slab.c 98.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
 * slabs and you must pass objects with the same intializations to
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
 * The c_cpuarray may not be read with enabled local interrupts - 
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
 */

#include	<linux/config.h>
#include	<linux/slab.h>
#include	<linux/mm.h>
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
104
#include	<linux/string.h>
105
#include	<linux/nodemask.h>
106
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
107
#include	<linux/mutex.h>
L
Linus Torvalds 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

#include	<asm/uaccess.h>
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
 *		  SLAB_RED_ZONE & SLAB_POISON.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)

#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
 * Note that this flag disables some debug features.
 */
#define ARCH_KMALLOC_MINALIGN 0
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
			 SLAB_NO_REAP | SLAB_CACHE_DMA | \
			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
			 SLAB_DESTROY_BY_RCU)
#else
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
			 SLAB_DESTROY_BY_RCU)
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

203
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-2)

/* Max number of objs-per-slab for caches which use off-slab slabs.
 * Needed to avoid a possible looping condition in cache_grow().
 */
static unsigned long offslab_limit;

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
221 222 223 224 225 226
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
246
	struct rcu_head head;
247
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
248
	void *addr;
L
Linus Torvalds 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
268 269 270 271 272 273 274
	spinlock_t lock;
	void *entry[0];		/*
				 * Must have this definition in here for the proper
				 * alignment of array_cache. Also simplifies accessing
				 * the entries.
				 * [0] is for gcc 2.95. It should really be [].
				 */
L
Linus Torvalds 已提交
275 276 277 278 279 280 281 282
};

/* bootstrap: The caches do not work without cpuarrays anymore,
 * but the cpuarrays are allocated from the generic caches...
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
283
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
284 285 286
};

/*
287
 * The slab lists for all objects.
L
Linus Torvalds 已提交
288 289
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
290 291 292 293 294 295 296 297 298 299
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned long next_reap;
	int free_touched;
	unsigned int free_limit;
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
L
Linus Torvalds 已提交
300 301
};

302 303 304 305 306 307 308 309 310 311
/*
 * Need this for bootstrapping a per node allocator.
 */
#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
#define	SIZE_AC 1
#define	SIZE_L3 (1 + MAX_NUMNODES)

/*
312
 * This function must be completely optimized away if
313 314 315 316
 * a constant is passed to it. Mostly the same as
 * what is in linux/slab.h except it returns an
 * index.
 */
317
static __always_inline int index_of(const size_t size)
318
{
319 320
	extern void __bad_size(void);

321 322 323 324 325 326 327 328 329 330
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
#include "linux/kmalloc_sizes.h"
#undef CACHE
331
		__bad_size();
332
	} else
333
		__bad_size();
334 335 336 337 338
	return 0;
}

#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
339

P
Pekka Enberg 已提交
340
static void kmem_list3_init(struct kmem_list3 *parent)
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

#define MAKE_LIST(cachep, listp, slab, nodeid)	\
	do {	\
		INIT_LIST_HEAD(listp);		\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
	} while (0)

#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)			\
	do {					\
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
364 365

/*
366
 * struct kmem_cache
L
Linus Torvalds 已提交
367 368 369
 *
 * manages a cache.
 */
P
Pekka Enberg 已提交
370

371
struct kmem_cache {
L
Linus Torvalds 已提交
372
/* 1) per-cpu data, touched during every alloc/free */
P
Pekka Enberg 已提交
373 374 375 376
	struct array_cache *array[NR_CPUS];
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
377
	unsigned int buffer_size;
378
/* 2) touched by every alloc & free from the backend */
P
Pekka Enberg 已提交
379 380 381 382
	struct kmem_list3 *nodelists[MAX_NUMNODES];
	unsigned int flags;	/* constant flags */
	unsigned int num;	/* # of objs per slab */
	spinlock_t spinlock;
L
Linus Torvalds 已提交
383 384 385

/* 3) cache_grow/shrink */
	/* order of pgs per slab (2^n) */
P
Pekka Enberg 已提交
386
	unsigned int gfporder;
L
Linus Torvalds 已提交
387 388

	/* force GFP flags, e.g. GFP_DMA */
P
Pekka Enberg 已提交
389
	gfp_t gfpflags;
L
Linus Torvalds 已提交
390

P
Pekka Enberg 已提交
391 392 393
	size_t colour;		/* cache colouring range */
	unsigned int colour_off;	/* colour offset */
	unsigned int colour_next;	/* cache colouring */
394
	struct kmem_cache *slabp_cache;
P
Pekka Enberg 已提交
395 396
	unsigned int slab_size;
	unsigned int dflags;	/* dynamic flags */
L
Linus Torvalds 已提交
397 398

	/* constructor func */
399
	void (*ctor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
400 401

	/* de-constructor func */
402
	void (*dtor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
403 404

/* 4) cache creation/removal */
P
Pekka Enberg 已提交
405 406
	const char *name;
	struct list_head next;
L
Linus Torvalds 已提交
407 408 409

/* 5) statistics */
#if STATS
P
Pekka Enberg 已提交
410 411 412 413 414 415 416 417 418 419 420 421 422
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
L
Linus Torvalds 已提交
423 424
#endif
#if DEBUG
425 426 427 428 429 430 431 432
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
L
Linus Torvalds 已提交
433 434 435 436 437 438 439 440 441 442
#endif
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
/* Optimization question: fewer reaps means less 
 * probability for unnessary cpucache drain/refill cycles.
 *
A
Adrian Bunk 已提交
443
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
#define	STATS_INC_REAPED(x)	((x)->reaped++)
#define	STATS_SET_HIGH(x)	do { if ((x)->num_active > (x)->high_mark) \
					(x)->high_mark = (x)->num_active; \
				} while (0)
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
460
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
L
Linus Torvalds 已提交
461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
#define	STATS_SET_FREEABLE(x, i) \
				do { if ((x)->max_freeable < i) \
					(x)->max_freeable = i; \
				} while (0)

#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
#define	STATS_INC_REAPED(x)	do { } while (0)
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
479
#define	STATS_INC_NODEFREES(x)	do { } while (0)
L
Linus Torvalds 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
#define	STATS_SET_FREEABLE(x, i) \
				do { } while (0)

#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG
/* Magic nums for obj red zoning.
 * Placed in the first word before and the first word after an obj.
 */
#define	RED_INACTIVE	0x5A2CF071UL	/* when obj is inactive */
#define	RED_ACTIVE	0x170FC2A5UL	/* when obj is active */

/* ...and for poisoning */
#define	POISON_INUSE	0x5a	/* for use-uninitialised poisoning */
#define POISON_FREE	0x6b	/* for use-after-free poisoning */
#define	POISON_END	0xa5	/* end-byte of poisoning */

/* memory layout of objects:
 * 0		: objp
503
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
504 505
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
506
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
507
 * 		redzone word.
508 509 510
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
L
Linus Torvalds 已提交
511
 */
512
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
513
{
514
	return cachep->obj_offset;
L
Linus Torvalds 已提交
515 516
}

517
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
518
{
519
	return cachep->obj_size;
L
Linus Torvalds 已提交
520 521
}

522
static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
523 524
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
525
	return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
L
Linus Torvalds 已提交
526 527
}

528
static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
529 530 531
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
532
		return (unsigned long *)(objp + cachep->buffer_size -
P
Pekka Enberg 已提交
533
					 2 * BYTES_PER_WORD);
534
	return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
535 536
}

537
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
538 539
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
540
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
541 542 543 544
}

#else

545 546
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
L
Linus Torvalds 已提交
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
 * Maximum size of an obj (in 2^order pages)
 * and absolute limit for the gfp order.
 */
#if defined(CONFIG_LARGE_ALLOCS)
#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
#define	MAX_GFP_ORDER	13	/* up to 32Mb */
#elif defined(CONFIG_MMU)
#define	MAX_OBJ_ORDER	5	/* 32 pages */
#define	MAX_GFP_ORDER	5	/* 32 pages */
#else
#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
#define	MAX_GFP_ORDER	8	/* up to 1Mb */
#endif

