slab.c 110.1 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
 * slabs and you must pass objects with the same intializations to
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
L
Linus Torvalds 已提交
98 99 100 101 102 103 104
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
105
#include	<linux/string.h>
106
#include	<linux/nodemask.h>
107
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
108
#include	<linux/mutex.h>
I
Ingo Molnar 已提交
109
#include	<linux/rtmutex.h>
L
Linus Torvalds 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174

#include	<asm/uaccess.h>
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
 *		  SLAB_RED_ZONE & SLAB_POISON.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)

#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
 * Note that this flag disables some debug features.
 */
#define ARCH_KMALLOC_MINALIGN 0
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
175
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
176 177
			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
178
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
179
#else
180
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
L
Linus Torvalds 已提交
181 182
			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
183
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

205
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
206 207
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
208 209
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
210 211 212 213 214 215 216 217 218

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
219 220 221 222 223 224
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
244
	struct rcu_head head;
245
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
246
	void *addr;
L
Linus Torvalds 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
266
	spinlock_t lock;
A
Andrew Morton 已提交
267 268 269 270 271 272
	void *entry[0];	/*
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 * [0] is for gcc 2.95. It should really be [].
			 */
L
Linus Torvalds 已提交
273 274
};

A
Andrew Morton 已提交
275 276 277
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
278 279 280 281
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
282
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
283 284 285
};

/*
286
 * The slab lists for all objects.
L
Linus Torvalds 已提交
287 288
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
289 290 291 292 293
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
294
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
295 296 297
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
298 299
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
300 301
};

302 303 304 305 306 307 308 309 310
/*
 * Need this for bootstrapping a per node allocator.
 */
#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
#define	SIZE_AC 1
#define	SIZE_L3 (1 + MAX_NUMNODES)

311 312 313 314
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
315
static int enable_cpucache(struct kmem_cache *cachep);
316
static void cache_reap(struct work_struct *unused);
317

318
/*
A
Andrew Morton 已提交
319 320
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
321
 */
322
static __always_inline int index_of(const size_t size)
323
{
324 325
	extern void __bad_size(void);

326 327 328 329 330 331 332 333 334 335
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
#include "linux/kmalloc_sizes.h"
#undef CACHE
336
		__bad_size();
337
	} else
338
		__bad_size();
339 340 341
	return 0;
}

342 343
static int slab_early_init = 1;

344 345
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
346

P
Pekka Enberg 已提交
347
static void kmem_list3_init(struct kmem_list3 *parent)
348 349 350 351 352 353
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
354
	parent->colour_next = 0;
355 356 357 358 359
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
360 361 362 363
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
364 365
	} while (0)

A
Andrew Morton 已提交
366 367
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
368 369 370 371
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
372 373

/*
374
 * struct kmem_cache
L
Linus Torvalds 已提交
375 376 377
 *
 * manages a cache.
 */
P
Pekka Enberg 已提交
378

379
struct kmem_cache {
L
Linus Torvalds 已提交
380
/* 1) per-cpu data, touched during every alloc/free */
P
Pekka Enberg 已提交
381
	struct array_cache *array[NR_CPUS];
382
/* 2) Cache tunables. Protected by cache_chain_mutex */
P
Pekka Enberg 已提交
383 384 385
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
386

387
	unsigned int buffer_size;
388
/* 3) touched by every alloc & free from the backend */
P
Pekka Enberg 已提交
389
	struct kmem_list3 *nodelists[MAX_NUMNODES];
390

A
Andrew Morton 已提交
391 392
	unsigned int flags;		/* constant flags */
	unsigned int num;		/* # of objs per slab */
L
Linus Torvalds 已提交
393

394
/* 4) cache_grow/shrink */
L
Linus Torvalds 已提交
395
	/* order of pgs per slab (2^n) */
P
Pekka Enberg 已提交
396
	unsigned int gfporder;
L
Linus Torvalds 已提交
397 398

	/* force GFP flags, e.g. GFP_DMA */
P
Pekka Enberg 已提交
399
	gfp_t gfpflags;
L
Linus Torvalds 已提交
400

A
Andrew Morton 已提交
401
	size_t colour;			/* cache colouring range */
P
Pekka Enberg 已提交
402
	unsigned int colour_off;	/* colour offset */
403
	struct kmem_cache *slabp_cache;
P
Pekka Enberg 已提交
404
	unsigned int slab_size;
A
Andrew Morton 已提交
405
	unsigned int dflags;		/* dynamic flags */
L
Linus Torvalds 已提交
406 407

	/* constructor func */
408
	void (*ctor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
409 410

	/* de-constructor func */
411
	void (*dtor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
412

413
/* 5) cache creation/removal */
P
Pekka Enberg 已提交
414 415
	const char *name;
	struct list_head next;
L
Linus Torvalds 已提交
416

417
/* 6) statistics */
L
Linus Torvalds 已提交
418
#if STATS
P
Pekka Enberg 已提交
419 420 421 422 423 424 425 426 427
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
428
	unsigned long node_overflow;
P
Pekka Enberg 已提交
429 430 431 432
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
L
Linus Torvalds 已提交
433 434
#endif
#if DEBUG
435 436 437 438 439 440 441 442
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
L
Linus Torvalds 已提交
443 444 445 446 447 448 449
#endif
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
450 451 452
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
453
 *
A
Adrian Bunk 已提交
454
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
455 456 457 458 459 460 461 462 463 464
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
465
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
466 467 468 469 470
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
471 472
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
473
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
474
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
475 476 477 478 479
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
480 481 482 483 484 485 486 487 488
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
489
#define	STATS_ADD_REAPED(x,y)	do { } while (0)
L
Linus Torvalds 已提交
490 491 492
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
493
#define	STATS_INC_NODEFREES(x)	do { } while (0)
494
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
495
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
496 497 498 499 500 501 502 503
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
504 505
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
506
 * 0		: objp
507
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
508 509
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
510
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
511
 * 		redzone word.
512 513
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
514 515
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
516
 */
517
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
518
{
519
	return cachep->obj_offset;
L
Linus Torvalds 已提交
520 521
}

522
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
523
{
524
	return cachep->obj_size;
L
Linus Torvalds 已提交
525 526
}

527
static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
528 529
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
530
	return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
L
Linus Torvalds 已提交
531 532
}

533
static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
534 535 536
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
537
		return (unsigned long *)(objp + cachep->buffer_size -
P
Pekka Enberg 已提交
538
					 2 * BYTES_PER_WORD);
539
	return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
540 541
}

542
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
543 544
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
545
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
546 547 548 549
}

#else

550 551
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
L
Linus Torvalds 已提交
552 553 554 555 556 557 558
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
A
Andrew Morton 已提交
559 560
 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
 * order.
L
Linus Torvalds 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
 */
#if defined(CONFIG_LARGE_ALLOCS)
#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
#define	MAX_GFP_ORDER	13	/* up to 32Mb */
#elif defined(CONFIG_MMU)
#define	MAX_OBJ_ORDER	5	/* 32 pages */
#define	MAX_GFP_ORDER	5	/* 32 pages */
#else
#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
#define	MAX_GFP_ORDER	8	/* up to 1Mb */
#endif

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
580 581 582 583
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
584
 */
585 586 587 588 589 590 591
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
592 593
	if (unlikely(PageCompound(page)))
		page = (struct page *)page_private(page);
594
	BUG_ON(!PageSlab(page));
595 596 597 598 599 600 601 602 603 604
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
605 606
	if (unlikely(PageCompound(page)))
		page = (struct page *)page_private(page);
607
	BUG_ON(!PageSlab(page));
608 609
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
610

611 612 613 614 615 616 617 618 619 620 621 622
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_slab(page);
}

623 624 625 626 627 628 629 630 631 632 633 634
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

static inline unsigned int obj_to_index(struct kmem_cache *cache,
					struct slab *slab, void *obj)
{
	return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
}

A
Andrew Morton 已提交
635 636 637
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
655
	{NULL,}
L
Linus Torvalds 已提交
656 657 658 659
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
660
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
661
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
662
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
663 664

/* internal cache of cache description objs */
665
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
666 667 668
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
669
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
670
	.name = "kmem_cache",
L
Linus Torvalds 已提交
671
#if DEBUG
672
	.obj_size = sizeof(struct kmem_cache),
L
Linus Torvalds 已提交
673 674 675
#endif
};

676 677
#define BAD_ALIEN_MAGIC 0x01020304ul

678 679 680 681 682 683 684 685
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
686 687 688 689
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
690
 */
691 692 693 694
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

static inline void init_lock_keys(void)
695 696 697

{
	int q;
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
	struct cache_sizes *s = malloc_sizes;

	while (s->cs_size != ULONG_MAX) {
		for_each_node(q) {
			struct array_cache **alc;
			int r;
			struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
			if (!l3 || OFF_SLAB(s->cs_cachep))
				continue;
			lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
			alc = l3->alien;
			/*
			 * FIXME: This check for BAD_ALIEN_MAGIC
			 * should go away when common slab code is taught to
			 * work even without alien caches.
			 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
			 * for alloc_alien_cache,
			 */
			if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
				continue;
			for_each_node(r) {
				if (alc[r])
					lockdep_set_class(&alc[r]->lock,
					     &on_slab_alc_key);
			}
		}
		s++;
725 726 727
	}
}
#else
728
static inline void init_lock_keys(void)
729 730 731 732
{
}
#endif

