slab.c 117.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
I
Ingo Molnar 已提交
105
#include	<linux/kmemtrace.h>
L
Linus Torvalds 已提交
106
#include	<linux/rcupdate.h>
107
#include	<linux/string.h>
108
#include	<linux/uaccess.h>
109
#include	<linux/nodemask.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
L
Linus Torvalds 已提交
116 117 118 119 120 121

#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
122
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
143
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
144 145 146 147 148 149 150

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
151 152 153
 * alignment larger than the alignment of a 64-bit integer.
 * ARCH_KMALLOC_MINALIGN allows that.
 * Note that increasing this value may disable some debug features.
L
Linus Torvalds 已提交
154
 */
155
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
L
Linus Torvalds 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
175
# define CREATE_MASK	(SLAB_RED_ZONE | \
L
Linus Torvalds 已提交
176
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
177
			 SLAB_CACHE_DMA | \
178
			 SLAB_STORE_USER | \
L
Linus Torvalds 已提交
179
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
180 181
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
			 SLAB_DEBUG_OBJECTS)
L
Linus Torvalds 已提交
182
#else
183
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
184
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
185
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
186 187
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
			 SLAB_DEBUG_OBJECTS)
L
Linus Torvalds 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

209
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
210 211
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
212 213
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
214 215 216 217 218 219 220 221 222

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
223 224 225 226 227 228
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
248
	struct rcu_head head;
249
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
250
	void *addr;
L
Linus Torvalds 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
270
	spinlock_t lock;
271
	void *entry[];	/*
A
Andrew Morton 已提交
272 273 274 275
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
L
Linus Torvalds 已提交
276 277
};

A
Andrew Morton 已提交
278 279 280
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
281 282 283 284
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
285
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
286 287 288
};

/*
289
 * The slab lists for all objects.
L
Linus Torvalds 已提交
290 291
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
292 293 294 295 296
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
297
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
298 299 300
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
301 302
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
303 304
};

305 306 307
/*
 * Need this for bootstrapping a per node allocator.
 */
308
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
309 310
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
311 312
#define	SIZE_AC MAX_NUMNODES
#define	SIZE_L3 (2 * MAX_NUMNODES)
313

314 315 316 317
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
318
static int enable_cpucache(struct kmem_cache *cachep);
319
static void cache_reap(struct work_struct *unused);
320

321
/*
A
Andrew Morton 已提交
322 323
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
324
 */
325
static __always_inline int index_of(const size_t size)
326
{
327 328
	extern void __bad_size(void);

329 330 331 332 333 334 335 336
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
337
#include <linux/kmalloc_sizes.h>
338
#undef CACHE
339
		__bad_size();
340
	} else
341
		__bad_size();
342 343 344
	return 0;
}

345 346
static int slab_early_init = 1;

347 348
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
349

P
Pekka Enberg 已提交
350
static void kmem_list3_init(struct kmem_list3 *parent)
351 352 353 354 355 356
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
357
	parent->colour_next = 0;
358 359 360 361 362
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
363 364 365 366
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
367 368
	} while (0)

A
Andrew Morton 已提交
369 370
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
371 372 373 374
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
375 376

/*
377
 * struct kmem_cache
L
Linus Torvalds 已提交
378 379 380
 *
 * manages a cache.
 */
P
Pekka Enberg 已提交
381

382
struct kmem_cache {
L
Linus Torvalds 已提交
383
/* 1) per-cpu data, touched during every alloc/free */
P
Pekka Enberg 已提交
384
	struct array_cache *array[NR_CPUS];
385
/* 2) Cache tunables. Protected by cache_chain_mutex */
P
Pekka Enberg 已提交
386 387 388
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
389

390
	unsigned int buffer_size;
391
	u32 reciprocal_buffer_size;
392 393
/* 3) touched by every alloc & free from the backend */

A
Andrew Morton 已提交
394 395
	unsigned int flags;		/* constant flags */
	unsigned int num;		/* # of objs per slab */
L
Linus Torvalds 已提交
396

397
/* 4) cache_grow/shrink */
L
Linus Torvalds 已提交
398
	/* order of pgs per slab (2^n) */
P
Pekka Enberg 已提交
399
	unsigned int gfporder;
L
Linus Torvalds 已提交
400 401

	/* force GFP flags, e.g. GFP_DMA */
P
Pekka Enberg 已提交
402
	gfp_t gfpflags;
L
Linus Torvalds 已提交
403

A
Andrew Morton 已提交
404
	size_t colour;			/* cache colouring range */
P
Pekka Enberg 已提交
405
	unsigned int colour_off;	/* colour offset */
406
	struct kmem_cache *slabp_cache;
P
Pekka Enberg 已提交
407
	unsigned int slab_size;
A
Andrew Morton 已提交
408
	unsigned int dflags;		/* dynamic flags */
L
Linus Torvalds 已提交
409 410

	/* constructor func */
411
	void (*ctor)(void *obj);
L
Linus Torvalds 已提交
412

413
/* 5) cache creation/removal */
P
Pekka Enberg 已提交
414 415
	const char *name;
	struct list_head next;
L
Linus Torvalds 已提交
416

417
/* 6) statistics */
L
Linus Torvalds 已提交
418
#if STATS
P
Pekka Enberg 已提交
419 420 421 422 423 424 425 426 427
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
428
	unsigned long node_overflow;
P
Pekka Enberg 已提交
429 430 431 432
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
L
Linus Torvalds 已提交
433 434
#endif
#if DEBUG
435 436 437 438 439 440 441 442
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
L
Linus Torvalds 已提交
443
#endif
E
Eric Dumazet 已提交
444 445 446 447 448 449 450 451 452 453 454
	/*
	 * We put nodelists[] at the end of kmem_cache, because we want to size
	 * this array to nr_node_ids slots instead of MAX_NUMNODES
	 * (see kmem_cache_init())
	 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
	 * is statically defined, so we reserve the max number of nodes.
	 */
	struct kmem_list3 *nodelists[MAX_NUMNODES];
	/*
	 * Do not add fields after nodelists[]
	 */
L
Linus Torvalds 已提交
455 456 457 458 459 460
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
461 462 463
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
464
 *
A
Adrian Bunk 已提交
465
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
466 467 468 469 470 471 472 473 474 475
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
476
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
477 478 479 480 481
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
482 483
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
484
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
485
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
486 487 488 489 490
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
491 492 493 494 495 496 497 498 499
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
500
#define	STATS_ADD_REAPED(x,y)	do { } while (0)
L
Linus Torvalds 已提交
501 502 503
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
504
#define	STATS_INC_NODEFREES(x)	do { } while (0)
505
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
506
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
507 508 509 510 511 512 513 514
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
515 516
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
517
 * 0		: objp
518
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
519 520
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
521
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
522
 * 		redzone word.
523 524
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
525 526
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
527
 */
528
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
529
{
530
	return cachep->obj_offset;
L
Linus Torvalds 已提交
531 532
}

533
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
534
{
535
	return cachep->obj_size;
L
Linus Torvalds 已提交
536 537
}

538
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
539 540
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
541 542
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
543 544
}

545
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
546 547 548
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
549 550
		return (unsigned long long *)(objp + cachep->buffer_size -
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
551
					      REDZONE_ALIGN);
552 553
	return (unsigned long long *) (objp + cachep->buffer_size -
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
554 555
}

556
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
557 558
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
559
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
560 561 562 563
}

#else

564 565
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
566 567
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
568 569 570 571
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

E
Eduard - Gabriel Munteanu 已提交
572 573 574 575 576 577 578 579
#ifdef CONFIG_KMEMTRACE
size_t slab_buffer_size(struct kmem_cache *cachep)
{
	return cachep->buffer_size;
}
EXPORT_SYMBOL(slab_buffer_size);
#endif

L
Linus Torvalds 已提交
580 581 582 583 584 585 586
/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
587 588 589 590
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
591
 */
592 593 594 595 596 597 598
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
599
	page = compound_head(page);
600
	BUG_ON(!PageSlab(page));
601 602 603 604 605 606 607 608 609 610
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
611
	BUG_ON(!PageSlab(page));
612 613
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
614

615 616
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
617
	struct page *page = virt_to_head_page(obj);
618 619 620 621 622
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
623
	struct page *page = virt_to_head_page(obj);
624 625 626
	return page_get_slab(page);
}

627 628 629 630 631 632
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

633 634 635 636 637 638 639 640
/*
 * We want to avoid an expensive divide : (offset / cache->buffer_size)
 *   Using the fact that buffer_size is a constant for a particular cache,
 *   we can replace (offset / cache->buffer_size) by
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
641
{
642 643
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
644 645
}

A
Andrew Morton 已提交
646 647 648
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
666
	{NULL,}
L
Linus Torvalds 已提交
667 668 669 670
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
671
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
672
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
673
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
674 675

