slab.c 114.5 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
 * slabs and you must pass objects with the same intializations to
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
L
Linus Torvalds 已提交
98 99 100 101 102 103 104
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
105
#include	<linux/string.h>
106
#include	<linux/uaccess.h>
107
#include	<linux/nodemask.h>
108
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
109
#include	<linux/mutex.h>
110
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
111
#include	<linux/rtmutex.h>
L
Linus Torvalds 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
 *		  SLAB_RED_ZONE & SLAB_POISON.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)

#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
 * Note that this flag disables some debug features.
 */
#define ARCH_KMALLOC_MINALIGN 0
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
176
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
177 178
			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
179
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
180
#else
181
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
L
Linus Torvalds 已提交
182 183
			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
184
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

206
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
207 208
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
209 210
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
211 212 213 214 215 216 217 218 219

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
220 221 222 223 224 225
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
245
	struct rcu_head head;
246
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
247
	void *addr;
L
Linus Torvalds 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
267
	spinlock_t lock;
A
Andrew Morton 已提交
268 269 270 271 272 273
	void *entry[0];	/*
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 * [0] is for gcc 2.95. It should really be [].
			 */
L
Linus Torvalds 已提交
274 275
};

A
Andrew Morton 已提交
276 277 278
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
279 280 281 282
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
283
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
284 285 286
};

/*
287
 * The slab lists for all objects.
L
Linus Torvalds 已提交
288 289
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
290 291 292 293 294
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
295
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
296 297 298
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
299 300
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
301 302
};

303 304 305 306 307 308 309 310 311
/*
 * Need this for bootstrapping a per node allocator.
 */
#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
#define	SIZE_AC 1
#define	SIZE_L3 (1 + MAX_NUMNODES)

312 313 314 315
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
316
static int enable_cpucache(struct kmem_cache *cachep);
317
static void cache_reap(struct work_struct *unused);
318

319
/*
A
Andrew Morton 已提交
320 321
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
322
 */
323
static __always_inline int index_of(const size_t size)
324
{
325 326
	extern void __bad_size(void);

327 328 329 330 331 332 333 334 335 336
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
#include "linux/kmalloc_sizes.h"
#undef CACHE
337
		__bad_size();
338
	} else
339
		__bad_size();
340 341 342
	return 0;
}

343 344
static int slab_early_init = 1;

345 346
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
347

P
Pekka Enberg 已提交
348
static void kmem_list3_init(struct kmem_list3 *parent)
349 350 351 352 353 354
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
355
	parent->colour_next = 0;
356 357 358 359 360
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
361 362 363 364
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
365 366
	} while (0)

A
Andrew Morton 已提交
367 368
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
369 370 371 372
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
373 374

/*
375
 * struct kmem_cache
L
Linus Torvalds 已提交
376 377 378
 *
 * manages a cache.
 */
P
Pekka Enberg 已提交
379

380
struct kmem_cache {
L
Linus Torvalds 已提交
381
/* 1) per-cpu data, touched during every alloc/free */
P
Pekka Enberg 已提交
382
	struct array_cache *array[NR_CPUS];
383
/* 2) Cache tunables. Protected by cache_chain_mutex */
P
Pekka Enberg 已提交
384 385 386
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
387

388
	unsigned int buffer_size;
389
/* 3) touched by every alloc & free from the backend */
P
Pekka Enberg 已提交
390
	struct kmem_list3 *nodelists[MAX_NUMNODES];
391

A
Andrew Morton 已提交
392 393
	unsigned int flags;		/* constant flags */
	unsigned int num;		/* # of objs per slab */
L
Linus Torvalds 已提交
394

395
/* 4) cache_grow/shrink */
L
Linus Torvalds 已提交
396
	/* order of pgs per slab (2^n) */
P
Pekka Enberg 已提交
397
	unsigned int gfporder;
L
Linus Torvalds 已提交
398 399

	/* force GFP flags, e.g. GFP_DMA */
P
Pekka Enberg 已提交
400
	gfp_t gfpflags;
L
Linus Torvalds 已提交
401

A
Andrew Morton 已提交
402
	size_t colour;			/* cache colouring range */
P
Pekka Enberg 已提交
403
	unsigned int colour_off;	/* colour offset */
404
	struct kmem_cache *slabp_cache;
P
Pekka Enberg 已提交
405
	unsigned int slab_size;
A
Andrew Morton 已提交
406
	unsigned int dflags;		/* dynamic flags */
L
Linus Torvalds 已提交
407 408

	/* constructor func */
409
	void (*ctor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
410 411

	/* de-constructor func */
412
	void (*dtor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
413

414
/* 5) cache creation/removal */
P
Pekka Enberg 已提交
415 416
	const char *name;
	struct list_head next;
L
Linus Torvalds 已提交
417

418
/* 6) statistics */
L
Linus Torvalds 已提交
419
#if STATS
P
Pekka Enberg 已提交
420 421 422 423 424 425 426 427 428
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
429
	unsigned long node_overflow;
P
Pekka Enberg 已提交
430 431 432 433
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
L
Linus Torvalds 已提交
434 435
#endif
#if DEBUG
436 437 438 439 440 441 442 443
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
L
Linus Torvalds 已提交
444 445 446 447 448 449 450
#endif
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
451 452 453
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
454
 *
A
Adrian Bunk 已提交
455
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
456 457 458 459 460 461 462 463 464 465
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
466
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
467 468 469 470 471
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
472 473
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
474
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
475
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
476 477 478 479 480
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
481 482 483 484 485 486 487 488 489
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
490
#define	STATS_ADD_REAPED(x,y)	do { } while (0)
L
Linus Torvalds 已提交
491 492 493
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
494
#define	STATS_INC_NODEFREES(x)	do { } while (0)
495
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
496
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
497 498 499 500 501 502 503 504
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
505 506
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
507
 * 0		: objp
508
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
509 510
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
511
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
512
 * 		redzone word.
513 514
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
515 516
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
517
 */
518
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
519
{
520
	return cachep->obj_offset;
L
Linus Torvalds 已提交
521 522
}

523
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
524
{
525
	return cachep->obj_size;
L
Linus Torvalds 已提交
526 527
}

528
static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
529 530
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
531
	return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
L
Linus Torvalds 已提交
532 533
}

534
static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
535 536 537
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
538
		return (unsigned long *)(objp + cachep->buffer_size -
P
Pekka Enberg 已提交
539
					 2 * BYTES_PER_WORD);
540
	return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
541 542
}

543
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
544 545
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
546
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
547 548 549 550
}

#else

551 552
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
L
Linus Torvalds 已提交
553 554 555 556 557 558 559
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
A
Andrew Morton 已提交
560 561
 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
 * order.
L
Linus Torvalds 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
 */
#if defined(CONFIG_LARGE_ALLOCS)
#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
#define	MAX_GFP_ORDER	13	/* up to 32Mb */
#elif defined(CONFIG_MMU)
#define	MAX_OBJ_ORDER	5	/* 32 pages */
#define	MAX_GFP_ORDER	5	/* 32 pages */
#else
#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
#define	MAX_GFP_ORDER	8	/* up to 1Mb */
#endif

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
581 582 583 584
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
585
 */
586 587 588 589 590 591 592
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
593 594
	if (unlikely(PageCompound(page)))
		page = (struct page *)page_private(page);
595
	BUG_ON(!PageSlab(page));
596 597 598 599 600 601 602 603 604 605
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
606 607
	if (unlikely(PageCompound(page)))
		page = (struct page *)page_private(page);
608
	BUG_ON(!PageSlab(page));
609 610
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
611

612 613 614 615 616 617 618 619 620 621 622 623
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_slab(page);
}

624 625 626 627 628 629 630 631 632 633 634 635
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

static inline unsigned int obj_to_index(struct kmem_cache *cache,
					struct slab *slab, void *obj)
{
	return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
}

A
Andrew Morton 已提交
636 637 638
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
656
	{NULL,}
L
Linus Torvalds 已提交
657 658 659 660
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
661
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
662
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
663
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
664 665

/* internal cache of cache description objs */
666
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
667 668 669
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
670
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
671
	.name = "kmem_cache",
L
Linus Torvalds 已提交
672
#if DEBUG
673
	.obj_size = sizeof(struct kmem_cache),
L
Linus Torvalds 已提交
674 675 676
#endif
};

677 678
#define BAD_ALIEN_MAGIC 0x01020304ul

679 680 681 682 683 684 685 686
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
687 688 689 690
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
691
 */
692 693 694 695
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

static inline void init_lock_keys(void)
696 697 698

{
	int q;
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
	struct cache_sizes *s = malloc_sizes;

	while (s->cs_size != ULONG_MAX) {
		for_each_node(q) {
			struct array_cache **alc;
			int r;
			struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
			if (!l3 || OFF_SLAB(s->cs_cachep))
				continue;
			lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
			alc = l3->alien;
			/*
			 * FIXME: This check for BAD_ALIEN_MAGIC
			 * should go away when common slab code is taught to
			 * work even without alien caches.
			 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
			 * for alloc_alien_cache,
			 */
			if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
				continue;
			for_each_node(r) {
				if (alc[r])
					lockdep_set_class(&alc[r]->lock,
					     &on_slab_alc_key);
			}
		}
		s++;
726 727 728
	}
}
#else
729
static inline void init_lock_keys(void)
730 731 732 733
{
}
#endif