L
Linus Torvalds 已提交
733
/* Guard access to the cache-chain. */
I
Ingo Molnar 已提交
734
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
735 736 737 738 739 740 741 742
static struct list_head cache_chain;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
743 744
	PARTIAL_AC,
	PARTIAL_L3,
L
Linus Torvalds 已提交
745 746 747
	FULL
} g_cpucache_up;

748 749 750 751 752 753 754 755
/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up == FULL;
}

756
static DEFINE_PER_CPU(struct delayed_work, reap_work);
L
Linus Torvalds 已提交
757

758
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
759 760 761 762
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
763 764
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
765 766 767 768 769
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
770 771 772
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
773
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
774 775 776 777 778
#endif
	while (size > csizep->cs_size)
		csizep++;

	/*
779
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
780 781 782 783 784 785 786 787
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
788
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
789 790 791 792
{
	return __find_general_cachep(size, gfpflags);
}

793
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
794
{
795 796
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
797

A
Andrew Morton 已提交
798 799 800
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
801 802 803 804 805 806 807
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
808

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
857 858 859 860
}

#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)

A
Andrew Morton 已提交
861 862
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
863 864
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
865
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
866 867 868
	dump_stack();
}

869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
884
		node = first_node(node_online_map);
885

886
	per_cpu(reap_node, cpu) = node;
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	/*
	 * Also drain per cpu pages on remote zones
	 */
	if (node != numa_node_id())
		drain_node_pages(node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
910 911 912 913 914 915 916 917 918
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
static void __devinit start_cpu_timer(int cpu)
{
919
	struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
L
Linus Torvalds 已提交
920 921 922 923 924 925

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
926
	if (keventd_up() && reap_work->work.func == NULL) {
927
		init_reap_node(cpu);
928
		INIT_DELAYED_WORK(reap_work, cache_reap);
L
Linus Torvalds 已提交
929 930 931 932
		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
	}
}

933
static struct array_cache *alloc_arraycache(int node, int entries,
P
Pekka Enberg 已提交
934
					    int batchcount)
L
Linus Torvalds 已提交
935
{
P
Pekka Enberg 已提交
936
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
937 938
	struct array_cache *nc = NULL;

939
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
L
Linus Torvalds 已提交
940 941 942 943 944
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
945
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
946 947 948 949
	}
	return nc;
}

950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	to->touched = 1;
	return nr;
}

974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

static inline void *__cache_alloc_node(struct kmem_cache *cachep,
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1007
static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
1008
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1009

P
Pekka Enberg 已提交
1010
static struct array_cache **alloc_alien_cache(int node, int limit)
1011 1012
{
	struct array_cache **ac_ptr;
P
Pekka Enberg 已提交
1013
	int memsize = sizeof(void *) * MAX_NUMNODES;
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
P
Pekka Enberg 已提交
1027
				for (i--; i <= 0; i--)
1028 1029 1030 1031 1032 1033 1034 1035 1036
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1037
static void free_alien_cache(struct array_cache **ac_ptr)
1038 1039 1040 1041 1042 1043
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1044
	    kfree(ac_ptr[i]);
1045 1046 1047
	kfree(ac_ptr);
}

1048
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1049
				struct array_cache *ac, int node)
1050 1051 1052 1053 1054
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1055 1056 1057 1058 1059
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1060 1061
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1062

1063
		free_block(cachep, ac->entry, ac->avail, node);
1064 1065 1066 1067 1068
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1069 1070 1071 1072 1073 1074 1075 1076 1077
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
	int node = __get_cpu_var(reap_node);

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1078 1079

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1080 1081 1082 1083 1084 1085
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1086 1087
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1088
{
P
Pekka Enberg 已提交
1089
	int i = 0;
1090 1091 1092 1093
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1094
		ac = alien[i];
1095 1096 1097 1098 1099 1100 1101
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1102

1103
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1104 1105 1106 1107 1108
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1109 1110 1111
	int node;

	node = numa_node_id();
1112 1113 1114 1115 1116

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
P
Pekka Enberg 已提交
1117
	if (likely(slabp->nodeid == node))
1118 1119
		return 0;

P
Pekka Enberg 已提交
1120
	l3 = cachep->nodelists[node];
1121 1122 1123
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1124
		spin_lock(&alien->lock);
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1138 1139
#endif

1140
static int __cpuinit cpuup_callback(struct notifier_block *nfb,
P
Pekka Enberg 已提交
1141
				    unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
1142 1143
{
	long cpu = (long)hcpu;
1144
	struct kmem_cache *cachep;
1145 1146 1147
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
	int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
1148 1149 1150

	switch (action) {
	case CPU_UP_PREPARE:
I
Ingo Molnar 已提交
1151
		mutex_lock(&cache_chain_mutex);
A
Andrew Morton 已提交
1152 1153
		/*
		 * We need to do this right in the beginning since
1154 1155 1156 1157 1158
		 * alloc_arraycache's are going to use this list.
		 * kmalloc_node allows us to add the slab to the right
		 * kmem_list3 and not this cpu's kmem_list3
		 */

L
Linus Torvalds 已提交
1159
		list_for_each_entry(cachep, &cache_chain, next) {
A
Andrew Morton 已提交
1160 1161
			/*
			 * Set up the size64 kmemlist for cpu before we can
1162 1163 1164 1165
			 * begin anything. Make sure some other cpu on this
			 * node has not already allocated this
			 */
			if (!cachep->nodelists[node]) {
A
Andrew Morton 已提交
1166 1167
				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
				if (!l3)
1168 1169 1170
					goto bad;
				kmem_list3_init(l3);
				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
1171
				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1172

1173 1174 1175 1176 1177
				/*
				 * The l3s don't come and go as CPUs come and
				 * go.  cache_chain_mutex is sufficient
				 * protection here.
				 */
1178 1179
				cachep->nodelists[node] = l3;
			}
L
Linus Torvalds 已提交
1180

1181 1182
			spin_lock_irq(&cachep->nodelists[node]->list_lock);
			cachep->nodelists[node]->free_limit =
A
Andrew Morton 已提交
1183 1184
				(1 + nr_cpus_node(node)) *
				cachep->batchcount + cachep->num;
1185 1186 1187
			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
		}

A
Andrew Morton 已提交
1188 1189 1190 1191
		/*
		 * Now we can go ahead with allocating the shared arrays and
		 * array caches
		 */
1192
		list_for_each_entry(cachep, &cache_chain, next) {
1193
			struct array_cache *nc;
1194 1195
			struct array_cache *shared;
			struct array_cache **alien;
1196

1197
			nc = alloc_arraycache(node, cachep->limit,
1198
						cachep->batchcount);
L
Linus Torvalds 已提交
1199 1200
			if (!nc)
				goto bad;
1201 1202 1203 1204 1205
			shared = alloc_arraycache(node,
					cachep->shared * cachep->batchcount,
					0xbaadf00d);
			if (!shared)
				goto bad;
1206

1207 1208 1209
			alien = alloc_alien_cache(node, cachep->limit);
			if (!alien)
				goto bad;
L
Linus Torvalds 已提交
1210
			cachep->array[cpu] = nc;
1211 1212 1213
			l3 = cachep->nodelists[node];
			BUG_ON(!l3);

1214 1215 1216 1217 1218 1219 1220 1221
			spin_lock_irq(&l3->list_lock);
			if (!l3->shared) {
				/*
				 * We are serialised from CPU_DEAD or
				 * CPU_UP_CANCELLED by the cpucontrol lock
				 */
				l3->shared = shared;
				shared = NULL;
1222
			}
1223 1224 1225 1226 1227 1228 1229 1230 1231
#ifdef CONFIG_NUMA
			if (!l3->alien) {
				l3->alien = alien;
				alien = NULL;
			}
#endif
			spin_unlock_irq(&l3->list_lock);
			kfree(shared);
			free_alien_cache(alien);
L
Linus Torvalds 已提交
1232
		}
I
Ingo Molnar 已提交
1233
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1234 1235 1236 1237 1238 1239
		break;
	case CPU_ONLINE:
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1240 1241 1242 1243 1244 1245 1246 1247
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
L
Linus Torvalds 已提交
1248 1249
		/* fall thru */
	case CPU_UP_CANCELED:
I
Ingo Molnar 已提交
1250
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1251 1252
		list_for_each_entry(cachep, &cache_chain, next) {
			struct array_cache *nc;
1253 1254
			struct array_cache *shared;
			struct array_cache **alien;
1255
			cpumask_t mask;
L
Linus Torvalds 已提交
1256

1257
			mask = node_to_cpumask(node);
L
Linus Torvalds 已提交
1258 1259 1260
			/* cpu is dead; no one can alloc from it. */
			nc = cachep->array[cpu];
			cachep->array[cpu] = NULL;
1261 1262 1263
			l3 = cachep->nodelists[node];

			if (!l3)
1264
				goto free_array_cache;
1265

1266
			spin_lock_irq(&l3->list_lock);
1267 1268 1269 1270

			/* Free limit for this kmem_list3 */
			l3->free_limit -= cachep->batchcount;
			if (nc)
1271
				free_block(cachep, nc->entry, nc->avail, node);
1272 1273

			if (!cpus_empty(mask)) {
1274
				spin_unlock_irq(&l3->list_lock);
1275
				goto free_array_cache;
P
Pekka Enberg 已提交
1276
			}
1277