/* internal cache of cache description objs */
676
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
677 678 679
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
680
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
681
	.name = "kmem_cache",
L
Linus Torvalds 已提交
682 683
};

684 685
#define BAD_ALIEN_MAGIC 0x01020304ul

686 687 688 689 690 691 692 693
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
694 695 696 697
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
698
 */
699 700 701 702
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

static inline void init_lock_keys(void)
703 704 705

{
	int q;
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
	struct cache_sizes *s = malloc_sizes;

	while (s->cs_size != ULONG_MAX) {
		for_each_node(q) {
			struct array_cache **alc;
			int r;
			struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
			if (!l3 || OFF_SLAB(s->cs_cachep))
				continue;
			lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
			alc = l3->alien;
			/*
			 * FIXME: This check for BAD_ALIEN_MAGIC
			 * should go away when common slab code is taught to
			 * work even without alien caches.
			 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
			 * for alloc_alien_cache,
			 */
			if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
				continue;
			for_each_node(r) {
				if (alc[r])
					lockdep_set_class(&alc[r]->lock,
					     &on_slab_alc_key);
			}
		}
		s++;
733 734 735
	}
}
#else
736
static inline void init_lock_keys(void)
737 738 739 740
{
}
#endif

741
/*
742
 * Guard access to the cache-chain.
743
 */
I
Ingo Molnar 已提交
744
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
745 746 747 748 749 750 751 752
static struct list_head cache_chain;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
753 754
	PARTIAL_AC,
	PARTIAL_L3,
L
Linus Torvalds 已提交
755 756 757
	FULL
} g_cpucache_up;

758 759 760 761 762 763 764 765
/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up == FULL;
}

766
static DEFINE_PER_CPU(struct delayed_work, reap_work);
L
Linus Torvalds 已提交
767

768
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
769 770 771 772
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
773 774
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
775 776 777 778 779
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
780 781 782
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
783
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
784
#endif
785 786 787
	if (!size)
		return ZERO_SIZE_PTR;

L
Linus Torvalds 已提交
788 789 790 791
	while (size > csizep->cs_size)
		csizep++;

	/*
792
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
793 794 795
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
796
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
797 798
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
799
#endif
L
Linus Torvalds 已提交
800 801 802
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
803
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
804 805 806 807
{
	return __find_general_cachep(size, gfpflags);
}

808
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
809
{
810 811
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
812

A
Andrew Morton 已提交
813 814 815
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
816 817 818 819 820 821 822
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
823

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
872 873
}

874
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
875

A
Andrew Morton 已提交
876 877
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
878 879
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
880
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
881 882 883
	dump_stack();
}

884 885 886 887 888 889 890 891 892
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
893
static int numa_platform __read_mostly = 1;
894 895 896 897 898 899 900
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
916
		node = first_node(node_online_map);
917

918
	per_cpu(reap_node, cpu) = node;
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
936 937 938 939 940 941 942
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
943
static void __cpuinit start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
944
{
945
	struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
L
Linus Torvalds 已提交
946 947 948 949 950 951

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
952
	if (keventd_up() && reap_work->work.func == NULL) {
953
		init_reap_node(cpu);
954
		INIT_DELAYED_WORK(reap_work, cache_reap);
955 956
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
957 958 959
	}
}

960
static struct array_cache *alloc_arraycache(int node, int entries,
P
Pekka Enberg 已提交
961
					    int batchcount)
L
Linus Torvalds 已提交
962
{
P
Pekka Enberg 已提交
963
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
964 965
	struct array_cache *nc = NULL;

966
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
L
Linus Torvalds 已提交
967 968 969 970 971
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
972
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
973 974 975 976
	}
	return nc;
}

977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	to->touched = 1;
	return nr;
}

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

1026
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1027 1028 1029 1030 1031 1032 1033
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1034
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1035
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1036

P
Pekka Enberg 已提交
1037
static struct array_cache **alloc_alien_cache(int node, int limit)
1038 1039
{
	struct array_cache **ac_ptr;
1040
	int memsize = sizeof(void *) * nr_node_ids;
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
1054
				for (i--; i >= 0; i--)
1055 1056 1057 1058 1059 1060 1061 1062 1063
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1064
static void free_alien_cache(struct array_cache **ac_ptr)
1065 1066 1067 1068 1069 1070
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1071
	    kfree(ac_ptr[i]);
1072 1073 1074
	kfree(ac_ptr);
}

1075
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1076
				struct array_cache *ac, int node)
1077 1078 1079 1080 1081
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1082 1083 1084 1085 1086
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1087 1088
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1089

1090
		free_block(cachep, ac->entry, ac->avail, node);
1091 1092 1093 1094 1095
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1096 1097 1098 1099 1100 1101 1102 1103 1104
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
	int node = __get_cpu_var(reap_node);

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1105 1106

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1107 1108 1109 1110 1111 1112
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1113 1114
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1115
{
P
Pekka Enberg 已提交
1116
	int i = 0;
1117 1118 1119 1120
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1121
		ac = alien[i];
1122 1123 1124 1125 1126 1127 1128
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1129

1130
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1131 1132 1133 1134 1135
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1136 1137 1138
	int node;

	node = numa_node_id();
1139 1140 1141 1142 1143

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1144
	if (likely(slabp->nodeid == node))
1145 1146
		return 0;

P
Pekka Enberg 已提交
1147
	l3 = cachep->nodelists[node];
1148 1149 1150
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1151
		spin_lock(&alien->lock);
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1165 1166
#endif

1167 1168 1169 1170 1171
static void __cpuinit cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
1172
	node_to_cpumask_ptr(mask, node);
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193

	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
		l3 = cachep->nodelists[node];

		if (!l3)
			goto free_array_cache;

		spin_lock_irq(&l3->list_lock);

		/* Free limit for this kmem_list3 */
		l3->free_limit -= cachep->batchcount;
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1194
		if (!cpus_empty(*mask)) {
1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
			spin_unlock_irq(&l3->list_lock);
			goto free_array_cache;
		}

		shared = l3->shared;
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
			l3->shared = NULL;
		}

		alien = l3->alien;
		l3->alien = NULL;

		spin_unlock_irq(&l3->list_lock);

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;
		drain_freelist(cachep, l3, l3->free_objects);
	}
}

static int __cpuinit cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1233
{
1234
	struct kmem_cache *cachep;
1235 1236
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
1237
	const int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
1238

1239 1240 1241 1242 1243 1244 1245 1246
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
	 * kmem_list3 and not this cpu's kmem_list3
	 */

	list_for_each_entry(cachep, &cache_chain, next) {
A
Andrew Morton 已提交
1247
		/*
1248 1249 1250
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
1251
		 */
1252 1253 1254 1255 1256 1257 1258
		if (!cachep->nodelists[node]) {
			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!l3)
				goto bad;
			kmem_list3_init(l3);
			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1259

A
Andrew Morton 已提交
1260
			/*
1261 1262 1263
			 * The l3s don't come and go as CPUs come and
			 * go.  cache_chain_mutex is sufficient
			 * protection here.
1264
			 */
1265
			cachep->nodelists[node] = l3;
1266 1267
		}

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
		spin_lock_irq(&cachep->nodelists[node]->list_lock);
		cachep->nodelists[node]->free_limit =
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
	}

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
					cachep->batchcount);
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
				0xbaadf00d);
1292 1293
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1294
				goto bad;
1295
			}
1296 1297 1298
		}
		if (use_alien_caches) {
			alien = alloc_alien_cache(node, cachep->limit);
1299 1300 1301
			if (!alien) {
				kfree(shared);
				kfree(nc);
1302
				goto bad;
1303
			}
1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
		}
		cachep->array[cpu] = nc;
		l3 = cachep->nodelists[node];
		BUG_ON(!l3);

		spin_lock_irq(&l3->list_lock);
		if (!l3->shared) {
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
			l3->shared = shared;
			shared = NULL;
		}
1318
#ifdef CONFIG_NUMA
1319 1320 1321
		if (!l3->alien) {
			l3->alien = alien;
			alien = NULL;
L
Linus Torvalds 已提交
1322
		}
1323 1324 1325 1326 1327 1328 1329
#endif
		spin_unlock_irq(&l3->list_lock);
		kfree(shared);
		free_alien_cache(alien);
	}
	return 0;
bad:
1330
	cpuup_canceled(cpu);
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
	return -ENOMEM;
}

static int __cpuinit cpuup_callback(struct notifier_block *nfb,
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1343
		mutex_lock(&cache_chain_mutex);
1344
		err = cpuup_prepare(cpu);
1345
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1346 1347
		break;
	case CPU_ONLINE:
1348
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1349 1350 1351
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1352
  	case CPU_DOWN_PREPARE:
1353
  	case CPU_DOWN_PREPARE_FROZEN:
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
		/*
		 * Shutdown cache reaper. Note that the cache_chain_mutex is
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
		cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
		/* Now the cache_reaper is guaranteed to be not running. */
		per_cpu(reap_work, cpu).work.func = NULL;
  		break;
  	case CPU_DOWN_FAILED:
1365
  	case CPU_DOWN_FAILED_FROZEN:
1366 1367
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1368
	case CPU_DEAD:
1369
	case CPU_DEAD_FROZEN:
1370 1371 1372 1373 1374 1375 1376 1377
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1378
		/* fall through */
1379
#endif
L
Linus Torvalds 已提交
1380
	case CPU_UP_CANCELED:
1381
	case CPU_UP_CANCELED_FROZEN:
1382
		mutex_lock(&cache_chain_mutex);
1383
		cpuup_canceled(cpu);
I
Ingo Molnar 已提交
1384
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1385 1386
		break;
	}
1387
	return err ? NOTIFY_BAD : NOTIFY_OK;
L
Linus Torvalds 已提交
1388 1389
}