734 735 736 737
/*
 * 1. Guard access to the cache-chain.
 * 2. Protect sanity of cpu_online_map against cpu hotplug events
 */
I
Ingo Molnar 已提交
738
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
739 740 741 742 743 744 745 746
static struct list_head cache_chain;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
747 748
	PARTIAL_AC,
	PARTIAL_L3,
L
Linus Torvalds 已提交
749 750 751
	FULL
} g_cpucache_up;

752 753 754 755 756 757 758 759
/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up == FULL;
}

760
static DEFINE_PER_CPU(struct delayed_work, reap_work);
L
Linus Torvalds 已提交
761

762
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
763 764 765 766
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
767 768
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
769 770 771 772 773
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
774 775 776
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
777
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
778 779 780 781 782
#endif
	while (size > csizep->cs_size)
		csizep++;

	/*
783
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
784 785 786 787 788 789 790 791
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
792
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
793 794 795 796
{
	return __find_general_cachep(size, gfpflags);
}

797
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
798
{
799 800
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
801

A
Andrew Morton 已提交
802 803 804
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
805 806 807 808 809 810 811
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
812

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
861 862 863 864
}

#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)

A
Andrew Morton 已提交
865 866
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
867 868
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
869
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
870 871 872
	dump_stack();
}

873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
904
		node = first_node(node_online_map);
905

906
	per_cpu(reap_node, cpu) = node;
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	/*
	 * Also drain per cpu pages on remote zones
	 */
	if (node != numa_node_id())
		drain_node_pages(node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
930 931 932 933 934 935 936 937 938
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
static void __devinit start_cpu_timer(int cpu)
{
939
	struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
L
Linus Torvalds 已提交
940 941 942 943 944 945

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
946
	if (keventd_up() && reap_work->work.func == NULL) {
947
		init_reap_node(cpu);
948
		INIT_DELAYED_WORK(reap_work, cache_reap);
L
Linus Torvalds 已提交
949 950 951 952
		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
	}
}

953
static struct array_cache *alloc_arraycache(int node, int entries,
P
Pekka Enberg 已提交
954
					    int batchcount)
L
Linus Torvalds 已提交
955
{
P
Pekka Enberg 已提交
956
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
957 958
	struct array_cache *nc = NULL;

959
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
L
Linus Torvalds 已提交
960 961 962 963 964
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
965
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
966 967 968 969
	}
	return nc;
}

970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	to->touched = 1;
	return nr;
}

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

1019
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1020 1021 1022 1023 1024 1025 1026
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1027
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1028
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1029

P
Pekka Enberg 已提交
1030
static struct array_cache **alloc_alien_cache(int node, int limit)
1031 1032
{
	struct array_cache **ac_ptr;
P
Pekka Enberg 已提交
1033
	int memsize = sizeof(void *) * MAX_NUMNODES;
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
P
Pekka Enberg 已提交
1047
				for (i--; i <= 0; i--)
1048 1049 1050 1051 1052 1053 1054 1055 1056
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1057
static void free_alien_cache(struct array_cache **ac_ptr)
1058 1059 1060 1061 1062 1063
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1064
	    kfree(ac_ptr[i]);
1065 1066 1067
	kfree(ac_ptr);
}

1068
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1069
				struct array_cache *ac, int node)
1070 1071 1072 1073 1074
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1075 1076 1077 1078 1079
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1080 1081
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1082

1083
		free_block(cachep, ac->entry, ac->avail, node);
1084 1085 1086 1087 1088
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1089 1090 1091 1092 1093 1094 1095 1096 1097
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
	int node = __get_cpu_var(reap_node);

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1098 1099

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1100 1101 1102 1103 1104 1105
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1106 1107
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1108
{
P
Pekka Enberg 已提交
1109
	int i = 0;
1110 1111 1112 1113
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1114
		ac = alien[i];
1115 1116 1117 1118 1119 1120 1121
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1122

1123
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1124 1125 1126 1127 1128
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1129 1130 1131
	int node;

	node = numa_node_id();
1132 1133 1134 1135 1136

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1137
	if (likely(slabp->nodeid == node) || unlikely(!use_alien_caches))
1138 1139
		return 0;

P
Pekka Enberg 已提交
1140
	l3 = cachep->nodelists[node];
1141 1142 1143
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1144
		spin_lock(&alien->lock);
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1158 1159
#endif

1160
static int __cpuinit cpuup_callback(struct notifier_block *nfb,
P
Pekka Enberg 已提交
1161
				    unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
1162 1163
{
	long cpu = (long)hcpu;
1164
	struct kmem_cache *cachep;
1165 1166 1167
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
	int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
1168 1169 1170

	switch (action) {
	case CPU_UP_PREPARE:
I
Ingo Molnar 已提交
1171
		mutex_lock(&cache_chain_mutex);
A
Andrew Morton 已提交
1172 1173
		/*
		 * We need to do this right in the beginning since
1174 1175 1176 1177 1178
		 * alloc_arraycache's are going to use this list.
		 * kmalloc_node allows us to add the slab to the right
		 * kmem_list3 and not this cpu's kmem_list3
		 */

L
Linus Torvalds 已提交
1179
		list_for_each_entry(cachep, &cache_chain, next) {
A
Andrew Morton 已提交
1180 1181
			/*
			 * Set up the size64 kmemlist for cpu before we can
1182 1183 1184 1185
			 * begin anything. Make sure some other cpu on this
			 * node has not already allocated this
			 */
			if (!cachep->nodelists[node]) {
A
Andrew Morton 已提交
1186 1187
				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
				if (!l3)
1188 1189 1190
					goto bad;
				kmem_list3_init(l3);
				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
1191
				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1192

1193 1194 1195 1196 1197
				/*
				 * The l3s don't come and go as CPUs come and
				 * go.  cache_chain_mutex is sufficient
				 * protection here.
				 */
1198 1199
				cachep->nodelists[node] = l3;
			}
L
Linus Torvalds 已提交
1200

1201 1202
			spin_lock_irq(&cachep->nodelists[node]->list_lock);
			cachep->nodelists[node]->free_limit =
A
Andrew Morton 已提交
1203 1204
				(1 + nr_cpus_node(node)) *
				cachep->batchcount + cachep->num;
1205 1206 1207
			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
		}

A
Andrew Morton 已提交
1208 1209 1210 1211
		/*
		 * Now we can go ahead with allocating the shared arrays and
		 * array caches
		 */
1212
		list_for_each_entry(cachep, &cache_chain, next) {
1213
			struct array_cache *nc;
1214
			struct array_cache *shared;
1215
			struct array_cache **alien = NULL;
1216

1217
			nc = alloc_arraycache(node, cachep->limit,
1218
						cachep->batchcount);
L
Linus Torvalds 已提交
1219 1220
			if (!nc)
				goto bad;
1221 1222 1223 1224 1225
			shared = alloc_arraycache(node,
					cachep->shared * cachep->batchcount,
					0xbaadf00d);
			if (!shared)
				goto bad;
1226

1227 1228 1229 1230 1231
			if (use_alien_caches) {
                                alien = alloc_alien_cache(node, cachep->limit);
                                if (!alien)
                                        goto bad;
                        }
L
Linus Torvalds 已提交
1232
			cachep->array[cpu] = nc;
1233 1234 1235
			l3 = cachep->nodelists[node];
			BUG_ON(!l3);

1236 1237 1238 1239 1240 1241 1242 1243
			spin_lock_irq(&l3->list_lock);
			if (!l3->shared) {
				/*
				 * We are serialised from CPU_DEAD or
				 * CPU_UP_CANCELLED by the cpucontrol lock
				 */
				l3->shared = shared;
				shared = NULL;
1244
			}
1245 1246 1247 1248 1249 1250 1251 1252 1253
#ifdef CONFIG_NUMA
			if (!l3->alien) {
				l3->alien = alien;
				alien = NULL;
			}
#endif
			spin_unlock_irq(&l3->list_lock);
			kfree(shared);
			free_alien_cache(alien);
L
Linus Torvalds 已提交
1254 1255 1256
		}
		break;
	case CPU_ONLINE:
1257
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1258 1259 1260
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1261 1262 1263 1264 1265 1266
	case CPU_DOWN_PREPARE:
		mutex_lock(&cache_chain_mutex);
		break;
	case CPU_DOWN_FAILED:
		mutex_unlock(&cache_chain_mutex);
		break;
L
Linus Torvalds 已提交
1267
	case CPU_DEAD:
1268 1269 1270 1271 1272 1273 1274 1275
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
L
Linus Torvalds 已提交
1276
		/* fall thru */
1277
#endif
L
Linus Torvalds 已提交
1278 1279 1280
	case CPU_UP_CANCELED:
		list_for_each_entry(cachep, &cache_chain, next) {
			struct array_cache *nc;
1281 1282
			struct array_cache *shared;
			struct array_cache **alien;
1283
			cpumask_t mask;
L
Linus Torvalds 已提交
1284

1285
			mask = node_to_cpumask(node);
L
Linus Torvalds 已提交
1286 1287 1288
			/* cpu is dead; no one can alloc from it. */
			nc = cachep->array[cpu];
			cachep->array[cpu] = NULL;
1289 1290 1291
			l3 = cachep->nodelists[node];

			if (!l3)
1292
				goto free_array_cache;
1293

1294
			spin_lock_irq(&l3->list_lock);
1295 1296 1297 1298

			/* Free limit for this kmem_list3 */
			l3->free_limit -= cachep->batchcount;
			if (nc)
1299
				free_block(cachep, nc->entry, nc->avail, node);
1300 1301

			if (!cpus_empty(mask)) {
1302
				spin_unlock_irq(&l3->list_lock);
1303
				goto free_array_cache;
P
Pekka Enberg 已提交
1304
			}
1305

