slab.c 107.2 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
 * slabs and you must pass objects with the same intializations to
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90 91 92 93 94 95 96
 */

#include	<linux/config.h>
#include	<linux/slab.h>
#include	<linux/mm.h>
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
L
Linus Torvalds 已提交
98 99 100 101 102 103 104
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
105
#include	<linux/string.h>
106
#include	<linux/nodemask.h>
107
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
108
#include	<linux/mutex.h>
L
Linus Torvalds 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

#include	<asm/uaccess.h>
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
 *		  SLAB_RED_ZONE & SLAB_POISON.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)

#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
 * Note that this flag disables some debug features.
 */
#define ARCH_KMALLOC_MINALIGN 0
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
174
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
175 176
			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
177
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
178
#else
179
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
L
Linus Torvalds 已提交
180 181
			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
182
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

204
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
205 206
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
207 208
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222

/* Max number of objs-per-slab for caches which use off-slab slabs.
 * Needed to avoid a possible looping condition in cache_grow().
 */
static unsigned long offslab_limit;

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
223 224 225 226 227 228
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
248
	struct rcu_head head;
249
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
250
	void *addr;
L
Linus Torvalds 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
270
	spinlock_t lock;
A
Andrew Morton 已提交
271 272 273 274 275 276
	void *entry[0];	/*
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 * [0] is for gcc 2.95. It should really be [].
			 */
L
Linus Torvalds 已提交
277 278
};

A
Andrew Morton 已提交
279 280 281
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
282 283 284 285
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
286
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
287 288 289
};

/*
290
 * The slab lists for all objects.
L
Linus Torvalds 已提交
291 292
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
293 294 295 296 297
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
298
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
299 300 301
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
302 303
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
304 305
};

306 307 308 309 310 311 312 313 314 315
/*
 * Need this for bootstrapping a per node allocator.
 */
#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
#define	SIZE_AC 1
#define	SIZE_L3 (1 + MAX_NUMNODES)

/*
A
Andrew Morton 已提交
316 317
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
318
 */
319
static __always_inline int index_of(const size_t size)
320
{
321 322
	extern void __bad_size(void);

323 324 325 326 327 328 329 330 331 332
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
#include "linux/kmalloc_sizes.h"
#undef CACHE
333
		__bad_size();
334
	} else
335
		__bad_size();
336 337 338 339 340
	return 0;
}

#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
341

P
Pekka Enberg 已提交
342
static void kmem_list3_init(struct kmem_list3 *parent)
343 344 345 346 347 348
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
349
	parent->colour_next = 0;
350 351 352 353 354
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
355 356 357 358
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
359 360
	} while (0)

A
Andrew Morton 已提交
361 362
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
363 364 365 366
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
367 368

/*
369
 * struct kmem_cache
L
Linus Torvalds 已提交
370 371 372
 *
 * manages a cache.
 */
P
Pekka Enberg 已提交
373

374
struct kmem_cache {
L
Linus Torvalds 已提交
375
/* 1) per-cpu data, touched during every alloc/free */
P
Pekka Enberg 已提交
376
	struct array_cache *array[NR_CPUS];
377
/* 2) Cache tunables. Protected by cache_chain_mutex */
P
Pekka Enberg 已提交
378 379 380
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
381

382
	unsigned int buffer_size;
383
/* 3) touched by every alloc & free from the backend */
P
Pekka Enberg 已提交
384
	struct kmem_list3 *nodelists[MAX_NUMNODES];
385

A
Andrew Morton 已提交
386 387
	unsigned int flags;		/* constant flags */
	unsigned int num;		/* # of objs per slab */
L
Linus Torvalds 已提交
388

389
/* 4) cache_grow/shrink */
L
Linus Torvalds 已提交
390
	/* order of pgs per slab (2^n) */
P
Pekka Enberg 已提交
391
	unsigned int gfporder;
L
Linus Torvalds 已提交
392 393

	/* force GFP flags, e.g. GFP_DMA */
P
Pekka Enberg 已提交
394
	gfp_t gfpflags;
L
Linus Torvalds 已提交
395

A
Andrew Morton 已提交
396
	size_t colour;			/* cache colouring range */
P
Pekka Enberg 已提交
397
	unsigned int colour_off;	/* colour offset */
398
	struct kmem_cache *slabp_cache;
P
Pekka Enberg 已提交
399
	unsigned int slab_size;
A
Andrew Morton 已提交
400
	unsigned int dflags;		/* dynamic flags */
L
Linus Torvalds 已提交
401 402

	/* constructor func */
403
	void (*ctor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
404 405

	/* de-constructor func */
406
	void (*dtor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
407

408
/* 5) cache creation/removal */
P
Pekka Enberg 已提交
409 410
	const char *name;
	struct list_head next;
L
Linus Torvalds 已提交
411

412
/* 6) statistics */
L
Linus Torvalds 已提交
413
#if STATS
P
Pekka Enberg 已提交
414 415 416 417 418 419 420 421 422 423 424 425 426
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
L
Linus Torvalds 已提交
427 428
#endif
#if DEBUG
429 430 431 432 433 434 435 436
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
L
Linus Torvalds 已提交
437 438 439 440 441 442 443
#endif
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
444 445 446
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
447
 *
A
Adrian Bunk 已提交
448
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
449 450 451 452 453 454 455 456 457 458 459
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
#define	STATS_INC_REAPED(x)	((x)->reaped++)
A
Andrew Morton 已提交
460 461 462 463 464
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
465 466
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
467
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
A
Andrew Morton 已提交
468 469 470 471 472
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
473 474 475 476 477 478 479 480 481 482 483 484 485
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
#define	STATS_INC_REAPED(x)	do { } while (0)
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
486
#define	STATS_INC_NODEFREES(x)	do { } while (0)
A
Andrew Morton 已提交
487
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
488 489 490 491 492 493 494
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG
A
Andrew Morton 已提交
495 496
/*
 * Magic nums for obj red zoning.
L
Linus Torvalds 已提交
497 498 499 500 501 502 503 504 505 506
 * Placed in the first word before and the first word after an obj.
 */
#define	RED_INACTIVE	0x5A2CF071UL	/* when obj is inactive */
#define	RED_ACTIVE	0x170FC2A5UL	/* when obj is active */

/* ...and for poisoning */
#define	POISON_INUSE	0x5a	/* for use-uninitialised poisoning */
#define POISON_FREE	0x6b	/* for use-after-free poisoning */
#define	POISON_END	0xa5	/* end-byte of poisoning */

A
Andrew Morton 已提交
507 508
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
509
 * 0		: objp
510
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
511 512
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
513
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
514
 * 		redzone word.
515 516
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
517 518
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
519
 */
520
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
521
{
522
	return cachep->obj_offset;
L
Linus Torvalds 已提交
523 524
}

525
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
526
{
527
	return cachep->obj_size;
L
Linus Torvalds 已提交
528 529
}

530
static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
531 532
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
533
	return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
L
Linus Torvalds 已提交
534 535
}

536
static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
537 538 539
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
540
		return (unsigned long *)(objp + cachep->buffer_size -
P
Pekka Enberg 已提交
541
					 2 * BYTES_PER_WORD);
542
	return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
543 544
}

545
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
546 547
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
548
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
549 550 551 552
}

#else

553 554
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
L
Linus Torvalds 已提交
555 556 557 558 559 560 561
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
A
Andrew Morton 已提交
562 563
 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
 * order.
L
Linus Torvalds 已提交
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
 */
#if defined(CONFIG_LARGE_ALLOCS)
#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
#define	MAX_GFP_ORDER	13	/* up to 32Mb */
#elif defined(CONFIG_MMU)
#define	MAX_OBJ_ORDER	5	/* 32 pages */
#define	MAX_GFP_ORDER	5	/* 32 pages */
#else
#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
#define	MAX_GFP_ORDER	8	/* up to 1Mb */
#endif

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
583 584 585 586
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
587
 */
588 589 590 591 592 593 594
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
595 596
	if (unlikely(PageCompound(page)))
		page = (struct page *)page_private(page);
597 598 599 600 601 602 603 604 605 606
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
607 608
	if (unlikely(PageCompound(page)))
		page = (struct page *)page_private(page);
609 610
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
611

612 613 614 615 616 617 618 619 620 621 622 623
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_slab(page);
}

624 625 626 627 628 629 630 631 632 633 634 635
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

static inline unsigned int obj_to_index(struct kmem_cache *cache,
					struct slab *slab, void *obj)
{
	return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
}

A
Andrew Morton 已提交
636 637 638
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
656
	{NULL,}
L
Linus Torvalds 已提交
657 658 659 660
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
661
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
662
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
663
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
664 665

/* internal cache of cache description objs */
666
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
667 668 669
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
670
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
671
	.name = "kmem_cache",
L
Linus Torvalds 已提交
672
#if DEBUG
673
	.obj_size = sizeof(struct kmem_cache),
L
Linus Torvalds 已提交
674 675 676 677
#endif
};

/* Guard access to the cache-chain. */
I
Ingo Molnar 已提交
678
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
679 680 681
static struct list_head cache_chain;

/*
A
Andrew Morton 已提交
682 683
 * vm_enough_memory() looks at this to determine how many slab-allocated pages
 * are possibly freeable under pressure
L
Linus Torvalds 已提交
684 685 686 687 688 689 690 691 692 693 694
 *
 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
 */
atomic_t slab_reclaim_pages;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
695 696
	PARTIAL_AC,
	PARTIAL_L3,
L
Linus Torvalds 已提交
697 698 699 700 701
	FULL
} g_cpucache_up;

static DEFINE_PER_CPU(struct work_struct, reap_work);

A
Andrew Morton 已提交
702 703
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
704
static void enable_cpucache(struct kmem_cache *cachep);
P
Pekka Enberg 已提交
705
static void cache_reap(void *unused);
706
static int __node_shrink(struct kmem_cache *cachep, int node);
L
Linus Torvalds 已提交
707

708
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
709 710 711 712
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
713 714
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
715 716 717 718 719
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
720 721 722
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
723
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
724 725 726 727 728
#endif
	while (size > csizep->cs_size)
		csizep++;