1278 1279
			shared = l3->shared;
			if (shared) {
1280
				free_block(cachep, l3->shared->entry,
P
Pekka Enberg 已提交
1281
					   l3->shared->avail, node);
1282 1283 1284
				l3->shared = NULL;
			}

1285 1286 1287 1288 1289 1290 1291 1292 1293
			alien = l3->alien;
			l3->alien = NULL;

			spin_unlock_irq(&l3->list_lock);

			kfree(shared);
			if (alien) {
				drain_alien_cache(cachep, alien);
				free_alien_cache(alien);
1294
			}
1295
free_array_cache:
L
Linus Torvalds 已提交
1296 1297
			kfree(nc);
		}
1298 1299 1300 1301 1302 1303 1304 1305 1306
		/*
		 * In the previous loop, all the objects were freed to
		 * the respective cache's slabs,  now we can go ahead and
		 * shrink each nodelist to its limit.
		 */
		list_for_each_entry(cachep, &cache_chain, next) {
			l3 = cachep->nodelists[node];
			if (!l3)
				continue;
1307
			drain_freelist(cachep, l3, l3->free_objects);
1308
		}
I
Ingo Molnar 已提交
1309
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1310 1311 1312 1313
		break;
#endif
	}
	return NOTIFY_OK;
A
Andrew Morton 已提交
1314
bad:
I
Ingo Molnar 已提交
1315
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1316 1317 1318
	return NOTIFY_BAD;
}

1319 1320 1321
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1322

1323 1324 1325
/*
 * swap the static kmem_list3 with kmalloced memory
 */
A
Andrew Morton 已提交
1326 1327
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
			int nodeid)
1328 1329 1330 1331 1332 1333 1334 1335
{
	struct kmem_list3 *ptr;

	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
	BUG_ON(!ptr);

	local_irq_disable();
	memcpy(ptr, list, sizeof(struct kmem_list3));
1336 1337 1338 1339 1340
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1341 1342 1343 1344 1345
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
	local_irq_enable();
}

A
Andrew Morton 已提交
1346 1347 1348
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1349 1350 1351 1352 1353 1354
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1355
	int i;
1356
	int order;
P
Pekka Enberg 已提交
1357
	int node;
1358 1359 1360 1361 1362 1363

	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
L
Linus Torvalds 已提交
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1374 1375 1376
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1377 1378 1379
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1380
	 * 2) Create the first kmalloc cache.
1381
	 *    The struct kmem_cache for the new cache is allocated normally.
1382 1383 1384
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1385 1386
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1387 1388 1389
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1390 1391
	 */

P
Pekka Enberg 已提交
1392 1393
	node = numa_node_id();

L
Linus Torvalds 已提交
1394 1395 1396 1397 1398
	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
P
Pekka Enberg 已提交
1399
	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
L
Linus Torvalds 已提交
1400

A
Andrew Morton 已提交
1401 1402
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
L
Linus Torvalds 已提交
1403

1404 1405 1406 1407 1408 1409
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1410
	BUG_ON(!cache_cache.num);
1411
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1412 1413 1414
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1415 1416 1417 1418 1419

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1420 1421 1422 1423
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1424 1425 1426
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1427 1428 1429 1430
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
1431

A
Andrew Morton 已提交
1432
	if (INDEX_AC != INDEX_L3) {
1433
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1434 1435 1436 1437 1438 1439
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
				NULL, NULL);
	}
1440

1441 1442
	slab_early_init = 0;

L
Linus Torvalds 已提交
1443
	while (sizes->cs_size != ULONG_MAX) {
1444 1445
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1446 1447 1448
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1449 1450
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1451
		if (!sizes->cs_cachep) {
1452
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1453 1454 1455 1456 1457
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
		}
L
Linus Torvalds 已提交
1458 1459

		sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
A
Andrew Morton 已提交
1460 1461 1462 1463 1464
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
					NULL, NULL);
L
Linus Torvalds 已提交
1465 1466 1467 1468 1469
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1470
		struct array_cache *ptr;
1471

L
Linus Torvalds 已提交
1472
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1473

L
Linus Torvalds 已提交
1474
		local_irq_disable();
1475 1476
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1477
		       sizeof(struct arraycache_init));
1478 1479 1480 1481 1482
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1483 1484
		cache_cache.array[smp_processor_id()] = ptr;
		local_irq_enable();
1485

L
Linus Torvalds 已提交
1486
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1487

L
Linus Torvalds 已提交
1488
		local_irq_disable();
1489
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1490
		       != &initarray_generic.cache);
1491
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1492
		       sizeof(struct arraycache_init));
1493 1494 1495 1496 1497
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1498
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1499
		    ptr;
L
Linus Torvalds 已提交
1500 1501
		local_irq_enable();
	}
1502 1503
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1504 1505
		int nid;

1506
		/* Replace the static kmem_list3 structures for the boot cpu */
P
Pekka Enberg 已提交
1507
		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1508

P
Pekka Enberg 已提交
1509
		for_each_online_node(nid) {
1510
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1511
				  &initkmem_list3[SIZE_AC + nid], nid);
1512 1513 1514

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1515
					  &initkmem_list3[SIZE_L3 + nid], nid);
1516 1517 1518
			}
		}
	}
L
Linus Torvalds 已提交
1519

1520
	/* 6) resize the head arrays to their final sizes */
L
Linus Torvalds 已提交
1521
	{
1522
		struct kmem_cache *cachep;
I
Ingo Molnar 已提交
1523
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1524
		list_for_each_entry(cachep, &cache_chain, next)
1525 1526
			if (enable_cpucache(cachep))
				BUG();
I
Ingo Molnar 已提交
1527
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1528 1529
	}

1530 1531 1532 1533
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();


L
Linus Torvalds 已提交
1534 1535 1536
	/* Done! */
	g_cpucache_up = FULL;

A
Andrew Morton 已提交
1537 1538 1539
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1540 1541 1542
	 */
	register_cpu_notifier(&cpucache_notifier);

A
Andrew Morton 已提交
1543 1544 1545
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1546 1547 1548 1549 1550 1551 1552
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1553 1554
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1555
	 */
1556
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1557
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1569
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1570 1571
{
	struct page *page;
1572
	int nr_pages;
L
Linus Torvalds 已提交
1573 1574
	int i;

1575
#ifndef CONFIG_MMU
1576 1577 1578
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1579
	 */
1580
	flags |= __GFP_COMP;
1581
#endif
1582 1583 1584 1585 1586 1587 1588

	/*
	 * Under NUMA we want memory on the indicated node. We will handle
	 * the needed fallback ourselves since we want to serve from our
	 * per node object lists first for other nodes.
	 */
	flags |= cachep->gfpflags | GFP_THISNODE;
1589 1590

	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
L
Linus Torvalds 已提交
1591 1592 1593
	if (!page)
		return NULL;

1594
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1595
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1596 1597 1598 1599 1600
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1601 1602 1603
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
	return page_address(page);
L
Linus Torvalds 已提交
1604 1605 1606 1607 1608
}

/*
 * Interface to system's page release.
 */
1609
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1610
{
P
Pekka Enberg 已提交
1611
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1612 1613 1614
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1615 1616 1617 1618 1619 1620
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1621
	while (i--) {
N
Nick Piggin 已提交
1622 1623
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1624 1625 1626 1627 1628 1629 1630 1631 1632
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1633
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1634
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1635 1636 1637 1638 1639 1640 1641 1642 1643

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1644
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1645
			    unsigned long caller)
L
Linus Torvalds 已提交
1646
{
1647
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1648

1649
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1650

P
Pekka Enberg 已提交
1651
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1652 1653
		return;

P
Pekka Enberg 已提交
1654 1655 1656 1657
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1658 1659 1660 1661 1662 1663 1664
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1665
				*addr++ = svalue;
L
Linus Torvalds 已提交
1666 1667 1668 1669 1670 1671 1672
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1673
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1674 1675 1676
}
#endif

1677
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1678
{
1679 1680
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1681 1682

	memset(addr, val, size);
P
Pekka Enberg 已提交
1683
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1684 1685 1686 1687 1688
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1689 1690 1691
	unsigned char error = 0;
	int bad_count = 0;

L
Linus Torvalds 已提交
1692
	printk(KERN_ERR "%03x:", offset);
D
Dave Jones 已提交
1693 1694 1695 1696 1697
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
P
Pekka Enberg 已提交
1698
		printk(" %02x", (unsigned char)data[offset + i]);
D
Dave Jones 已提交
1699
	}
L
Linus Torvalds 已提交
1700
	printk("\n");
D
Dave Jones 已提交
1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1715 1716 1717 1718 1719
}
#endif

#if DEBUG

1720
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1721 1722 1723 1724 1725 1726
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
		printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
A
Andrew Morton 已提交
1727 1728
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1729 1730 1731 1732
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1733
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1734
		print_symbol("(%s)",
A
Andrew Morton 已提交
1735
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1736 1737
		printk("\n");
	}
1738 1739
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1740
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1741 1742
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1743 1744
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1745 1746 1747 1748
		dump_line(realobj, i, limit);
	}
}