1390 1391 1392
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1393

1394 1395 1396
/*
 * swap the static kmem_list3 with kmalloced memory
 */
A
Andrew Morton 已提交
1397 1398
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
			int nodeid)
1399 1400 1401 1402 1403 1404 1405 1406
{
	struct kmem_list3 *ptr;

	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
	BUG_ON(!ptr);

	local_irq_disable();
	memcpy(ptr, list, sizeof(struct kmem_list3));
1407 1408 1409 1410 1411
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1412 1413 1414 1415 1416
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
	local_irq_enable();
}

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
{
	int node;

	for_each_online_node(node) {
		cachep->nodelists[node] = &initkmem_list3[index + node];
		cachep->nodelists[node]->next_reap = jiffies +
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

A
Andrew Morton 已提交
1433 1434 1435
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1436 1437 1438 1439 1440 1441
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1442
	int i;
1443
	int order;
P
Pekka Enberg 已提交
1444
	int node;
1445

1446
	if (num_possible_nodes() == 1) {
1447
		use_alien_caches = 0;
1448 1449
		numa_platform = 0;
	}
1450

1451 1452 1453 1454 1455
	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
1456
	set_up_list3s(&cache_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1467 1468 1469
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1470 1471 1472
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1473
	 * 2) Create the first kmalloc cache.
1474
	 *    The struct kmem_cache for the new cache is allocated normally.
1475 1476 1477
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1478 1479
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1480 1481 1482
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1483 1484
	 */

P
Pekka Enberg 已提交
1485 1486
	node = numa_node_id();

L
Linus Torvalds 已提交
1487 1488 1489 1490 1491
	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1492
	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
L
Linus Torvalds 已提交
1493

E
Eric Dumazet 已提交
1494 1495 1496 1497 1498 1499 1500 1501 1502
	/*
	 * struct kmem_cache size depends on nr_node_ids, which
	 * can be less than MAX_NUMNODES.
	 */
	cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
				 nr_node_ids * sizeof(struct kmem_list3 *);
#if DEBUG
	cache_cache.obj_size = cache_cache.buffer_size;
#endif
A
Andrew Morton 已提交
1503 1504
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
1505 1506
	cache_cache.reciprocal_buffer_size =
		reciprocal_value(cache_cache.buffer_size);
L
Linus Torvalds 已提交
1507

1508 1509 1510 1511 1512 1513
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1514
	BUG_ON(!cache_cache.num);
1515
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1516 1517 1518
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1519 1520 1521 1522 1523

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1524 1525 1526 1527
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1528 1529 1530
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1531 1532 1533
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1534
					NULL);
1535

A
Andrew Morton 已提交
1536
	if (INDEX_AC != INDEX_L3) {
1537
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1538 1539 1540 1541
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1542
				NULL);
A
Andrew Morton 已提交
1543
	}
1544

1545 1546
	slab_early_init = 0;

L
Linus Torvalds 已提交
1547
	while (sizes->cs_size != ULONG_MAX) {
1548 1549
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1550 1551 1552
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1553 1554
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1555
		if (!sizes->cs_cachep) {
1556
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1557 1558 1559
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1560
					NULL);
A
Andrew Morton 已提交
1561
		}
1562 1563 1564
#ifdef CONFIG_ZONE_DMA
		sizes->cs_dmacachep = kmem_cache_create(
					names->name_dma,
A
Andrew Morton 已提交
1565 1566 1567 1568
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
1569
					NULL);
1570
#endif
L
Linus Torvalds 已提交
1571 1572 1573 1574 1575
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1576
		struct array_cache *ptr;
1577

L
Linus Torvalds 已提交
1578
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1579

L
Linus Torvalds 已提交
1580
		local_irq_disable();
1581 1582
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1583
		       sizeof(struct arraycache_init));
1584 1585 1586 1587 1588
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1589 1590
		cache_cache.array[smp_processor_id()] = ptr;
		local_irq_enable();
1591

L
Linus Torvalds 已提交
1592
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1593

L
Linus Torvalds 已提交
1594
		local_irq_disable();
1595
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1596
		       != &initarray_generic.cache);
1597
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1598
		       sizeof(struct arraycache_init));
1599 1600 1601 1602 1603
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1604
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1605
		    ptr;
L
Linus Torvalds 已提交
1606 1607
		local_irq_enable();
	}
1608 1609
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1610 1611
		int nid;

1612
		for_each_online_node(nid) {
1613
			init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1614

1615
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1616
				  &initkmem_list3[SIZE_AC + nid], nid);
1617 1618 1619

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1620
					  &initkmem_list3[SIZE_L3 + nid], nid);
1621 1622 1623
			}
		}
	}
L
Linus Torvalds 已提交
1624

1625
	/* 6) resize the head arrays to their final sizes */
L
Linus Torvalds 已提交
1626
	{
1627
		struct kmem_cache *cachep;
I
Ingo Molnar 已提交
1628
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1629
		list_for_each_entry(cachep, &cache_chain, next)
1630 1631
			if (enable_cpucache(cachep))
				BUG();
I
Ingo Molnar 已提交
1632
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1633 1634
	}

1635 1636 1637 1638
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();


L
Linus Torvalds 已提交
1639 1640 1641
	/* Done! */
	g_cpucache_up = FULL;

A
Andrew Morton 已提交
1642 1643 1644
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1645 1646 1647
	 */
	register_cpu_notifier(&cpucache_notifier);

A
Andrew Morton 已提交
1648 1649 1650
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1651 1652 1653 1654 1655 1656 1657
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1658 1659
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1660
	 */
1661
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1662
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1674
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1675 1676
{
	struct page *page;
1677
	int nr_pages;
L
Linus Torvalds 已提交
1678 1679
	int i;

1680
#ifndef CONFIG_MMU
1681 1682 1683
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1684
	 */
1685
	flags |= __GFP_COMP;
1686
#endif
1687

1688
	flags |= cachep->gfpflags;
1689 1690
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1691 1692

	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
L
Linus Torvalds 已提交
1693 1694 1695
	if (!page)
		return NULL;

1696
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1697
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1698 1699 1700 1701 1702
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1703 1704 1705
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
	return page_address(page);
L
Linus Torvalds 已提交
1706 1707 1708 1709 1710
}

/*
 * Interface to system's page release.
 */
1711
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1712
{
P
Pekka Enberg 已提交
1713
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1714 1715 1716
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1717 1718 1719 1720 1721 1722
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1723
	while (i--) {
N
Nick Piggin 已提交
1724 1725
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1726 1727 1728 1729 1730 1731 1732 1733 1734
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1735
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1736
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1737 1738 1739 1740 1741 1742 1743 1744 1745

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1746
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1747
			    unsigned long caller)
L
Linus Torvalds 已提交
1748
{
1749
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1750

1751
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1752

P
Pekka Enberg 已提交
1753
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1754 1755
		return;

P
Pekka Enberg 已提交
1756 1757 1758 1759
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1760 1761 1762 1763 1764 1765 1766
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1767
				*addr++ = svalue;
L
Linus Torvalds 已提交
1768 1769 1770 1771 1772 1773 1774
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1775
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1776 1777 1778
}
#endif

1779
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1780
{
1781 1782
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1783 1784

	memset(addr, val, size);
P
Pekka Enberg 已提交
1785
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1786 1787 1788 1789 1790
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1791 1792 1793
	unsigned char error = 0;
	int bad_count = 0;

L
Linus Torvalds 已提交
1794
	printk(KERN_ERR "%03x:", offset);
D
Dave Jones 已提交
1795 1796 1797 1798 1799
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
P
Pekka Enberg 已提交
1800
		printk(" %02x", (unsigned char)data[offset + i]);
D
Dave Jones 已提交
1801
	}
L
Linus Torvalds 已提交
1802
	printk("\n");
D
Dave Jones 已提交
1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1817 1818 1819 1820 1821
}
#endif