	/*
729
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
730 731 732 733 734 735 736 737
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
	return csizep->cs_cachep;
}

738
struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
739 740 741 742 743
{
	return __find_general_cachep(size, gfpflags);
}
EXPORT_SYMBOL(kmem_find_general_cachep);

744
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
745
{
746 747
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
748

A
Andrew Morton 已提交
749 750 751
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
752 753 754 755 756 757 758
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
759

760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
808 809 810 811
}

#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)

A
Andrew Morton 已提交
812 813
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
814 815
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
816
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
817 818 819
	dump_stack();
}

820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
835
		node = first_node(node_online_map);
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860

	__get_cpu_var(reap_node) = node;
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	/*
	 * Also drain per cpu pages on remote zones
	 */
	if (node != numa_node_id())
		drain_node_pages(node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
static void __devinit start_cpu_timer(int cpu)
{
	struct work_struct *reap_work = &per_cpu(reap_work, cpu);

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
	if (keventd_up() && reap_work->func == NULL) {
878
		init_reap_node(cpu);
L
Linus Torvalds 已提交
879 880 881 882 883
		INIT_WORK(reap_work, cache_reap, NULL);
		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
	}
}

884
static struct array_cache *alloc_arraycache(int node, int entries,
P
Pekka Enberg 已提交
885
					    int batchcount)
L
Linus Torvalds 已提交
886
{
P
Pekka Enberg 已提交
887
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
888 889
	struct array_cache *nc = NULL;

890
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
L
Linus Torvalds 已提交
891 892 893 894 895
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
896
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
897 898 899 900
	}
	return nc;
}

901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	to->touched = 1;
	return nr;
}

925
#ifdef CONFIG_NUMA
926
static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
927
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
928

P
Pekka Enberg 已提交
929
static struct array_cache **alloc_alien_cache(int node, int limit)
930 931
{
	struct array_cache **ac_ptr;
P
Pekka Enberg 已提交
932
	int memsize = sizeof(void *) * MAX_NUMNODES;
933 934 935 936 937 938 939 940 941 942 943 944 945
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
P
Pekka Enberg 已提交
946
				for (i--; i <= 0; i--)
947 948 949 950 951 952 953 954 955
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
956
static void free_alien_cache(struct array_cache **ac_ptr)
957 958 959 960 961 962
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
963
	    kfree(ac_ptr[i]);
964 965 966
	kfree(ac_ptr);
}

967
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
968
				struct array_cache *ac, int node)
969 970 971 972 973
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
974 975 976 977 978 979 980
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
		transfer_objects(rl3->shared, ac, ac->limit);

981
		free_block(cachep, ac->entry, ac->avail, node);
982 983 984 985 986
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

987 988 989 990 991 992 993 994 995
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
	int node = __get_cpu_var(reap_node);

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
996 997

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
998 999 1000 1001 1002 1003
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1004 1005
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1006
{
P
Pekka Enberg 已提交
1007
	int i = 0;
1008 1009 1010 1011
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1012
		ac = alien[i];
1013 1014 1015 1016 1017 1018 1019 1020
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
#else
1021

1022
#define drain_alien_cache(cachep, alien) do { } while (0)
1023
#define reap_alien(cachep, l3) do { } while (0)
1024

1025 1026 1027 1028 1029
static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
	return (struct array_cache **) 0x01020304ul;
}

1030 1031 1032
static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}
1033

1034 1035
#endif

L
Linus Torvalds 已提交
1036
static int __devinit cpuup_callback(struct notifier_block *nfb,
P
Pekka Enberg 已提交
1037
				    unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
1038 1039
{
	long cpu = (long)hcpu;
1040
	struct kmem_cache *cachep;
1041 1042 1043
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
	int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
1044 1045 1046

	switch (action) {
	case CPU_UP_PREPARE:
I
Ingo Molnar 已提交
1047
		mutex_lock(&cache_chain_mutex);
A
Andrew Morton 已提交
1048 1049
		/*
		 * We need to do this right in the beginning since
1050 1051 1052 1053 1054
		 * alloc_arraycache's are going to use this list.
		 * kmalloc_node allows us to add the slab to the right
		 * kmem_list3 and not this cpu's kmem_list3
		 */

L
Linus Torvalds 已提交
1055
		list_for_each_entry(cachep, &cache_chain, next) {
A
Andrew Morton 已提交
1056 1057
			/*
			 * Set up the size64 kmemlist for cpu before we can
1058 1059 1060 1061
			 * begin anything. Make sure some other cpu on this
			 * node has not already allocated this
			 */
			if (!cachep->nodelists[node]) {
A
Andrew Morton 已提交
1062 1063
				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
				if (!l3)
1064 1065 1066
					goto bad;
				kmem_list3_init(l3);
				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
1067
				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1068

1069 1070 1071 1072 1073
				/*
				 * The l3s don't come and go as CPUs come and
				 * go.  cache_chain_mutex is sufficient
				 * protection here.
				 */
1074 1075
				cachep->nodelists[node] = l3;
			}
L
Linus Torvalds 已提交
1076

1077 1078
			spin_lock_irq(&cachep->nodelists[node]->list_lock);
			cachep->nodelists[node]->free_limit =
A
Andrew Morton 已提交
1079 1080
				(1 + nr_cpus_node(node)) *
				cachep->batchcount + cachep->num;
1081 1082 1083
			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
		}

A
Andrew Morton 已提交
1084 1085 1086 1087
		/*
		 * Now we can go ahead with allocating the shared arrays and
		 * array caches
		 */
1088
		list_for_each_entry(cachep, &cache_chain, next) {
1089
			struct array_cache *nc;
1090 1091
			struct array_cache *shared;
			struct array_cache **alien;
1092

1093
			nc = alloc_arraycache(node, cachep->limit,
1094
						cachep->batchcount);
L
Linus Torvalds 已提交
1095 1096
			if (!nc)
				goto bad;
1097 1098 1099 1100 1101
			shared = alloc_arraycache(node,
					cachep->shared * cachep->batchcount,
					0xbaadf00d);
			if (!shared)
				goto bad;
1102

1103 1104 1105
			alien = alloc_alien_cache(node, cachep->limit);
			if (!alien)
				goto bad;
L
Linus Torvalds 已提交
1106
			cachep->array[cpu] = nc;
1107 1108 1109
			l3 = cachep->nodelists[node];
			BUG_ON(!l3);

1110 1111 1112 1113 1114 1115 1116 1117
			spin_lock_irq(&l3->list_lock);
			if (!l3->shared) {
				/*
				 * We are serialised from CPU_DEAD or
				 * CPU_UP_CANCELLED by the cpucontrol lock
				 */
				l3->shared = shared;
				shared = NULL;
1118
			}
1119 1120 1121 1122 1123 1124 1125 1126 1127
#ifdef CONFIG_NUMA
			if (!l3->alien) {
				l3->alien = alien;
				alien = NULL;
			}
#endif
			spin_unlock_irq(&l3->list_lock);
			kfree(shared);
			free_alien_cache(alien);
L
Linus Torvalds 已提交
1128
		}
I
Ingo Molnar 已提交
1129
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1130 1131 1132 1133 1134 1135
		break;
	case CPU_ONLINE:
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1136 1137 1138 1139 1140 1141 1142 1143
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
L
Linus Torvalds 已提交
1144 1145
		/* fall thru */
	case CPU_UP_CANCELED:
I
Ingo Molnar 已提交
1146
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1147 1148
		list_for_each_entry(cachep, &cache_chain, next) {
			struct array_cache *nc;
1149 1150
			struct array_cache *shared;
			struct array_cache **alien;
1151
			cpumask_t mask;
L
Linus Torvalds 已提交
1152

1153
			mask = node_to_cpumask(node);
L
Linus Torvalds 已提交
1154 1155 1156
			/* cpu is dead; no one can alloc from it. */
			nc = cachep->array[cpu];
			cachep->array[cpu] = NULL;
1157 1158 1159
			l3 = cachep->nodelists[node];

			if (!l3)
1160
				goto free_array_cache;
1161

1162
			spin_lock_irq(&l3->list_lock);
1163 1164 1165 1166

			/* Free limit for this kmem_list3 */
			l3->free_limit -= cachep->batchcount;
			if (nc)
1167
				free_block(cachep, nc->entry, nc->avail, node);
1168 1169

			if (!cpus_empty(mask)) {
1170
				spin_unlock_irq(&l3->list_lock);
1171
				goto free_array_cache;
P
Pekka Enberg 已提交
1172
			}
1173

1174 1175
			shared = l3->shared;
			if (shared) {
1176
				free_block(cachep, l3->shared->entry,
P
Pekka Enberg 已提交
1177
					   l3->shared->avail, node);
1178 1179 1180
				l3->shared = NULL;
			}

1181 1182 1183 1184 1185 1186 1187 1188 1189
			alien = l3->alien;
			l3->alien = NULL;

			spin_unlock_irq(&l3->list_lock);

			kfree(shared);
			if (alien) {
				drain_alien_cache(cachep, alien);
				free_alien_cache(alien);
1190
			}
1191
free_array_cache:
L
Linus Torvalds 已提交
1192 1193
			kfree(nc);
		}
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
		/*
		 * In the previous loop, all the objects were freed to
		 * the respective cache's slabs,  now we can go ahead and
		 * shrink each nodelist to its limit.
		 */
		list_for_each_entry(cachep, &cache_chain, next) {
			l3 = cachep->nodelists[node];
			if (!l3)
				continue;
			spin_lock_irq(&l3->list_lock);
			/* free slabs belonging to this node */
			__node_shrink(cachep, node);
			spin_unlock_irq(&l3->list_lock);
		}
I
Ingo Molnar 已提交
1208
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1209 1210 1211 1212
		break;
#endif
	}
	return NOTIFY_OK;
A
Andrew Morton 已提交
1213
bad:
I
Ingo Molnar 已提交
1214
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1215 1216 1217 1218 1219
	return NOTIFY_BAD;
}

static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };