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

575
/* Functions for storing/retrieving the cachep and or slab from the
L
Linus Torvalds 已提交
576 577 578
 * global 'mem_map'. These are used to find the slab an obj belongs to.
 * With kfree(), these are used to find the cache which an obj belongs to.
 */
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
598

599 600 601 602 603 604 605 606 607 608 609 610
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_slab(page);
}

L
Linus Torvalds 已提交
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
/* These are the default caches for kmalloc. Custom caches can have other sizes. */
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
629
	{NULL,}
L
Linus Torvalds 已提交
630 631 632 633
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
634
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
635
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
636
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
637 638

/* internal cache of cache description objs */
639
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
640 641 642
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
643
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
644 645 646
	.flags = SLAB_NO_REAP,
	.spinlock = SPIN_LOCK_UNLOCKED,
	.name = "kmem_cache",
L
Linus Torvalds 已提交
647
#if DEBUG
648
	.obj_size = sizeof(struct kmem_cache),
L
Linus Torvalds 已提交
649 650 651 652
#endif
};

/* Guard access to the cache-chain. */
I
Ingo Molnar 已提交
653
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
static struct list_head cache_chain;

/*
 * vm_enough_memory() looks at this to determine how many
 * slab-allocated pages are possibly freeable under pressure
 *
 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
 */
atomic_t slab_reclaim_pages;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
670 671
	PARTIAL_AC,
	PARTIAL_L3,
L
Linus Torvalds 已提交
672 673 674 675 676
	FULL
} g_cpucache_up;

static DEFINE_PER_CPU(struct work_struct, reap_work);

677 678
static void free_block(struct kmem_cache *cachep, void **objpp, int len, int node);
static void enable_cpucache(struct kmem_cache *cachep);
P
Pekka Enberg 已提交
679
static void cache_reap(void *unused);
680
static int __node_shrink(struct kmem_cache *cachep, int node);
L
Linus Torvalds 已提交
681

682
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
683 684 685 686
{
	return cachep->array[smp_processor_id()];
}

687
static inline struct kmem_cache *__find_general_cachep(size_t size, gfp_t gfpflags)
L
Linus Torvalds 已提交
688 689 690 691 692
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
693 694 695
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
696
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
697 698 699 700 701
#endif
	while (size > csizep->cs_size)
		csizep++;

	/*
702
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
703 704 705 706 707 708 709 710
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
	return csizep->cs_cachep;
}

711
struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
712 713 714 715 716
{
	return __find_general_cachep(size, gfpflags);
}
EXPORT_SYMBOL(kmem_find_general_cachep);

717
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
718
{
719 720
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
721

722 723 724 725 726 727 728 729 730
/* Calculate the number of objects and left-over bytes for a given
   buffer size. */
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
731

732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
780 781 782 783
}

#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)

784
static void __slab_error(const char *function, struct kmem_cache *cachep, char *msg)
L
Linus Torvalds 已提交
785 786
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
787
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
	dump_stack();
}

/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
static void __devinit start_cpu_timer(int cpu)
{
	struct work_struct *reap_work = &per_cpu(reap_work, cpu);

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
	if (keventd_up() && reap_work->func == NULL) {
		INIT_WORK(reap_work, cache_reap, NULL);
		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
	}
}

813
static struct array_cache *alloc_arraycache(int node, int entries,
P
Pekka Enberg 已提交
814
					    int batchcount)
L
Linus Torvalds 已提交
815
{
P
Pekka Enberg 已提交
816
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
817 818
	struct array_cache *nc = NULL;

819
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
L
Linus Torvalds 已提交
820 821 822 823 824
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
825
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
826 827 828 829
	}
	return nc;
}

830
#ifdef CONFIG_NUMA
831
static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
832

P
Pekka Enberg 已提交
833
static struct array_cache **alloc_alien_cache(int node, int limit)
834 835
{
	struct array_cache **ac_ptr;
P
Pekka Enberg 已提交
836
	int memsize = sizeof(void *) * MAX_NUMNODES;
837 838 839 840 841 842 843 844 845 846 847 848 849
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
P
Pekka Enberg 已提交
850
				for (i--; i <= 0; i--)
851 852 853 854 855 856 857 858 859
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
860
static void free_alien_cache(struct array_cache **ac_ptr)
861 862 863 864 865 866 867
{
	int i;

	if (!ac_ptr)
		return;

	for_each_node(i)
P
Pekka Enberg 已提交
868
	    kfree(ac_ptr[i]);
869 870 871 872

	kfree(ac_ptr);
}

873
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
874
				struct array_cache *ac, int node)
875 876 877 878 879
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
880
		free_block(cachep, ac->entry, ac->avail, node);
881 882 883 884 885
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

886
static void drain_alien_cache(struct kmem_cache *cachep, struct kmem_list3 *l3)
887
{
P
Pekka Enberg 已提交
888
	int i = 0;
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
		ac = l3->alien[i];
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
#else
#define alloc_alien_cache(node, limit) do { } while (0)
#define free_alien_cache(ac_ptr) do { } while (0)
#define drain_alien_cache(cachep, l3) do { } while (0)
#endif

L
Linus Torvalds 已提交
907
static int __devinit cpuup_callback(struct notifier_block *nfb,
P
Pekka Enberg 已提交
908
				    unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
909 910
{
	long cpu = (long)hcpu;
911
	struct kmem_cache *cachep;
912 913 914
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
	int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
915 916 917

	switch (action) {
	case CPU_UP_PREPARE:
I
Ingo Molnar 已提交
918
		mutex_lock(&cache_chain_mutex);
919 920 921 922 923 924
		/* we need to do this right in the beginning since
		 * alloc_arraycache's are going to use this list.
		 * kmalloc_node allows us to add the slab to the right
		 * kmem_list3 and not this cpu's kmem_list3
		 */

L
Linus Torvalds 已提交
925
		list_for_each_entry(cachep, &cache_chain, next) {
926 927 928 929 930 931
			/* setup the size64 kmemlist for cpu before we can
			 * begin anything. Make sure some other cpu on this
			 * node has not already allocated this
			 */
			if (!cachep->nodelists[node]) {
				if (!(l3 = kmalloc_node(memsize,
P
Pekka Enberg 已提交
932
							GFP_KERNEL, node)))
933 934 935
					goto bad;
				kmem_list3_init(l3);
				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
936
				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
937 938 939

				cachep->nodelists[node] = l3;
			}
L
Linus Torvalds 已提交
940

941 942
			spin_lock_irq(&cachep->nodelists[node]->list_lock);
			cachep->nodelists[node]->free_limit =
P
Pekka Enberg 已提交
943 944
			    (1 + nr_cpus_node(node)) *
			    cachep->batchcount + cachep->num;
945 946 947 948
			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
		}

		/* Now we can go ahead with allocating the shared array's
P
Pekka Enberg 已提交
949
		   & array cache's */
950
		list_for_each_entry(cachep, &cache_chain, next) {
951 952
			struct array_cache *nc;

953
			nc = alloc_arraycache(node, cachep->limit,
P
Pekka Enberg 已提交
954
					      cachep->batchcount);
L
Linus Torvalds 已提交
955 956 957 958
			if (!nc)
				goto bad;
			cachep->array[cpu] = nc;

959 960 961 962
			l3 = cachep->nodelists[node];
			BUG_ON(!l3);
			if (!l3->shared) {
				if (!(nc = alloc_arraycache(node,
P
Pekka Enberg 已提交
963 964 965 966
							    cachep->shared *
							    cachep->batchcount,
							    0xbaadf00d)))
					goto bad;
967 968

				/* we are serialised from CPU_DEAD or
P
Pekka Enberg 已提交
969
				   CPU_UP_CANCELLED by the cpucontrol lock */
970 971
				l3->shared = nc;
			}
L
Linus Torvalds 已提交
972
		}
I
Ingo Molnar 已提交
973
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
974 975 976 977 978 979 980 981
		break;
	case CPU_ONLINE:
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
		/* fall thru */
	case CPU_UP_CANCELED:
I
Ingo Molnar 已提交
982
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
983 984 985

		list_for_each_entry(cachep, &cache_chain, next) {
			struct array_cache *nc;
986
			cpumask_t mask;
L
Linus Torvalds 已提交
987