#if DEBUG

1822
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1823 1824 1825 1826 1827
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1828
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1829 1830
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1831 1832 1833 1834
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1835
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1836
		print_symbol("(%s)",
A
Andrew Morton 已提交
1837
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1838 1839
		printk("\n");
	}
1840 1841
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1842
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1843 1844
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1845 1846
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1847 1848 1849 1850
		dump_line(realobj, i, limit);
	}
}

1851
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1852 1853 1854 1855 1856
{
	char *realobj;
	int size, i;
	int lines = 0;

1857 1858
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1859

P
Pekka Enberg 已提交
1860
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1861
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1862
		if (i == size - 1)
L
Linus Torvalds 已提交
1863 1864 1865 1866 1867 1868
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1869
				printk(KERN_ERR
1870 1871
					"Slab corruption: %s start=%p, len=%d\n",
					cachep->name, realobj, size);
L
Linus Torvalds 已提交
1872 1873 1874
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1875
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1876
			limit = 16;
P
Pekka Enberg 已提交
1877 1878
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1891
		struct slab *slabp = virt_to_slab(objp);
1892
		unsigned int objnr;
L
Linus Torvalds 已提交
1893

1894
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1895
		if (objnr) {
1896
			objp = index_to_obj(cachep, slabp, objnr - 1);
1897
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1898
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1899
			       realobj, size);
L
Linus Torvalds 已提交
1900 1901
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1902
		if (objnr + 1 < cachep->num) {
1903
			objp = index_to_obj(cachep, slabp, objnr + 1);
1904
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1905
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1906
			       realobj, size);
L
Linus Torvalds 已提交
1907 1908 1909 1910 1911 1912
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1913
#if DEBUG
R
Rabin Vincent 已提交
1914
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1915 1916 1917
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1918
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1919 1920 1921

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1922 1923
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1924
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1925
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1926 1927 1928 1929 1930 1931 1932 1933 1934
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1935
					   "was overwritten");
L
Linus Torvalds 已提交
1936 1937
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1938
					   "was overwritten");
L
Linus Torvalds 已提交
1939 1940
		}
	}
1941
}
L
Linus Torvalds 已提交
1942
#else
R
Rabin Vincent 已提交
1943
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1944 1945
{
}
L
Linus Torvalds 已提交
1946 1947
#endif

1948 1949 1950 1951 1952
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1953
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1954 1955
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1956
 */
1957
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1958 1959 1960
{
	void *addr = slabp->s_mem - slabp->colouroff;

R
Rabin Vincent 已提交
1961
	slab_destroy_debugcheck(cachep, slabp);
L
Linus Torvalds 已提交
1962 1963 1964
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1965
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1966 1967 1968 1969 1970
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
1971 1972
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
1973 1974 1975
	}
}

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


1997
/**
1998 1999 2000 2001 2002 2003 2004
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
2005 2006 2007 2008 2009
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
2010
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
2011
			size_t size, size_t align, unsigned long flags)
2012
{
2013
	unsigned long offslab_limit;
2014
	size_t left_over = 0;
2015
	int gfporder;
2016

2017
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2018 2019 2020
		unsigned int num;
		size_t remainder;

2021
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2022 2023
		if (!num)
			continue;
2024

2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2037

2038
		/* Found something acceptable - save it away */
2039
		cachep->num = num;
2040
		cachep->gfporder = gfporder;
2041 2042
		left_over = remainder;

2043 2044 2045 2046 2047 2048 2049 2050
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2051 2052 2053 2054
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2055
		if (gfporder >= slab_break_gfp_order)
2056 2057
			break;

2058 2059 2060
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2061
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2062 2063 2064 2065 2066
			break;
	}
	return left_over;
}

2067
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
2068
{
2069 2070 2071
	if (g_cpucache_up == FULL)
		return enable_cpucache(cachep);

2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
2099
			for_each_online_node(node) {
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
						GFP_KERNEL, node);
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
	cachep->nodelists[numa_node_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2118
	return 0;
2119 2120
}

L
Linus Torvalds 已提交
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2131
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2132 2133
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
2134 2135
 * the module calling this has to destroy the cache before getting unloaded.
 *
L
Linus Torvalds 已提交
2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2148
struct kmem_cache *
L
Linus Torvalds 已提交
2149
kmem_cache_create (const char *name, size_t size, size_t align,
2150
	unsigned long flags, void (*ctor)(void *))
L
Linus Torvalds 已提交
2151 2152
{
	size_t left_over, slab_size, ralign;
2153
	struct kmem_cache *cachep = NULL, *pc;
L
Linus Torvalds 已提交
2154 2155 2156 2157

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
2158
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2159
	    size > KMALLOC_MAX_SIZE) {
2160
		printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
A
Andrew Morton 已提交
2161
				name);
P
Pekka Enberg 已提交
2162 2163
		BUG();
	}
L
Linus Torvalds 已提交
2164

2165
	/*
2166 2167
	 * We use cache_chain_mutex to ensure a consistent view of
	 * cpu_online_map as well.  Please see cpuup_callback
2168
	 */
2169
	get_online_cpus();
I
Ingo Molnar 已提交
2170
	mutex_lock(&cache_chain_mutex);
2171

2172
	list_for_each_entry(pc, &cache_chain, next) {
2173 2174 2175 2176 2177 2178 2179 2180
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
2181
		res = probe_kernel_address(pc->name, tmp);
2182
		if (res) {
2183 2184
			printk(KERN_ERR
			       "SLAB: cache with size %d has lost its name\n",
2185
			       pc->buffer_size);
2186 2187 2188
			continue;
		}

P
Pekka Enberg 已提交
2189
		if (!strcmp(pc->name, name)) {
2190 2191
			printk(KERN_ERR
			       "kmem_cache_create: duplicate cache %s\n", name);
2192 2193 2194 2195 2196
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
2197 2198 2199 2200 2201 2202 2203 2204 2205
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2206 2207
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2208
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2209 2210 2211 2212 2213 2214 2215
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	/*
A
Andrew Morton 已提交
2216 2217
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2218
	 */
2219
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2220

A
Andrew Morton 已提交
2221 2222
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2223 2224 2225
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2226 2227 2228
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2229 2230
	}

A
Andrew Morton 已提交
2231 2232
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2233 2234
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2235 2236 2237 2238
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2239 2240
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2241
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2242 2243 2244 2245
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2246 2247

	/*
D
David Woodhouse 已提交
2248 2249 2250
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2251
	 */
D
David Woodhouse 已提交
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2262

2263
	/* 2) arch mandated alignment */
L
Linus Torvalds 已提交
2264 2265 2266
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2267
	/* 3) caller mandated alignment */
L
Linus Torvalds 已提交
2268 2269 2270
	if (ralign < align) {
		ralign = align;
	}
2271
	/* disable debug if necessary */
2272
	if (ralign > __alignof__(unsigned long long))
2273
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2274
	/*
2275
	 * 4) Store it.
L
Linus Torvalds 已提交
2276 2277 2278 2279
	 */
	align = ralign;

	/* Get cache's description obj. */
2280
	cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
L
Linus Torvalds 已提交
2281
	if (!cachep)
2282
		goto oops;
L
Linus Torvalds 已提交
2283 2284

#if DEBUG
2285
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2286

2287 2288 2289 2290
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2291 2292
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2293 2294
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2295 2296
	}
	if (flags & SLAB_STORE_USER) {
2297
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2298 2299
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2300
		 */
D
David Woodhouse 已提交
2301 2302 2303 2304
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2305 2306
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2307
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2308 2309
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
2310 2311 2312 2313 2314
		size = PAGE_SIZE;
	}
#endif
#endif

2315 2316 2317 2318 2319 2320
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
	 * it too early on.)
	 */
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
L
Linus Torvalds 已提交
2321 2322 2323 2324 2325 2326 2327 2328
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2329
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2330 2331

	if (!cachep->num) {
2332 2333
		printk(KERN_ERR
		       "kmem_cache_create: couldn't create cache %s.\n", name);
L
Linus Torvalds 已提交
2334 2335
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2336
		goto oops;
L
Linus Torvalds 已提交
2337
	}
P
Pekka Enberg 已提交
2338 2339
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2352 2353
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
L
Linus Torvalds 已提交
2354 2355 2356 2357 2358 2359
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2360
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2361 2362 2363
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
2364
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
L
Linus Torvalds 已提交
2365
		cachep->gfpflags |= GFP_DMA;
2366
	cachep->buffer_size = size;
2367
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2368

2369
	if (flags & CFLGS_OFF_SLAB) {
2370
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2371 2372 2373 2374 2375 2376 2377
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2378
		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2379
	}
L
Linus Torvalds 已提交
2380 2381 2382
	cachep->ctor = ctor;
	cachep->name = name;