1749
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1750 1751 1752 1753 1754
{
	char *realobj;
	int size, i;
	int lines = 0;

1755 1756
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1757

P
Pekka Enberg 已提交
1758
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1759
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1760
		if (i == size - 1)
L
Linus Torvalds 已提交
1761 1762 1763 1764 1765 1766
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1767
				printk(KERN_ERR
A
Andrew Morton 已提交
1768 1769
					"Slab corruption: start=%p, len=%d\n",
					realobj, size);
L
Linus Torvalds 已提交
1770 1771 1772
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1773
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1774
			limit = 16;
P
Pekka Enberg 已提交
1775 1776
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1789
		struct slab *slabp = virt_to_slab(objp);
1790
		unsigned int objnr;
L
Linus Torvalds 已提交
1791

1792
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1793
		if (objnr) {
1794
			objp = index_to_obj(cachep, slabp, objnr - 1);
1795
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1796
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1797
			       realobj, size);
L
Linus Torvalds 已提交
1798 1799
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1800
		if (objnr + 1 < cachep->num) {
1801
			objp = index_to_obj(cachep, slabp, objnr + 1);
1802
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1803
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1804
			       realobj, size);
L
Linus Torvalds 已提交
1805 1806 1807 1808 1809 1810
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1811 1812
#if DEBUG
/**
1813 1814 1815 1816 1817 1818
 * slab_destroy_objs - destroy a slab and its objects
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
 * Call the registered destructor for each object in a slab that is being
 * destroyed.
L
Linus Torvalds 已提交
1819
 */
1820
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1821 1822 1823
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1824
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1825 1826 1827

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1828 1829
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1830
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1831
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1832 1833 1834 1835 1836 1837 1838 1839 1840
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1841
					   "was overwritten");
L
Linus Torvalds 已提交
1842 1843
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1844
					   "was overwritten");
L
Linus Torvalds 已提交
1845 1846
		}
		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1847
			(cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
1848
	}
1849
}
L
Linus Torvalds 已提交
1850
#else
1851
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1852
{
L
Linus Torvalds 已提交
1853 1854 1855
	if (cachep->dtor) {
		int i;
		for (i = 0; i < cachep->num; i++) {
1856
			void *objp = index_to_obj(cachep, slabp, i);
P
Pekka Enberg 已提交
1857
			(cachep->dtor) (objp, cachep, 0);
L
Linus Torvalds 已提交
1858 1859
		}
	}
1860
}
L
Linus Torvalds 已提交
1861 1862
#endif

1863 1864 1865 1866 1867
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1868
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1869 1870
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1871
 */
1872
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1873 1874 1875 1876
{
	void *addr = slabp->s_mem - slabp->colouroff;

	slab_destroy_objs(cachep, slabp);
L
Linus Torvalds 已提交
1877 1878 1879
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1880
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1881 1882 1883 1884 1885
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
1886 1887
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
1888 1889 1890
	}
}

A
Andrew Morton 已提交
1891 1892 1893 1894
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
1895
static void set_up_list3s(struct kmem_cache *cachep, int index)
1896 1897 1898 1899
{
	int node;

	for_each_online_node(node) {
P
Pekka Enberg 已提交
1900
		cachep->nodelists[node] = &initkmem_list3[index + node];
1901
		cachep->nodelists[node]->next_reap = jiffies +
P
Pekka Enberg 已提交
1902 1903
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1904 1905 1906
	}
}

1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


1928
/**
1929 1930 1931 1932 1933 1934 1935
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1936 1937 1938 1939 1940
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1941
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
1942
			size_t size, size_t align, unsigned long flags)
1943
{
1944
	unsigned long offslab_limit;
1945
	size_t left_over = 0;
1946
	int gfporder;
1947

A
Andrew Morton 已提交
1948
	for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1949 1950 1951
		unsigned int num;
		size_t remainder;

1952
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1953 1954
		if (!num)
			continue;
1955

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
1968

1969
		/* Found something acceptable - save it away */
1970
		cachep->num = num;
1971
		cachep->gfporder = gfporder;
1972 1973
		left_over = remainder;

1974 1975 1976 1977 1978 1979 1980 1981
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1982 1983 1984 1985
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1986
		if (gfporder >= slab_break_gfp_order)
1987 1988
			break;

1989 1990 1991
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
1992
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1993 1994 1995 1996 1997
			break;
	}
	return left_over;
}

1998
static int setup_cpu_cache(struct kmem_cache *cachep)
1999
{
2000 2001 2002
	if (g_cpucache_up == FULL)
		return enable_cpucache(cachep);

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
			for_each_online_node(node) {
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
						GFP_KERNEL, node);
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
	cachep->nodelists[numa_node_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2049
	return 0;
2050 2051
}

L
Linus Torvalds 已提交
2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 * @dtor: A destructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache
 * and the @dtor is run before the pages are handed back.
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
2067 2068
 * the module calling this has to destroy the cache before getting unloaded.
 *
L
Linus Torvalds 已提交
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2081
struct kmem_cache *
L
Linus Torvalds 已提交
2082
kmem_cache_create (const char *name, size_t size, size_t align,
A
Andrew Morton 已提交
2083 2084
	unsigned long flags,
	void (*ctor)(void*, struct kmem_cache *, unsigned long),
2085
	void (*dtor)(void*, struct kmem_cache *, unsigned long))
L
Linus Torvalds 已提交
2086 2087
{
	size_t left_over, slab_size, ralign;
2088
	struct kmem_cache *cachep = NULL, *pc;
L
Linus Torvalds 已提交
2089 2090 2091 2092

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
2093
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
P
Pekka Enberg 已提交
2094
	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
A
Andrew Morton 已提交
2095 2096
		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
				name);
P
Pekka Enberg 已提交
2097 2098
		BUG();
	}
L
Linus Torvalds 已提交
2099

2100 2101 2102 2103 2104 2105
	/*
	 * Prevent CPUs from coming and going.
	 * lock_cpu_hotplug() nests outside cache_chain_mutex
	 */
	lock_cpu_hotplug();

I
Ingo Molnar 已提交
2106
	mutex_lock(&cache_chain_mutex);
2107

2108
	list_for_each_entry(pc, &cache_chain, next) {
2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
		mm_segment_t old_fs = get_fs();
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		set_fs(KERNEL_DS);
		res = __get_user(tmp, pc->name);
		set_fs(old_fs);
		if (res) {
			printk("SLAB: cache with size %d has lost its name\n",
2123
			       pc->buffer_size);
2124 2125 2126
			continue;
		}

P
Pekka Enberg 已提交
2127
		if (!strcmp(pc->name, name)) {
2128 2129 2130 2131 2132 2133
			printk("kmem_cache_create: duplicate cache %s\n", name);
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
2134 2135 2136 2137 2138
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
		/* No constructor, but inital state check requested */
		printk(KERN_ERR "%s: No con, but init state check "
P
Pekka Enberg 已提交
2139
		       "requested - %s\n", __FUNCTION__, name);
L
Linus Torvalds 已提交
2140 2141 2142 2143 2144 2145 2146 2147 2148
		flags &= ~SLAB_DEBUG_INITIAL;
	}
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
A
Andrew Morton 已提交
2149
	if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
P
Pekka Enberg 已提交
2150
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(dtor);

	/*
A
Andrew Morton 已提交
2161 2162
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2163
	 */
2164
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2165

A
Andrew Morton 已提交
2166 2167
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2168 2169 2170
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2171 2172 2173
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2174 2175
	}

A
Andrew Morton 已提交
2176 2177
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2178 2179
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2180 2181 2182 2183
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2184 2185
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2186
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2187 2188 2189 2190
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2191 2192 2193 2194 2195 2196 2197 2198 2199

	/*
	 * Redzoning and user store require word alignment. Note this will be
	 * overridden by architecture or caller mandated alignment if either
	 * is greater than BYTES_PER_WORD.
	 */
	if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

2200
	/* 2) arch mandated alignment */
L
Linus Torvalds 已提交
2201 2202 2203
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2204
	/* 3) caller mandated alignment */
L
Linus Torvalds 已提交
2205 2206 2207
	if (ralign < align) {
		ralign = align;
	}
2208 2209 2210
	/* disable debug if necessary */
	if (ralign > BYTES_PER_WORD)
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2211
	/*
2212
	 * 4) Store it.
L
Linus Torvalds 已提交
2213 2214 2215 2216
	 */
	align = ralign;

	/* Get cache's description obj. */
P
Pekka Enberg 已提交
2217
	cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
L
Linus Torvalds 已提交
2218
	if (!cachep)
2219
		goto oops;
L
Linus Torvalds 已提交
2220 2221

#if DEBUG
2222
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2223

2224 2225 2226 2227
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2228 2229
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2230
		cachep->obj_offset += BYTES_PER_WORD;
P
Pekka Enberg 已提交
2231
		size += 2 * BYTES_PER_WORD;
L
Linus Torvalds 已提交
2232 2233
	}
	if (flags & SLAB_STORE_USER) {
2234 2235
		/* user store requires one word storage behind the end of
		 * the real object.
L
Linus Torvalds 已提交
2236 2237 2238 2239
		 */
		size += BYTES_PER_WORD;
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2240
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2241 2242
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
2243 2244 2245 2246 2247
		size = PAGE_SIZE;
	}
#endif
#endif