988
			mask = node_to_cpumask(node);
L
Linus Torvalds 已提交
989 990 991 992
			spin_lock_irq(&cachep->spinlock);
			/* cpu is dead; no one can alloc from it. */
			nc = cachep->array[cpu];
			cachep->array[cpu] = NULL;
993 994 995 996 997 998 999 1000 1001 1002
			l3 = cachep->nodelists[node];

			if (!l3)
				goto unlock_cache;

			spin_lock(&l3->list_lock);

			/* Free limit for this kmem_list3 */
			l3->free_limit -= cachep->batchcount;
			if (nc)
1003
				free_block(cachep, nc->entry, nc->avail, node);
1004 1005

			if (!cpus_empty(mask)) {
P
Pekka Enberg 已提交
1006 1007 1008
				spin_unlock(&l3->list_lock);
				goto unlock_cache;
			}
1009 1010 1011

			if (l3->shared) {
				free_block(cachep, l3->shared->entry,
P
Pekka Enberg 已提交
1012
					   l3->shared->avail, node);
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
				kfree(l3->shared);
				l3->shared = NULL;
			}
			if (l3->alien) {
				drain_alien_cache(cachep, l3);
				free_alien_cache(l3->alien);
				l3->alien = NULL;
			}

			/* free slabs belonging to this node */
			if (__node_shrink(cachep, node)) {
				cachep->nodelists[node] = NULL;
				spin_unlock(&l3->list_lock);
				kfree(l3);
			} else {
				spin_unlock(&l3->list_lock);
			}
P
Pekka Enberg 已提交
1030
		      unlock_cache:
L
Linus Torvalds 已提交
1031 1032 1033
			spin_unlock_irq(&cachep->spinlock);
			kfree(nc);
		}
I
Ingo Molnar 已提交
1034
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1035 1036 1037 1038
		break;
#endif
	}
	return NOTIFY_OK;
P
Pekka Enberg 已提交
1039
      bad:
I
Ingo Molnar 已提交
1040
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1041 1042 1043 1044 1045
	return NOTIFY_BAD;
}

static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };

1046 1047 1048
/*
 * swap the static kmem_list3 with kmalloced memory
 */
1049
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list, int nodeid)
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
{
	struct kmem_list3 *ptr;

	BUG_ON(cachep->nodelists[nodeid] != list);
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
	BUG_ON(!ptr);

	local_irq_disable();
	memcpy(ptr, list, sizeof(struct kmem_list3));
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
	local_irq_enable();
}

L
Linus Torvalds 已提交
1064 1065 1066 1067 1068 1069 1070 1071
/* Initialisation.
 * Called after the gfp() functions have been enabled, and before smp_init().
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1072 1073 1074 1075 1076 1077 1078
	int i;

	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
L
Linus Torvalds 已提交
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
1089
	 * 1) initialize the cache_cache cache: it contains the struct kmem_cache
L
Linus Torvalds 已提交
1090 1091
	 *    structures of all caches, except cache_cache itself: cache_cache
	 *    is statically allocated.
1092 1093 1094
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1095
	 * 2) Create the first kmalloc cache.
1096
	 *    The struct kmem_cache for the new cache is allocated normally.
1097 1098 1099
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1100 1101
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1102 1103 1104
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1105 1106 1107 1108 1109 1110 1111
	 */

	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1112
	cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
L
Linus Torvalds 已提交
1113

1114
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size, cache_line_size());
L
Linus Torvalds 已提交
1115

1116
	cache_estimate(0, cache_cache.buffer_size, cache_line_size(), 0,
P
Pekka Enberg 已提交
1117
		       &left_over, &cache_cache.num);
L
Linus Torvalds 已提交
1118 1119 1120
	if (!cache_cache.num)
		BUG();

P
Pekka Enberg 已提交
1121
	cache_cache.colour = left_over / cache_cache.colour_off;
L
Linus Torvalds 已提交
1122
	cache_cache.colour_next = 0;
P
Pekka Enberg 已提交
1123 1124
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1125 1126 1127 1128 1129

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

1130 1131 1132 1133 1134 1135
	/* Initialize the caches that provide memory for the array cache
	 * and the kmem_list3 structures first.
	 * Without this, further allocations will bug
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
P
Pekka Enberg 已提交
1136 1137 1138 1139
						      sizes[INDEX_AC].cs_size,
						      ARCH_KMALLOC_MINALIGN,
						      (ARCH_KMALLOC_FLAGS |
						       SLAB_PANIC), NULL, NULL);
1140 1141 1142

	if (INDEX_AC != INDEX_L3)
		sizes[INDEX_L3].cs_cachep =
P
Pekka Enberg 已提交
1143 1144 1145 1146 1147
		    kmem_cache_create(names[INDEX_L3].name,
				      sizes[INDEX_L3].cs_size,
				      ARCH_KMALLOC_MINALIGN,
				      (ARCH_KMALLOC_FLAGS | SLAB_PANIC), NULL,
				      NULL);
1148

L
Linus Torvalds 已提交
1149
	while (sizes->cs_size != ULONG_MAX) {
1150 1151
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1152 1153 1154
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1155 1156
		 * allow tighter packing of the smaller caches.
		 */
P
Pekka Enberg 已提交
1157
		if (!sizes->cs_cachep)
1158
			sizes->cs_cachep = kmem_cache_create(names->name,
P
Pekka Enberg 已提交
1159 1160 1161 1162 1163
							     sizes->cs_size,
							     ARCH_KMALLOC_MINALIGN,
							     (ARCH_KMALLOC_FLAGS
							      | SLAB_PANIC),
							     NULL, NULL);
L
Linus Torvalds 已提交
1164 1165 1166

		/* Inc off-slab bufctl limit until the ceiling is hit. */
		if (!(OFF_SLAB(sizes->cs_cachep))) {
P
Pekka Enberg 已提交
1167
			offslab_limit = sizes->cs_size - sizeof(struct slab);
L
Linus Torvalds 已提交
1168 1169 1170 1171
			offslab_limit /= sizeof(kmem_bufctl_t);
		}

		sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
P
Pekka Enberg 已提交
1172 1173 1174 1175 1176 1177
							sizes->cs_size,
							ARCH_KMALLOC_MINALIGN,
							(ARCH_KMALLOC_FLAGS |
							 SLAB_CACHE_DMA |
							 SLAB_PANIC), NULL,
							NULL);
L
Linus Torvalds 已提交
1178 1179 1180 1181 1182 1183

		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
P
Pekka Enberg 已提交
1184
		void *ptr;
1185

L
Linus Torvalds 已提交
1186
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1187

L
Linus Torvalds 已提交
1188
		local_irq_disable();
1189 1190
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1191
		       sizeof(struct arraycache_init));
L
Linus Torvalds 已提交
1192 1193
		cache_cache.array[smp_processor_id()] = ptr;
		local_irq_enable();
1194

L
Linus Torvalds 已提交
1195
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1196

L
Linus Torvalds 已提交
1197
		local_irq_disable();
1198
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1199
		       != &initarray_generic.cache);
1200
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1201
		       sizeof(struct arraycache_init));
1202
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1203
		    ptr;
L
Linus Torvalds 已提交
1204 1205
		local_irq_enable();
	}
1206 1207 1208 1209 1210
	/* 5) Replace the bootstrap kmem_list3's */
	{
		int node;
		/* Replace the static kmem_list3 structures for the boot cpu */
		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
P
Pekka Enberg 已提交
1211
			  numa_node_id());
1212 1213 1214

		for_each_online_node(node) {
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1215
				  &initkmem_list3[SIZE_AC + node], node);
1216 1217 1218

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1219 1220
					  &initkmem_list3[SIZE_L3 + node],
					  node);
1221 1222 1223
			}
		}
	}
L
Linus Torvalds 已提交
1224