2383 2384 2385 2386 2387
	if (setup_cpu_cache(cachep)) {
		__kmem_cache_destroy(cachep);
		cachep = NULL;
		goto oops;
	}
L
Linus Torvalds 已提交
2388 2389 2390

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2391
oops:
L
Linus Torvalds 已提交
2392 2393
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2394
		      name);
I
Ingo Molnar 已提交
2395
	mutex_unlock(&cache_chain_mutex);
2396
	put_online_cpus();
L
Linus Torvalds 已提交
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2412
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2413 2414 2415
{
#ifdef CONFIG_SMP
	check_irq_off();
2416
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2417 2418
#endif
}
2419

2420
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2421 2422 2423 2424 2425 2426 2427
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2428 2429 2430 2431
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2432
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2433 2434
#endif

2435 2436 2437 2438
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2439 2440
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2441
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2442
	struct array_cache *ac;
2443
	int node = numa_node_id();
L
Linus Torvalds 已提交
2444 2445

	check_irq_off();
2446
	ac = cpu_cache_get(cachep);
2447 2448 2449
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2450 2451 2452
	ac->avail = 0;
}

2453
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2454
{
2455 2456 2457
	struct kmem_list3 *l3;
	int node;

2458
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2459
	check_irq_on();
P
Pekka Enberg 已提交
2460
	for_each_online_node(node) {
2461
		l3 = cachep->nodelists[node];
2462 2463 2464 2465 2466 2467 2468
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2469
			drain_array(cachep, l3, l3->shared, 1, node);
2470
	}
L
Linus Torvalds 已提交
2471 2472
}

2473 2474 2475 2476 2477 2478 2479 2480
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2481
{
2482 2483
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2484 2485
	struct slab *slabp;

2486 2487
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2488

2489
		spin_lock_irq(&l3->list_lock);
2490
		p = l3->slabs_free.prev;
2491 2492 2493 2494
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2495

2496
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2497
#if DEBUG
2498
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2499 2500
#endif
		list_del(&slabp->list);
2501 2502 2503 2504 2505
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2506
		spin_unlock_irq(&l3->list_lock);
2507 2508
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2509
	}
2510 2511
out:
	return nr_freed;
L
Linus Torvalds 已提交
2512 2513
}

2514
/* Called with cache_chain_mutex held to protect against cpu hotplug */
2515
static int __cache_shrink(struct kmem_cache *cachep)
2516 2517 2518 2519 2520 2521 2522 2523 2524
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2525 2526 2527 2528 2529 2530 2531
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2532 2533 2534 2535
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2536 2537 2538 2539 2540 2541 2542
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2543
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2544
{
2545
	int ret;
2546
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2547

2548
	get_online_cpus();
2549 2550 2551
	mutex_lock(&cache_chain_mutex);
	ret = __cache_shrink(cachep);
	mutex_unlock(&cache_chain_mutex);
2552
	put_online_cpus();
2553
	return ret;
L
Linus Torvalds 已提交
2554 2555 2556 2557 2558 2559 2560
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2561
 * Remove a &struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2573
void kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2574
{
2575
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2576 2577

	/* Find the cache in the chain of caches. */
2578
	get_online_cpus();
I
Ingo Molnar 已提交
2579
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2580 2581 2582 2583 2584 2585
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
P
Pekka Enberg 已提交
2586
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2587
		mutex_unlock(&cache_chain_mutex);
2588
		put_online_cpus();
2589
		return;
L
Linus Torvalds 已提交
2590 2591 2592
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2593
		synchronize_rcu();
L
Linus Torvalds 已提交
2594

2595
	__kmem_cache_destroy(cachep);
2596
	mutex_unlock(&cache_chain_mutex);
2597
	put_online_cpus();
L
Linus Torvalds 已提交
2598 2599 2600
}
EXPORT_SYMBOL(kmem_cache_destroy);

2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2612
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2613 2614
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2615 2616
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2617

L
Linus Torvalds 已提交
2618 2619
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2620
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2621
					      local_flags & ~GFP_THISNODE, nodeid);
L
Linus Torvalds 已提交
2622 2623 2624
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2625
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2626 2627 2628 2629
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2630
	slabp->s_mem = objp + colour_off;
2631
	slabp->nodeid = nodeid;
2632
	slabp->free = 0;
L
Linus Torvalds 已提交
2633 2634 2635 2636 2637
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2638
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2639 2640
}

2641
static void cache_init_objs(struct kmem_cache *cachep,
C
Christoph Lameter 已提交
2642
			    struct slab *slabp)
L
Linus Torvalds 已提交
2643 2644 2645 2646
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2647
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2660 2661 2662
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2663 2664
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2665
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2666 2667 2668 2669

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2670
					   " end of an object");
L
Linus Torvalds 已提交
2671 2672
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2673
					   " start of an object");
L
Linus Torvalds 已提交
2674
		}
A
Andrew Morton 已提交
2675 2676
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2677
			kernel_map_pages(virt_to_page(objp),
2678
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2679 2680
#else
		if (cachep->ctor)
2681
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2682
#endif
P
Pekka Enberg 已提交
2683
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2684
	}
P
Pekka Enberg 已提交
2685
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2686 2687
}

2688
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2689
{
2690 2691 2692 2693 2694 2695
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
			BUG_ON(!(cachep->gfpflags & GFP_DMA));
		else
			BUG_ON(cachep->gfpflags & GFP_DMA);
	}
L
Linus Torvalds 已提交
2696 2697
}

A
Andrew Morton 已提交
2698 2699
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2700
{
2701
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2715 2716
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2717
{
2718
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2719 2720 2721 2722 2723

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2724
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2725
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2726
				"'%s', objp %p\n", cachep->name, objp);
2727 2728 2729 2730 2731 2732 2733 2734
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2735 2736 2737 2738 2739 2740 2741
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2742
{
2743
	int nr_pages;
L
Linus Torvalds 已提交
2744 2745
	struct page *page;

2746
	page = virt_to_page(addr);
2747

2748
	nr_pages = 1;
2749
	if (likely(!PageCompound(page)))
2750 2751
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2752
	do {
2753 2754
		page_set_cache(page, cache);
		page_set_slab(page, slab);
L
Linus Torvalds 已提交
2755
		page++;
2756
	} while (--nr_pages);
L
Linus Torvalds 已提交
2757 2758 2759 2760 2761 2762
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2763 2764
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2765
{
P
Pekka Enberg 已提交
2766 2767 2768
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
2769
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2770

A
Andrew Morton 已提交
2771 2772 2773
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2774
	 */
C
Christoph Lameter 已提交
2775 2776
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2777

2778
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2779
	check_irq_off();
2780 2781
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2782 2783

	/* Get colour for the slab, and cal the next value. */
2784 2785 2786 2787 2788
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2789

2790
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2803 2804 2805
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2806
	 */
2807
	if (!objp)
2808
		objp = kmem_getpages(cachep, local_flags, nodeid);
A
Andrew Morton 已提交
2809
	if (!objp)
L
Linus Torvalds 已提交
2810 2811 2812
		goto failed;

	/* Get slab management. */
2813
	slabp = alloc_slabmgmt(cachep, objp, offset,
C
Christoph Lameter 已提交
2814
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
A
Andrew Morton 已提交
2815
	if (!slabp)
L
Linus Torvalds 已提交
2816 2817
		goto opps1;

2818
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2819

C
Christoph Lameter 已提交
2820
	cache_init_objs(cachep, slabp);
L
Linus Torvalds 已提交
2821 2822 2823 2824

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2825
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2826 2827

	/* Make slab active. */
2828
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2829
	STATS_INC_GROWN(cachep);
2830 2831
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2832
	return 1;
A
Andrew Morton 已提交
2833
opps1:
L
Linus Torvalds 已提交
2834
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2835
failed:
L
Linus Torvalds 已提交
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2852 2853
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2854 2855 2856
	}
}

2857 2858
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2859
	unsigned long long redzone1, redzone2;
2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2875
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2876 2877 2878
			obj, redzone1, redzone2);
}

2879
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2880
				   void *caller)
L
Linus Torvalds 已提交
2881 2882 2883 2884 2885
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2886 2887
	BUG_ON(virt_to_cache(objp) != cachep);

2888
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2889
	kfree_debugcheck(objp);
2890
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2891

2892
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2893 2894

	if (cachep->flags & SLAB_RED_ZONE) {
2895
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2896 2897 2898 2899 2900 2901
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2902
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2903 2904

	BUG_ON(objnr >= cachep->num);
2905
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2906

2907 2908 2909
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2910 2911
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
2912
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2913
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2914
			kernel_map_pages(virt_to_page(objp),
2915
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2926
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2927 2928 2929
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2930

L
Linus Torvalds 已提交
2931 2932 2933 2934 2935 2936 2937
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2938 2939 2940 2941
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
2942
		for (i = 0;
2943
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2944
		     i++) {
A
Andrew Morton 已提交
2945
			if (i % 16 == 0)
L
Linus Torvalds 已提交
2946
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2947
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2959
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2960 2961 2962 2963
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
2964 2965
	int node;