1306 1307
			shared = l3->shared;
			if (shared) {
1308
				free_block(cachep, l3->shared->entry,
P
Pekka Enberg 已提交
1309
					   l3->shared->avail, node);
1310 1311 1312
				l3->shared = NULL;
			}

1313 1314 1315 1316 1317 1318 1319 1320 1321
			alien = l3->alien;
			l3->alien = NULL;

			spin_unlock_irq(&l3->list_lock);

			kfree(shared);
			if (alien) {
				drain_alien_cache(cachep, alien);
				free_alien_cache(alien);
1322
			}
1323
free_array_cache:
L
Linus Torvalds 已提交
1324 1325
			kfree(nc);
		}
1326 1327 1328 1329 1330 1331 1332 1333 1334
		/*
		 * In the previous loop, all the objects were freed to
		 * the respective cache's slabs,  now we can go ahead and
		 * shrink each nodelist to its limit.
		 */
		list_for_each_entry(cachep, &cache_chain, next) {
			l3 = cachep->nodelists[node];
			if (!l3)
				continue;
1335
			drain_freelist(cachep, l3, l3->free_objects);
1336
		}
I
Ingo Molnar 已提交
1337
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1338 1339 1340
		break;
	}
	return NOTIFY_OK;
A
Andrew Morton 已提交
1341
bad:
L
Linus Torvalds 已提交
1342 1343 1344
	return NOTIFY_BAD;
}

1345 1346 1347
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1348

1349 1350 1351
/*
 * swap the static kmem_list3 with kmalloced memory
 */
A
Andrew Morton 已提交
1352 1353
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
			int nodeid)
1354 1355 1356 1357 1358 1359 1360 1361
{
	struct kmem_list3 *ptr;

	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
	BUG_ON(!ptr);

	local_irq_disable();
	memcpy(ptr, list, sizeof(struct kmem_list3));
1362 1363 1364 1365 1366
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1367 1368 1369 1370 1371
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
	local_irq_enable();
}

A
Andrew Morton 已提交
1372 1373 1374
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1375 1376 1377 1378 1379 1380
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1381
	int i;
1382
	int order;
P
Pekka Enberg 已提交
1383
	int node;
1384 1385 1386 1387 1388 1389

	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
L
Linus Torvalds 已提交
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1400 1401 1402
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1403 1404 1405
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1406
	 * 2) Create the first kmalloc cache.
1407
	 *    The struct kmem_cache for the new cache is allocated normally.
1408 1409 1410
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1411 1412
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1413 1414 1415
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1416 1417
	 */

P
Pekka Enberg 已提交
1418 1419
	node = numa_node_id();

L
Linus Torvalds 已提交
1420 1421 1422 1423 1424
	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
P
Pekka Enberg 已提交
1425
	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
L
Linus Torvalds 已提交
1426

A
Andrew Morton 已提交
1427 1428
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
L
Linus Torvalds 已提交
1429

1430 1431 1432 1433 1434 1435
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1436
	BUG_ON(!cache_cache.num);
1437
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1438 1439 1440
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1441 1442 1443 1444 1445

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1446 1447 1448 1449
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1450 1451 1452
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1453 1454 1455 1456
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
1457

A
Andrew Morton 已提交
1458
	if (INDEX_AC != INDEX_L3) {
1459
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1460 1461 1462 1463 1464 1465
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
				NULL, NULL);
	}
1466

1467 1468
	slab_early_init = 0;

L
Linus Torvalds 已提交
1469
	while (sizes->cs_size != ULONG_MAX) {
1470 1471
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1472 1473 1474
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1475 1476
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1477
		if (!sizes->cs_cachep) {
1478
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1479 1480 1481 1482 1483
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
		}
L
Linus Torvalds 已提交
1484 1485

		sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
A
Andrew Morton 已提交
1486 1487 1488 1489 1490
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
					NULL, NULL);
L
Linus Torvalds 已提交
1491 1492 1493 1494 1495
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1496
		struct array_cache *ptr;
1497

L
Linus Torvalds 已提交
1498
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1499

L
Linus Torvalds 已提交
1500
		local_irq_disable();
1501 1502
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1503
		       sizeof(struct arraycache_init));
1504 1505 1506 1507 1508
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1509 1510
		cache_cache.array[smp_processor_id()] = ptr;
		local_irq_enable();
1511

L
Linus Torvalds 已提交
1512
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1513

L
Linus Torvalds 已提交
1514
		local_irq_disable();
1515
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1516
		       != &initarray_generic.cache);
1517
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1518
		       sizeof(struct arraycache_init));
1519 1520 1521 1522 1523
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1524
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1525
		    ptr;
L
Linus Torvalds 已提交
1526 1527
		local_irq_enable();
	}
1528 1529
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1530 1531
		int nid;

1532
		/* Replace the static kmem_list3 structures for the boot cpu */
P
Pekka Enberg 已提交
1533
		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1534

P
Pekka Enberg 已提交
1535
		for_each_online_node(nid) {
1536
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1537
				  &initkmem_list3[SIZE_AC + nid], nid);
1538 1539 1540

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1541
					  &initkmem_list3[SIZE_L3 + nid], nid);
1542 1543 1544
			}
		}
	}
L
Linus Torvalds 已提交
1545

1546
	/* 6) resize the head arrays to their final sizes */
L
Linus Torvalds 已提交
1547
	{
1548
		struct kmem_cache *cachep;
I
Ingo Molnar 已提交
1549
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1550
		list_for_each_entry(cachep, &cache_chain, next)
1551 1552
			if (enable_cpucache(cachep))
				BUG();
I
Ingo Molnar 已提交
1553
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1554 1555
	}

1556 1557 1558 1559
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();


L
Linus Torvalds 已提交
1560 1561 1562
	/* Done! */
	g_cpucache_up = FULL;

A
Andrew Morton 已提交
1563 1564 1565
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1566 1567 1568
	 */
	register_cpu_notifier(&cpucache_notifier);

A
Andrew Morton 已提交
1569 1570 1571
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1572 1573 1574 1575 1576 1577 1578
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1579 1580
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1581
	 */
1582
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1583
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1595
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1596 1597
{
	struct page *page;
1598
	int nr_pages;
L
Linus Torvalds 已提交
1599 1600
	int i;

1601
#ifndef CONFIG_MMU
1602 1603 1604
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1605
	 */
1606
	flags |= __GFP_COMP;
1607
#endif
1608

1609
	flags |= cachep->gfpflags;
1610 1611

	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
L
Linus Torvalds 已提交
1612 1613 1614
	if (!page)
		return NULL;

1615
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1616
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1617 1618 1619 1620 1621
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1622 1623 1624
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
	return page_address(page);
L
Linus Torvalds 已提交
1625 1626 1627 1628 1629
}

/*
 * Interface to system's page release.
 */
1630
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1631
{
P
Pekka Enberg 已提交
1632
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1633 1634 1635
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1636 1637 1638 1639 1640 1641
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1642
	while (i--) {
N
Nick Piggin 已提交
1643 1644
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1645 1646 1647 1648 1649 1650 1651 1652 1653
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1654
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1655
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1656 1657 1658 1659 1660 1661 1662 1663 1664

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1665
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1666
			    unsigned long caller)
L
Linus Torvalds 已提交
1667
{
1668
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1669

1670
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1671

P
Pekka Enberg 已提交
1672
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1673 1674
		return;

P
Pekka Enberg 已提交
1675 1676 1677 1678
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1679 1680 1681 1682 1683 1684 1685
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1686
				*addr++ = svalue;
L
Linus Torvalds 已提交
1687 1688 1689 1690 1691 1692 1693
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1694
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1695 1696 1697
}
#endif

1698
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1699
{
1700 1701
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1702 1703

	memset(addr, val, size);
P
Pekka Enberg 已提交
1704
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1705 1706 1707 1708 1709
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1710 1711 1712
	unsigned char error = 0;
	int bad_count = 0;

L
Linus Torvalds 已提交
1713
	printk(KERN_ERR "%03x:", offset);
D
Dave Jones 已提交
1714 1715 1716 1717 1718
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
P
Pekka Enberg 已提交
1719
		printk(" %02x", (unsigned char)data[offset + i]);
D
Dave Jones 已提交
1720
	}
L
Linus Torvalds 已提交
1721
	printk("\n");
D
Dave Jones 已提交
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1736 1737 1738 1739 1740
}
#endif

#if DEBUG

1741
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1742 1743 1744 1745 1746 1747
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
		printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
A
Andrew Morton 已提交
1748 1749
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1750 1751 1752 1753
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1754
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1755
		print_symbol("(%s)",
A
Andrew Morton 已提交
1756
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1757 1758
		printk("\n");
	}
1759 1760
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1761
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1762 1763
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1764 1765
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1766 1767 1768 1769
		dump_line(realobj, i, limit);
	}
}

1770
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1771 1772 1773 1774 1775
{
	char *realobj;
	int size, i;
	int lines = 0;

1776 1777
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1778

P
Pekka Enberg 已提交
1779
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1780
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1781
		if (i == size - 1)
L
Linus Torvalds 已提交
1782 1783 1784 1785 1786 1787
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1788
				printk(KERN_ERR
A
Andrew Morton 已提交
1789 1790
					"Slab corruption: start=%p, len=%d\n",
					realobj, size);
L
Linus Torvalds 已提交
1791 1792 1793
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1794
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1795
			limit = 16;
P
Pekka Enberg 已提交
1796 1797
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1810
		struct slab *slabp = virt_to_slab(objp);
1811
		unsigned int objnr;
L
Linus Torvalds 已提交
1812