1225
	/* 6) resize the head arrays to their final sizes */
L
Linus Torvalds 已提交
1226
	{
1227
		struct kmem_cache *cachep;
I
Ingo Molnar 已提交
1228
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1229
		list_for_each_entry(cachep, &cache_chain, next)
P
Pekka Enberg 已提交
1230
		    enable_cpucache(cachep);
I
Ingo Molnar 已提交
1231
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1232 1233 1234 1235 1236 1237
	}

	/* Done! */
	g_cpucache_up = FULL;

	/* Register a cpu startup notifier callback
1238
	 * that initializes cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
	 */
	register_cpu_notifier(&cpucache_notifier);

	/* The reap timers are started later, with a module init call:
	 * That part of the kernel is not yet operational.
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

	/* 
	 * Register the timers that return unneeded
	 * pages to gfp.
	 */
1255
	for_each_online_cpu(cpu)
P
Pekka Enberg 已提交
1256
	    start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269

	return 0;
}

__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1270
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1271 1272 1273 1274 1275 1276
{
	struct page *page;
	void *addr;
	int i;

	flags |= cachep->gfpflags;
1277
	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
L
Linus Torvalds 已提交
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
	if (!page)
		return NULL;
	addr = page_address(page);

	i = (1 << cachep->gfporder);
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		atomic_add(i, &slab_reclaim_pages);
	add_page_state(nr_slab, i);
	while (i--) {
		SetPageSlab(page);
		page++;
	}
	return addr;
}

/*
 * Interface to system's page release.
 */
1296
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1297
{
P
Pekka Enberg 已提交
1298
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

	while (i--) {
		if (!TestClearPageSlab(page))
			BUG();
		page++;
	}
	sub_page_state(nr_slab, nr_freed);
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
P
Pekka Enberg 已提交
1311 1312
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
L
Linus Torvalds 已提交
1313 1314 1315 1316
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1317
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1318
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1319 1320 1321 1322 1323 1324 1325 1326 1327

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1328
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1329
			    unsigned long caller)
L
Linus Torvalds 已提交
1330
{
1331
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1332

1333
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1334

P
Pekka Enberg 已提交
1335
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1336 1337
		return;

P
Pekka Enberg 已提交
1338 1339 1340 1341
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1342 1343 1344 1345 1346 1347 1348
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1349
				*addr++ = svalue;
L
Linus Torvalds 已提交
1350 1351 1352 1353 1354 1355 1356
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1357
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1358 1359 1360
}
#endif

1361
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1362
{
1363 1364
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1365 1366

	memset(addr, val, size);
P
Pekka Enberg 已提交
1367
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1368 1369 1370 1371 1372 1373
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
	printk(KERN_ERR "%03x:", offset);
P
Pekka Enberg 已提交
1374 1375
	for (i = 0; i < limit; i++) {
		printk(" %02x", (unsigned char)data[offset + i]);
L
Linus Torvalds 已提交
1376 1377 1378 1379 1380 1381 1382
	}
	printk("\n");
}
#endif

#if DEBUG

1383
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1384 1385 1386 1387 1388 1389
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
		printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
P
Pekka Enberg 已提交
1390 1391
		       *dbg_redzone1(cachep, objp),
		       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1392 1393 1394 1395
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
P
Pekka Enberg 已提交
1396
		       *dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1397
		print_symbol("(%s)",
P
Pekka Enberg 已提交
1398
			     (unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1399 1400
		printk("\n");
	}
1401 1402
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1403
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1404 1405
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1406 1407
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1408 1409 1410 1411
		dump_line(realobj, i, limit);
	}
}

1412
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1413 1414 1415 1416 1417
{
	char *realobj;
	int size, i;
	int lines = 0;

1418 1419
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1420

P
Pekka Enberg 已提交
1421
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1422
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1423
		if (i == size - 1)
L
Linus Torvalds 已提交
1424 1425 1426 1427 1428 1429
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1430 1431 1432
				printk(KERN_ERR
				       "Slab corruption: start=%p, len=%d\n",
				       realobj, size);
L
Linus Torvalds 已提交
1433 1434 1435
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1436
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1437
			limit = 16;
P
Pekka Enberg 已提交
1438 1439
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1452
		struct slab *slabp = virt_to_slab(objp);
L
Linus Torvalds 已提交
1453 1454
		int objnr;

1455
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
L
Linus Torvalds 已提交
1456
		if (objnr) {
1457 1458
			objp = slabp->s_mem + (objnr - 1) * cachep->buffer_size;
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1459
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1460
			       realobj, size);
L
Linus Torvalds 已提交
1461 1462
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1463
		if (objnr + 1 < cachep->num) {
1464 1465
			objp = slabp->s_mem + (objnr + 1) * cachep->buffer_size;
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1466
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1467
			       realobj, size);
L
Linus Torvalds 已提交
1468 1469 1470 1471 1472 1473
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1474 1475 1476 1477
#if DEBUG
/**
 * slab_destroy_objs - call the registered destructor for each object in
 *      a slab that is to be destroyed.
L
Linus Torvalds 已提交
1478
 */
1479
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1480 1481 1482
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1483
		void *objp = slabp->s_mem + cachep->buffer_size * i;
L
Linus Torvalds 已提交
1484 1485 1486

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
1487
			if ((cachep->buffer_size % PAGE_SIZE) == 0
P
Pekka Enberg 已提交
1488 1489
			    && OFF_SLAB(cachep))
				kernel_map_pages(virt_to_page(objp),
1490
						 cachep->buffer_size / PAGE_SIZE,
P
Pekka Enberg 已提交
1491
						 1);
L
Linus Torvalds 已提交
1492 1493 1494 1495 1496 1497 1498 1499 1500
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1501
					   "was overwritten");
L
Linus Torvalds 已提交
1502 1503
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1504
					   "was overwritten");
L
Linus Torvalds 已提交
1505 1506
		}
		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1507
			(cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
1508
	}
1509
}
L
Linus Torvalds 已提交
1510
#else
1511
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1512
{
L
Linus Torvalds 已提交
1513 1514 1515
	if (cachep->dtor) {
		int i;
		for (i = 0; i < cachep->num; i++) {
1516
			void *objp = slabp->s_mem + cachep->buffer_size * i;
P
Pekka Enberg 已提交
1517
			(cachep->dtor) (objp, cachep, 0);
L
Linus Torvalds 已提交
1518 1519
		}
	}
1520
}
L
Linus Torvalds 已提交
1521 1522
#endif

1523 1524 1525 1526 1527
/**
 * Destroy all the objs in a slab, and release the mem back to the system.
 * Before calling the slab must have been unlinked from the cache.
 * The cache-lock is not held/needed.
 */
1528
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1529 1530 1531 1532
{
	void *addr = slabp->s_mem - slabp->colouroff;

	slab_destroy_objs(cachep, slabp);
L
Linus Torvalds 已提交
1533 1534 1535
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1536
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
	}
}

1547
/* For setting up all the kmem_list3s for cache whose buffer_size is same
1548
   as size of kmem_list3. */
1549
static void set_up_list3s(struct kmem_cache *cachep, int index)
1550 1551 1552 1553
{
	int node;

	for_each_online_node(node) {
P
Pekka Enberg 已提交
1554
		cachep->nodelists[node] = &initkmem_list3[index + node];
1555
		cachep->nodelists[node]->next_reap = jiffies +
P
Pekka Enberg 已提交
1556 1557
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1558 1559 1560
	}
}

1561
/**
1562 1563 1564 1565 1566 1567 1568
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1569 1570 1571 1572 1573
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
1574
static inline size_t calculate_slab_order(struct kmem_cache *cachep, size_t size,
1575 1576 1577 1578
					  size_t align, gfp_t flags)
{
	size_t left_over = 0;

P
Pekka Enberg 已提交
1579
	for (;; cachep->gfporder++) {
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
		unsigned int num;
		size_t remainder;

		if (cachep->gfporder > MAX_GFP_ORDER) {
			cachep->num = 0;
			break;
		}

		cache_estimate(cachep->gfporder, size, align, flags,
			       &remainder, &num);
		if (!num)
			continue;
		/* More than offslab_limit objects will cause problems */
		if (flags & CFLGS_OFF_SLAB && cachep->num > offslab_limit)
			break;

		cachep->num = num;
		left_over = remainder;