1220 1221 1222
/*
 * swap the static kmem_list3 with kmalloced memory
 */
A
Andrew Morton 已提交
1223 1224
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
			int nodeid)
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
{
	struct kmem_list3 *ptr;

	BUG_ON(cachep->nodelists[nodeid] != list);
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
	BUG_ON(!ptr);

	local_irq_disable();
	memcpy(ptr, list, sizeof(struct kmem_list3));
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
	local_irq_enable();
}

A
Andrew Morton 已提交
1239 1240 1241
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1242 1243 1244 1245 1246 1247
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1248
	int i;
1249
	int order;
1250 1251 1252 1253 1254 1255

	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
L
Linus Torvalds 已提交
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1266 1267 1268
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1269 1270 1271
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1272
	 * 2) Create the first kmalloc cache.
1273
	 *    The struct kmem_cache for the new cache is allocated normally.
1274 1275 1276
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1277 1278
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1279 1280 1281
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1282 1283 1284 1285 1286 1287 1288
	 */

	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1289
	cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
L
Linus Torvalds 已提交
1290

A
Andrew Morton 已提交
1291 1292
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
L
Linus Torvalds 已提交
1293

1294 1295 1296 1297 1298 1299
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1300
	BUG_ON(!cache_cache.num);
1301
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1302 1303 1304
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1305 1306 1307 1308 1309

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1310 1311 1312 1313
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1314 1315 1316
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1317 1318 1319 1320
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
1321

A
Andrew Morton 已提交
1322
	if (INDEX_AC != INDEX_L3) {
1323
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1324 1325 1326 1327 1328 1329
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
				NULL, NULL);
	}
1330

L
Linus Torvalds 已提交
1331
	while (sizes->cs_size != ULONG_MAX) {
1332 1333
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1334 1335 1336
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1337 1338
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1339
		if (!sizes->cs_cachep) {
1340
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1341 1342 1343 1344 1345
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
		}
L
Linus Torvalds 已提交
1346 1347 1348

		/* Inc off-slab bufctl limit until the ceiling is hit. */
		if (!(OFF_SLAB(sizes->cs_cachep))) {
P
Pekka Enberg 已提交
1349
			offslab_limit = sizes->cs_size - sizeof(struct slab);
L
Linus Torvalds 已提交
1350 1351 1352 1353
			offslab_limit /= sizeof(kmem_bufctl_t);
		}

		sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
A
Andrew Morton 已提交
1354 1355 1356 1357 1358
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
					NULL, NULL);
L
Linus Torvalds 已提交
1359 1360 1361 1362 1363
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
P
Pekka Enberg 已提交
1364
		void *ptr;
1365

L
Linus Torvalds 已提交
1366
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1367

L
Linus Torvalds 已提交
1368
		local_irq_disable();
1369 1370
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1371
		       sizeof(struct arraycache_init));
L
Linus Torvalds 已提交
1372 1373
		cache_cache.array[smp_processor_id()] = ptr;
		local_irq_enable();
1374

L
Linus Torvalds 已提交
1375
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1376

L
Linus Torvalds 已提交
1377
		local_irq_disable();
1378
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1379
		       != &initarray_generic.cache);
1380
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1381
		       sizeof(struct arraycache_init));
1382
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1383
		    ptr;
L
Linus Torvalds 已提交
1384 1385
		local_irq_enable();
	}
1386 1387 1388 1389 1390
	/* 5) Replace the bootstrap kmem_list3's */
	{
		int node;
		/* Replace the static kmem_list3 structures for the boot cpu */
		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
P
Pekka Enberg 已提交
1391
			  numa_node_id());
1392 1393 1394

		for_each_online_node(node) {
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1395
				  &initkmem_list3[SIZE_AC + node], node);
1396 1397 1398

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1399 1400
					  &initkmem_list3[SIZE_L3 + node],
					  node);
1401 1402 1403
			}
		}
	}
L
Linus Torvalds 已提交
1404

1405
	/* 6) resize the head arrays to their final sizes */
L
Linus Torvalds 已提交
1406
	{
1407
		struct kmem_cache *cachep;
I
Ingo Molnar 已提交
1408
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1409
		list_for_each_entry(cachep, &cache_chain, next)
A
Andrew Morton 已提交
1410
			enable_cpucache(cachep);
I
Ingo Molnar 已提交
1411
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1412 1413 1414 1415 1416
	}

	/* Done! */
	g_cpucache_up = FULL;

A
Andrew Morton 已提交
1417 1418 1419
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1420 1421 1422
	 */
	register_cpu_notifier(&cpucache_notifier);

A
Andrew Morton 已提交
1423 1424 1425
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1426 1427 1428 1429 1430 1431 1432
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1433 1434
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1435
	 */
1436
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1437
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1449
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1450 1451 1452 1453 1454 1455
{
	struct page *page;
	void *addr;
	int i;

	flags |= cachep->gfpflags;
1456
	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
L
Linus Torvalds 已提交
1457 1458 1459 1460 1461 1462 1463 1464 1465
	if (!page)
		return NULL;
	addr = page_address(page);

	i = (1 << cachep->gfporder);
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		atomic_add(i, &slab_reclaim_pages);
	add_page_state(nr_slab, i);
	while (i--) {
N
Nick Piggin 已提交
1466
		__SetPageSlab(page);
L
Linus Torvalds 已提交
1467 1468 1469 1470 1471 1472 1473 1474
		page++;
	}
	return addr;
}

/*
 * Interface to system's page release.
 */
1475
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1476
{
P
Pekka Enberg 已提交
1477
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1478 1479 1480 1481
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

	while (i--) {
N
Nick Piggin 已提交
1482 1483
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1484 1485 1486 1487 1488 1489
		page++;
	}
	sub_page_state(nr_slab, nr_freed);
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
P
Pekka Enberg 已提交
1490 1491
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
L
Linus Torvalds 已提交
1492 1493 1494 1495
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1496
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1497
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1498 1499 1500 1501 1502 1503 1504 1505 1506

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1507
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1508
			    unsigned long caller)
L
Linus Torvalds 已提交
1509
{
1510
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1511

1512
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1513

P
Pekka Enberg 已提交
1514
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1515 1516
		return;

P
Pekka Enberg 已提交
1517 1518 1519 1520
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1521 1522 1523 1524 1525 1526 1527
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1528
				*addr++ = svalue;
L
Linus Torvalds 已提交
1529 1530 1531 1532 1533 1534 1535
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1536
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1537 1538 1539
}
#endif

1540
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1541
{
1542 1543
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1544 1545

	memset(addr, val, size);
P
Pekka Enberg 已提交
1546
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1547 1548 1549 1550 1551 1552
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
	printk(KERN_ERR "%03x:", offset);
A
Andrew Morton 已提交
1553
	for (i = 0; i < limit; i++)
P
Pekka Enberg 已提交
1554
		printk(" %02x", (unsigned char)data[offset + i]);
L
Linus Torvalds 已提交
1555 1556 1557 1558 1559 1560
	printk("\n");
}
#endif

#if DEBUG

1561
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1562 1563 1564 1565 1566 1567
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
		printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
A
Andrew Morton 已提交
1568 1569
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1570 1571 1572 1573
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1574
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1575
		print_symbol("(%s)",
A
Andrew Morton 已提交
1576
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1577 1578
		printk("\n");
	}
1579 1580
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1581
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1582 1583
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1584 1585
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1586 1587 1588 1589
		dump_line(realobj, i, limit);
	}
}

1590
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1591 1592 1593 1594 1595
{
	char *realobj;
	int size, i;
	int lines = 0;

1596 1597
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1598

P
Pekka Enberg 已提交
1599
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1600
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1601
		if (i == size - 1)
L
Linus Torvalds 已提交
1602 1603 1604 1605 1606 1607
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1608
				printk(KERN_ERR
A
Andrew Morton 已提交
1609 1610
					"Slab corruption: start=%p, len=%d\n",
					realobj, size);
L
Linus Torvalds 已提交
1611 1612 1613
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1614
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1615
			limit = 16;
P
Pekka Enberg 已提交
1616 1617
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1630
		struct slab *slabp = virt_to_slab(objp);
1631
		unsigned int objnr;
L
Linus Torvalds 已提交
1632

1633
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1634
		if (objnr) {
1635
			objp = index_to_obj(cachep, slabp, objnr - 1);
1636
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1637
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1638
			       realobj, size);
L
Linus Torvalds 已提交
1639 1640
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1641
		if (objnr + 1 < cachep->num) {
1642
			objp = index_to_obj(cachep, slabp, objnr + 1);
1643
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1644
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1645
			       realobj, size);
L
Linus Torvalds 已提交
1646 1647 1648 1649 1650 1651
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1652 1653
#if DEBUG
/**
1654 1655 1656 1657 1658 1659
 * slab_destroy_objs - destroy a slab and its objects
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
 * Call the registered destructor for each object in a slab that is being
 * destroyed.
L
Linus Torvalds 已提交
1660
 */
1661
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1662 1663 1664
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1665
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1666 1667 1668

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1669 1670
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1671
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1672
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1673 1674 1675 1676 1677 1678 1679 1680 1681
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1682
					   "was overwritten");
L
Linus Torvalds 已提交
1683 1684
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1685
					   "was overwritten");
L
Linus Torvalds 已提交
1686 1687
		}
		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1688
			(cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
1689
	}
1690
}
L
Linus Torvalds 已提交
1691
#else
1692
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1693
{
L
Linus Torvalds 已提交
1694 1695 1696
	if (cachep->dtor) {
		int i;
		for (i = 0; i < cachep->num; i++) {
1697
			void *objp = index_to_obj(cachep, slabp, i);
P
Pekka Enberg 已提交
1698
			(cachep->dtor) (objp, cachep, 0);
L
Linus Torvalds 已提交
1699 1700
		}
	}
1701
}
L
Linus Torvalds 已提交
1702 1703
#endif

1704 1705 1706 1707 1708
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1709
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1710 1711
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1712
 */
1713
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1714 1715 1716 1717
{
	void *addr = slabp->s_mem - slabp->colouroff;

	slab_destroy_objs(cachep, slabp);
L
Linus Torvalds 已提交
1718 1719 1720
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1721
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
	}
}