1813
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1814
		if (objnr) {
1815
			objp = index_to_obj(cachep, slabp, objnr - 1);
1816
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1817
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1818
			       realobj, size);
L
Linus Torvalds 已提交
1819 1820
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1821
		if (objnr + 1 < cachep->num) {
1822
			objp = index_to_obj(cachep, slabp, objnr + 1);
1823
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1824
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1825
			       realobj, size);
L
Linus Torvalds 已提交
1826 1827 1828 1829 1830 1831
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1832 1833
#if DEBUG
/**
1834 1835 1836 1837 1838 1839
 * slab_destroy_objs - destroy a slab and its objects
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
 * Call the registered destructor for each object in a slab that is being
 * destroyed.
L
Linus Torvalds 已提交
1840
 */
1841
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1842 1843 1844
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1845
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1846 1847 1848

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1849 1850
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1851
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1852
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1853 1854 1855 1856 1857 1858 1859 1860 1861
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1862
					   "was overwritten");
L
Linus Torvalds 已提交
1863 1864
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1865
					   "was overwritten");
L
Linus Torvalds 已提交
1866 1867
		}
		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1868
			(cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
1869
	}
1870
}
L
Linus Torvalds 已提交
1871
#else
1872
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1873
{
L
Linus Torvalds 已提交
1874 1875 1876
	if (cachep->dtor) {
		int i;
		for (i = 0; i < cachep->num; i++) {
1877
			void *objp = index_to_obj(cachep, slabp, i);
P
Pekka Enberg 已提交
1878
			(cachep->dtor) (objp, cachep, 0);
L
Linus Torvalds 已提交
1879 1880
		}
	}
1881
}
L
Linus Torvalds 已提交
1882 1883
#endif

1884 1885 1886 1887 1888
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1889
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1890 1891
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1892
 */
1893
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1894 1895 1896 1897
{
	void *addr = slabp->s_mem - slabp->colouroff;

	slab_destroy_objs(cachep, slabp);
L
Linus Torvalds 已提交
1898 1899 1900
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1901
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1902 1903 1904 1905 1906
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
1907 1908
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
1909 1910 1911
	}
}

A
Andrew Morton 已提交
1912 1913 1914 1915
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
1916
static void set_up_list3s(struct kmem_cache *cachep, int index)
1917 1918 1919 1920
{
	int node;

	for_each_online_node(node) {
P
Pekka Enberg 已提交
1921
		cachep->nodelists[node] = &initkmem_list3[index + node];
1922
		cachep->nodelists[node]->next_reap = jiffies +
P
Pekka Enberg 已提交
1923 1924
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1925 1926 1927
	}
}

1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


1949
/**
1950 1951 1952 1953 1954 1955 1956
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1957 1958 1959 1960 1961
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1962
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
1963
			size_t size, size_t align, unsigned long flags)
1964
{
1965
	unsigned long offslab_limit;
1966
	size_t left_over = 0;
1967
	int gfporder;
1968

A
Andrew Morton 已提交
1969
	for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1970 1971 1972
		unsigned int num;
		size_t remainder;

1973
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1974 1975
		if (!num)
			continue;
1976

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
1989

1990
		/* Found something acceptable - save it away */
1991
		cachep->num = num;
1992
		cachep->gfporder = gfporder;
1993 1994
		left_over = remainder;

1995 1996 1997 1998 1999 2000 2001 2002
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2003 2004 2005 2006
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2007
		if (gfporder >= slab_break_gfp_order)
2008 2009
			break;

2010 2011 2012
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2013
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2014 2015 2016 2017 2018
			break;
	}
	return left_over;
}

2019
static int setup_cpu_cache(struct kmem_cache *cachep)
2020
{
2021 2022 2023
	if (g_cpucache_up == FULL)
		return enable_cpucache(cachep);

2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
			for_each_online_node(node) {
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
						GFP_KERNEL, node);
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
	cachep->nodelists[numa_node_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2070
	return 0;
2071 2072
}

L
Linus Torvalds 已提交
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 * @dtor: A destructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache
 * and the @dtor is run before the pages are handed back.
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
2088 2089
 * the module calling this has to destroy the cache before getting unloaded.
 *
L
Linus Torvalds 已提交
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2102
struct kmem_cache *
L
Linus Torvalds 已提交
2103
kmem_cache_create (const char *name, size_t size, size_t align,
A
Andrew Morton 已提交
2104 2105
	unsigned long flags,
	void (*ctor)(void*, struct kmem_cache *, unsigned long),
2106
	void (*dtor)(void*, struct kmem_cache *, unsigned long))
L
Linus Torvalds 已提交
2107 2108
{
	size_t left_over, slab_size, ralign;
2109
	struct kmem_cache *cachep = NULL, *pc;
L
Linus Torvalds 已提交
2110 2111 2112 2113

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
2114
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
P
Pekka Enberg 已提交
2115
	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
A
Andrew Morton 已提交
2116 2117
		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
				name);
P
Pekka Enberg 已提交
2118 2119
		BUG();
	}
L
Linus Torvalds 已提交
2120

2121
	/*
2122 2123
	 * We use cache_chain_mutex to ensure a consistent view of
	 * cpu_online_map as well.  Please see cpuup_callback
2124
	 */
I
Ingo Molnar 已提交
2125
	mutex_lock(&cache_chain_mutex);
2126

2127
	list_for_each_entry(pc, &cache_chain, next) {
2128 2129 2130 2131 2132 2133 2134 2135
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
2136
		res = probe_kernel_address(pc->name, tmp);
2137 2138
		if (res) {
			printk("SLAB: cache with size %d has lost its name\n",
2139
			       pc->buffer_size);
2140 2141 2142
			continue;
		}

P
Pekka Enberg 已提交
2143
		if (!strcmp(pc->name, name)) {
2144 2145 2146 2147 2148 2149
			printk("kmem_cache_create: duplicate cache %s\n", name);
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
2150 2151 2152 2153 2154
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
		/* No constructor, but inital state check requested */
		printk(KERN_ERR "%s: No con, but init state check "
P
Pekka Enberg 已提交
2155
		       "requested - %s\n", __FUNCTION__, name);
L
Linus Torvalds 已提交
2156 2157 2158 2159 2160 2161 2162 2163 2164
		flags &= ~SLAB_DEBUG_INITIAL;
	}
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
A
Andrew Morton 已提交
2165
	if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
P
Pekka Enberg 已提交
2166
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(dtor);

	/*
A
Andrew Morton 已提交
2177 2178
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2179
	 */
2180
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2181

A
Andrew Morton 已提交
2182 2183
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2184 2185 2186
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2187 2188 2189
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2190 2191
	}

A
Andrew Morton 已提交
2192 2193
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2194 2195
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2196 2197 2198 2199
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2200 2201
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2202
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2203 2204 2205 2206
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2207 2208 2209 2210 2211 2212 2213 2214 2215

	/*
	 * Redzoning and user store require word alignment. Note this will be
	 * overridden by architecture or caller mandated alignment if either
	 * is greater than BYTES_PER_WORD.
	 */
	if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

2216
	/* 2) arch mandated alignment */
L
Linus Torvalds 已提交
2217 2218 2219
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2220
	/* 3) caller mandated alignment */
L
Linus Torvalds 已提交
2221 2222 2223
	if (ralign < align) {
		ralign = align;
	}
2224 2225 2226
	/* disable debug if necessary */
	if (ralign > BYTES_PER_WORD)
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2227
	/*
2228
	 * 4) Store it.
L
Linus Torvalds 已提交
2229 2230 2231 2232
	 */
	align = ralign;

	/* Get cache's description obj. */
2233
	cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
L
Linus Torvalds 已提交
2234
	if (!cachep)
2235
		goto oops;
L
Linus Torvalds 已提交
2236 2237

#if DEBUG
2238
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2239

2240 2241 2242 2243
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2244 2245
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2246
		cachep->obj_offset += BYTES_PER_WORD;
P
Pekka Enberg 已提交
2247
		size += 2 * BYTES_PER_WORD;
L
Linus Torvalds 已提交
2248 2249
	}
	if (flags & SLAB_STORE_USER) {
2250 2251
		/* user store requires one word storage behind the end of
		 * the real object.
L
Linus Torvalds 已提交
2252 2253 2254 2255
		 */
		size += BYTES_PER_WORD;
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2256
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2257 2258
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
2259 2260 2261 2262 2263
		size = PAGE_SIZE;
	}
#endif
#endif

2264 2265 2266 2267 2268 2269
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
	 * it too early on.)
	 */
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
L
Linus Torvalds 已提交
2270 2271 2272 2273 2274 2275 2276 2277
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2278
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2279 2280 2281 2282 2283

	if (!cachep->num) {
		printk("kmem_cache_create: couldn't create cache %s.\n", name);
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2284
		goto oops;
L
Linus Torvalds 已提交
2285
	}
P
Pekka Enberg 已提交
2286 2287
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2300 2301
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
L
Linus Torvalds 已提交
2302 2303 2304 2305 2306 2307
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2308
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2309 2310 2311 2312 2313
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
	if (flags & SLAB_CACHE_DMA)
		cachep->gfpflags |= GFP_DMA;
2314
	cachep->buffer_size = size;
L
Linus Torvalds 已提交
2315