		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
		if (cachep->gfporder >= slab_break_gfp_order)
			break;

		if ((left_over * 8) <= (PAGE_SIZE << cachep->gfporder))
			/* Acceptable internal fragmentation */
			break;
	}
	return left_over;
}

L
Linus Torvalds 已提交
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 * @dtor: A destructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache
 * and the @dtor is run before the pages are handed back.
 *
 * @name must be valid until the cache is destroyed. This implies that
 * the module calling this has to destroy the cache before getting 
 * unloaded.
 * 
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
 * memory pressure.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
1646
struct kmem_cache *
L
Linus Torvalds 已提交
1647
kmem_cache_create (const char *name, size_t size, size_t align,
1648 1649
	unsigned long flags, void (*ctor)(void*, struct kmem_cache *, unsigned long),
	void (*dtor)(void*, struct kmem_cache *, unsigned long))
L
Linus Torvalds 已提交
1650 1651
{
	size_t left_over, slab_size, ralign;
1652
	struct kmem_cache *cachep = NULL;
1653
	struct list_head *p;
L
Linus Torvalds 已提交
1654 1655 1656 1657 1658

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
	if ((!name) ||
P
Pekka Enberg 已提交
1659 1660 1661 1662 1663 1664 1665
	    in_interrupt() ||
	    (size < BYTES_PER_WORD) ||
	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
		printk(KERN_ERR "%s: Early error in slab %s\n",
		       __FUNCTION__, name);
		BUG();
	}
L
Linus Torvalds 已提交
1666

I
Ingo Molnar 已提交
1667
	mutex_lock(&cache_chain_mutex);
1668 1669

	list_for_each(p, &cache_chain) {
1670
		struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
		mm_segment_t old_fs = get_fs();
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		set_fs(KERNEL_DS);
		res = __get_user(tmp, pc->name);
		set_fs(old_fs);
		if (res) {
			printk("SLAB: cache with size %d has lost its name\n",
1685
			       pc->buffer_size);
1686 1687 1688
			continue;
		}

P
Pekka Enberg 已提交
1689
		if (!strcmp(pc->name, name)) {
1690 1691 1692 1693 1694 1695
			printk("kmem_cache_create: duplicate cache %s\n", name);
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
1696 1697 1698 1699 1700
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
		/* No constructor, but inital state check requested */
		printk(KERN_ERR "%s: No con, but init state check "
P
Pekka Enberg 已提交
1701
		       "requested - %s\n", __FUNCTION__, name);
L
Linus Torvalds 已提交
1702 1703 1704 1705 1706 1707 1708 1709 1710
		flags &= ~SLAB_DEBUG_INITIAL;
	}
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
P
Pekka Enberg 已提交
1711 1712 1713
	if ((size < 4096
	     || fls(size - 1) == fls(size - 1 + 3 * BYTES_PER_WORD)))
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(dtor);

	/*
	 * Always checks flags, a caller might be expecting debug
	 * support which isn't available.
	 */
	if (flags & ~CREATE_MASK)
		BUG();

	/* Check that size is in terms of words.  This is needed to avoid
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
1734 1735 1736
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746
	}

	/* calculate out the final buffer alignment: */
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
		/* Default alignment: as specified by the arch code.
		 * Except if an object is really small, then squeeze multiple
		 * objects into one cacheline.
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
1747
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
1748 1749 1750 1751 1752 1753 1754 1755
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
	/* 2) arch mandated alignment: disables debug if necessary */
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
		if (ralign > BYTES_PER_WORD)
P
Pekka Enberg 已提交
1756
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
L
Linus Torvalds 已提交
1757 1758 1759 1760 1761
	}
	/* 3) caller mandated alignment: disables debug if necessary */
	if (ralign < align) {
		ralign = align;
		if (ralign > BYTES_PER_WORD)
P
Pekka Enberg 已提交
1762
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
L
Linus Torvalds 已提交
1763 1764 1765 1766 1767 1768 1769
	}
	/* 4) Store it. Note that the debug code below can reduce
	 *    the alignment to BYTES_PER_WORD.
	 */
	align = ralign;

	/* Get cache's description obj. */
1770
	cachep = kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
L
Linus Torvalds 已提交
1771
	if (!cachep)
1772
		goto oops;
1773
	memset(cachep, 0, sizeof(struct kmem_cache));
L
Linus Torvalds 已提交
1774 1775

#if DEBUG
1776
	cachep->obj_size = size;
L
Linus Torvalds 已提交
1777 1778 1779 1780 1781 1782

	if (flags & SLAB_RED_ZONE) {
		/* redzoning only works with word aligned caches */
		align = BYTES_PER_WORD;

		/* add space for red zone words */
1783
		cachep->obj_offset += BYTES_PER_WORD;
P
Pekka Enberg 已提交
1784
		size += 2 * BYTES_PER_WORD;
L
Linus Torvalds 已提交
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
	}
	if (flags & SLAB_STORE_USER) {
		/* user store requires word alignment and
		 * one word storage behind the end of the real
		 * object.
		 */
		align = BYTES_PER_WORD;
		size += BYTES_PER_WORD;
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
1795
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
1796 1797
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
1798 1799 1800 1801 1802 1803
		size = PAGE_SIZE;
	}
#endif
#endif

	/* Determine if the slab management is 'on' or 'off' slab. */
P
Pekka Enberg 已提交
1804
	if (size >= (PAGE_SIZE >> 3))
L
Linus Torvalds 已提交
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

	if ((flags & SLAB_RECLAIM_ACCOUNT) && size <= PAGE_SIZE) {
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		cachep->gfporder = 0;
		cache_estimate(cachep->gfporder, size, align, flags,
P
Pekka Enberg 已提交
1821
			       &left_over, &cachep->num);
1822 1823
	} else
		left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
1824 1825 1826 1827 1828

	if (!cachep->num) {
		printk("kmem_cache_create: couldn't create cache %s.\n", name);
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
1829
		goto oops;
L
Linus Torvalds 已提交
1830
	}
P
Pekka Enberg 已提交
1831 1832
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
1845 1846
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
L
Linus Torvalds 已提交
1847 1848 1849 1850 1851 1852
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
1853
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
1854 1855 1856 1857 1858 1859
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
	if (flags & SLAB_CACHE_DMA)
		cachep->gfpflags |= GFP_DMA;
	spin_lock_init(&cachep->spinlock);
1860
	cachep->buffer_size = size;
L
Linus Torvalds 已提交
1861 1862

	if (flags & CFLGS_OFF_SLAB)
1863
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
L
Linus Torvalds 已提交
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
	cachep->ctor = ctor;
	cachep->dtor = dtor;
	cachep->name = name;

	/* Don't let CPUs to come and go */
	lock_cpu_hotplug();

	if (g_cpucache_up == FULL) {
		enable_cpucache(cachep);
	} else {
		if (g_cpucache_up == NONE) {
			/* Note: the first kmem_cache_create must create
			 * the cache that's used by kmalloc(24), otherwise
			 * the creation of further caches will BUG().
			 */
1879
			cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1880
			    &initarray_generic.cache;
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891

			/* If the cache that's used by
			 * kmalloc(sizeof(kmem_list3)) is the first cache,
			 * then we need to set up all its list3s, otherwise
			 * the creation of further caches will BUG().
			 */
			set_up_list3s(cachep, SIZE_AC);
			if (INDEX_AC == INDEX_L3)
				g_cpucache_up = PARTIAL_L3;
			else
				g_cpucache_up = PARTIAL_AC;
L
Linus Torvalds 已提交
1892
		} else {
1893
			cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1894
			    kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1895 1896 1897 1898 1899 1900 1901 1902 1903

			if (g_cpucache_up == PARTIAL_AC) {
				set_up_list3s(cachep, SIZE_L3);
				g_cpucache_up = PARTIAL_L3;
			} else {
				int node;
				for_each_online_node(node) {

					cachep->nodelists[node] =
P
Pekka Enberg 已提交
1904 1905 1906
					    kmalloc_node(sizeof
							 (struct kmem_list3),
							 GFP_KERNEL, node);
1907
					BUG_ON(!cachep->nodelists[node]);
P
Pekka Enberg 已提交
1908 1909
					kmem_list3_init(cachep->
							nodelists[node]);
1910 1911
				}
			}
L
Linus Torvalds 已提交
1912
		}
1913
		cachep->nodelists[numa_node_id()]->next_reap =
P
Pekka Enberg 已提交
1914 1915
		    jiffies + REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1916