2966
retry:
L
Linus Torvalds 已提交
2967
	check_irq_off();
2968
	node = numa_node_id();
2969
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2970 2971
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2972 2973 2974 2975
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2976 2977 2978
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
2979
	l3 = cachep->nodelists[node];
2980 2981 2982

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2983

2984 2985 2986 2987
	/* See if we can refill from the shared array */
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
		goto alloc_done;

L
Linus Torvalds 已提交
2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
3003 3004 3005 3006 3007 3008 3009 3010

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
		BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);

L
Linus Torvalds 已提交
3011 3012 3013 3014 3015
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

3016
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
P
Pekka Enberg 已提交
3017
							    node);
L
Linus Torvalds 已提交
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
3029
must_grow:
L
Linus Torvalds 已提交
3030
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
3031
alloc_done:
3032
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3033 3034 3035

	if (unlikely(!ac->avail)) {
		int x;
3036
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3037

A
Andrew Morton 已提交
3038
		/* cache_grow can reenable interrupts, then ac could change. */
3039
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
3040
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
3041 3042
			return NULL;

A
Andrew Morton 已提交
3043
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3044 3045 3046
			goto retry;
	}
	ac->touched = 1;
3047
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3048 3049
}

A
Andrew Morton 已提交
3050 3051
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3052 3053 3054 3055 3056 3057 3058 3059
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3060 3061
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
3062
{
P
Pekka Enberg 已提交
3063
	if (!objp)
L
Linus Torvalds 已提交
3064
		return objp;
P
Pekka Enberg 已提交
3065
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3066
#ifdef CONFIG_DEBUG_PAGEALLOC
3067
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3068
			kernel_map_pages(virt_to_page(objp),
3069
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3081 3082 3083 3084
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3085
			printk(KERN_ERR
3086
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3087 3088
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3089 3090 3091 3092
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3093 3094 3095 3096 3097
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

3098
		slabp = page_get_slab(virt_to_head_page(objp));
3099 3100 3101 3102
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3103
	objp += obj_offset(cachep);
3104
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3105
		cachep->ctor(objp);
3106 3107 3108 3109 3110 3111
#if ARCH_SLAB_MINALIGN
	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
		       objp, ARCH_SLAB_MINALIGN);
	}
#endif
L
Linus Torvalds 已提交
3112 3113 3114 3115 3116 3117
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
#ifdef CONFIG_FAILSLAB

static struct failslab_attr {

	struct fault_attr attr;

	u32 ignore_gfp_wait;
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
	struct dentry *ignore_gfp_wait_file;
#endif

} failslab = {
	.attr = FAULT_ATTR_INITIALIZER,
3131
	.ignore_gfp_wait = 1,
3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
};

static int __init setup_failslab(char *str)
{
	return setup_fault_attr(&failslab.attr, str);
}
__setup("failslab=", setup_failslab);

static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
{
	if (cachep == &cache_cache)
		return 0;
	if (flags & __GFP_NOFAIL)
		return 0;
	if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
		return 0;

	return should_fail(&failslab.attr, obj_size(cachep));
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init failslab_debugfs(void)
{
	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
	struct dentry *dir;
	int err;

3160
	err = init_fault_attr_dentries(&failslab.attr, "failslab");
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
	if (err)
		return err;
	dir = failslab.attr.dentries.dir;

	failslab.ignore_gfp_wait_file =
		debugfs_create_bool("ignore-gfp-wait", mode, dir,
				      &failslab.ignore_gfp_wait);

	if (!failslab.ignore_gfp_wait_file) {
		err = -ENOMEM;
		debugfs_remove(failslab.ignore_gfp_wait_file);
		cleanup_fault_attr_dentries(&failslab.attr);
	}

	return err;
}

late_initcall(failslab_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAILSLAB */

static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
{
	return 0;
}

#endif /* CONFIG_FAILSLAB */

3191
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3192
{
P
Pekka Enberg 已提交
3193
	void *objp;
L
Linus Torvalds 已提交
3194 3195
	struct array_cache *ac;

3196
	check_irq_off();
3197

3198
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3199 3200 3201
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
3202
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3203 3204 3205 3206
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
3207 3208 3209
	return objp;
}

3210
#ifdef CONFIG_NUMA
3211
/*
3212
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3213 3214 3215 3216 3217 3218 3219 3220
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3221
	if (in_interrupt() || (flags & __GFP_THISNODE))
3222 3223 3224 3225 3226 3227 3228
		return NULL;
	nid_alloc = nid_here = numa_node_id();
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
		nid_alloc = cpuset_mem_spread_node();
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
	if (nid_alloc != nid_here)
3229
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3230 3231 3232
	return NULL;
}

3233 3234
/*
 * Fallback function if there was no memory available and no objects on a
3235 3236 3237 3238 3239
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3240
 */
3241
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3242
{
3243 3244
	struct zonelist *zonelist;
	gfp_t local_flags;
3245
	struct zoneref *z;
3246 3247
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3248
	void *obj = NULL;
3249
	int nid;
3250 3251 3252 3253

	if (flags & __GFP_THISNODE)
		return NULL;

3254
	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
C
Christoph Lameter 已提交
3255
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3256

3257 3258 3259 3260 3261
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3262 3263
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3264

3265
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3266
			cache->nodelists[nid] &&
3267
			cache->nodelists[nid]->free_objects) {
3268 3269
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3270 3271 3272
				if (obj)
					break;
		}
3273 3274
	}

3275
	if (!obj) {
3276 3277 3278 3279 3280 3281
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3282 3283 3284
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3285
		obj = kmem_getpages(cache, local_flags, -1);
3286 3287
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3304
				/* cache_grow already freed obj */
3305 3306 3307
				obj = NULL;
			}
		}
3308
	}
3309 3310 3311
	return obj;
}

3312 3313
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3314
 */
3315
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3316
				int nodeid)
3317 3318
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3319 3320 3321 3322 3323 3324 3325 3326
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3327
retry:
3328
	check_irq_off();
P
Pekka Enberg 已提交
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3348
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3349 3350 3351 3352 3353
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3354
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3355
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3356
	else
P
Pekka Enberg 已提交
3357
		list_add(&slabp->list, &l3->slabs_partial);
3358

P
Pekka Enberg 已提交
3359 3360
	spin_unlock(&l3->list_lock);
	goto done;
3361

A
Andrew Morton 已提交
3362
must_grow:
P
Pekka Enberg 已提交
3363
	spin_unlock(&l3->list_lock);
3364
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3365 3366
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3367

3368
	return fallback_alloc(cachep, flags);
3369

A
Andrew Morton 已提交
3370
done:
P
Pekka Enberg 已提交
3371
	return obj;
3372
}
3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
		   void *caller)
{
	unsigned long save_flags;
	void *ptr;

3393 3394 3395
	if (should_failslab(cachep, flags))
		return NULL;

3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

	if (unlikely(nodeid == -1))
		nodeid = numa_node_id();

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

	if (nodeid == numa_node_id()) {
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);

3425 3426 3427
	if (unlikely((flags & __GFP_ZERO) && ptr))
		memset(ptr, 0, obj_size(cachep));

3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
 	if (!objp)
 		objp = ____cache_alloc_node(cache, flags, numa_node_id());

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
{
	unsigned long save_flags;
	void *objp;

3469 3470 3471
	if (should_failslab(cachep, flags))
		return NULL;

3472 3473 3474 3475 3476 3477 3478
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
	prefetchw(objp);

3479 3480 3481
	if (unlikely((flags & __GFP_ZERO) && objp))
		memset(objp, 0, obj_size(cachep));

3482 3483
	return objp;
}
3484 3485 3486 3487

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3488
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3489
		       int node)
L
Linus Torvalds 已提交
3490 3491
{
	int i;
3492
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3493 3494 3495 3496 3497

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3498
		slabp = virt_to_slab(objp);
3499
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3500
		list_del(&slabp->list);
3501
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3502
		check_slabp(cachep, slabp);
3503
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3504
		STATS_DEC_ACTIVE(cachep);
3505
		l3->free_objects++;
L
Linus Torvalds 已提交
3506 3507 3508 3509
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3510 3511
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3512 3513 3514 3515 3516 3517
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3518 3519
				slab_destroy(cachep, slabp);
			} else {
3520
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3521 3522 3523 3524 3525 3526
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3527
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3528 3529 3530 3531
		}
	}
}

3532
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3533 3534
{
	int batchcount;
3535
	struct kmem_list3 *l3;
3536
	int node = numa_node_id();
L
Linus Torvalds 已提交
3537 3538 3539 3540 3541 3542