A
Andrew Morton 已提交
1732 1733 1734 1735
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
1736
static void set_up_list3s(struct kmem_cache *cachep, int index)
1737 1738 1739 1740
{
	int node;

	for_each_online_node(node) {
P
Pekka Enberg 已提交
1741
		cachep->nodelists[node] = &initkmem_list3[index + node];
1742
		cachep->nodelists[node]->next_reap = jiffies +
P
Pekka Enberg 已提交
1743 1744
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1745 1746 1747
	}
}

1748
/**
1749 1750 1751 1752 1753 1754 1755
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1756 1757 1758 1759 1760
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1761
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
1762
			size_t size, size_t align, unsigned long flags)
1763 1764
{
	size_t left_over = 0;
1765
	int gfporder;
1766

A
Andrew Morton 已提交
1767
	for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1768 1769 1770
		unsigned int num;
		size_t remainder;

1771
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1772 1773
		if (!num)
			continue;
1774

1775
		/* More than offslab_limit objects will cause problems */
1776
		if ((flags & CFLGS_OFF_SLAB) && num > offslab_limit)
1777 1778
			break;

1779
		/* Found something acceptable - save it away */
1780
		cachep->num = num;
1781
		cachep->gfporder = gfporder;
1782 1783
		left_over = remainder;

1784 1785 1786 1787 1788 1789 1790 1791
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1792 1793 1794 1795
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1796
		if (gfporder >= slab_break_gfp_order)
1797 1798
			break;

1799 1800 1801
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
1802
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1803 1804 1805 1806 1807
			break;
	}
	return left_over;
}

1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
static void setup_cpu_cache(struct kmem_cache *cachep)
{
	if (g_cpucache_up == FULL) {
		enable_cpucache(cachep);
		return;
	}
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
			for_each_online_node(node) {
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
						GFP_KERNEL, node);
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
	cachep->nodelists[numa_node_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
}

L
Linus Torvalds 已提交
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 * @dtor: A destructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache
 * and the @dtor is run before the pages are handed back.
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
1877 1878
 * the module calling this has to destroy the cache before getting unloaded.
 *
L
Linus Torvalds 已提交
1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
1891
struct kmem_cache *
L
Linus Torvalds 已提交
1892
kmem_cache_create (const char *name, size_t size, size_t align,
A
Andrew Morton 已提交
1893 1894
	unsigned long flags,
	void (*ctor)(void*, struct kmem_cache *, unsigned long),
1895
	void (*dtor)(void*, struct kmem_cache *, unsigned long))
L
Linus Torvalds 已提交
1896 1897
{
	size_t left_over, slab_size, ralign;
1898
	struct kmem_cache *cachep = NULL;
1899
	struct list_head *p;
L
Linus Torvalds 已提交
1900 1901 1902 1903

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
1904
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
P
Pekka Enberg 已提交
1905
	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
A
Andrew Morton 已提交
1906 1907
		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
				name);
P
Pekka Enberg 已提交
1908 1909
		BUG();
	}
L
Linus Torvalds 已提交
1910

1911 1912 1913 1914 1915 1916
	/*
	 * Prevent CPUs from coming and going.
	 * lock_cpu_hotplug() nests outside cache_chain_mutex
	 */
	lock_cpu_hotplug();

I
Ingo Molnar 已提交
1917
	mutex_lock(&cache_chain_mutex);
1918 1919

	list_for_each(p, &cache_chain) {
1920
		struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
		mm_segment_t old_fs = get_fs();
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		set_fs(KERNEL_DS);
		res = __get_user(tmp, pc->name);
		set_fs(old_fs);
		if (res) {
			printk("SLAB: cache with size %d has lost its name\n",
1935
			       pc->buffer_size);
1936 1937 1938
			continue;
		}

P
Pekka Enberg 已提交
1939
		if (!strcmp(pc->name, name)) {
1940 1941 1942 1943 1944 1945
			printk("kmem_cache_create: duplicate cache %s\n", name);
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
1946 1947 1948 1949 1950
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
		/* No constructor, but inital state check requested */
		printk(KERN_ERR "%s: No con, but init state check "
P
Pekka Enberg 已提交
1951
		       "requested - %s\n", __FUNCTION__, name);
L
Linus Torvalds 已提交
1952 1953 1954 1955 1956 1957 1958 1959 1960
		flags &= ~SLAB_DEBUG_INITIAL;
	}
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
A
Andrew Morton 已提交
1961
	if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
P
Pekka Enberg 已提交
1962
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(dtor);

	/*
A
Andrew Morton 已提交
1973 1974
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
1975
	 */
1976
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
1977

A
Andrew Morton 已提交
1978 1979
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
1980 1981 1982
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
1983 1984 1985
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
1986 1987
	}

A
Andrew Morton 已提交
1988 1989
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
1990 1991
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
1992 1993 1994 1995
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
1996 1997
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
1998
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
1999 2000 2001 2002 2003 2004 2005 2006
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
	/* 2) arch mandated alignment: disables debug if necessary */
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
		if (ralign > BYTES_PER_WORD)
P
Pekka Enberg 已提交
2007
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
L
Linus Torvalds 已提交
2008 2009 2010 2011 2012
	}
	/* 3) caller mandated alignment: disables debug if necessary */
	if (ralign < align) {
		ralign = align;
		if (ralign > BYTES_PER_WORD)
P
Pekka Enberg 已提交
2013
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
L
Linus Torvalds 已提交
2014
	}
A
Andrew Morton 已提交
2015 2016
	/*
	 * 4) Store it. Note that the debug code below can reduce
L
Linus Torvalds 已提交
2017 2018 2019 2020 2021
	 *    the alignment to BYTES_PER_WORD.
	 */
	align = ralign;

	/* Get cache's description obj. */
P
Pekka Enberg 已提交
2022
	cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
L
Linus Torvalds 已提交
2023
	if (!cachep)
2024
		goto oops;
L
Linus Torvalds 已提交
2025 2026

#if DEBUG
2027
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2028 2029 2030 2031 2032 2033

	if (flags & SLAB_RED_ZONE) {
		/* redzoning only works with word aligned caches */
		align = BYTES_PER_WORD;

		/* add space for red zone words */
2034
		cachep->obj_offset += BYTES_PER_WORD;
P
Pekka Enberg 已提交
2035
		size += 2 * BYTES_PER_WORD;
L
Linus Torvalds 已提交
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
	}
	if (flags & SLAB_STORE_USER) {
		/* user store requires word alignment and
		 * one word storage behind the end of the real
		 * object.
		 */
		align = BYTES_PER_WORD;
		size += BYTES_PER_WORD;
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2046
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2047 2048
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
2049 2050 2051 2052 2053 2054
		size = PAGE_SIZE;
	}
#endif
#endif

	/* Determine if the slab management is 'on' or 'off' slab. */
P
Pekka Enberg 已提交
2055
	if (size >= (PAGE_SIZE >> 3))
L
Linus Torvalds 已提交
2056 2057 2058 2059 2060 2061 2062 2063
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2064
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2065 2066 2067 2068 2069

	if (!cachep->num) {
		printk("kmem_cache_create: couldn't create cache %s.\n", name);
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2070
		goto oops;
L
Linus Torvalds 已提交
2071
	}
P
Pekka Enberg 已提交
2072 2073
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2086 2087
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
L
Linus Torvalds 已提交
2088 2089 2090 2091 2092 2093
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2094
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2095 2096 2097 2098 2099
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
	if (flags & SLAB_CACHE_DMA)
		cachep->gfpflags |= GFP_DMA;
2100
	cachep->buffer_size = size;
L
Linus Torvalds 已提交
2101 2102

	if (flags & CFLGS_OFF_SLAB)
2103
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
L
Linus Torvalds 已提交
2104 2105 2106 2107 2108
	cachep->ctor = ctor;
	cachep->dtor = dtor;
	cachep->name = name;


2109
	setup_cpu_cache(cachep);
L
Linus Torvalds 已提交
2110 2111 2112

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2113
oops:
L
Linus Torvalds 已提交
2114 2115
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2116
		      name);
I
Ingo Molnar 已提交
2117
	mutex_unlock(&cache_chain_mutex);
2118
	unlock_cpu_hotplug();
L
Linus Torvalds 已提交
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2134
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2135 2136 2137
{
#ifdef CONFIG_SMP
	check_irq_off();
2138
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2139 2140
#endif
}
2141

2142
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2143 2144 2145 2146 2147 2148 2149
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2150 2151 2152 2153
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2154
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2155 2156
#endif

2157 2158 2159 2160
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2161 2162
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2163
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2164
	struct array_cache *ac;
2165
	int node = numa_node_id();
L
Linus Torvalds 已提交
2166 2167

	check_irq_off();
2168
	ac = cpu_cache_get(cachep);
2169 2170 2171
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2172 2173 2174
	ac->avail = 0;
}

2175
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2176
{
2177 2178 2179
	struct kmem_list3 *l3;
	int node;

A
Andrew Morton 已提交
2180
	on_each_cpu(do_drain, cachep, 1, 1);
L
Linus Torvalds 已提交
2181
	check_irq_on();
P
Pekka Enberg 已提交
2182
	for_each_online_node(node) {
2183 2184
		l3 = cachep->nodelists[node];
		if (l3) {
2185
			drain_array(cachep, l3, l3->shared, 1, node);
2186
			if (l3->alien)
2187
				drain_alien_cache(cachep, l3->alien);
2188 2189
		}
	}
L
Linus Torvalds 已提交
2190 2191
}

2192
static int __node_shrink(struct kmem_cache *cachep, int node)
L
Linus Torvalds 已提交
2193 2194
{
	struct slab *slabp;
2195
	struct kmem_list3 *l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
2196 2197
	int ret;

2198
	for (;;) {
L
Linus Torvalds 已提交
2199 2200
		struct list_head *p;

2201 2202
		p = l3->slabs_free.prev;
		if (p == &l3->slabs_free)
L
Linus Torvalds 已提交
2203 2204
			break;