1917 1918 1919 1920 1921
		BUG_ON(!cpu_cache_get(cachep));
		cpu_cache_get(cachep)->avail = 0;
		cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
		cpu_cache_get(cachep)->batchcount = 1;
		cpu_cache_get(cachep)->touched = 0;
L
Linus Torvalds 已提交
1922 1923
		cachep->batchcount = 1;
		cachep->limit = BOOT_CPUCACHE_ENTRIES;
P
Pekka Enberg 已提交
1924
	}
L
Linus Torvalds 已提交
1925 1926 1927 1928

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
	unlock_cpu_hotplug();
P
Pekka Enberg 已提交
1929
      oops:
L
Linus Torvalds 已提交
1930 1931
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
1932
		      name);
I
Ingo Molnar 已提交
1933
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

1949
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
1950 1951 1952
{
#ifdef CONFIG_SMP
	check_irq_off();
1953
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
1954 1955
#endif
}
1956

1957
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
1958 1959 1960 1961 1962 1963 1964
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
1965 1966 1967 1968
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
1969
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
1970 1971 1972 1973 1974
#endif

/*
 * Waits for all CPUs to execute func().
 */
P
Pekka Enberg 已提交
1975
static void smp_call_function_all_cpus(void (*func)(void *arg), void *arg)
L
Linus Torvalds 已提交
1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
{
	check_irq_on();
	preempt_disable();

	local_irq_disable();
	func(arg);
	local_irq_enable();

	if (smp_call_function(func, arg, 1, 1))
		BUG();

	preempt_enable();
}

1990
static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
P
Pekka Enberg 已提交
1991
				int force, int node);
L
Linus Torvalds 已提交
1992 1993 1994

static void do_drain(void *arg)
{
1995
	struct kmem_cache *cachep = (struct kmem_cache *) arg;
L
Linus Torvalds 已提交
1996
	struct array_cache *ac;
1997
	int node = numa_node_id();
L
Linus Torvalds 已提交
1998 1999

	check_irq_off();
2000
	ac = cpu_cache_get(cachep);
2001 2002 2003
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2004 2005 2006
	ac->avail = 0;
}

2007
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2008
{
2009 2010 2011
	struct kmem_list3 *l3;
	int node;

L
Linus Torvalds 已提交
2012 2013 2014
	smp_call_function_all_cpus(do_drain, cachep);
	check_irq_on();
	spin_lock_irq(&cachep->spinlock);
P
Pekka Enberg 已提交
2015
	for_each_online_node(node) {
2016 2017 2018 2019 2020 2021 2022 2023 2024
		l3 = cachep->nodelists[node];
		if (l3) {
			spin_lock(&l3->list_lock);
			drain_array_locked(cachep, l3->shared, 1, node);
			spin_unlock(&l3->list_lock);
			if (l3->alien)
				drain_alien_cache(cachep, l3);
		}
	}
L
Linus Torvalds 已提交
2025 2026 2027
	spin_unlock_irq(&cachep->spinlock);
}

2028
static int __node_shrink(struct kmem_cache *cachep, int node)
L
Linus Torvalds 已提交
2029 2030
{
	struct slab *slabp;
2031
	struct kmem_list3 *l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
2032 2033
	int ret;

2034
	for (;;) {
L
Linus Torvalds 已提交
2035 2036
		struct list_head *p;

2037 2038
		p = l3->slabs_free.prev;
		if (p == &l3->slabs_free)
L
Linus Torvalds 已提交
2039 2040
			break;

2041
		slabp = list_entry(l3->slabs_free.prev, struct slab, list);
L
Linus Torvalds 已提交
2042 2043 2044 2045 2046 2047
#if DEBUG
		if (slabp->inuse)
			BUG();
#endif
		list_del(&slabp->list);

2048 2049
		l3->free_objects -= cachep->num;
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
2050
		slab_destroy(cachep, slabp);
2051
		spin_lock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
2052
	}
P
Pekka Enberg 已提交
2053
	ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
L
Linus Torvalds 已提交
2054 2055 2056
	return ret;
}

2057
static int __cache_shrink(struct kmem_cache *cachep)
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			spin_lock_irq(&l3->list_lock);
			ret += __node_shrink(cachep, i);
			spin_unlock_irq(&l3->list_lock);
		}
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2076 2077 2078 2079 2080 2081 2082
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2083
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
{
	if (!cachep || in_interrupt())
		BUG();

	return __cache_shrink(cachep);
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2096
 * Remove a struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108
 * Returns 0 on success.
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2109
int kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2110 2111
{
	int i;
2112
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2113 2114 2115 2116 2117 2118 2119 2120

	if (!cachep || in_interrupt())
		BUG();

	/* Don't let CPUs to come and go */
	lock_cpu_hotplug();

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
2121
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2122 2123 2124 2125
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
I
Ingo Molnar 已提交
2126
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2127 2128 2129

	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
I
Ingo Molnar 已提交
2130
		mutex_lock(&cache_chain_mutex);
P
Pekka Enberg 已提交
2131
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2132
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2133 2134 2135 2136 2137
		unlock_cpu_hotplug();
		return 1;
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2138
		synchronize_rcu();
L
Linus Torvalds 已提交
2139

2140
	for_each_online_cpu(i)
P
Pekka Enberg 已提交
2141
	    kfree(cachep->array[i]);
L
Linus Torvalds 已提交
2142 2143

	/* NUMA: free the list3 structures */
2144 2145 2146 2147 2148 2149 2150
	for_each_online_node(i) {
		if ((l3 = cachep->nodelists[i])) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
L
Linus Torvalds 已提交
2151 2152 2153 2154 2155 2156 2157 2158 2159
	kmem_cache_free(&cache_cache, cachep);

	unlock_cpu_hotplug();

	return 0;
}
EXPORT_SYMBOL(kmem_cache_destroy);

/* Get the memory for a slab management obj. */
2160
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2161
				   int colour_off, gfp_t local_flags)
L
Linus Torvalds 已提交
2162 2163
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2164

L
Linus Torvalds 已提交
2165 2166 2167 2168 2169 2170
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
		slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2171
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2172 2173 2174 2175
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2176
	slabp->s_mem = objp + colour_off;
L
Linus Torvalds 已提交
2177 2178 2179 2180 2181 2182

	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2183
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2184 2185
}

2186
static void cache_init_objs(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
2187
			    struct slab *slabp, unsigned long ctor_flags)
L
Linus Torvalds 已提交
2188 2189 2190 2191
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2192
		void *objp = slabp->s_mem + cachep->buffer_size * i;
L
Linus Torvalds 已提交
2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
		 * Constructors are not allowed to allocate memory from
		 * the same cache which they are a constructor for.
		 * Otherwise, deadlock. They must also be threaded.
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2210
			cachep->ctor(objp + obj_offset(cachep), cachep,
P
Pekka Enberg 已提交
2211
				     ctor_flags);
L
Linus Torvalds 已提交
2212 2213 2214 2215

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2216
					   " end of an object");
L
Linus Torvalds 已提交
2217 2218
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2219
					   " start of an object");
L
Linus Torvalds 已提交
2220
		}
2221
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)
P
Pekka Enberg 已提交
2222 2223
		    && cachep->flags & SLAB_POISON)
			kernel_map_pages(virt_to_page(objp),
2224
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2225 2226 2227 2228
#else
		if (cachep->ctor)
			cachep->ctor(objp, cachep, ctor_flags);
#endif
P
Pekka Enberg 已提交
2229
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2230
	}
P
Pekka Enberg 已提交
2231
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2232 2233 2234
	slabp->free = 0;
}