2316
	if (flags & CFLGS_OFF_SLAB) {
2317
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2318 2319 2320 2321 2322 2323 2324 2325 2326
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
		BUG_ON(!cachep->slabp_cache);
	}
L
Linus Torvalds 已提交
2327 2328 2329 2330
	cachep->ctor = ctor;
	cachep->dtor = dtor;
	cachep->name = name;

2331 2332 2333 2334 2335
	if (setup_cpu_cache(cachep)) {
		__kmem_cache_destroy(cachep);
		cachep = NULL;
		goto oops;
	}
L
Linus Torvalds 已提交
2336 2337 2338

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2339
oops:
L
Linus Torvalds 已提交
2340 2341
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2342
		      name);
I
Ingo Molnar 已提交
2343
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2359
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2360 2361 2362
{
#ifdef CONFIG_SMP
	check_irq_off();
2363
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2364 2365
#endif
}
2366

2367
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2368 2369 2370 2371 2372 2373 2374
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2375 2376 2377 2378
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2379
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2380 2381
#endif

2382 2383 2384 2385
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2386 2387
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2388
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2389
	struct array_cache *ac;
2390
	int node = numa_node_id();
L
Linus Torvalds 已提交
2391 2392

	check_irq_off();
2393
	ac = cpu_cache_get(cachep);
2394 2395 2396
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2397 2398 2399
	ac->avail = 0;
}

2400
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2401
{
2402 2403 2404
	struct kmem_list3 *l3;
	int node;

A
Andrew Morton 已提交
2405
	on_each_cpu(do_drain, cachep, 1, 1);
L
Linus Torvalds 已提交
2406
	check_irq_on();
P
Pekka Enberg 已提交
2407
	for_each_online_node(node) {
2408
		l3 = cachep->nodelists[node];
2409 2410 2411 2412 2413 2414 2415
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2416
			drain_array(cachep, l3, l3->shared, 1, node);
2417
	}
L
Linus Torvalds 已提交
2418 2419
}

2420 2421 2422 2423 2424 2425 2426 2427
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2428
{
2429 2430
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2431 2432
	struct slab *slabp;

2433 2434
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2435

2436
		spin_lock_irq(&l3->list_lock);
2437
		p = l3->slabs_free.prev;
2438 2439 2440 2441
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2442

2443
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2444
#if DEBUG
2445
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2446 2447
#endif
		list_del(&slabp->list);
2448 2449 2450 2451 2452
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2453
		spin_unlock_irq(&l3->list_lock);
2454 2455
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2456
	}
2457 2458
out:
	return nr_freed;
L
Linus Torvalds 已提交
2459 2460
}

2461
/* Called with cache_chain_mutex held to protect against cpu hotplug */
2462
static int __cache_shrink(struct kmem_cache *cachep)
2463 2464 2465 2466 2467 2468 2469 2470 2471
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2472 2473 2474 2475 2476 2477 2478
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2479 2480 2481 2482
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2483 2484 2485 2486 2487 2488 2489
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2490
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2491
{
2492
	int ret;
2493
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2494

2495 2496 2497 2498
	mutex_lock(&cache_chain_mutex);
	ret = __cache_shrink(cachep);
	mutex_unlock(&cache_chain_mutex);
	return ret;
L
Linus Torvalds 已提交
2499 2500 2501 2502 2503 2504 2505
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2506
 * Remove a struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2518
void kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2519
{
2520
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2521 2522

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
2523
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2524 2525 2526 2527 2528 2529
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
P
Pekka Enberg 已提交
2530
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2531
		mutex_unlock(&cache_chain_mutex);
2532
		return;
L
Linus Torvalds 已提交
2533 2534 2535
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2536
		synchronize_rcu();
L
Linus Torvalds 已提交
2537

2538
	__kmem_cache_destroy(cachep);
2539
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2540 2541 2542
}
EXPORT_SYMBOL(kmem_cache_destroy);

2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2554
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2555 2556
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2557 2558
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2559

L
Linus Torvalds 已提交
2560 2561
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2562
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2563
					      local_flags & ~GFP_THISNODE, nodeid);
L
Linus Torvalds 已提交
2564 2565 2566
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2567
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2568 2569 2570 2571
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2572
	slabp->s_mem = objp + colour_off;
2573
	slabp->nodeid = nodeid;
L
Linus Torvalds 已提交
2574 2575 2576 2577 2578
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2579
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2580 2581
}

2582
static void cache_init_objs(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
2583
			    struct slab *slabp, unsigned long ctor_flags)
L
Linus Torvalds 已提交
2584 2585 2586 2587
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2588
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2601 2602 2603
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2604 2605
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2606
			cachep->ctor(objp + obj_offset(cachep), cachep,
P
Pekka Enberg 已提交
2607
				     ctor_flags);
L
Linus Torvalds 已提交
2608 2609 2610 2611

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2612
					   " end of an object");
L
Linus Torvalds 已提交
2613 2614
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2615
					   " start of an object");
L
Linus Torvalds 已提交
2616
		}
A
Andrew Morton 已提交
2617 2618
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2619
			kernel_map_pages(virt_to_page(objp),
2620
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2621 2622 2623 2624
#else
		if (cachep->ctor)
			cachep->ctor(objp, cachep, ctor_flags);
#endif
P
Pekka Enberg 已提交
2625
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2626
	}
P
Pekka Enberg 已提交
2627
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2628 2629 2630
	slabp->free = 0;
}

2631
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2632
{
C
Christoph Lameter 已提交
2633
	if (flags & GFP_DMA)
A
Andrew Morton 已提交
2634 2635 2636
		BUG_ON(!(cachep->gfpflags & GFP_DMA));
	else
		BUG_ON(cachep->gfpflags & GFP_DMA);
L
Linus Torvalds 已提交
2637 2638
}

A
Andrew Morton 已提交
2639 2640
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2641
{
2642
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2656 2657
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2658
{
2659
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2660 2661 2662 2663 2664

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2665
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2666
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2667
				"'%s', objp %p\n", cachep->name, objp);
2668 2669 2670 2671 2672 2673 2674 2675
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2676 2677 2678 2679 2680 2681 2682
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2683
{
2684
	int nr_pages;
L
Linus Torvalds 已提交
2685 2686
	struct page *page;

2687
	page = virt_to_page(addr);
2688

2689
	nr_pages = 1;
2690
	if (likely(!PageCompound(page)))
2691 2692
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2693
	do {
2694 2695
		page_set_cache(page, cache);
		page_set_slab(page, slab);
L
Linus Torvalds 已提交
2696
		page++;
2697
	} while (--nr_pages);
L
Linus Torvalds 已提交
2698 2699 2700 2701 2702 2703
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2704 2705
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2706
{
P
Pekka Enberg 已提交
2707 2708 2709 2710
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
	unsigned long ctor_flags;
2711
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2712

A
Andrew Morton 已提交
2713 2714 2715
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2716
	 */
C
Christoph Lameter 已提交
2717
	BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK | __GFP_NO_GROW));
2718
	if (flags & __GFP_NO_GROW)
L
Linus Torvalds 已提交
2719 2720 2721
		return 0;

	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2722
	local_flags = (flags & GFP_LEVEL_MASK);
L
Linus Torvalds 已提交
2723 2724 2725 2726 2727 2728 2729
	if (!(local_flags & __GFP_WAIT))
		/*
		 * Not allowed to sleep.  Need to tell a constructor about
		 * this - it might need to know...
		 */
		ctor_flags |= SLAB_CTOR_ATOMIC;

2730
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2731
	check_irq_off();
2732 2733
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2734 2735

	/* Get colour for the slab, and cal the next value. */
2736 2737 2738 2739 2740
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2741

2742
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2755 2756 2757
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2758
	 */
2759 2760
	if (!objp)
		objp = kmem_getpages(cachep, flags, nodeid);
A
Andrew Morton 已提交
2761
	if (!objp)
L
Linus Torvalds 已提交
2762 2763 2764
		goto failed;

	/* Get slab management. */
2765 2766
	slabp = alloc_slabmgmt(cachep, objp, offset,
			local_flags & ~GFP_THISNODE, nodeid);
A
Andrew Morton 已提交
2767
	if (!slabp)
L
Linus Torvalds 已提交
2768 2769
		goto opps1;

2770
	slabp->nodeid = nodeid;
2771
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2772 2773 2774 2775 2776 2777

	cache_init_objs(cachep, slabp, ctor_flags);

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2778
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2779 2780

	/* Make slab active. */
2781
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2782
	STATS_INC_GROWN(cachep);
2783 2784
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2785
	return 1;
A
Andrew Morton 已提交
2786
opps1:
L
Linus Torvalds 已提交
2787
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2788
failed:
L
Linus Torvalds 已提交
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 * - destructor calls, for caches with POISON+dtor
 */
static void kfree_debugcheck(const void *objp)
{
	struct page *page;

	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2808 2809
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2810 2811 2812
	}
	page = virt_to_page(objp);
	if (!PageSlab(page)) {
P
Pekka Enberg 已提交
2813 2814
		printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
		       (unsigned long)objp);
L
Linus Torvalds 已提交
2815 2816 2817 2818
		BUG();
	}
}

2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
	unsigned long redzone1, redzone2;

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

	printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
			obj, redzone1, redzone2);
}

2841
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2842
				   void *caller)
L
Linus Torvalds 已提交
2843 2844 2845 2846 2847
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2848
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2849 2850 2851
	kfree_debugcheck(objp);
	page = virt_to_page(objp);