2205
		slabp = list_entry(l3->slabs_free.prev, struct slab, list);
L
Linus Torvalds 已提交
2206
#if DEBUG
2207
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2208 2209 2210
#endif
		list_del(&slabp->list);

2211 2212
		l3->free_objects -= cachep->num;
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
2213
		slab_destroy(cachep, slabp);
2214
		spin_lock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
2215
	}
P
Pekka Enberg 已提交
2216
	ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
L
Linus Torvalds 已提交
2217 2218 2219
	return ret;
}

2220
static int __cache_shrink(struct kmem_cache *cachep)
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			spin_lock_irq(&l3->list_lock);
			ret += __node_shrink(cachep, i);
			spin_unlock_irq(&l3->list_lock);
		}
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2239 2240 2241 2242 2243 2244 2245
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2246
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2247
{
2248
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2249 2250 2251 2252 2253 2254 2255 2256 2257

	return __cache_shrink(cachep);
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2258
 * Remove a struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270
 * Returns 0 on success.
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2271
int kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2272 2273
{
	int i;
2274
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2275

2276
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2277 2278 2279 2280 2281

	/* Don't let CPUs to come and go */
	lock_cpu_hotplug();

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
2282
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2283 2284 2285 2286
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
I
Ingo Molnar 已提交
2287
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2288 2289 2290

	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
I
Ingo Molnar 已提交
2291
		mutex_lock(&cache_chain_mutex);
P
Pekka Enberg 已提交
2292
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2293
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2294 2295 2296 2297 2298
		unlock_cpu_hotplug();
		return 1;
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2299
		synchronize_rcu();
L
Linus Torvalds 已提交
2300

2301
	for_each_online_cpu(i)
P
Pekka Enberg 已提交
2302
	    kfree(cachep->array[i]);
L
Linus Torvalds 已提交
2303 2304

	/* NUMA: free the list3 structures */
2305
	for_each_online_node(i) {
A
Andrew Morton 已提交
2306 2307
		l3 = cachep->nodelists[i];
		if (l3) {
2308 2309 2310 2311 2312
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
L
Linus Torvalds 已提交
2313 2314 2315 2316 2317 2318 2319
	kmem_cache_free(&cache_cache, cachep);
	unlock_cpu_hotplug();
	return 0;
}
EXPORT_SYMBOL(kmem_cache_destroy);

/* Get the memory for a slab management obj. */
2320
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2321 2322
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2323 2324
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2325

L
Linus Torvalds 已提交
2326 2327
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2328 2329
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
					      local_flags, nodeid);
L
Linus Torvalds 已提交
2330 2331 2332
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2333
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2334 2335 2336 2337
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2338
	slabp->s_mem = objp + colour_off;
2339
	slabp->nodeid = nodeid;
L
Linus Torvalds 已提交
2340 2341 2342 2343 2344
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2345
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2346 2347
}

2348
static void cache_init_objs(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
2349
			    struct slab *slabp, unsigned long ctor_flags)
L
Linus Torvalds 已提交
2350 2351 2352 2353
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2354
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2367 2368 2369
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2370 2371
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2372
			cachep->ctor(objp + obj_offset(cachep), cachep,
P
Pekka Enberg 已提交
2373
				     ctor_flags);
L
Linus Torvalds 已提交
2374 2375 2376 2377

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2378
					   " end of an object");
L
Linus Torvalds 已提交
2379 2380
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2381
					   " start of an object");
L
Linus Torvalds 已提交
2382
		}
A
Andrew Morton 已提交
2383 2384
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2385
			kernel_map_pages(virt_to_page(objp),
2386
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2387 2388 2389 2390
#else
		if (cachep->ctor)
			cachep->ctor(objp, cachep, ctor_flags);
#endif
P
Pekka Enberg 已提交
2391
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2392
	}
P
Pekka Enberg 已提交
2393
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2394 2395 2396
	slabp->free = 0;
}

2397
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2398
{
A
Andrew Morton 已提交
2399 2400 2401 2402
	if (flags & SLAB_DMA)
		BUG_ON(!(cachep->gfpflags & GFP_DMA));
	else
		BUG_ON(cachep->gfpflags & GFP_DMA);
L
Linus Torvalds 已提交
2403 2404
}

A
Andrew Morton 已提交
2405 2406
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2407
{
2408
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2422 2423
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2424
{
2425
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2426 2427 2428 2429 2430

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2431
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2432
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2433
				"'%s', objp %p\n", cachep->name, objp);
2434 2435 2436 2437 2438 2439 2440 2441
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

A
Andrew Morton 已提交
2442 2443
static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp,
			void *objp)
L
Linus Torvalds 已提交
2444 2445 2446 2447 2448 2449
{
	int i;
	struct page *page;

	/* Nasty!!!!!! I hope this is OK. */
	page = virt_to_page(objp);
2450 2451 2452 2453

	i = 1;
	if (likely(!PageCompound(page)))
		i <<= cachep->gfporder;
L
Linus Torvalds 已提交
2454
	do {
2455 2456
		page_set_cache(page, cachep);
		page_set_slab(page, slabp);
L
Linus Torvalds 已提交
2457 2458 2459 2460 2461 2462 2463 2464
		page++;
	} while (--i);
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2465
static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
2466
{
P
Pekka Enberg 已提交
2467 2468 2469 2470 2471
	struct slab *slabp;
	void *objp;
	size_t offset;
	gfp_t local_flags;
	unsigned long ctor_flags;
2472
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2473

A
Andrew Morton 已提交
2474 2475 2476
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2477
	 */
2478
	BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
L
Linus Torvalds 已提交
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
	if (flags & SLAB_NO_GROW)
		return 0;

	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
	local_flags = (flags & SLAB_LEVEL_MASK);
	if (!(local_flags & __GFP_WAIT))
		/*
		 * Not allowed to sleep.  Need to tell a constructor about
		 * this - it might need to know...
		 */
		ctor_flags |= SLAB_CTOR_ATOMIC;

2491
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2492
	check_irq_off();
2493 2494
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2495 2496

	/* Get colour for the slab, and cal the next value. */
2497 2498 2499 2500 2501
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2502

2503
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2516 2517 2518
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2519
	 */
A
Andrew Morton 已提交
2520 2521
	objp = kmem_getpages(cachep, flags, nodeid);
	if (!objp)
L
Linus Torvalds 已提交
2522 2523 2524
		goto failed;

	/* Get slab management. */
2525
	slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
A
Andrew Morton 已提交
2526
	if (!slabp)
L
Linus Torvalds 已提交
2527 2528
		goto opps1;

2529
	slabp->nodeid = nodeid;
L
Linus Torvalds 已提交
2530 2531 2532 2533 2534 2535 2536
	set_slab_attr(cachep, slabp, objp);

	cache_init_objs(cachep, slabp, ctor_flags);

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2537
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2538 2539

	/* Make slab active. */
2540
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2541
	STATS_INC_GROWN(cachep);
2542 2543
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2544
	return 1;
A
Andrew Morton 已提交
2545
opps1:
L
Linus Torvalds 已提交
2546
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2547
failed:
L
Linus Torvalds 已提交
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 * - destructor calls, for caches with POISON+dtor
 */
static void kfree_debugcheck(const void *objp)
{
	struct page *page;

	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2567 2568
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2569 2570 2571
	}
	page = virt_to_page(objp);
	if (!PageSlab(page)) {
P
Pekka Enberg 已提交
2572 2573
		printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
		       (unsigned long)objp);
L
Linus Torvalds 已提交
2574 2575 2576 2577
		BUG();
	}
}

2578
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2579
				   void *caller)
L
Linus Torvalds 已提交
2580 2581 2582 2583 2584
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2585
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2586 2587 2588
	kfree_debugcheck(objp);
	page = virt_to_page(objp);

2589
	if (page_get_cache(page) != cachep) {
A
Andrew Morton 已提交
2590 2591
		printk(KERN_ERR "mismatch in kmem_cache_free: expected "
				"cache %p, got %p\n",
P
Pekka Enberg 已提交
2592
		       page_get_cache(page), cachep);
L
Linus Torvalds 已提交
2593
		printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
P
Pekka Enberg 已提交
2594 2595
		printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
		       page_get_cache(page)->name);
L
Linus Torvalds 已提交
2596 2597
		WARN_ON(1);
	}
2598
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2599 2600

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
2601 2602 2603 2604 2605 2606
		if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_ACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
			printk(KERN_ERR "%p: redzone 1:0x%lx, "
					"redzone 2:0x%lx.\n",
P
Pekka Enberg 已提交
2607 2608
			       objp, *dbg_redzone1(cachep, objp),
			       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2609 2610 2611 2612 2613 2614 2615
		}
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2616
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2617 2618

	BUG_ON(objnr >= cachep->num);
2619
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2620 2621

	if (cachep->flags & SLAB_DEBUG_INITIAL) {
A
Andrew Morton 已提交
2622 2623 2624 2625
		/*
		 * Need to call the slab's constructor so the caller can
		 * perform a verify of its state (debugging).  Called without
		 * the cache-lock held.
L
Linus Torvalds 已提交
2626
		 */
2627
		cachep->ctor(objp + obj_offset(cachep),
P
Pekka Enberg 已提交
2628
			     cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
L
Linus Torvalds 已提交
2629 2630 2631 2632 2633
	}
	if (cachep->flags & SLAB_POISON && cachep->dtor) {
		/* we want to cache poison the object,
		 * call the destruction callback
		 */
2634
		cachep->dtor(objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
2635
	}
2636 2637 2638
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2639 2640
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
2641
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2642
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2643
			kernel_map_pages(virt_to_page(objp),
2644
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2655
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2656 2657 2658
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2659

L
Linus Torvalds 已提交
2660 2661 2662 2663 2664 2665 2666
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2667 2668 2669 2670
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
2671
		for (i = 0;
2672
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2673
		     i++) {
A
Andrew Morton 已提交
2674
			if (i % 16 == 0)
L
Linus Torvalds 已提交
2675
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2676
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2688
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2689 2690 2691 2692 2693 2694
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;

	check_irq_off();
2695
	ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
2696
retry:
L
Linus Torvalds 已提交
2697 2698
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2699 2700 2701 2702
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2703 2704 2705
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2706 2707 2708 2709
	l3 = cachep->nodelists[numa_node_id()];