2235
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
{
	if (flags & SLAB_DMA) {
		if (!(cachep->gfpflags & GFP_DMA))
			BUG();
	} else {
		if (cachep->gfpflags & GFP_DMA)
			BUG();
	}
}

2246
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp, int nodeid)
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
{
	void *objp = slabp->s_mem + (slabp->free * cachep->buffer_size);
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

2262
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp, void *objp,
2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
			  int nodeid)
{
	unsigned int objnr = (unsigned)(objp-slabp->s_mem) / cachep->buffer_size;

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

	if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
		printk(KERN_ERR "slab: double free detected in cache "
		       "'%s', objp %p\n", cachep->name, objp);
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2282
static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp, void *objp)
L
Linus Torvalds 已提交
2283 2284 2285 2286 2287 2288 2289 2290
{
	int i;
	struct page *page;

	/* Nasty!!!!!! I hope this is OK. */
	i = 1 << cachep->gfporder;
	page = virt_to_page(objp);
	do {
2291 2292
		page_set_cache(page, cachep);
		page_set_slab(page, slabp);
L
Linus Torvalds 已提交
2293 2294 2295 2296 2297 2298 2299 2300
		page++;
	} while (--i);
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2301
static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
2302
{
P
Pekka Enberg 已提交
2303 2304 2305 2306 2307
	struct slab *slabp;
	void *objp;
	size_t offset;
	gfp_t local_flags;
	unsigned long ctor_flags;
2308
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2309 2310

	/* Be lazy and only check for valid flags here,
P
Pekka Enberg 已提交
2311
	 * keeping it out of the critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2312
	 */
P
Pekka Enberg 已提交
2313
	if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
L
Linus Torvalds 已提交
2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339
		BUG();
	if (flags & SLAB_NO_GROW)
		return 0;

	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
	local_flags = (flags & SLAB_LEVEL_MASK);
	if (!(local_flags & __GFP_WAIT))
		/*
		 * Not allowed to sleep.  Need to tell a constructor about
		 * this - it might need to know...
		 */
		ctor_flags |= SLAB_CTOR_ATOMIC;

	/* About to mess with non-constant members - lock. */
	check_irq_off();
	spin_lock(&cachep->spinlock);

	/* Get colour for the slab, and cal the next value. */
	offset = cachep->colour_next;
	cachep->colour_next++;
	if (cachep->colour_next >= cachep->colour)
		cachep->colour_next = 0;
	offset *= cachep->colour_off;

	spin_unlock(&cachep->spinlock);

2340
	check_irq_off();
L
Linus Torvalds 已提交
2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

2352 2353 2354
	/* Get mem for the objs.
	 * Attempt to allocate a physical page from 'nodeid',
	 */
L
Linus Torvalds 已提交
2355 2356 2357 2358 2359 2360 2361
	if (!(objp = kmem_getpages(cachep, flags, nodeid)))
		goto failed;

	/* Get slab management. */
	if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
		goto opps1;

2362
	slabp->nodeid = nodeid;
L
Linus Torvalds 已提交
2363 2364 2365 2366 2367 2368 2369
	set_slab_attr(cachep, slabp, objp);

	cache_init_objs(cachep, slabp, ctor_flags);

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2370 2371
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2372 2373

	/* Make slab active. */
2374
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2375
	STATS_INC_GROWN(cachep);
2376 2377
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2378
	return 1;
P
Pekka Enberg 已提交
2379
      opps1:
L
Linus Torvalds 已提交
2380
	kmem_freepages(cachep, objp);
P
Pekka Enberg 已提交
2381
      failed:
L
Linus Torvalds 已提交
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 * - destructor calls, for caches with POISON+dtor
 */
static void kfree_debugcheck(const void *objp)
{
	struct page *page;

	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2401 2402
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2403 2404 2405
	}
	page = virt_to_page(objp);
	if (!PageSlab(page)) {
P
Pekka Enberg 已提交
2406 2407
		printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
		       (unsigned long)objp);
L
Linus Torvalds 已提交
2408 2409 2410 2411
		BUG();
	}
}

2412
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2413
				   void *caller)
L
Linus Torvalds 已提交
2414 2415 2416 2417 2418
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2419
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2420 2421 2422
	kfree_debugcheck(objp);
	page = virt_to_page(objp);

2423
	if (page_get_cache(page) != cachep) {
P
Pekka Enberg 已提交
2424 2425 2426
		printk(KERN_ERR
		       "mismatch in kmem_cache_free: expected cache %p, got %p\n",
		       page_get_cache(page), cachep);
L
Linus Torvalds 已提交
2427
		printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
P
Pekka Enberg 已提交
2428 2429
		printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
		       page_get_cache(page)->name);
L
Linus Torvalds 已提交
2430 2431
		WARN_ON(1);
	}
2432
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2433 2434

	if (cachep->flags & SLAB_RED_ZONE) {
P
Pekka Enberg 已提交
2435 2436 2437 2438 2439 2440 2441 2442 2443
		if (*dbg_redzone1(cachep, objp) != RED_ACTIVE
		    || *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
			slab_error(cachep,
				   "double free, or memory outside"
				   " object was overwritten");
			printk(KERN_ERR
			       "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
			       objp, *dbg_redzone1(cachep, objp),
			       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2444 2445 2446 2447 2448 2449 2450
		}
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2451
	objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
L
Linus Torvalds 已提交
2452 2453

	BUG_ON(objnr >= cachep->num);
2454
	BUG_ON(objp != slabp->s_mem + objnr * cachep->buffer_size);
L
Linus Torvalds 已提交
2455 2456 2457 2458 2459 2460

	if (cachep->flags & SLAB_DEBUG_INITIAL) {
		/* Need to call the slab's constructor so the
		 * caller can perform a verify of its state (debugging).
		 * Called without the cache-lock held.
		 */
2461
		cachep->ctor(objp + obj_offset(cachep),
P
Pekka Enberg 已提交
2462
			     cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
L
Linus Torvalds 已提交
2463 2464 2465 2466 2467
	}
	if (cachep->flags & SLAB_POISON && cachep->dtor) {
		/* we want to cache poison the object,
		 * call the destruction callback
		 */
2468
		cachep->dtor(objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
2469 2470 2471
	}
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
2472
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2473
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2474
			kernel_map_pages(virt_to_page(objp),
2475
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2486
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2487 2488 2489
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2490

L
Linus Torvalds 已提交
2491 2492 2493 2494 2495 2496 2497
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
P
Pekka Enberg 已提交
2498 2499 2500 2501 2502 2503 2504 2505
	      bad:
		printk(KERN_ERR
		       "slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
		       cachep->name, cachep->num, slabp, slabp->inuse);
		for (i = 0;
		     i < sizeof(slabp) + cachep->num * sizeof(kmem_bufctl_t);
		     i++) {
			if ((i % 16) == 0)
L
Linus Torvalds 已提交
2506
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2507
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2519
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2520 2521 2522 2523 2524 2525
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;

	check_irq_off();
2526
	ac = cpu_cache_get(cachep);
P
Pekka Enberg 已提交
2527
      retry:
L
Linus Torvalds 已提交
2528 2529 2530 2531 2532 2533 2534 2535
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
		/* if there was little recent activity on this
		 * cache, then perform only a partial refill.
		 * Otherwise we could generate refill bouncing.
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2536 2537 2538 2539
	l3 = cachep->nodelists[numa_node_id()];

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2540 2541 2542 2543 2544 2545 2546 2547

	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
		if (shared_array->avail) {
			if (batchcount > shared_array->avail)
				batchcount = shared_array->avail;
			shared_array->avail -= batchcount;
			ac->avail = batchcount;
2548
			memcpy(ac->entry,
P
Pekka Enberg 已提交
2549 2550
			       &(shared_array->entry[shared_array->avail]),
			       sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
			shared_array->touched = 1;
			goto alloc_done;
		}
	}
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2575 2576
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
							    numa_node_id());
L
Linus Torvalds 已提交
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