2248 2249 2250 2251 2252 2253
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
	 * it too early on.)
	 */
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
L
Linus Torvalds 已提交
2254 2255 2256 2257 2258 2259 2260 2261
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2262
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2263 2264 2265 2266 2267

	if (!cachep->num) {
		printk("kmem_cache_create: couldn't create cache %s.\n", name);
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2268
		goto oops;
L
Linus Torvalds 已提交
2269
	}
P
Pekka Enberg 已提交
2270 2271
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2284 2285
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
L
Linus Torvalds 已提交
2286 2287 2288 2289 2290 2291
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2292
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2293 2294 2295 2296 2297
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
	if (flags & SLAB_CACHE_DMA)
		cachep->gfpflags |= GFP_DMA;
2298
	cachep->buffer_size = size;
L
Linus Torvalds 已提交
2299

2300
	if (flags & CFLGS_OFF_SLAB) {
2301
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2302 2303 2304 2305 2306 2307 2308 2309 2310
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
		BUG_ON(!cachep->slabp_cache);
	}
L
Linus Torvalds 已提交
2311 2312 2313 2314
	cachep->ctor = ctor;
	cachep->dtor = dtor;
	cachep->name = name;

2315 2316 2317 2318 2319
	if (setup_cpu_cache(cachep)) {
		__kmem_cache_destroy(cachep);
		cachep = NULL;
		goto oops;
	}
L
Linus Torvalds 已提交
2320 2321 2322

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2323
oops:
L
Linus Torvalds 已提交
2324 2325
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2326
		      name);
I
Ingo Molnar 已提交
2327
	mutex_unlock(&cache_chain_mutex);
2328
	unlock_cpu_hotplug();
L
Linus Torvalds 已提交
2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2344
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2345 2346 2347
{
#ifdef CONFIG_SMP
	check_irq_off();
2348
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2349 2350
#endif
}
2351

2352
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2353 2354 2355 2356 2357 2358 2359
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2360 2361 2362 2363
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2364
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2365 2366
#endif

2367 2368 2369 2370
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2371 2372
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2373
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2374
	struct array_cache *ac;
2375
	int node = numa_node_id();
L
Linus Torvalds 已提交
2376 2377

	check_irq_off();
2378
	ac = cpu_cache_get(cachep);
2379 2380 2381
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2382 2383 2384
	ac->avail = 0;
}

2385
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2386
{
2387 2388 2389
	struct kmem_list3 *l3;
	int node;

A
Andrew Morton 已提交
2390
	on_each_cpu(do_drain, cachep, 1, 1);
L
Linus Torvalds 已提交
2391
	check_irq_on();
P
Pekka Enberg 已提交
2392
	for_each_online_node(node) {
2393
		l3 = cachep->nodelists[node];
2394 2395 2396 2397 2398 2399 2400
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2401
			drain_array(cachep, l3, l3->shared, 1, node);
2402
	}
L
Linus Torvalds 已提交
2403 2404
}

2405 2406 2407 2408 2409 2410 2411 2412
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2413
{
2414 2415
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2416 2417
	struct slab *slabp;

2418 2419
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2420

2421
		spin_lock_irq(&l3->list_lock);
2422
		p = l3->slabs_free.prev;
2423 2424 2425 2426
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2427

2428
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2429
#if DEBUG
2430
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2431 2432
#endif
		list_del(&slabp->list);
2433 2434 2435 2436 2437
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2438
		spin_unlock_irq(&l3->list_lock);
2439 2440
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2441
	}
2442 2443
out:
	return nr_freed;
L
Linus Torvalds 已提交
2444 2445
}

2446
static int __cache_shrink(struct kmem_cache *cachep)
2447 2448 2449 2450 2451 2452 2453 2454 2455
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2456 2457 2458 2459 2460 2461 2462
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2463 2464 2465 2466
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2467 2468 2469 2470 2471 2472 2473
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2474
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2475
{
2476
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2477 2478 2479 2480 2481 2482 2483 2484 2485

	return __cache_shrink(cachep);
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2486
 * Remove a struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2498
void kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2499
{
2500
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2501 2502 2503 2504 2505

	/* Don't let CPUs to come and go */
	lock_cpu_hotplug();

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
2506
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2507 2508 2509 2510
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
I
Ingo Molnar 已提交
2511
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2512 2513 2514

	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
I
Ingo Molnar 已提交
2515
		mutex_lock(&cache_chain_mutex);
P
Pekka Enberg 已提交
2516
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2517
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2518
		unlock_cpu_hotplug();
2519
		return;
L
Linus Torvalds 已提交
2520 2521 2522
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2523
		synchronize_rcu();
L
Linus Torvalds 已提交
2524

2525
	__kmem_cache_destroy(cachep);
L
Linus Torvalds 已提交
2526 2527 2528 2529
	unlock_cpu_hotplug();
}
EXPORT_SYMBOL(kmem_cache_destroy);

2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2541
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2542 2543
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2544 2545
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2546

L
Linus Torvalds 已提交
2547 2548
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2549 2550
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
					      local_flags, nodeid);
L
Linus Torvalds 已提交
2551 2552 2553
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2554
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2555 2556 2557 2558
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2559
	slabp->s_mem = objp + colour_off;
2560
	slabp->nodeid = nodeid;
L
Linus Torvalds 已提交
2561 2562 2563 2564 2565
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2566
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2567 2568
}

2569
static void cache_init_objs(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
2570
			    struct slab *slabp, unsigned long ctor_flags)
L
Linus Torvalds 已提交
2571 2572 2573 2574
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2575
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2588 2589 2590
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2591 2592
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2593
			cachep->ctor(objp + obj_offset(cachep), cachep,
P
Pekka Enberg 已提交
2594
				     ctor_flags);
L
Linus Torvalds 已提交
2595 2596 2597 2598

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2599
					   " end of an object");
L
Linus Torvalds 已提交
2600 2601
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2602
					   " start of an object");
L
Linus Torvalds 已提交
2603
		}
A
Andrew Morton 已提交
2604 2605
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2606
			kernel_map_pages(virt_to_page(objp),
2607
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2608 2609 2610 2611
#else
		if (cachep->ctor)
			cachep->ctor(objp, cachep, ctor_flags);
#endif
P
Pekka Enberg 已提交
2612
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2613
	}
P
Pekka Enberg 已提交
2614
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2615 2616 2617
	slabp->free = 0;
}

2618
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2619
{
A
Andrew Morton 已提交
2620 2621 2622 2623
	if (flags & SLAB_DMA)
		BUG_ON(!(cachep->gfpflags & GFP_DMA));
	else
		BUG_ON(cachep->gfpflags & GFP_DMA);
L
Linus Torvalds 已提交
2624 2625
}

A
Andrew Morton 已提交
2626 2627
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2628
{
2629
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2643 2644
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2645
{
2646
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2647 2648 2649 2650 2651

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2652
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2653
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2654
				"'%s', objp %p\n", cachep->name, objp);
2655 2656 2657 2658 2659 2660 2661 2662
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2663 2664 2665 2666 2667 2668 2669
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2670
{
2671
	int nr_pages;
L
Linus Torvalds 已提交
2672 2673
	struct page *page;

2674
	page = virt_to_page(addr);
2675

2676
	nr_pages = 1;
2677
	if (likely(!PageCompound(page)))
2678 2679
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2680
	do {
2681 2682
		page_set_cache(page, cache);
		page_set_slab(page, slab);
L
Linus Torvalds 已提交
2683
		page++;
2684
	} while (--nr_pages);
L
Linus Torvalds 已提交
2685 2686 2687 2688 2689 2690
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2691
static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
2692
{
P
Pekka Enberg 已提交
2693 2694 2695 2696 2697
	struct slab *slabp;
	void *objp;
	size_t offset;
	gfp_t local_flags;
	unsigned long ctor_flags;
2698
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2699

A
Andrew Morton 已提交
2700 2701 2702
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2703
	 */
2704
	BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
L
Linus Torvalds 已提交
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
	if (flags & SLAB_NO_GROW)
		return 0;

	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
	local_flags = (flags & SLAB_LEVEL_MASK);
	if (!(local_flags & __GFP_WAIT))
		/*
		 * Not allowed to sleep.  Need to tell a constructor about
		 * this - it might need to know...
		 */
		ctor_flags |= SLAB_CTOR_ATOMIC;

2717
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2718
	check_irq_off();
2719 2720
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2721 2722

	/* Get colour for the slab, and cal the next value. */
2723 2724 2725 2726 2727
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2728

2729
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2742 2743 2744
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2745
	 */
A
Andrew Morton 已提交
2746 2747
	objp = kmem_getpages(cachep, flags, nodeid);
	if (!objp)
L
Linus Torvalds 已提交
2748 2749 2750
		goto failed;

	/* Get slab management. */
2751
	slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
A
Andrew Morton 已提交
2752
	if (!slabp)
L
Linus Torvalds 已提交
2753 2754
		goto opps1;