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2710

2711 2712 2713 2714
	/* See if we can refill from the shared array */
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
		goto alloc_done;

L
Linus Torvalds 已提交
2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2735 2736
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
							    numa_node_id());
L
Linus Torvalds 已提交
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
2748
must_grow:
L
Linus Torvalds 已提交
2749
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
2750
alloc_done:
2751
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2752 2753 2754

	if (unlikely(!ac->avail)) {
		int x;
2755 2756
		x = cache_grow(cachep, flags, numa_node_id());

A
Andrew Morton 已提交
2757
		/* cache_grow can reenable interrupts, then ac could change. */
2758
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
2759
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
2760 2761
			return NULL;

A
Andrew Morton 已提交
2762
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
2763 2764 2765
			goto retry;
	}
	ac->touched = 1;
2766
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
2767 2768
}

A
Andrew Morton 已提交
2769 2770
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
2771 2772 2773 2774 2775 2776 2777 2778
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
2779 2780
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
2781
{
P
Pekka Enberg 已提交
2782
	if (!objp)
L
Linus Torvalds 已提交
2783
		return objp;
P
Pekka Enberg 已提交
2784
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
2785
#ifdef CONFIG_DEBUG_PAGEALLOC
2786
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2787
			kernel_map_pages(virt_to_page(objp),
2788
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
2800 2801 2802 2803
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
2804
			printk(KERN_ERR
A
Andrew Morton 已提交
2805 2806 2807
				"%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2808 2809 2810 2811
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

		slabp = page_get_slab(virt_to_page(objp));
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
2822
	objp += obj_offset(cachep);
L
Linus Torvalds 已提交
2823
	if (cachep->ctor && cachep->flags & SLAB_POISON) {
P
Pekka Enberg 已提交
2824
		unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
L
Linus Torvalds 已提交
2825 2826 2827 2828 2829

		if (!(flags & __GFP_WAIT))
			ctor_flags |= SLAB_CTOR_ATOMIC;

		cachep->ctor(objp, cachep, ctor_flags);
P
Pekka Enberg 已提交
2830
	}
L
Linus Torvalds 已提交
2831 2832 2833 2834 2835 2836
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

2837
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2838
{
P
Pekka Enberg 已提交
2839
	void *objp;
L
Linus Torvalds 已提交
2840 2841
	struct array_cache *ac;

2842
#ifdef CONFIG_NUMA
2843
	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
2844 2845 2846
		objp = alternate_node_alloc(cachep, flags);
		if (objp != NULL)
			return objp;
2847 2848 2849
	}
#endif

2850
	check_irq_off();
2851
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2852 2853 2854
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
2855
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
2856 2857 2858 2859
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
2860 2861 2862
	return objp;
}

A
Andrew Morton 已提交
2863 2864
static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
						gfp_t flags, void *caller)
2865 2866
{
	unsigned long save_flags;
P
Pekka Enberg 已提交
2867
	void *objp;
2868 2869 2870 2871 2872

	cache_alloc_debugcheck_before(cachep, flags);

	local_irq_save(save_flags);
	objp = ____cache_alloc(cachep, flags);
L
Linus Torvalds 已提交
2873
	local_irq_restore(save_flags);
2874
	objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2875
					    caller);
2876
	prefetchw(objp);
L
Linus Torvalds 已提交
2877 2878 2879
	return objp;
}

2880
#ifdef CONFIG_NUMA
2881
/*
2882
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

	if (in_interrupt())
		return NULL;
	nid_alloc = nid_here = numa_node_id();
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
		nid_alloc = cpuset_mem_spread_node();
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
	if (nid_alloc != nid_here)
		return __cache_alloc_node(cachep, flags, nid_alloc);
	return NULL;
}

2903 2904
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
2905
 */
A
Andrew Morton 已提交
2906 2907
static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
				int nodeid)
2908 2909
{
	struct list_head *entry;
P
Pekka Enberg 已提交
2910 2911 2912 2913 2914 2915 2916 2917
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
2918
retry:
2919
	check_irq_off();
P
Pekka Enberg 已提交
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

2939
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
2940 2941 2942 2943 2944
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
2945
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
2946
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
2947
	else
P
Pekka Enberg 已提交
2948
		list_add(&slabp->list, &l3->slabs_partial);
2949

P
Pekka Enberg 已提交
2950 2951
	spin_unlock(&l3->list_lock);
	goto done;
2952

A
Andrew Morton 已提交
2953
must_grow:
P
Pekka Enberg 已提交
2954 2955
	spin_unlock(&l3->list_lock);
	x = cache_grow(cachep, flags, nodeid);
L
Linus Torvalds 已提交
2956

P
Pekka Enberg 已提交
2957 2958
	if (!x)
		return NULL;
2959

P
Pekka Enberg 已提交
2960
	goto retry;
A
Andrew Morton 已提交
2961
done:
P
Pekka Enberg 已提交
2962
	return obj;
2963 2964 2965 2966 2967 2968
}
#endif

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
2969
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
2970
		       int node)
L
Linus Torvalds 已提交
2971 2972
{
	int i;
2973
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2974 2975 2976 2977 2978

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

2979
		slabp = virt_to_slab(objp);
2980
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
2981
		list_del(&slabp->list);
2982
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
2983
		check_slabp(cachep, slabp);
2984
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
2985
		STATS_DEC_ACTIVE(cachep);
2986
		l3->free_objects++;
L
Linus Torvalds 已提交
2987 2988 2989 2990
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
2991 2992
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
L
Linus Torvalds 已提交
2993 2994
				slab_destroy(cachep, slabp);
			} else {
2995
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
2996 2997 2998 2999 3000 3001
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3002
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3003 3004 3005 3006
		}
	}
}

3007
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3008 3009
{
	int batchcount;
3010
	struct kmem_list3 *l3;
3011
	int node = numa_node_id();
L
Linus Torvalds 已提交
3012 3013 3014 3015 3016 3017

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3018
	l3 = cachep->nodelists[node];
3019 3020 3021
	spin_lock(&l3->list_lock);
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3022
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3023 3024 3025
		if (max) {
			if (batchcount > max)
				batchcount = max;
3026
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3027
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3028 3029 3030 3031 3032
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3033
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3034
free_done:
L
Linus Torvalds 已提交
3035 3036 3037 3038 3039
#if STATS
	{
		int i = 0;
		struct list_head *p;

3040 3041
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3053
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3054
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3055
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3056 3057 3058
}

/*
A
Andrew Morton 已提交
3059 3060
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3061
 */
3062
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3063
{
3064
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3065 3066 3067 3068

	check_irq_off();
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

3069 3070 3071 3072 3073 3074
	/* Make sure we are not freeing a object from another
	 * node to the array cache on this cpu.
	 */
#ifdef CONFIG_NUMA
	{
		struct slab *slabp;
3075
		slabp = virt_to_slab(objp);
3076 3077 3078
		if (unlikely(slabp->nodeid != numa_node_id())) {
			struct array_cache *alien = NULL;
			int nodeid = slabp->nodeid;
A
Andrew Morton 已提交
3079
			struct kmem_list3 *l3;
3080

A
Andrew Morton 已提交
3081
			l3 = cachep->nodelists[numa_node_id()];
3082 3083 3084 3085 3086 3087
			STATS_INC_NODEFREES(cachep);
			if (l3->alien && l3->alien[nodeid]) {
				alien = l3->alien[nodeid];
				spin_lock(&alien->lock);
				if (unlikely(alien->avail == alien->limit))
					__drain_alien_cache(cachep,
P
Pekka Enberg 已提交
3088
							    alien, nodeid);
3089 3090 3091 3092
				alien->entry[alien->avail++] = objp;
				spin_unlock(&alien->lock);
			} else {
				spin_lock(&(cachep->nodelists[nodeid])->
P
Pekka Enberg 已提交
3093
					  list_lock);
3094
				free_block(cachep, &objp, 1, nodeid);
3095
				spin_unlock(&(cachep->nodelists[nodeid])->
P
Pekka Enberg 已提交
3096
					    list_lock);
3097 3098 3099 3100 3101
			}
			return;
		}
	}
#endif
L
Linus Torvalds 已提交
3102 3103
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3104
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3105 3106 3107 3108
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3109
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3121
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3122
{
3123
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3124 3125 3126
}
EXPORT_SYMBOL(kmem_cache_alloc);

3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
/**
 * kmem_cache_alloc - Allocate an object. The memory is set to zero.
 * @cache: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache and set the allocated memory to zero.
 * The flags are only relevant if the cache has no available objects.
 */
void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
{
	void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
	if (ret)
		memset(ret, 0, obj_size(cache));
	return ret;
}
EXPORT_SYMBOL(kmem_cache_zalloc);

L
Linus Torvalds 已提交
3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157
/**
 * kmem_ptr_validate - check if an untrusted pointer might
 *	be a slab entry.
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
 * This verifies that the untrusted pointer looks sane:
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3158
int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
L
Linus Torvalds 已提交
3159
{
P
Pekka Enberg 已提交
3160
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
3161
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
3162
	unsigned long align_mask = BYTES_PER_WORD - 1;
3163
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3179
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3180 3181
		goto out;
	return 1;
A
Andrew Morton 已提交
3182
out:
L
Linus Torvalds 已提交
3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
	return 0;
}

#ifdef CONFIG_NUMA
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc, except that this function is slow
 * and can sleep. And it will allocate memory on the given node, which
 * can improve the performance for cpu bound structures.
3196 3197
 * New and improved: it will now make sure that the object gets
 * put on the correct node list so that there is no false sharing.
L
Linus Torvalds 已提交
3198
 */
3199
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
3200
{
3201 3202
	unsigned long save_flags;
	void *ptr;
L
Linus Torvalds 已提交
3203