2852
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2853 2854

	if (cachep->flags & SLAB_RED_ZONE) {
2855
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2856 2857 2858 2859 2860 2861
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2862
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2863 2864

	BUG_ON(objnr >= cachep->num);
2865
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2866 2867

	if (cachep->flags & SLAB_DEBUG_INITIAL) {
A
Andrew Morton 已提交
2868 2869 2870 2871
		/*
		 * Need to call the slab's constructor so the caller can
		 * perform a verify of its state (debugging).  Called without
		 * the cache-lock held.
L
Linus Torvalds 已提交
2872
		 */
2873
		cachep->ctor(objp + obj_offset(cachep),
P
Pekka Enberg 已提交
2874
			     cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
L
Linus Torvalds 已提交
2875 2876 2877 2878 2879
	}
	if (cachep->flags & SLAB_POISON && cachep->dtor) {
		/* we want to cache poison the object,
		 * call the destruction callback
		 */
2880
		cachep->dtor(objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
2881
	}
2882 2883 2884
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2885 2886
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
2887
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2888
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2889
			kernel_map_pages(virt_to_page(objp),
2890
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2901
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2902 2903 2904
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2905

L
Linus Torvalds 已提交
2906 2907 2908 2909 2910 2911 2912
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2913 2914 2915 2916
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
2917
		for (i = 0;
2918
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2919
		     i++) {
A
Andrew Morton 已提交
2920
			if (i % 16 == 0)
L
Linus Torvalds 已提交
2921
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2922
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2934
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2935 2936 2937 2938
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
2939 2940 2941
	int node;

	node = numa_node_id();
L
Linus Torvalds 已提交
2942 2943

	check_irq_off();
2944
	ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
2945
retry:
L
Linus Torvalds 已提交
2946 2947
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2948 2949 2950 2951
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2952 2953 2954
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
2955
	l3 = cachep->nodelists[node];
2956 2957 2958

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2959

2960 2961 2962 2963
	/* See if we can refill from the shared array */
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
		goto alloc_done;

L
Linus Torvalds 已提交
2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2984
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
P
Pekka Enberg 已提交
2985
							    node);
L
Linus Torvalds 已提交
2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
2997
must_grow:
L
Linus Torvalds 已提交
2998
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
2999
alloc_done:
3000
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3001 3002 3003

	if (unlikely(!ac->avail)) {
		int x;
3004
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3005

A
Andrew Morton 已提交
3006
		/* cache_grow can reenable interrupts, then ac could change. */
3007
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
3008
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
3009 3010
			return NULL;

A
Andrew Morton 已提交
3011
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3012 3013 3014
			goto retry;
	}
	ac->touched = 1;
3015
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3016 3017
}

A
Andrew Morton 已提交
3018 3019
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3020 3021 3022 3023 3024 3025 3026 3027
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3028 3029
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
3030
{
P
Pekka Enberg 已提交
3031
	if (!objp)
L
Linus Torvalds 已提交
3032
		return objp;
P
Pekka Enberg 已提交
3033
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3034
#ifdef CONFIG_DEBUG_PAGEALLOC
3035
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3036
			kernel_map_pages(virt_to_page(objp),
3037
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3049 3050 3051 3052
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3053
			printk(KERN_ERR
A
Andrew Morton 已提交
3054 3055 3056
				"%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3057 3058 3059 3060
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

		slabp = page_get_slab(virt_to_page(objp));
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3071
	objp += obj_offset(cachep);
L
Linus Torvalds 已提交
3072
	if (cachep->ctor && cachep->flags & SLAB_POISON) {
P
Pekka Enberg 已提交
3073
		unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
L
Linus Torvalds 已提交
3074 3075 3076 3077 3078

		if (!(flags & __GFP_WAIT))
			ctor_flags |= SLAB_CTOR_ATOMIC;

		cachep->ctor(objp, cachep, ctor_flags);
P
Pekka Enberg 已提交
3079
	}
3080 3081 3082 3083 3084 3085
#if ARCH_SLAB_MINALIGN
	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
		       objp, ARCH_SLAB_MINALIGN);
	}
#endif
L
Linus Torvalds 已提交
3086 3087 3088 3089 3090 3091
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
#ifdef CONFIG_FAILSLAB

static struct failslab_attr {

	struct fault_attr attr;

	u32 ignore_gfp_wait;
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
	struct dentry *ignore_gfp_wait_file;
#endif

} failslab = {
	.attr = FAULT_ATTR_INITIALIZER,
3105
	.ignore_gfp_wait = 1,
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
};

static int __init setup_failslab(char *str)
{
	return setup_fault_attr(&failslab.attr, str);
}
__setup("failslab=", setup_failslab);

static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
{
	if (cachep == &cache_cache)
		return 0;
	if (flags & __GFP_NOFAIL)
		return 0;
	if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
		return 0;

	return should_fail(&failslab.attr, obj_size(cachep));
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init failslab_debugfs(void)
{
	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
	struct dentry *dir;
	int err;

       	err = init_fault_attr_dentries(&failslab.attr, "failslab");
	if (err)
		return err;
	dir = failslab.attr.dentries.dir;

	failslab.ignore_gfp_wait_file =
		debugfs_create_bool("ignore-gfp-wait", mode, dir,
				      &failslab.ignore_gfp_wait);

	if (!failslab.ignore_gfp_wait_file) {
		err = -ENOMEM;
		debugfs_remove(failslab.ignore_gfp_wait_file);
		cleanup_fault_attr_dentries(&failslab.attr);
	}

	return err;
}

late_initcall(failslab_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAILSLAB */

static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
{
	return 0;
}

#endif /* CONFIG_FAILSLAB */

3165
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3166
{
P
Pekka Enberg 已提交
3167
	void *objp;
L
Linus Torvalds 已提交
3168 3169
	struct array_cache *ac;

3170
	check_irq_off();
3171 3172 3173 3174

	if (should_failslab(cachep, flags))
		return NULL;

3175
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3176 3177 3178
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
3179
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3180 3181 3182 3183
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
3184 3185 3186
	return objp;
}

A
Andrew Morton 已提交
3187 3188
static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
						gfp_t flags, void *caller)
3189 3190
{
	unsigned long save_flags;
3191
	void *objp = NULL;
3192 3193 3194 3195

	cache_alloc_debugcheck_before(cachep, flags);

	local_irq_save(save_flags);
3196

3197 3198
	if (unlikely(NUMA_BUILD &&
			current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY)))
3199 3200 3201 3202
		objp = alternate_node_alloc(cachep, flags);

	if (!objp)
		objp = ____cache_alloc(cachep, flags);
3203 3204
	/*
	 * We may just have run out of memory on the local node.
3205
	 * ____cache_alloc_node() knows how to locate memory on other nodes
3206 3207
	 */
 	if (NUMA_BUILD && !objp)
3208
 		objp = ____cache_alloc_node(cachep, flags, numa_node_id());
L
Linus Torvalds 已提交
3209
	local_irq_restore(save_flags);
3210
	objp = cache_alloc_debugcheck_after(cachep, flags, objp,
3211
					    caller);
3212
	prefetchw(objp);
L
Linus Torvalds 已提交
3213 3214 3215
	return objp;
}

3216
#ifdef CONFIG_NUMA
3217
/*
3218
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3219 3220 3221 3222 3223 3224 3225 3226
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3227
	if (in_interrupt() || (flags & __GFP_THISNODE))
3228 3229 3230 3231 3232 3233 3234
		return NULL;
	nid_alloc = nid_here = numa_node_id();
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
		nid_alloc = cpuset_mem_spread_node();
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
	if (nid_alloc != nid_here)
3235
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3236 3237 3238
	return NULL;
}

3239 3240
/*
 * Fallback function if there was no memory available and no objects on a
3241 3242 3243 3244 3245
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3246 3247 3248 3249 3250 3251 3252
 */
void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
{
	struct zonelist *zonelist = &NODE_DATA(slab_node(current->mempolicy))
					->node_zonelists[gfp_zone(flags)];
	struct zone **z;
	void *obj = NULL;
3253
	int nid;
3254

3255 3256 3257 3258 3259
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3260
	for (z = zonelist->zones; *z && !obj; z++) {
3261
		nid = zone_to_nid(*z);
3262

3263
		if (cpuset_zone_allowed(*z, flags | __GFP_HARDWALL) &&
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
			cache->nodelists[nid] &&
			cache->nodelists[nid]->free_objects)
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
	}

	if (!obj) {
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
		obj = kmem_getpages(cache, flags, -1);
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
				kmem_freepages(cache, obj);
				obj = NULL;
			}
		}
3298
	}
3299 3300 3301
	return obj;
}

3302 3303
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3304
 */
3305
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3306
				int nodeid)
3307 3308
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3309 3310 3311 3312 3313 3314 3315 3316
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3317
retry:
3318
	check_irq_off();
P
Pekka Enberg 已提交
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3338
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3339 3340 3341 3342 3343
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3344
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3345
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3346
	else
P
Pekka Enberg 已提交
3347
		list_add(&slabp->list, &l3->slabs_partial);
3348

P
Pekka Enberg 已提交
3349 3350
	spin_unlock(&l3->list_lock);
	goto done;
3351

A
Andrew Morton 已提交
3352
must_grow:
P
Pekka Enberg 已提交
3353
	spin_unlock(&l3->list_lock);
3354
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3355 3356
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3357

3358 3359 3360 3361 3362
	if (!(flags & __GFP_THISNODE))
		/* Unable to grow the cache. Fall back to other nodes. */
		return fallback_alloc(cachep, flags);

	return NULL;
3363

A
Andrew Morton 已提交
3364
done:
P
Pekka Enberg 已提交
3365
	return obj;
3366 3367 3368 3369 3370 3371
}
#endif