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3543
	l3 = cachep->nodelists[node];
3544
	spin_lock(&l3->list_lock);
3545 3546
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3547
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3548 3549 3550
		if (max) {
			if (batchcount > max)
				batchcount = max;
3551
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3552
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3553 3554 3555 3556 3557
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3558
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3559
free_done:
L
Linus Torvalds 已提交
3560 3561 3562 3563 3564
#if STATS
	{
		int i = 0;
		struct list_head *p;

3565 3566
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3578
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3579
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3580
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3581 3582 3583
}

/*
A
Andrew Morton 已提交
3584 3585
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3586
 */
3587
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3588
{
3589
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3590 3591 3592 3593

	check_irq_off();
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

3594 3595 3596 3597 3598 3599 3600 3601
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
	if (numa_platform && cache_free_alien(cachep, objp))
3602 3603
		return;

L
Linus Torvalds 已提交
3604 3605
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3606
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3607 3608 3609 3610
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3611
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3623
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3624
{
E
Eduard - Gabriel Munteanu 已提交
3625 3626 3627 3628 3629 3630
	void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));

	kmemtrace_mark_alloc(KMEMTRACE_TYPE_CACHE, _RET_IP_, ret,
			     obj_size(cachep), cachep->buffer_size, flags);

	return ret;
L
Linus Torvalds 已提交
3631 3632 3633
}
EXPORT_SYMBOL(kmem_cache_alloc);

E
Eduard - Gabriel Munteanu 已提交
3634 3635 3636 3637 3638 3639 3640 3641
#ifdef CONFIG_KMEMTRACE
void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
{
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
}
EXPORT_SYMBOL(kmem_cache_alloc_notrace);
#endif

L
Linus Torvalds 已提交
3642
/**
3643
 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
L
Linus Torvalds 已提交
3644 3645 3646
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
3647
 * This verifies that the untrusted pointer looks sane;
L
Linus Torvalds 已提交
3648 3649 3650 3651 3652 3653 3654
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3655
int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
L
Linus Torvalds 已提交
3656
{
P
Pekka Enberg 已提交
3657
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
3658
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
3659
	unsigned long align_mask = BYTES_PER_WORD - 1;
3660
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3676
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3677 3678
		goto out;
	return 1;
A
Andrew Morton 已提交
3679
out:
L
Linus Torvalds 已提交
3680 3681 3682 3683
	return 0;
}

#ifdef CONFIG_NUMA
3684 3685
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
E
Eduard - Gabriel Munteanu 已提交
3686 3687 3688 3689 3690 3691 3692 3693
	void *ret = __cache_alloc_node(cachep, flags, nodeid,
				       __builtin_return_address(0));

	kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_CACHE, _RET_IP_, ret,
				  obj_size(cachep), cachep->buffer_size,
				  flags, nodeid);

	return ret;
3694
}
L
Linus Torvalds 已提交
3695 3696
EXPORT_SYMBOL(kmem_cache_alloc_node);

E
Eduard - Gabriel Munteanu 已提交
3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707
#ifdef CONFIG_KMEMTRACE
void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
				    gfp_t flags,
				    int nodeid)
{
	return __cache_alloc_node(cachep, flags, nodeid,
				  __builtin_return_address(0));
}
EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
#endif

3708 3709
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3710
{
3711
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3712
	void *ret;
3713 3714

	cachep = kmem_find_general_cachep(size, flags);
3715 3716
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
E
Eduard - Gabriel Munteanu 已提交
3717 3718 3719 3720 3721 3722 3723
	ret = kmem_cache_alloc_node_notrace(cachep, flags, node);

	kmemtrace_mark_alloc_node(KMEMTRACE_TYPE_KMALLOC,
				  (unsigned long) caller, ret,
				  size, cachep->buffer_size, flags, node);

	return ret;
3724
}
3725

E
Eduard - Gabriel Munteanu 已提交
3726
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3727 3728 3729 3730 3731
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node,
			__builtin_return_address(0));
}
3732
EXPORT_SYMBOL(__kmalloc_node);
3733 3734

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3735
		int node, unsigned long caller)
3736
{
3737
	return __do_kmalloc_node(size, flags, node, (void *)caller);
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node, NULL);
}
EXPORT_SYMBOL(__kmalloc_node);
#endif /* CONFIG_DEBUG_SLAB */
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3748 3749

/**
3750
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3751
 * @size: how many bytes of memory are required.
3752
 * @flags: the type of memory to allocate (see kmalloc).
3753
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3754
 */
3755 3756
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3757
{
3758
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3759
	void *ret;
L
Linus Torvalds 已提交
3760

3761 3762 3763 3764 3765 3766
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3767 3768
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
E
Eduard - Gabriel Munteanu 已提交
3769 3770 3771 3772 3773 3774 3775
	ret = __cache_alloc(cachep, flags, caller);

	kmemtrace_mark_alloc(KMEMTRACE_TYPE_KMALLOC,
			     (unsigned long) caller, ret,
			     size, cachep->buffer_size, flags);

	return ret;
3776 3777 3778
}


E
Eduard - Gabriel Munteanu 已提交
3779
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
3780 3781
void *__kmalloc(size_t size, gfp_t flags)
{
3782
	return __do_kmalloc(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3783 3784 3785
}
EXPORT_SYMBOL(__kmalloc);

3786
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3787
{
3788
	return __do_kmalloc(size, flags, (void *)caller);
3789 3790
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3791 3792 3793 3794 3795 3796 3797

#else
void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
3798 3799
#endif

L
Linus Torvalds 已提交
3800 3801 3802 3803 3804 3805 3806 3807
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3808
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3809 3810 3811 3812
{
	unsigned long flags;

	local_irq_save(flags);
3813
	debug_check_no_locks_freed(objp, obj_size(cachep));
3814 3815
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(objp, obj_size(cachep));
3816
	__cache_free(cachep, objp);
L
Linus Torvalds 已提交
3817
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3818 3819

	kmemtrace_mark_free(KMEMTRACE_TYPE_CACHE, _RET_IP_, objp);
L
Linus Torvalds 已提交
3820 3821 3822 3823 3824 3825 3826
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3827 3828
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3829 3830 3831 3832 3833
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3834
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3835 3836
	unsigned long flags;

3837
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3838 3839 3840
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3841
	c = virt_to_cache(objp);
3842
	debug_check_no_locks_freed(objp, obj_size(c));
3843
	debug_check_no_obj_freed(objp, obj_size(c));
3844
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3845
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3846 3847

	kmemtrace_mark_free(KMEMTRACE_TYPE_KMALLOC, _RET_IP_, objp);
L
Linus Torvalds 已提交
3848 3849 3850
}
EXPORT_SYMBOL(kfree);

3851
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3852
{
3853
	return obj_size(cachep);
L
Linus Torvalds 已提交
3854 3855 3856
}
EXPORT_SYMBOL(kmem_cache_size);

3857
const char *kmem_cache_name(struct kmem_cache *cachep)
3858 3859 3860 3861 3862
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3863
/*
S
Simon Arlott 已提交
3864
 * This initializes kmem_list3 or resizes various caches for all nodes.
3865
 */
3866
static int alloc_kmemlist(struct kmem_cache *cachep)
3867 3868 3869
{
	int node;
	struct kmem_list3 *l3;
3870
	struct array_cache *new_shared;
3871
	struct array_cache **new_alien = NULL;
3872

3873
	for_each_online_node(node) {
3874

3875 3876 3877 3878 3879
                if (use_alien_caches) {
                        new_alien = alloc_alien_cache(node, cachep->limit);
                        if (!new_alien)
                                goto fail;
                }
3880

3881 3882 3883
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3884
				cachep->shared*cachep->batchcount,
A
Andrew Morton 已提交
3885
					0xbaadf00d);
3886 3887 3888 3889
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3890
		}
3891

A
Andrew Morton 已提交
3892 3893
		l3 = cachep->nodelists[node];
		if (l3) {
3894 3895
			struct array_cache *shared = l3->shared;

3896 3897
			spin_lock_irq(&l3->list_lock);

3898
			if (shared)
3899 3900
				free_block(cachep, shared->entry,
						shared->avail, node);
3901

3902 3903
			l3->shared = new_shared;
			if (!l3->alien) {
3904 3905 3906
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3907
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3908
					cachep->batchcount + cachep->num;
3909
			spin_unlock_irq(&l3->list_lock);
3910
			kfree(shared);
3911 3912 3913
			free_alien_cache(new_alien);
			continue;
		}
A
Andrew Morton 已提交
3914
		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3915 3916 3917
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3918
			goto fail;
3919
		}
3920 3921 3922

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3923
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3924
		l3->shared = new_shared;
3925
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3926
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3927
					cachep->batchcount + cachep->num;
3928 3929
		cachep->nodelists[node] = l3;
	}
3930
	return 0;
3931

A
Andrew Morton 已提交
3932
fail:
3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3948
	return -ENOMEM;
3949 3950
}