3204 3205
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
3206 3207

	if (nodeid == -1 || nodeid == numa_node_id() ||
A
Andrew Morton 已提交
3208
			!cachep->nodelists[nodeid])
3209 3210 3211
		ptr = ____cache_alloc(cachep, flags);
	else
		ptr = __cache_alloc_node(cachep, flags, nodeid);
3212
	local_irq_restore(save_flags);
3213 3214 3215

	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
					   __builtin_return_address(0));
L
Linus Torvalds 已提交
3216

3217
	return ptr;
L
Linus Torvalds 已提交
3218 3219 3220
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

A
Al Viro 已提交
3221
void *kmalloc_node(size_t size, gfp_t flags, int node)
3222
{
3223
	struct kmem_cache *cachep;
3224 3225 3226 3227 3228 3229 3230

	cachep = kmem_find_general_cachep(size, flags);
	if (unlikely(cachep == NULL))
		return NULL;
	return kmem_cache_alloc_node(cachep, flags, node);
}
EXPORT_SYMBOL(kmalloc_node);
L
Linus Torvalds 已提交
3231 3232 3233 3234 3235 3236
#endif

/**
 * kmalloc - allocate memory
 * @size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
3237
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254
 *
 * kmalloc is the normal method of allocating memory
 * in the kernel.
 *
 * The @flags argument may be one of:
 *
 * %GFP_USER - Allocate memory on behalf of user.  May sleep.
 *
 * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
 *
 * %GFP_ATOMIC - Allocation will not sleep.  Use inside interrupt handlers.
 *
 * Additionally, the %GFP_DMA flag may be set to indicate the memory
 * must be suitable for DMA.  This can mean different things on different
 * platforms.  For example, on i386, it means that the memory must come
 * from the first 16MB.
 */
3255 3256
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3257
{
3258
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3259

3260 3261 3262 3263 3264 3265
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3266 3267
	if (unlikely(cachep == NULL))
		return NULL;
3268 3269 3270 3271 3272 3273
	return __cache_alloc(cachep, flags, caller);
}


void *__kmalloc(size_t size, gfp_t flags)
{
3274
#ifndef CONFIG_DEBUG_SLAB
3275
	return __do_kmalloc(size, flags, NULL);
3276 3277 3278
#else
	return __do_kmalloc(size, flags, __builtin_return_address(0));
#endif
L
Linus Torvalds 已提交
3279 3280 3281
}
EXPORT_SYMBOL(__kmalloc);

3282
#ifdef CONFIG_DEBUG_SLAB
3283 3284 3285 3286 3287 3288 3289
void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
{
	return __do_kmalloc(size, flags, caller);
}
EXPORT_SYMBOL(__kmalloc_track_caller);
#endif

L
Linus Torvalds 已提交
3290 3291 3292 3293 3294 3295 3296 3297
#ifdef CONFIG_SMP
/**
 * __alloc_percpu - allocate one copy of the object for every present
 * cpu in the system, zeroing them.
 * Objects should be dereferenced using the per_cpu_ptr macro only.
 *
 * @size: how many bytes of memory are required.
 */
3298
void *__alloc_percpu(size_t size)
L
Linus Torvalds 已提交
3299 3300
{
	int i;
P
Pekka Enberg 已提交
3301
	struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
L
Linus Torvalds 已提交
3302 3303 3304 3305

	if (!pdata)
		return NULL;

3306 3307 3308 3309 3310
	/*
	 * Cannot use for_each_online_cpu since a cpu may come online
	 * and we have no way of figuring out how to fix the array
	 * that we have allocated then....
	 */
3311
	for_each_possible_cpu(i) {
3312 3313 3314 3315 3316 3317
		int node = cpu_to_node(i);

		if (node_online(node))
			pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
		else
			pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
L
Linus Torvalds 已提交
3318 3319 3320 3321 3322 3323 3324

		if (!pdata->ptrs[i])
			goto unwind_oom;
		memset(pdata->ptrs[i], 0, size);
	}

	/* Catch derefs w/o wrappers */
P
Pekka Enberg 已提交
3325
	return (void *)(~(unsigned long)pdata);
L
Linus Torvalds 已提交
3326

A
Andrew Morton 已提交
3327
unwind_oom:
L
Linus Torvalds 已提交
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
	while (--i >= 0) {
		if (!cpu_possible(i))
			continue;
		kfree(pdata->ptrs[i]);
	}
	kfree(pdata);
	return NULL;
}
EXPORT_SYMBOL(__alloc_percpu);
#endif

/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3347
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360
{
	unsigned long flags;

	local_irq_save(flags);
	__cache_free(cachep, objp);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3361 3362
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3363 3364 3365 3366 3367
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3368
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3369 3370 3371 3372 3373 3374
	unsigned long flags;

	if (unlikely(!objp))
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3375
	c = virt_to_cache(objp);
3376
	mutex_debug_check_no_locks_freed(objp, obj_size(c));
P
Pekka Enberg 已提交
3377
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

#ifdef CONFIG_SMP
/**
 * free_percpu - free previously allocated percpu memory
 * @objp: pointer returned by alloc_percpu.
 *
 * Don't free memory not originally allocated by alloc_percpu()
 * The complemented objp is to check for that.
 */
P
Pekka Enberg 已提交
3390
void free_percpu(const void *objp)
L
Linus Torvalds 已提交
3391 3392
{
	int i;
P
Pekka Enberg 已提交
3393
	struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
L
Linus Torvalds 已提交
3394

3395 3396 3397
	/*
	 * We allocate for all cpus so we cannot use for online cpu here.
	 */
3398
	for_each_possible_cpu(i)
P
Pekka Enberg 已提交
3399
	    kfree(p->ptrs[i]);
L
Linus Torvalds 已提交
3400 3401 3402 3403 3404
	kfree(p);
}
EXPORT_SYMBOL(free_percpu);
#endif

3405
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3406
{
3407
	return obj_size(cachep);
L
Linus Torvalds 已提交
3408 3409 3410
}
EXPORT_SYMBOL(kmem_cache_size);

3411
const char *kmem_cache_name(struct kmem_cache *cachep)
3412 3413 3414 3415 3416
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3417
/*
3418
 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3419
 */
3420
static int alloc_kmemlist(struct kmem_cache *cachep)
3421 3422 3423
{
	int node;
	struct kmem_list3 *l3;
3424 3425
	struct array_cache *new_shared;
	struct array_cache **new_alien;
3426 3427

	for_each_online_node(node) {
3428

A
Andrew Morton 已提交
3429 3430
		new_alien = alloc_alien_cache(node, cachep->limit);
		if (!new_alien)
3431
			goto fail;
3432

3433 3434
		new_shared = alloc_arraycache(node,
				cachep->shared*cachep->batchcount,
A
Andrew Morton 已提交
3435
					0xbaadf00d);
3436 3437
		if (!new_shared) {
			free_alien_cache(new_alien);
3438
			goto fail;
3439
		}
3440

A
Andrew Morton 已提交
3441 3442
		l3 = cachep->nodelists[node];
		if (l3) {
3443 3444
			struct array_cache *shared = l3->shared;

3445 3446
			spin_lock_irq(&l3->list_lock);

3447
			if (shared)
3448 3449
				free_block(cachep, shared->entry,
						shared->avail, node);
3450

3451 3452
			l3->shared = new_shared;
			if (!l3->alien) {
3453 3454 3455
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3456
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3457
					cachep->batchcount + cachep->num;
3458
			spin_unlock_irq(&l3->list_lock);
3459
			kfree(shared);
3460 3461 3462
			free_alien_cache(new_alien);
			continue;
		}
A
Andrew Morton 已提交
3463
		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3464 3465 3466
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3467
			goto fail;
3468
		}
3469 3470 3471

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3472
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3473
		l3->shared = new_shared;
3474
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3475
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3476
					cachep->batchcount + cachep->num;
3477 3478
		cachep->nodelists[node] = l3;
	}
3479
	return 0;
3480

A
Andrew Morton 已提交
3481
fail:
3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3497
	return -ENOMEM;
3498 3499
}

L
Linus Torvalds 已提交
3500
struct ccupdate_struct {
3501
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3502 3503 3504 3505 3506
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3507
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3508 3509 3510
	struct array_cache *old;

	check_irq_off();
3511
	old = cpu_cache_get(new->cachep);
3512

L
Linus Torvalds 已提交
3513 3514 3515 3516
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3517
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
3518 3519
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared)
L
Linus Torvalds 已提交
3520 3521
{
	struct ccupdate_struct new;
3522
	int i, err;
L
Linus Torvalds 已提交
3523

P
Pekka Enberg 已提交
3524
	memset(&new.new, 0, sizeof(new.new));
3525
	for_each_online_cpu(i) {
A
Andrew Morton 已提交
3526 3527
		new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
						batchcount);
3528
		if (!new.new[i]) {
P
Pekka Enberg 已提交
3529 3530
			for (i--; i >= 0; i--)
				kfree(new.new[i]);
3531
			return -ENOMEM;
L
Linus Torvalds 已提交
3532 3533 3534 3535
		}
	}
	new.cachep = cachep;

A
Andrew Morton 已提交
3536
	on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
3537

L
Linus Torvalds 已提交
3538 3539 3540
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3541
	cachep->shared = shared;
L
Linus Torvalds 已提交
3542

3543
	for_each_online_cpu(i) {
L
Linus Torvalds 已提交
3544 3545 3546
		struct array_cache *ccold = new.new[i];
		if (!ccold)
			continue;
3547
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3548
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3549
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
3550 3551 3552
		kfree(ccold);
	}

3553 3554 3555
	err = alloc_kmemlist(cachep);
	if (err) {
		printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3556
		       cachep->name, -err);
3557
		BUG();
L
Linus Torvalds 已提交
3558 3559 3560 3561
	}
	return 0;
}