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3372
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3373
		       int node)
L
Linus Torvalds 已提交
3374 3375
{
	int i;
3376
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3377 3378 3379 3380 3381

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3382
		slabp = virt_to_slab(objp);
3383
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3384
		list_del(&slabp->list);
3385
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3386
		check_slabp(cachep, slabp);
3387
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3388
		STATS_DEC_ACTIVE(cachep);
3389
		l3->free_objects++;
L
Linus Torvalds 已提交
3390 3391 3392 3393
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3394 3395
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3396 3397 3398 3399 3400 3401
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3402 3403
				slab_destroy(cachep, slabp);
			} else {
3404
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3405 3406 3407 3408 3409 3410
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3411
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3412 3413 3414 3415
		}
	}
}

3416
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3417 3418
{
	int batchcount;
3419
	struct kmem_list3 *l3;
3420
	int node = numa_node_id();
L
Linus Torvalds 已提交
3421 3422 3423 3424 3425 3426

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3427
	l3 = cachep->nodelists[node];
3428
	spin_lock(&l3->list_lock);
3429 3430
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3431
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3432 3433 3434
		if (max) {
			if (batchcount > max)
				batchcount = max;
3435
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3436
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3437 3438 3439 3440 3441
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3442
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3443
free_done:
L
Linus Torvalds 已提交
3444 3445 3446 3447 3448
#if STATS
	{
		int i = 0;
		struct list_head *p;

3449 3450
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3462
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3463
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3464
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3465 3466 3467
}

/*
A
Andrew Morton 已提交
3468 3469
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3470
 */
3471
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3472
{
3473
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3474 3475 3476 3477

	check_irq_off();
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

3478
	if (cache_free_alien(cachep, objp))
3479 3480
		return;

L
Linus Torvalds 已提交
3481 3482
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3483
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3484 3485 3486 3487
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3488
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3500
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3501
{
3502
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3503 3504 3505
}
EXPORT_SYMBOL(kmem_cache_alloc);

3506
/**
3507
 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522
 * @cache: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache and set the allocated memory to zero.
 * The flags are only relevant if the cache has no available objects.
 */
void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
{
	void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
	if (ret)
		memset(ret, 0, obj_size(cache));
	return ret;
}
EXPORT_SYMBOL(kmem_cache_zalloc);

L
Linus Torvalds 已提交
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
/**
 * kmem_ptr_validate - check if an untrusted pointer might
 *	be a slab entry.
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
 * This verifies that the untrusted pointer looks sane:
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3537
int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
L
Linus Torvalds 已提交
3538
{
P
Pekka Enberg 已提交
3539
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
3540
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
3541
	unsigned long align_mask = BYTES_PER_WORD - 1;
3542
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3558
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3559 3560
		goto out;
	return 1;
A
Andrew Morton 已提交
3561
out:
L
Linus Torvalds 已提交
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571
	return 0;
}

#ifdef CONFIG_NUMA
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
3572 3573 3574 3575
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
L
Linus Torvalds 已提交
3576
 */
3577 3578 3579
static __always_inline void *
__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
		int nodeid, void *caller)
L
Linus Torvalds 已提交
3580
{
3581
	unsigned long save_flags;
3582
	void *ptr = NULL;
L
Linus Torvalds 已提交
3583

3584 3585
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
3586

3587 3588
	if (unlikely(nodeid == -1))
		nodeid = numa_node_id();
3589

3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610
	if (likely(cachep->nodelists[nodeid])) {
		if (nodeid == numa_node_id()) {
			/*
			 * Use the locally cached objects if possible.
			 * However ____cache_alloc does not allow fallback
			 * to other nodes. It may fail while we still have
			 * objects on other nodes available.
			 */
			ptr = ____cache_alloc(cachep, flags);
		}
		if (!ptr) {
			/* ___cache_alloc_node can fall back to other nodes */
			ptr = ____cache_alloc_node(cachep, flags, nodeid);
		}
	} else {
		/* Node not bootstrapped yet */
		if (!(flags & __GFP_THISNODE))
			ptr = fallback_alloc(cachep, flags);
	}

	local_irq_restore(save_flags);
3611
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
L
Linus Torvalds 已提交
3612

3613
	return ptr;
L
Linus Torvalds 已提交
3614
}
3615 3616 3617 3618 3619 3620

void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
	return __cache_alloc_node(cachep, flags, nodeid,
			__builtin_return_address(0));
}
L
Linus Torvalds 已提交
3621 3622
EXPORT_SYMBOL(kmem_cache_alloc_node);

3623 3624
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3625
{
3626
	struct kmem_cache *cachep;
3627 3628 3629 3630 3631 3632

	cachep = kmem_find_general_cachep(size, flags);
	if (unlikely(cachep == NULL))
		return NULL;
	return kmem_cache_alloc_node(cachep, flags, node);
}
3633 3634 3635 3636 3637 3638 3639

#ifdef CONFIG_DEBUG_SLAB
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node,
			__builtin_return_address(0));
}
3640
EXPORT_SYMBOL(__kmalloc_node);
3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
		int node, void *caller)
{
	return __do_kmalloc_node(size, flags, node, caller);
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node, NULL);
}
EXPORT_SYMBOL(__kmalloc_node);
#endif /* CONFIG_DEBUG_SLAB */
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3656 3657

/**
3658
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3659
 * @size: how many bytes of memory are required.
3660
 * @flags: the type of memory to allocate (see kmalloc).
3661
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3662
 */
3663 3664
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3665
{
3666
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3667

3668 3669 3670 3671 3672 3673
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3674 3675
	if (unlikely(cachep == NULL))
		return NULL;
3676 3677 3678 3679
	return __cache_alloc(cachep, flags, caller);
}


3680
#ifdef CONFIG_DEBUG_SLAB
3681 3682
void *__kmalloc(size_t size, gfp_t flags)
{
3683
	return __do_kmalloc(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3684 3685 3686
}
EXPORT_SYMBOL(__kmalloc);

3687 3688 3689 3690 3691
void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
{
	return __do_kmalloc(size, flags, caller);
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3692 3693 3694 3695 3696 3697 3698

#else
void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
3699 3700
#endif

L
Linus Torvalds 已提交
3701 3702 3703 3704 3705 3706 3707 3708
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3709
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3710 3711 3712
{
	unsigned long flags;

3713 3714
	BUG_ON(virt_to_cache(objp) != cachep);

L
Linus Torvalds 已提交
3715
	local_irq_save(flags);
3716
	__cache_free(cachep, objp);
L
Linus Torvalds 已提交
3717 3718 3719 3720 3721 3722 3723 3724
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3725 3726
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3727 3728 3729 3730 3731
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3732
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3733 3734 3735 3736 3737 3738
	unsigned long flags;

	if (unlikely(!objp))
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3739
	c = virt_to_cache(objp);
3740
	debug_check_no_locks_freed(objp, obj_size(c));
3741
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3742 3743 3744 3745
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3746
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3747
{
3748
	return obj_size(cachep);
L
Linus Torvalds 已提交
3749 3750 3751
}
EXPORT_SYMBOL(kmem_cache_size);

3752
const char *kmem_cache_name(struct kmem_cache *cachep)
3753 3754 3755 3756 3757
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3758
/*
3759
 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3760
 */
3761
static int alloc_kmemlist(struct kmem_cache *cachep)
3762 3763 3764
{
	int node;
	struct kmem_list3 *l3;
3765
	struct array_cache *new_shared;
3766
	struct array_cache **new_alien = NULL;
3767 3768

	for_each_online_node(node) {
3769

3770 3771 3772 3773 3774
                if (use_alien_caches) {
                        new_alien = alloc_alien_cache(node, cachep->limit);
                        if (!new_alien)
                                goto fail;
                }
3775

3776 3777
		new_shared = alloc_arraycache(node,
				cachep->shared*cachep->batchcount,
A
Andrew Morton 已提交
3778
					0xbaadf00d);
3779 3780
		if (!new_shared) {
			free_alien_cache(new_alien);
3781
			goto fail;
3782
		}
3783

A
Andrew Morton 已提交
3784 3785
		l3 = cachep->nodelists[node];
		if (l3) {
3786 3787
			struct array_cache *shared = l3->shared;

3788 3789
			spin_lock_irq(&l3->list_lock);

3790
			if (shared)
3791 3792
				free_block(cachep, shared->entry,
						shared->avail, node);
3793

3794 3795
			l3->shared = new_shared;
			if (!l3->alien) {
3796 3797 3798
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3799
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3800
					cachep->batchcount + cachep->num;
3801
			spin_unlock_irq(&l3->list_lock);
3802
			kfree(shared);
3803 3804 3805
			free_alien_cache(new_alien);
			continue;
		}
A
Andrew Morton 已提交
3806
		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3807 3808 3809
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3810
			goto fail;
3811
		}
3812 3813 3814

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3815
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3816
		l3->shared = new_shared;
3817
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3818
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3819
					cachep->batchcount + cachep->num;
3820 3821
		cachep->nodelists[node] = l3;
	}
3822
	return 0;
3823

A
Andrew Morton 已提交
3824
fail:
3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3840
	return -ENOMEM;
3841 3842
}