2755
	slabp->nodeid = nodeid;
2756
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2757 2758 2759 2760 2761 2762

	cache_init_objs(cachep, slabp, ctor_flags);

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2763
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2764 2765

	/* Make slab active. */
2766
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2767
	STATS_INC_GROWN(cachep);
2768 2769
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2770
	return 1;
A
Andrew Morton 已提交
2771
opps1:
L
Linus Torvalds 已提交
2772
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2773
failed:
L
Linus Torvalds 已提交
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 * - destructor calls, for caches with POISON+dtor
 */
static void kfree_debugcheck(const void *objp)
{
	struct page *page;

	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2793 2794
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2795 2796 2797
	}
	page = virt_to_page(objp);
	if (!PageSlab(page)) {
P
Pekka Enberg 已提交
2798 2799
		printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
		       (unsigned long)objp);
L
Linus Torvalds 已提交
2800 2801 2802 2803
		BUG();
	}
}

2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
	unsigned long redzone1, redzone2;

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

	printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
			obj, redzone1, redzone2);
}

2826
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2827
				   void *caller)
L
Linus Torvalds 已提交
2828 2829 2830 2831 2832
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2833
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2834 2835 2836
	kfree_debugcheck(objp);
	page = virt_to_page(objp);

2837
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2838 2839

	if (cachep->flags & SLAB_RED_ZONE) {
2840
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2841 2842 2843 2844 2845 2846
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2847
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2848 2849

	BUG_ON(objnr >= cachep->num);
2850
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2851 2852

	if (cachep->flags & SLAB_DEBUG_INITIAL) {
A
Andrew Morton 已提交
2853 2854 2855 2856
		/*
		 * Need to call the slab's constructor so the caller can
		 * perform a verify of its state (debugging).  Called without
		 * the cache-lock held.
L
Linus Torvalds 已提交
2857
		 */
2858
		cachep->ctor(objp + obj_offset(cachep),
P
Pekka Enberg 已提交
2859
			     cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
L
Linus Torvalds 已提交
2860 2861 2862 2863 2864
	}
	if (cachep->flags & SLAB_POISON && cachep->dtor) {
		/* we want to cache poison the object,
		 * call the destruction callback
		 */
2865
		cachep->dtor(objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
2866
	}
2867 2868 2869
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2870 2871
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
2872
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2873
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2874
			kernel_map_pages(virt_to_page(objp),
2875
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2876 2877 2878 2879 2880 2881 2882 2883 2884 2885
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2886
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2887 2888 2889
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2890

L
Linus Torvalds 已提交
2891 2892 2893 2894 2895 2896 2897
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2898 2899 2900 2901
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
2902
		for (i = 0;
2903
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2904
		     i++) {
A
Andrew Morton 已提交
2905
			if (i % 16 == 0)
L
Linus Torvalds 已提交
2906
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2907
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2919
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2920 2921 2922 2923
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
2924 2925 2926
	int node;

	node = numa_node_id();
L
Linus Torvalds 已提交
2927 2928

	check_irq_off();
2929
	ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
2930
retry:
L
Linus Torvalds 已提交
2931 2932
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2933 2934 2935 2936
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2937 2938 2939
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
2940
	l3 = cachep->nodelists[node];
2941 2942 2943

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2944

2945 2946 2947 2948
	/* See if we can refill from the shared array */
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
		goto alloc_done;

L
Linus Torvalds 已提交
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2969
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
P
Pekka Enberg 已提交
2970
							    node);
L
Linus Torvalds 已提交
2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
2982
must_grow:
L
Linus Torvalds 已提交
2983
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
2984
alloc_done:
2985
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2986 2987 2988

	if (unlikely(!ac->avail)) {
		int x;
P
Pekka Enberg 已提交
2989
		x = cache_grow(cachep, flags, node);
2990

A
Andrew Morton 已提交
2991
		/* cache_grow can reenable interrupts, then ac could change. */
2992
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
2993
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
2994 2995
			return NULL;

A
Andrew Morton 已提交
2996
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
2997 2998 2999
			goto retry;
	}
	ac->touched = 1;
3000
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3001 3002
}

A
Andrew Morton 已提交
3003 3004
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3005 3006 3007 3008 3009 3010 3011 3012
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3013 3014
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
3015
{
P
Pekka Enberg 已提交
3016
	if (!objp)
L
Linus Torvalds 已提交
3017
		return objp;
P
Pekka Enberg 已提交
3018
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3019
#ifdef CONFIG_DEBUG_PAGEALLOC
3020
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3021
			kernel_map_pages(virt_to_page(objp),
3022
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3034 3035 3036 3037
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3038
			printk(KERN_ERR
A
Andrew Morton 已提交
3039 3040 3041
				"%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3042 3043 3044 3045
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

		slabp = page_get_slab(virt_to_page(objp));
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3056
	objp += obj_offset(cachep);
L
Linus Torvalds 已提交
3057
	if (cachep->ctor && cachep->flags & SLAB_POISON) {
P
Pekka Enberg 已提交
3058
		unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
L
Linus Torvalds 已提交
3059 3060 3061 3062 3063

		if (!(flags & __GFP_WAIT))
			ctor_flags |= SLAB_CTOR_ATOMIC;

		cachep->ctor(objp, cachep, ctor_flags);
P
Pekka Enberg 已提交
3064
	}
3065 3066 3067 3068 3069 3070
#if ARCH_SLAB_MINALIGN
	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
		       objp, ARCH_SLAB_MINALIGN);
	}
#endif
L
Linus Torvalds 已提交
3071 3072 3073 3074 3075 3076
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

3077
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3078
{
P
Pekka Enberg 已提交
3079
	void *objp;
L
Linus Torvalds 已提交
3080 3081
	struct array_cache *ac;

3082
	check_irq_off();
3083
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3084 3085 3086
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
3087
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3088 3089 3090 3091
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
3092 3093 3094
	return objp;
}

A
Andrew Morton 已提交
3095 3096
static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
						gfp_t flags, void *caller)
3097 3098
{
	unsigned long save_flags;
3099
	void *objp = NULL;
3100 3101 3102 3103

	cache_alloc_debugcheck_before(cachep, flags);

	local_irq_save(save_flags);
3104

3105 3106
	if (unlikely(NUMA_BUILD &&
			current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY)))
3107 3108 3109 3110
		objp = alternate_node_alloc(cachep, flags);

	if (!objp)
		objp = ____cache_alloc(cachep, flags);
3111 3112 3113 3114 3115 3116
	/*
	 * We may just have run out of memory on the local node.
	 * __cache_alloc_node() knows how to locate memory on other nodes
	 */
 	if (NUMA_BUILD && !objp)
 		objp = __cache_alloc_node(cachep, flags, numa_node_id());
L
Linus Torvalds 已提交
3117
	local_irq_restore(save_flags);
3118
	objp = cache_alloc_debugcheck_after(cachep, flags, objp,
3119
					    caller);
3120
	prefetchw(objp);
L
Linus Torvalds 已提交
3121 3122 3123
	return objp;
}

3124
#ifdef CONFIG_NUMA
3125
/*
3126
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3127 3128 3129 3130 3131 3132 3133 3134
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3135
	if (in_interrupt() || (flags & __GFP_THISNODE))
3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146
		return NULL;
	nid_alloc = nid_here = numa_node_id();
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
		nid_alloc = cpuset_mem_spread_node();
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
	if (nid_alloc != nid_here)
		return __cache_alloc_node(cachep, flags, nid_alloc);
	return NULL;
}

3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
/*
 * Fallback function if there was no memory available and no objects on a
 * certain node and we are allowed to fall back. We mimick the behavior of
 * the page allocator. We fall back according to a zonelist determined by
 * the policy layer while obeying cpuset constraints.
 */
void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
{
	struct zonelist *zonelist = &NODE_DATA(slab_node(current->mempolicy))
					->node_zonelists[gfp_zone(flags)];
	struct zone **z;
	void *obj = NULL;

3160 3161 3162
	for (z = zonelist->zones; *z && !obj; z++) {
		int nid = zone_to_nid(*z);

3163
		if (zone_idx(*z) <= ZONE_NORMAL &&
3164 3165
				cpuset_zone_allowed(*z, flags) &&
				cache->nodelists[nid])
3166
			obj = __cache_alloc_node(cache,
3167 3168
					flags | __GFP_THISNODE, nid);
	}
3169 3170 3171
	return obj;
}

3172 3173
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3174
 */
A
Andrew Morton 已提交
3175 3176
static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
				int nodeid)
3177 3178
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3179 3180 3181 3182 3183 3184 3185 3186
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3187
retry:
3188
	check_irq_off();
P
Pekka Enberg 已提交
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3208
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3209 3210 3211 3212 3213
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3214
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3215
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3216
	else
P
Pekka Enberg 已提交
3217
		list_add(&slabp->list, &l3->slabs_partial);
3218

P
Pekka Enberg 已提交
3219 3220
	spin_unlock(&l3->list_lock);
	goto done;
3221

A
Andrew Morton 已提交
3222
must_grow:
P
Pekka Enberg 已提交
3223 3224
	spin_unlock(&l3->list_lock);
	x = cache_grow(cachep, flags, nodeid);
3225 3226
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3227

