf;
3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
		argv[i] = NULL;

		i = 0;
		/* minimal command environment */
		envp[i++] = "HOME=/";
		envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
		envp[i] = NULL;

		/* Drop the lock while we invoke the usermode helper,
		 * since the exec could involve hitting disk and hence
		 * be a slow process */
		mutex_unlock(&cgroup_mutex);
		call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
		mutex_lock(&cgroup_mutex);
3122 3123 3124
 continue_free:
		kfree(pathbuf);
		kfree(agentbuf);
3125 3126 3127 3128 3129
		spin_lock(&release_list_lock);
	}
	spin_unlock(&release_list_lock);
	mutex_unlock(&cgroup_mutex);
}
3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153

static int __init cgroup_disable(char *str)
{
	int i;
	char *token;

	while ((token = strsep(&str, ",")) != NULL) {
		if (!*token)
			continue;

		for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
			struct cgroup_subsys *ss = subsys[i];

			if (!strcmp(token, ss->name)) {
				ss->disabled = 1;
				printk(KERN_INFO "Disabling %s control group"
					" subsystem\n", ss->name);
				break;
			}
		}
	}
	return 1;
}
__setup("cgroup_disable=", cgroup_disable);