L
Linus Torvalds 已提交
3951
struct ccupdate_struct {
3952
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3953 3954 3955 3956 3957
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3958
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3959 3960 3961
	struct array_cache *old;

	check_irq_off();
3962
	old = cpu_cache_get(new->cachep);
3963

L
Linus Torvalds 已提交
3964 3965 3966 3967
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3968
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
3969 3970
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared)
L
Linus Torvalds 已提交
3971
{
3972
	struct ccupdate_struct *new;
3973
	int i;
L
Linus Torvalds 已提交
3974

3975 3976 3977 3978
	new = kzalloc(sizeof(*new), GFP_KERNEL);
	if (!new)
		return -ENOMEM;

3979
	for_each_online_cpu(i) {
3980
		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
A
Andrew Morton 已提交
3981
						batchcount);
3982
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3983
			for (i--; i >= 0; i--)
3984 3985
				kfree(new->new[i]);
			kfree(new);
3986
			return -ENOMEM;
L
Linus Torvalds 已提交
3987 3988
		}
	}
3989
	new->cachep = cachep;
L
Linus Torvalds 已提交
3990

3991
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3992

L
Linus Torvalds 已提交
3993 3994 3995
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3996
	cachep->shared = shared;
L
Linus Torvalds 已提交
3997

3998
	for_each_online_cpu(i) {
3999
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
4000 4001
		if (!ccold)
			continue;
4002
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
4003
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
4004
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
4005 4006
		kfree(ccold);
	}
4007
	kfree(new);
4008
	return alloc_kmemlist(cachep);
L
Linus Torvalds 已提交
4009 4010
}

4011
/* Called with cache_chain_mutex held always */
4012
static int enable_cpucache(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
4013 4014 4015 4016
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
4017 4018
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
4019 4020
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
4021
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
4022 4023 4024 4025
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
4026
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
4027
		limit = 1;
4028
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
4029
		limit = 8;
4030
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
4031
		limit = 24;
4032
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
4033 4034 4035 4036
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
4037 4038
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
4039 4040 4041 4042 4043 4044 4045 4046
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4047
	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
4048 4049 4050
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
4051 4052 4053
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4054 4055 4056 4057
	 */
	if (limit > 32)
		limit = 32;
#endif
P
Pekka Enberg 已提交
4058
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
L
Linus Torvalds 已提交
4059 4060
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4061
		       cachep->name, -err);
4062
	return err;
L
Linus Torvalds 已提交
4063 4064
}

4065 4066
/*
 * Drain an array if it contains any elements taking the l3 lock only if
4067 4068
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
4069 4070 4071
 */
void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4072 4073 4074
{
	int tofree;

4075 4076
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4077 4078
	if (ac->touched && !force) {
		ac->touched = 0;
4079
	} else {
4080
		spin_lock_irq(&l3->list_lock);
4081 4082 4083 4084 4085 4086 4087 4088 4089
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4090
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4091 4092 4093 4094 4095
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4096
 * @w: work descriptor
L
Linus Torvalds 已提交
4097 4098 4099 4100 4101 4102
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4103 4104
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4105
 */
4106
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4107
{
4108
	struct kmem_cache *searchp;
4109
	struct kmem_list3 *l3;
4110
	int node = numa_node_id();
4111 4112
	struct delayed_work *work =
		container_of(w, struct delayed_work, work);
L
Linus Torvalds 已提交
4113

4114
	if (!mutex_trylock(&cache_chain_mutex))
L
Linus Torvalds 已提交
4115
		/* Give up. Setup the next iteration. */
4116
		goto out;
L
Linus Torvalds 已提交
4117

4118
	list_for_each_entry(searchp, &cache_chain, next) {
L
Linus Torvalds 已提交
4119 4120
		check_irq_on();

4121 4122 4123 4124 4125
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4126
		l3 = searchp->nodelists[node];
4127

4128
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4129

4130
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4131

4132 4133 4134 4135
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4136
		if (time_after(l3->next_reap, jiffies))
4137
			goto next;
L
Linus Torvalds 已提交
4138

4139
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4140

4141
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4142

4143
		if (l3->free_touched)
4144
			l3->free_touched = 0;
4145 4146
		else {
			int freed;
L
Linus Torvalds 已提交
4147

4148 4149 4150 4151
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4152
next:
L
Linus Torvalds 已提交
4153 4154 4155
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
4156
	mutex_unlock(&cache_chain_mutex);
4157
	next_reap_node();
4158
out:
A
Andrew Morton 已提交
4159
	/* Set up the next iteration */
4160
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4161 4162
}

4163
#ifdef CONFIG_SLABINFO
L
Linus Torvalds 已提交
4164

4165
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
4166
{
4167 4168 4169 4170
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
4171
#if STATS
4172
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
4173
#else
4174
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
4175
#endif
4176 4177 4178 4179
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
4180
#if STATS
4181
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4182
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4183
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
4184
#endif
4185 4186 4187 4188 4189 4190 4191
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

I
Ingo Molnar 已提交
4192
	mutex_lock(&cache_chain_mutex);
4193 4194
	if (!n)
		print_slabinfo_header(m);
4195 4196

	return seq_list_start(&cache_chain, *pos);
L
Linus Torvalds 已提交
4197 4198 4199 4200
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
4201
	return seq_list_next(p, &cache_chain, pos);
L
Linus Torvalds 已提交
4202 4203 4204 4205
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
4206
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4207 4208 4209 4210
}

static int s_show(struct seq_file *m, void *p)
{
4211
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
P
Pekka Enberg 已提交
4212 4213 4214 4215 4216
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4217
	const char *name;
L
Linus Torvalds 已提交
4218
	char *error = NULL;
4219 4220
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4221 4222 4223

	active_objs = 0;
	num_slabs = 0;
4224 4225 4226 4227 4228
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4229 4230
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4231

4232
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4233 4234 4235 4236 4237
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4238
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4239 4240 4241 4242 4243 4244 4245
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4246
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4247 4248 4249 4250 4251
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4252 4253
		if (l3->shared)
			shared_avail += l3->shared->avail;
4254

4255
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4256
	}
P
Pekka Enberg 已提交
4257 4258
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4259
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4260 4261
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4262
	name = cachep->name;
L
Linus Torvalds 已提交
4263 4264 4265 4266
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4267
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
4268
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4269
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4270
		   cachep->limit, cachep->batchcount, cachep->shared);
4271
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4272
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4273
#if STATS
P
Pekka Enberg 已提交
4274
	{			/* list3 stats */
L
Linus Torvalds 已提交
4275 4276 4277 4278 4279 4280 4281
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4282
		unsigned long node_frees = cachep->node_frees;
4283
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4284

4285
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4286
				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
A
Andrew Morton 已提交
4287
				reaped, errors, max_freeable, node_allocs,
4288
				node_frees, overflows);
L
Linus Torvalds 已提交
4289 4290 4291 4292 4293 4294 4295 4296 4297
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4298
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

4319
static const struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4320 4321 4322 4323
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4324 4325 4326 4327 4328 4329 4330 4331 4332 4333
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
4334 4335
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4336
{
P
Pekka Enberg 已提交
4337
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4338
	int limit, batchcount, shared, res;
4339
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4340

L
Linus Torvalds 已提交
4341 4342 4343 4344
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4345
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4346 4347 4348 4349 4350 4351 4352 4353 4354 4355

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
4356
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4357
	res = -EINVAL;
4358
	list_for_each_entry(cachep, &cache_chain, next) {
L
Linus Torvalds 已提交
4359
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4360 4361
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4362
				res = 0;
L
Linus Torvalds 已提交
4363
			} else {
4364
				res = do_tune_cpucache(cachep, limit,
P
Pekka Enberg 已提交
4365
						       batchcount, shared);
L
Linus Torvalds 已提交
4366 4367 4368 4369
			}
			break;
		}
	}
I
Ingo Molnar 已提交
4370
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4371 4372 4373 4374
	if (res >= 0)
		res = count;
	return res;
}
4375

4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388
static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write		= slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

4389 4390 4391 4392 4393
#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	mutex_lock(&cache_chain_mutex);
4394
	return seq_list_start(&cache_chain, *pos);
4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4445
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4446

4447
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4448
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4449
		if (modname[0])
4450 4451 4452 4453 4454 4455 4456 4457 4458
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4459
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4484
		list_for_each_entry(slabp, &l3->slabs_full, list)
4485
			handle_slab(n, cachep, slabp);
4486
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4513

4514 4515 4516
	return 0;
}

4517
static const struct seq_operations slabstats_op = {
4518 4519 4520 4521 4522
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
4551
	proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4552 4553
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4554
#endif
4555 4556 4557
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4558 4559
#endif

4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4572
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4573
{
4574 4575
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4576
		return 0;
L
Linus Torvalds 已提交
4577

4578
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4579
}