L
Linus Torvalds 已提交
3843
struct ccupdate_struct {
3844
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3845 3846 3847 3848 3849
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3850
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3851 3852 3853
	struct array_cache *old;

	check_irq_off();
3854
	old = cpu_cache_get(new->cachep);
3855

L
Linus Torvalds 已提交
3856 3857 3858 3859
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3860
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
3861 3862
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared)
L
Linus Torvalds 已提交
3863
{
3864
	struct ccupdate_struct *new;
3865
	int i;
L
Linus Torvalds 已提交
3866

3867 3868 3869 3870
	new = kzalloc(sizeof(*new), GFP_KERNEL);
	if (!new)
		return -ENOMEM;

3871
	for_each_online_cpu(i) {
3872
		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
A
Andrew Morton 已提交
3873
						batchcount);
3874
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3875
			for (i--; i >= 0; i--)
3876 3877
				kfree(new->new[i]);
			kfree(new);
3878
			return -ENOMEM;
L
Linus Torvalds 已提交
3879 3880
		}
	}
3881
	new->cachep = cachep;
L
Linus Torvalds 已提交
3882

3883
	on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3884

L
Linus Torvalds 已提交
3885 3886 3887
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3888
	cachep->shared = shared;
L
Linus Torvalds 已提交
3889

3890
	for_each_online_cpu(i) {
3891
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3892 3893
		if (!ccold)
			continue;
3894
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3895
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3896
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
3897 3898
		kfree(ccold);
	}
3899
	kfree(new);
3900
	return alloc_kmemlist(cachep);
L
Linus Torvalds 已提交
3901 3902
}

3903
/* Called with cache_chain_mutex held always */
3904
static int enable_cpucache(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3905 3906 3907 3908
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
3909 3910
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3911 3912
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3913
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3914 3915 3916 3917
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3918
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
3919
		limit = 1;
3920
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
3921
		limit = 8;
3922
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
3923
		limit = 24;
3924
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
3925 3926 3927 3928
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3929 3930
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3931 3932 3933 3934 3935 3936 3937 3938 3939
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
#ifdef CONFIG_SMP
3940
	if (cachep->buffer_size <= PAGE_SIZE)
L
Linus Torvalds 已提交
3941 3942 3943 3944
		shared = 8;
#endif

#if DEBUG
A
Andrew Morton 已提交
3945 3946 3947
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3948 3949 3950 3951
	 */
	if (limit > 32)
		limit = 32;
#endif
P
Pekka Enberg 已提交
3952
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
L
Linus Torvalds 已提交
3953 3954
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3955
		       cachep->name, -err);
3956
	return err;
L
Linus Torvalds 已提交
3957 3958
}

3959 3960
/*
 * Drain an array if it contains any elements taking the l3 lock only if
3961 3962
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
3963 3964 3965
 */
void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
3966 3967 3968
{
	int tofree;

3969 3970
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
3971 3972
	if (ac->touched && !force) {
		ac->touched = 0;
3973
	} else {
3974
		spin_lock_irq(&l3->list_lock);
3975 3976 3977 3978 3979 3980 3981 3982 3983
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
3984
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3985 3986 3987 3988 3989
	}
}

/**
 * cache_reap - Reclaim memory from caches.
3990
 * @unused: unused parameter
L
Linus Torvalds 已提交
3991 3992 3993 3994 3995 3996
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
3997 3998
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
3999
 */
4000
static void cache_reap(struct work_struct *unused)
L
Linus Torvalds 已提交
4001
{
4002
	struct kmem_cache *searchp;
4003
	struct kmem_list3 *l3;
4004
	int node = numa_node_id();
L
Linus Torvalds 已提交
4005

I
Ingo Molnar 已提交
4006
	if (!mutex_trylock(&cache_chain_mutex)) {
L
Linus Torvalds 已提交
4007
		/* Give up. Setup the next iteration. */
P
Pekka Enberg 已提交
4008 4009
		schedule_delayed_work(&__get_cpu_var(reap_work),
				      REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
4010 4011 4012
		return;
	}

4013
	list_for_each_entry(searchp, &cache_chain, next) {
L
Linus Torvalds 已提交
4014 4015
		check_irq_on();

4016 4017 4018 4019 4020
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4021
		l3 = searchp->nodelists[node];
4022

4023
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4024

4025
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4026

4027 4028 4029 4030
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4031
		if (time_after(l3->next_reap, jiffies))
4032
			goto next;
L
Linus Torvalds 已提交
4033

4034
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4035

4036
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4037

4038
		if (l3->free_touched)
4039
			l3->free_touched = 0;
4040 4041
		else {
			int freed;
L
Linus Torvalds 已提交
4042

4043 4044 4045 4046
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4047
next:
L
Linus Torvalds 已提交
4048 4049 4050
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
4051
	mutex_unlock(&cache_chain_mutex);
4052
	next_reap_node();
4053
	refresh_cpu_vm_stats(smp_processor_id());
A
Andrew Morton 已提交
4054
	/* Set up the next iteration */
4055
	schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
4056 4057 4058 4059
}

#ifdef CONFIG_PROC_FS

4060
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
4061
{
4062 4063 4064 4065
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
4066
#if STATS
4067
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
4068
#else
4069
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
4070
#endif
4071 4072 4073 4074
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
4075
#if STATS
4076
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4077
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4078
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
4079
#endif
4080 4081 4082 4083 4084 4085 4086 4087
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

I
Ingo Molnar 已提交
4088
	mutex_lock(&cache_chain_mutex);
4089 4090
	if (!n)
		print_slabinfo_header(m);
L
Linus Torvalds 已提交
4091 4092 4093 4094 4095 4096
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
4097
	return list_entry(p, struct kmem_cache, next);
L
Linus Torvalds 已提交
4098 4099 4100 4101
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
4102
	struct kmem_cache *cachep = p;
L
Linus Torvalds 已提交
4103
	++*pos;
A
Andrew Morton 已提交
4104 4105
	return cachep->next.next == &cache_chain ?
		NULL : list_entry(cachep->next.next, struct kmem_cache, next);
L
Linus Torvalds 已提交
4106 4107 4108 4109
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
4110
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4111 4112 4113 4114
}

static int s_show(struct seq_file *m, void *p)
{
4115
	struct kmem_cache *cachep = p;
P
Pekka Enberg 已提交
4116 4117 4118 4119 4120
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4121
	const char *name;
L
Linus Torvalds 已提交
4122
	char *error = NULL;
4123 4124
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4125 4126 4127

	active_objs = 0;
	num_slabs = 0;
4128 4129 4130 4131 4132
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4133 4134
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4135

4136
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4137 4138 4139 4140 4141
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4142
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4143 4144 4145 4146 4147 4148 4149
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4150
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4151 4152 4153 4154 4155
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4156 4157
		if (l3->shared)
			shared_avail += l3->shared->avail;
4158

4159
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4160
	}
P
Pekka Enberg 已提交
4161 4162
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4163
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4164 4165
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4166
	name = cachep->name;
L
Linus Torvalds 已提交
4167 4168 4169 4170
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4171
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
4172
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4173
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4174
		   cachep->limit, cachep->batchcount, cachep->shared);
4175
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4176
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4177
#if STATS
P
Pekka Enberg 已提交
4178
	{			/* list3 stats */
L
Linus Torvalds 已提交
4179 4180 4181 4182 4183 4184 4185
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4186
		unsigned long node_frees = cachep->node_frees;
4187
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4188

4189
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4190
				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
A
Andrew Morton 已提交
4191
				reaped, errors, max_freeable, node_allocs,
4192
				node_frees, overflows);
L
Linus Torvalds 已提交
4193 4194 4195 4196 4197 4198 4199 4200 4201
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4202
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

4223
const struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4224 4225 4226 4227
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4228 4229 4230 4231 4232 4233 4234 4235 4236 4237
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
4238 4239
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4240
{
P
Pekka Enberg 已提交
4241
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4242
	int limit, batchcount, shared, res;
4243
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4244

L
Linus Torvalds 已提交
4245 4246 4247 4248
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4249
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4250 4251 4252 4253 4254 4255 4256 4257 4258 4259

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
4260
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4261
	res = -EINVAL;
4262
	list_for_each_entry(cachep, &cache_chain, next) {
L
Linus Torvalds 已提交
4263
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4264 4265
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4266
				res = 0;
L
Linus Torvalds 已提交
4267
			} else {
4268
				res = do_tune_cpucache(cachep, limit,
P
Pekka Enberg 已提交
4269
						       batchcount, shared);
L
Linus Torvalds 已提交
4270 4271 4272 4273
			}
			break;
		}
	}
I
Ingo Molnar 已提交
4274
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4275 4276 4277 4278
	if (res >= 0)
		res = count;
	return res;
}
4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

	mutex_lock(&cache_chain_mutex);
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
	return list_entry(p, struct kmem_cache, next);
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	char *modname;
	const char *name;
	unsigned long offset, size;
	char namebuf[KSYM_NAME_LEN+1];

	name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);

	if (name) {
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
		if (modname)
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
	struct kmem_cache *cachep = p;
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4388
		list_for_each_entry(slabp, &l3->slabs_full, list)
4389
			handle_slab(n, cachep, slabp);
4390
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4417

4418 4419 4420
	return 0;
}

4421
const struct seq_operations slabstats_op = {
4422 4423 4424 4425 4426 4427
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
#endif
L
Linus Torvalds 已提交
4428 4429
#endif

4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
L
Linus Torvalds 已提交
4442 4443
unsigned int ksize(const void *objp)
{
4444 4445
	if (unlikely(objp == NULL))
		return 0;
L
Linus Torvalds 已提交
4446

4447
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4448
}