3562
/* Called with cache_chain_mutex held always */
3563
static void enable_cpucache(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3564 3565 3566 3567
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
3568 3569
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3570 3571
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3572
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3573 3574 3575 3576
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3577
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
3578
		limit = 1;
3579
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
3580
		limit = 8;
3581
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
3582
		limit = 24;
3583
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
3584 3585 3586 3587
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3588 3589
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3590 3591 3592 3593 3594 3595 3596 3597 3598
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
#ifdef CONFIG_SMP
3599
	if (cachep->buffer_size <= PAGE_SIZE)
L
Linus Torvalds 已提交
3600 3601 3602 3603
		shared = 8;
#endif

#if DEBUG
A
Andrew Morton 已提交
3604 3605 3606
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3607 3608 3609 3610
	 */
	if (limit > 32)
		limit = 32;
#endif
P
Pekka Enberg 已提交
3611
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
L
Linus Torvalds 已提交
3612 3613
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3614
		       cachep->name, -err);
L
Linus Torvalds 已提交
3615 3616
}

3617 3618
/*
 * Drain an array if it contains any elements taking the l3 lock only if
3619 3620
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
3621 3622 3623
 */
void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
3624 3625 3626
{
	int tofree;

3627 3628
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
3629 3630
	if (ac->touched && !force) {
		ac->touched = 0;
3631
	} else {
3632
		spin_lock_irq(&l3->list_lock);
3633 3634 3635 3636 3637 3638 3639 3640 3641
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
3642
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3643 3644 3645 3646 3647
	}
}

/**
 * cache_reap - Reclaim memory from caches.
3648
 * @unused: unused parameter
L
Linus Torvalds 已提交
3649 3650 3651 3652 3653 3654
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
3655 3656
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
3657 3658 3659 3660
 */
static void cache_reap(void *unused)
{
	struct list_head *walk;
3661
	struct kmem_list3 *l3;
3662
	int node = numa_node_id();
L
Linus Torvalds 已提交
3663

I
Ingo Molnar 已提交
3664
	if (!mutex_trylock(&cache_chain_mutex)) {
L
Linus Torvalds 已提交
3665
		/* Give up. Setup the next iteration. */
P
Pekka Enberg 已提交
3666 3667
		schedule_delayed_work(&__get_cpu_var(reap_work),
				      REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3668 3669 3670 3671
		return;
	}

	list_for_each(walk, &cache_chain) {
3672
		struct kmem_cache *searchp;
P
Pekka Enberg 已提交
3673
		struct list_head *p;
L
Linus Torvalds 已提交
3674 3675 3676
		int tofree;
		struct slab *slabp;

3677
		searchp = list_entry(walk, struct kmem_cache, next);
L
Linus Torvalds 已提交
3678 3679
		check_irq_on();

3680 3681 3682 3683 3684
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
3685
		l3 = searchp->nodelists[node];
3686

3687
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
3688

3689
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
3690

3691 3692 3693 3694
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
3695
		if (time_after(l3->next_reap, jiffies))
3696
			goto next;
L
Linus Torvalds 已提交
3697

3698
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
3699

3700
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
3701

3702 3703
		if (l3->free_touched) {
			l3->free_touched = 0;
3704
			goto next;
L
Linus Torvalds 已提交
3705 3706
		}

A
Andrew Morton 已提交
3707 3708
		tofree = (l3->free_limit + 5 * searchp->num - 1) /
				(5 * searchp->num);
L
Linus Torvalds 已提交
3709
		do {
3710 3711 3712 3713 3714 3715 3716
			/*
			 * Do not lock if there are no free blocks.
			 */
			if (list_empty(&l3->slabs_free))
				break;

			spin_lock_irq(&l3->list_lock);
3717
			p = l3->slabs_free.next;
3718 3719
			if (p == &(l3->slabs_free)) {
				spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3720
				break;
3721
			}
L
Linus Torvalds 已提交
3722 3723 3724 3725 3726 3727

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);
			list_del(&slabp->list);
			STATS_INC_REAPED(searchp);

A
Andrew Morton 已提交
3728 3729 3730
			/*
			 * Safe to drop the lock. The slab is no longer linked
			 * to the cache. searchp cannot disappear, we hold
L
Linus Torvalds 已提交
3731 3732
			 * cache_chain_lock
			 */
3733 3734
			l3->free_objects -= searchp->num;
			spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3735
			slab_destroy(searchp, slabp);
P
Pekka Enberg 已提交
3736
		} while (--tofree > 0);
3737
next:
L
Linus Torvalds 已提交
3738 3739 3740
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
3741
	mutex_unlock(&cache_chain_mutex);
3742
	next_reap_node();
A
Andrew Morton 已提交
3743
	/* Set up the next iteration */
3744
	schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3745 3746 3747 3748
}

#ifdef CONFIG_PROC_FS

3749
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
3750
{
3751 3752 3753 3754
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
3755
#if STATS
3756
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
3757
#else
3758
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
3759
#endif
3760 3761 3762 3763
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
3764
#if STATS
3765 3766 3767
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
		 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
3768
#endif
3769 3770 3771 3772 3773 3774 3775 3776
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

I
Ingo Molnar 已提交
3777
	mutex_lock(&cache_chain_mutex);
3778 3779
	if (!n)
		print_slabinfo_header(m);
L
Linus Torvalds 已提交
3780 3781 3782 3783 3784 3785
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
3786
	return list_entry(p, struct kmem_cache, next);
L
Linus Torvalds 已提交
3787 3788 3789 3790
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
3791
	struct kmem_cache *cachep = p;
L
Linus Torvalds 已提交
3792
	++*pos;
A
Andrew Morton 已提交
3793 3794
	return cachep->next.next == &cache_chain ?
		NULL : list_entry(cachep->next.next, struct kmem_cache, next);
L
Linus Torvalds 已提交
3795 3796 3797 3798
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
3799
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3800 3801 3802 3803
}

static int s_show(struct seq_file *m, void *p)
{
3804
	struct kmem_cache *cachep = p;
L
Linus Torvalds 已提交
3805
	struct list_head *q;
P
Pekka Enberg 已提交
3806 3807 3808 3809 3810
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3811
	const char *name;
L
Linus Torvalds 已提交
3812
	char *error = NULL;
3813 3814
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3815 3816 3817

	active_objs = 0;
	num_slabs = 0;
3818 3819 3820 3821 3822
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

3823 3824
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
3825

P
Pekka Enberg 已提交
3826
		list_for_each(q, &l3->slabs_full) {
3827 3828 3829 3830 3831 3832
			slabp = list_entry(q, struct slab, list);
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
P
Pekka Enberg 已提交
3833
		list_for_each(q, &l3->slabs_partial) {
3834 3835 3836 3837 3838 3839 3840 3841
			slabp = list_entry(q, struct slab, list);
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
P
Pekka Enberg 已提交
3842
		list_for_each(q, &l3->slabs_free) {
3843 3844 3845 3846 3847 3848
			slabp = list_entry(q, struct slab, list);
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
3849 3850
		if (l3->shared)
			shared_avail += l3->shared->avail;
3851

3852
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3853
	}
P
Pekka Enberg 已提交
3854 3855
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
3856
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
3857 3858
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
3859
	name = cachep->name;
L
Linus Torvalds 已提交
3860 3861 3862 3863
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3864
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
3865
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
3866
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
3867
		   cachep->limit, cachep->batchcount, cachep->shared);
3868
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
3869
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
3870
#if STATS
P
Pekka Enberg 已提交
3871
	{			/* list3 stats */
L
Linus Torvalds 已提交
3872 3873 3874 3875 3876 3877 3878
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
3879
		unsigned long node_frees = cachep->node_frees;
L
Linus Torvalds 已提交
3880

3881
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
A
Andrew Morton 已提交
3882 3883 3884
				%4lu %4lu %4lu %4lu", allocs, high, grown,
				reaped, errors, max_freeable, node_allocs,
				node_frees);
L
Linus Torvalds 已提交
3885 3886 3887 3888 3889 3890 3891 3892 3893
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
3894
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
3916 3917 3918 3919
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
3930 3931
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
3932
{
P
Pekka Enberg 已提交
3933
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
3934 3935
	int limit, batchcount, shared, res;
	struct list_head *p;
P
Pekka Enberg 已提交
3936

L
Linus Torvalds 已提交
3937 3938 3939 3940
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
3941
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
3942 3943 3944 3945 3946 3947 3948 3949 3950 3951

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
3952
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3953
	res = -EINVAL;
P
Pekka Enberg 已提交
3954
	list_for_each(p, &cache_chain) {
A
Andrew Morton 已提交
3955
		struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3956

A
Andrew Morton 已提交
3957
		cachep = list_entry(p, struct kmem_cache, next);
L
Linus Torvalds 已提交
3958
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
3959 3960
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
3961
				res = 0;
L
Linus Torvalds 已提交
3962
			} else {
3963
				res = do_tune_cpucache(cachep, limit,
P
Pekka Enberg 已提交
3964
						       batchcount, shared);
L
Linus Torvalds 已提交
3965 3966 3967 3968
			}
			break;
		}
	}
I
Ingo Molnar 已提交
3969
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3970 3971 3972 3973
	if (res >= 0)
		res = count;
	return res;
}
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

	mutex_lock(&cache_chain_mutex);
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
	return list_entry(p, struct kmem_cache, next);
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	char *modname;
	const char *name;
	unsigned long offset, size;
	char namebuf[KSYM_NAME_LEN+1];

	name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);

	if (name) {
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
		if (modname)
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
	struct kmem_cache *cachep = p;
	struct list_head *q;
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

		list_for_each(q, &l3->slabs_full) {
			slabp = list_entry(q, struct slab, list);
			handle_slab(n, cachep, slabp);
		}
		list_for_each(q, &l3->slabs_partial) {
			slabp = list_entry(q, struct slab, list);
			handle_slab(n, cachep, slabp);
		}
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
	return 0;
}

struct seq_operations slabstats_op = {
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
#endif
L
Linus Torvalds 已提交
4127 4128
#endif

4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
L
Linus Torvalds 已提交
4141 4142
unsigned int ksize(const void *objp)
{
4143 4144
	if (unlikely(objp == NULL))
		return 0;
L
Linus Torvalds 已提交
4145

4146
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4147
}