3228 3229 3230 3231 3232
	if (!(flags & __GFP_THISNODE))
		/* Unable to grow the cache. Fall back to other nodes. */
		return fallback_alloc(cachep, flags);

	return NULL;
3233

A
Andrew Morton 已提交
3234
done:
P
Pekka Enberg 已提交
3235
	return obj;
3236 3237 3238 3239 3240 3241
}
#endif

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3242
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3243
		       int node)
L
Linus Torvalds 已提交
3244 3245
{
	int i;
3246
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3247 3248 3249 3250 3251

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3252
		slabp = virt_to_slab(objp);
3253
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3254
		list_del(&slabp->list);
3255
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3256
		check_slabp(cachep, slabp);
3257
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3258
		STATS_DEC_ACTIVE(cachep);
3259
		l3->free_objects++;
L
Linus Torvalds 已提交
3260 3261 3262 3263
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3264 3265
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3266 3267 3268 3269 3270 3271
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3272 3273
				slab_destroy(cachep, slabp);
			} else {
3274
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3275 3276 3277 3278 3279 3280
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3281
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3282 3283 3284 3285
		}
	}
}

3286
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3287 3288
{
	int batchcount;
3289
	struct kmem_list3 *l3;
3290
	int node = numa_node_id();
L
Linus Torvalds 已提交
3291 3292 3293 3294 3295 3296

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3297
	l3 = cachep->nodelists[node];
3298
	spin_lock(&l3->list_lock);
3299 3300
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3301
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3302 3303 3304
		if (max) {
			if (batchcount > max)
				batchcount = max;
3305
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3306
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3307 3308 3309 3310 3311
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3312
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3313
free_done:
L
Linus Torvalds 已提交
3314 3315 3316 3317 3318
#if STATS
	{
		int i = 0;
		struct list_head *p;

3319 3320
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3332
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3333
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3334
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3335 3336 3337
}

/*
A
Andrew Morton 已提交
3338 3339
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3340
 */
3341
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3342
{
3343
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3344 3345 3346 3347

	check_irq_off();
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

3348
	if (cache_free_alien(cachep, objp))
3349 3350
		return;

L
Linus Torvalds 已提交
3351 3352
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3353
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3354 3355 3356 3357
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3358
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3370
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3371
{
3372
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3373 3374 3375
}
EXPORT_SYMBOL(kmem_cache_alloc);

3376
/**
3377
 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
 * @cache: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache and set the allocated memory to zero.
 * The flags are only relevant if the cache has no available objects.
 */
void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
{
	void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
	if (ret)
		memset(ret, 0, obj_size(cache));
	return ret;
}
EXPORT_SYMBOL(kmem_cache_zalloc);

L
Linus Torvalds 已提交
3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
/**
 * kmem_ptr_validate - check if an untrusted pointer might
 *	be a slab entry.
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
 * This verifies that the untrusted pointer looks sane:
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3407
int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
L
Linus Torvalds 已提交
3408
{
P
Pekka Enberg 已提交
3409
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
3410
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
3411
	unsigned long align_mask = BYTES_PER_WORD - 1;
3412
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3428
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3429 3430
		goto out;
	return 1;
A
Andrew Morton 已提交
3431
out:
L
Linus Torvalds 已提交
3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
	return 0;
}

#ifdef CONFIG_NUMA
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc, except that this function is slow
 * and can sleep. And it will allocate memory on the given node, which
 * can improve the performance for cpu bound structures.
3445 3446
 * New and improved: it will now make sure that the object gets
 * put on the correct node list so that there is no false sharing.
L
Linus Torvalds 已提交
3447
 */
3448
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
3449
{
3450 3451
	unsigned long save_flags;
	void *ptr;
L
Linus Torvalds 已提交
3452

3453 3454
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
3455 3456

	if (nodeid == -1 || nodeid == numa_node_id() ||
A
Andrew Morton 已提交
3457
			!cachep->nodelists[nodeid])
3458 3459 3460
		ptr = ____cache_alloc(cachep, flags);
	else
		ptr = __cache_alloc_node(cachep, flags, nodeid);
3461
	local_irq_restore(save_flags);
3462 3463 3464

	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
					   __builtin_return_address(0));
L
Linus Torvalds 已提交
3465

3466
	return ptr;
L
Linus Torvalds 已提交
3467 3468 3469
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

3470
void *__kmalloc_node(size_t size, gfp_t flags, int node)
3471
{
3472
	struct kmem_cache *cachep;
3473 3474 3475 3476 3477 3478

	cachep = kmem_find_general_cachep(size, flags);
	if (unlikely(cachep == NULL))
		return NULL;
	return kmem_cache_alloc_node(cachep, flags, node);
}
3479
EXPORT_SYMBOL(__kmalloc_node);
L
Linus Torvalds 已提交
3480 3481 3482
#endif

/**
3483
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3484
 * @size: how many bytes of memory are required.
3485
 * @flags: the type of memory to allocate (see kmalloc).
3486
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3487
 */
3488 3489
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3490
{
3491
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3492

3493 3494 3495 3496 3497 3498
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3499 3500
	if (unlikely(cachep == NULL))
		return NULL;
3501 3502 3503 3504
	return __cache_alloc(cachep, flags, caller);
}


3505
#ifdef CONFIG_DEBUG_SLAB
3506 3507
void *__kmalloc(size_t size, gfp_t flags)
{
3508
	return __do_kmalloc(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3509 3510 3511
}
EXPORT_SYMBOL(__kmalloc);

3512 3513 3514 3515 3516
void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
{
	return __do_kmalloc(size, flags, caller);
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3517 3518 3519 3520 3521 3522 3523

#else
void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
3524 3525
#endif

L
Linus Torvalds 已提交
3526 3527 3528 3529 3530 3531 3532 3533
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3534
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3535 3536 3537
{
	unsigned long flags;

3538 3539
	BUG_ON(virt_to_cache(objp) != cachep);

L
Linus Torvalds 已提交
3540
	local_irq_save(flags);
3541
	__cache_free(cachep, objp);
L
Linus Torvalds 已提交
3542 3543 3544 3545 3546 3547 3548 3549
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3550 3551
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3552 3553 3554 3555 3556
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3557
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3558 3559 3560 3561 3562 3563
	unsigned long flags;

	if (unlikely(!objp))
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3564
	c = virt_to_cache(objp);
3565
	debug_check_no_locks_freed(objp, obj_size(c));
3566
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3567 3568 3569 3570
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3571
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3572
{
3573
	return obj_size(cachep);
L
Linus Torvalds 已提交
3574 3575 3576
}
EXPORT_SYMBOL(kmem_cache_size);

3577
const char *kmem_cache_name(struct kmem_cache *cachep)
3578 3579 3580 3581 3582
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3583
/*
3584
 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3585
 */
3586
static int alloc_kmemlist(struct kmem_cache *cachep)
3587 3588 3589
{
	int node;
	struct kmem_list3 *l3;
3590 3591
	struct array_cache *new_shared;
	struct array_cache **new_alien;
3592 3593

	for_each_online_node(node) {
3594

A
Andrew Morton 已提交
3595 3596
		new_alien = alloc_alien_cache(node, cachep->limit);
		if (!new_alien)
3597
			goto fail;
3598

3599 3600
		new_shared = alloc_arraycache(node,
				cachep->shared*cachep->batchcount,
A
Andrew Morton 已提交
3601
					0xbaadf00d);
3602 3603
		if (!new_shared) {
			free_alien_cache(new_alien);
3604
			goto fail;
3605
		}
3606

A
Andrew Morton 已提交
3607 3608
		l3 = cachep->nodelists[node];
		if (l3) {
3609 3610
			struct array_cache *shared = l3->shared;

3611 3612
			spin_lock_irq(&l3->list_lock);

3613
			if (shared)
3614 3615
				free_block(cachep, shared->entry,
						shared->avail, node);
3616

3617 3618
			l3->shared = new_shared;
			if (!l3->alien) {
3619 3620 3621
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3622
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3623
					cachep->batchcount + cachep->num;
3624
			spin_unlock_irq(&l3->list_lock);
3625
			kfree(shared);
3626 3627 3628
			free_alien_cache(new_alien);
			continue;
		}
A
Andrew Morton 已提交
3629
		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3630 3631 3632
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3633
			goto fail;
3634
		}
3635 3636 3637

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3638
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3639
		l3->shared = new_shared;
3640
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3641
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3642
					cachep->batchcount + cachep->num;
3643 3644
		cachep->nodelists[node] = l3;
	}
3645
	return 0;
3646

A
Andrew Morton 已提交
3647
fail:
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3663
	return -ENOMEM;
3664 3665
}

L
Linus Torvalds 已提交
3666
struct ccupdate_struct {
3667
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3668 3669 3670 3671 3672
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3673
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3674 3675 3676
	struct array_cache *old;

	check_irq_off();
3677
	old = cpu_cache_get(new->cachep);
3678

L
Linus Torvalds 已提交
3679 3680 3681 3682
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3683
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
3684 3685
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared)
L
Linus Torvalds 已提交
3686
{
3687
	struct ccupdate_struct *new;
3688
	int i;
L
Linus Torvalds 已提交
3689

3690 3691 3692 3693
	new = kzalloc(sizeof(*new), GFP_KERNEL);
	if (!new)
		return -ENOMEM;

3694
	for_each_online_cpu(i) {
3695
		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
A
Andrew Morton 已提交
3696
						batchcount);
3697
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3698
			for (i--; i >= 0; i--)
3699 3700
				kfree(new->new[i]);
			kfree(new);
3701
			return -ENOMEM;
L
Linus Torvalds 已提交
3702 3703
		}
	}
3704
	new->cachep = cachep;
L
Linus Torvalds 已提交
3705

3706
	on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3707

L
Linus Torvalds 已提交
3708 3709 3710
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3711
	cachep->shared = shared;
L
Linus Torvalds 已提交
3712

3713
	for_each_online_cpu(i) {
3714
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3715 3716
		if (!ccold)
			continue;
3717
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3718
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3719
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
3720 3721
		kfree(ccold);
	}
3722
	kfree(new);
3723
	return alloc_kmemlist(cachep);
L
Linus Torvalds 已提交
3724 3725
}

3726
/* Called with cache_chain_mutex held always */
3727
static int enable_cpucache(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3728 3729 3730 3731
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
3732 3733
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3734 3735
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3736
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3737 3738 3739 3740
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3741
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
3742
		limit = 1;
3743
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
3744
		limit = 8;
3745
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
3746
		limit = 24;
3747
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
3748 3749 3750 3751
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3752 3753
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3754 3755 3756 3757 3758 3759 3760 3761 3762
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
#ifdef CONFIG_SMP
3763
	if (cachep->buffer_size <= PAGE_SIZE)
L
Linus Torvalds 已提交
3764 3765 3766 3767
		shared = 8;
#endif

#if DEBUG
A
Andrew Morton 已提交
3768 3769 3770
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3771 3772 3773 3774
	 */
	if (limit > 32)
		limit = 32;
#endif
P
Pekka Enberg 已提交
3775
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
L
Linus Torvalds 已提交
3776 3777
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3778
		       cachep->name, -err);
3779
	return err;
L
Linus Torvalds 已提交
3780 3781
}

3782 3783
/*
 * Drain an array if it contains any elements taking the l3 lock only if
3784 3785
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
3786 3787 3788
 */
void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
3789 3790 3791
{
	int tofree;

3792 3793
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
3794 3795
	if (ac->touched && !force) {
		ac->touched = 0;
3796
	} else {
3797
		spin_lock_irq(&l3->list_lock);
3798 3799 3800 3801 3802 3803 3804 3805 3806
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
3807
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3808 3809 3810 3811 3812
	}
}

/**
 * cache_reap - Reclaim memory from caches.
3813
 * @unused: unused parameter
L
Linus Torvalds 已提交
3814 3815 3816 3817 3818 3819
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
3820 3821
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
3822
 */
3823
static void cache_reap(struct work_struct *unused)
L
Linus Torvalds 已提交
3824
{
3825
	struct kmem_cache *searchp;
3826
	struct kmem_list3 *l3;
3827
	int node = numa_node_id();
L
Linus Torvalds 已提交
3828

I
Ingo Molnar 已提交
3829
	if (!mutex_trylock(&cache_chain_mutex)) {
L
Linus Torvalds 已提交
3830
		/* Give up. Setup the next iteration. */
P
Pekka Enberg 已提交
3831 3832
		schedule_delayed_work(&__get_cpu_var(reap_work),
				      REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3833 3834 3835
		return;
	}

3836
	list_for_each_entry(searchp, &cache_chain, next) {
L
Linus Torvalds 已提交
3837 3838
		check_irq_on();

3839 3840 3841 3842 3843
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
3844
		l3 = searchp->nodelists[node];
3845

3846
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
3847

3848
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
3849

3850 3851 3852 3853
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
3854
		if (time_after(l3->next_reap, jiffies))
3855
			goto next;
L
Linus Torvalds 已提交
3856

3857
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
3858

3859
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
3860

3861
		if (l3->free_touched)
3862
			l3->free_touched = 0;
3863 3864
		else {
			int freed;
L
Linus Torvalds 已提交
3865

3866 3867 3868 3869
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
3870
next:
L
Linus Torvalds 已提交
3871 3872 3873
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
3874
	mutex_unlock(&cache_chain_mutex);
3875
	next_reap_node();
3876
	refresh_cpu_vm_stats(smp_processor_id());
A
Andrew Morton 已提交
3877
	/* Set up the next iteration */
3878
	schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3879 3880 3881 3882
}

#ifdef CONFIG_PROC_FS

3883
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
3884
{
3885 3886 3887 3888
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
3889
#if STATS
3890
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
3891
#else
3892
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
3893
#endif
3894 3895 3896 3897
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
3898
#if STATS
3899
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3900
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
3901
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
3902
#endif
3903 3904 3905 3906 3907 3908 3909 3910
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

I
Ingo Molnar 已提交
3911
	mutex_lock(&cache_chain_mutex);
3912 3913
	if (!n)
		print_slabinfo_header(m);
L
Linus Torvalds 已提交
3914 3915 3916 3917 3918 3919
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
3920
	return list_entry(p, struct kmem_cache, next);
L
Linus Torvalds 已提交
3921 3922 3923 3924
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
3925
	struct kmem_cache *cachep = p;
L
Linus Torvalds 已提交
3926
	++*pos;
A
Andrew Morton 已提交
3927 3928
	return cachep->next.next == &cache_chain ?
		NULL : list_entry(cachep->next.next, struct kmem_cache, next);
L
Linus Torvalds 已提交
3929 3930 3931 3932
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
3933
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3934 3935 3936 3937
}

static int s_show(struct seq_file *m, void *p)
{
3938
	struct kmem_cache *cachep = p;
P
Pekka Enberg 已提交
3939 3940 3941 3942 3943
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3944
	const char *name;
L
Linus Torvalds 已提交
3945
	char *error = NULL;
3946 3947
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3948 3949 3950

	active_objs = 0;
	num_slabs = 0;
3951 3952 3953 3954 3955
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

3956 3957
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
3958

3959
		list_for_each_entry(slabp, &l3->slabs_full, list) {
3960 3961 3962 3963 3964
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
3965
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
3966 3967 3968 3969 3970 3971 3972
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
3973
		list_for_each_entry(slabp, &l3->slabs_free, list) {
3974 3975 3976 3977 3978
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
3979 3980
		if (l3->shared)
			shared_avail += l3->shared->avail;
3981

3982
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3983
	}
P
Pekka Enberg 已提交
3984 3985
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
3986
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
3987 3988
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
3989
	name = cachep->name;
L
Linus Torvalds 已提交
3990 3991 3992 3993
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3994
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
3995
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
3996
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
3997
		   cachep->limit, cachep->batchcount, cachep->shared);
3998
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
3999
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4000
#if STATS
P
Pekka Enberg 已提交
4001
	{			/* list3 stats */
L
Linus Torvalds 已提交
4002 4003 4004 4005 4006 4007 4008
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4009
		unsigned long node_frees = cachep->node_frees;
4010
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4011

4012
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4013
				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
A
Andrew Morton 已提交
4014
				reaped, errors, max_freeable, node_allocs,
4015
				node_frees, overflows);
L
Linus Torvalds 已提交
4016 4017 4018 4019 4020 4021 4022 4023 4024
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4025
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4047 4048 4049 4050
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
4061 4062
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4063
{
P
Pekka Enberg 已提交
4064
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4065
	int limit, batchcount, shared, res;
4066
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4067

L
Linus Torvalds 已提交
4068 4069 4070 4071
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4072
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4073 4074 4075 4076 4077 4078 4079 4080 4081 4082

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
4083
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4084
	res = -EINVAL;
4085
	list_for_each_entry(cachep, &cache_chain, next) {
L
Linus Torvalds 已提交
4086
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4087 4088
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4089
				res = 0;
L
Linus Torvalds 已提交
4090
			} else {
4091
				res = do_tune_cpucache(cachep, limit,
P
Pekka Enberg 已提交
4092
						       batchcount, shared);
L
Linus Torvalds 已提交
4093 4094 4095 4096
			}
			break;
		}
	}
I
Ingo Molnar 已提交
4097
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4098 4099 4100 4101
	if (res >= 0)
		res = count;
	return res;
}
4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

	mutex_lock(&cache_chain_mutex);
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
	return list_entry(p, struct kmem_cache, next);
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	char *modname;
	const char *name;
	unsigned long offset, size;
	char namebuf[KSYM_NAME_LEN+1];

	name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);

	if (name) {
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
		if (modname)
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
	struct kmem_cache *cachep = p;
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4211
		list_for_each_entry(slabp, &l3->slabs_full, list)
4212
			handle_slab(n, cachep, slabp);
4213
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4240

4241 4242 4243 4244 4245 4246 4247 4248 4249 4250
	return 0;
}

struct seq_operations slabstats_op = {
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
#endif
L
Linus Torvalds 已提交
4251 4252
#endif

4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
L
Linus Torvalds 已提交
4265 4266
unsigned int ksize(const void *objp)
{
4267 4268
	if (unlikely(objp == NULL))
		return 0;
L
Linus Torvalds 已提交
4269

4270
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4271
}