P
Pekka Enberg 已提交
2588
      must_grow:
L
Linus Torvalds 已提交
2589
	l3->free_objects -= ac->avail;
P
Pekka Enberg 已提交
2590
      alloc_done:
2591
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2592 2593 2594

	if (unlikely(!ac->avail)) {
		int x;
2595 2596
		x = cache_grow(cachep, flags, numa_node_id());

L
Linus Torvalds 已提交
2597
		// cache_grow can reenable interrupts, then ac could change.
2598
		ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2599 2600 2601
		if (!x && ac->avail == 0)	// no objects in sight? abort
			return NULL;

P
Pekka Enberg 已提交
2602
		if (!ac->avail)	// objects refilled by interrupt?
L
Linus Torvalds 已提交
2603 2604 2605
			goto retry;
	}
	ac->touched = 1;
2606
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
2607 2608 2609
}

static inline void
2610
cache_alloc_debugcheck_before(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2611 2612 2613 2614 2615 2616 2617 2618
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
2619
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep, gfp_t flags,
P
Pekka Enberg 已提交
2620
					void *objp, void *caller)
L
Linus Torvalds 已提交
2621
{
P
Pekka Enberg 已提交
2622
	if (!objp)
L
Linus Torvalds 已提交
2623
		return objp;
P
Pekka Enberg 已提交
2624
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
2625
#ifdef CONFIG_DEBUG_PAGEALLOC
2626
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2627
			kernel_map_pages(virt_to_page(objp),
2628
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
P
Pekka Enberg 已提交
2640 2641 2642 2643 2644 2645 2646 2647 2648
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE
		    || *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep,
				   "double free, or memory outside"
				   " object was overwritten");
			printk(KERN_ERR
			       "%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
			       objp, *dbg_redzone1(cachep, objp),
			       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2649 2650 2651 2652
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
2653
	objp += obj_offset(cachep);
L
Linus Torvalds 已提交
2654
	if (cachep->ctor && cachep->flags & SLAB_POISON) {
P
Pekka Enberg 已提交
2655
		unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
L
Linus Torvalds 已提交
2656 2657 2658 2659 2660

		if (!(flags & __GFP_WAIT))
			ctor_flags |= SLAB_CTOR_ATOMIC;

		cachep->ctor(objp, cachep, ctor_flags);
P
Pekka Enberg 已提交
2661
	}
L
Linus Torvalds 已提交
2662 2663 2664 2665 2666 2667
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

2668
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2669
{
P
Pekka Enberg 已提交
2670
	void *objp;
L
Linus Torvalds 已提交
2671 2672
	struct array_cache *ac;

2673
#ifdef CONFIG_NUMA
2674
	if (unlikely(current->mempolicy && !in_interrupt())) {
2675 2676 2677 2678 2679 2680 2681
		int nid = slab_node(current->mempolicy);

		if (nid != numa_node_id())
			return __cache_alloc_node(cachep, flags, nid);
	}
#endif

2682
	check_irq_off();
2683
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2684 2685 2686
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
2687
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
2688 2689 2690 2691
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
2692 2693 2694
	return objp;
}

2695 2696
static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
2697 2698
{
	unsigned long save_flags;
P
Pekka Enberg 已提交
2699
	void *objp;
2700 2701 2702 2703 2704

	cache_alloc_debugcheck_before(cachep, flags);

	local_irq_save(save_flags);
	objp = ____cache_alloc(cachep, flags);
L
Linus Torvalds 已提交
2705
	local_irq_restore(save_flags);
2706
	objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2707
					    caller);
2708
	prefetchw(objp);
L
Linus Torvalds 已提交
2709 2710 2711
	return objp;
}

2712 2713 2714
#ifdef CONFIG_NUMA
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
2715
 */
2716
static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2717 2718
{
	struct list_head *entry;
P
Pekka Enberg 已提交
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

      retry:
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

2747
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

	if (slabp->free == BUFCTL_END) {
		list_add(&slabp->list, &l3->slabs_full);
	} else {
		list_add(&slabp->list, &l3->slabs_partial);
	}
2758

P
Pekka Enberg 已提交
2759 2760
	spin_unlock(&l3->list_lock);
	goto done;
2761

P
Pekka Enberg 已提交
2762 2763 2764
      must_grow:
	spin_unlock(&l3->list_lock);
	x = cache_grow(cachep, flags, nodeid);
L
Linus Torvalds 已提交
2765

P
Pekka Enberg 已提交
2766 2767
	if (!x)
		return NULL;
2768

P
Pekka Enberg 已提交
2769 2770 2771
	goto retry;
      done:
	return obj;
2772 2773 2774 2775 2776 2777
}
#endif

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
2778
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
2779
		       int node)
L
Linus Torvalds 已提交
2780 2781
{
	int i;
2782
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2783 2784 2785 2786 2787

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

2788
		slabp = virt_to_slab(objp);
2789
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
2790
		list_del(&slabp->list);
2791
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
2792
		check_slabp(cachep, slabp);
2793
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
2794
		STATS_DEC_ACTIVE(cachep);
2795
		l3->free_objects++;
L
Linus Torvalds 已提交
2796 2797 2798 2799
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
2800 2801
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
L
Linus Torvalds 已提交
2802 2803
				slab_destroy(cachep, slabp);
			} else {
2804
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
2805 2806 2807 2808 2809 2810
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
2811
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
2812 2813 2814 2815
		}
	}
}

2816
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
2817 2818
{
	int batchcount;
2819
	struct kmem_list3 *l3;
2820
	int node = numa_node_id();
L
Linus Torvalds 已提交
2821 2822 2823 2824 2825 2826

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
2827
	l3 = cachep->nodelists[node];
2828 2829 2830
	spin_lock(&l3->list_lock);
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
2831
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
2832 2833 2834
		if (max) {
			if (batchcount > max)
				batchcount = max;
2835
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
2836
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
2837 2838 2839 2840 2841
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

2842
	free_block(cachep, ac->entry, batchcount, node);
P
Pekka Enberg 已提交
2843
      free_done:
L
Linus Torvalds 已提交
2844 2845 2846 2847 2848
#if STATS
	{
		int i = 0;
		struct list_head *p;

2849 2850
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
2862
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2863
	ac->avail -= batchcount;
2864
	memmove(ac->entry, &(ac->entry[batchcount]),
P
Pekka Enberg 已提交
2865
		sizeof(void *) * ac->avail);
L
Linus Torvalds 已提交
2866 2867 2868 2869 2870 2871 2872 2873 2874
}

/*
 * __cache_free
 * Release an obj back to its cache. If the obj has a constructed
 * state, it must be in this state _before_ it is released.
 *
 * Called with disabled ints.
 */
2875
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
2876
{
2877
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2878 2879 2880 2881

	check_irq_off();
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

2882 2883 2884 2885 2886 2887
	/* Make sure we are not freeing a object from another
	 * node to the array cache on this cpu.
	 */
#ifdef CONFIG_NUMA
	{
		struct slab *slabp;
2888
		slabp = virt_to_slab(objp);
2889 2890 2891
		if (unlikely(slabp->nodeid != numa_node_id())) {
			struct array_cache *alien = NULL;
			int nodeid = slabp->nodeid;
P
Pekka Enberg 已提交
2892 2893
			struct kmem_list3 *l3 =
			    cachep->nodelists[numa_node_id()];
2894 2895 2896 2897 2898 2899 2900

			STATS_INC_NODEFREES(cachep);
			if (l3->alien && l3->alien[nodeid]) {
				alien = l3->alien[nodeid];
				spin_lock(&alien->lock);
				if (unlikely(alien->avail == alien->limit))
					__drain_alien_cache(cachep,
P
Pekka Enberg 已提交
2901
							    alien, nodeid);
2902 2903 2904 2905
				alien->entry[alien->avail++] = objp;
				spin_unlock(&alien->lock);
			} else {
				spin_lock(&(cachep->nodelists[nodeid])->
P
Pekka Enberg 已提交
2906
					  list_lock);
2907
				free_block(cachep, &objp, 1, nodeid);
2908
				spin_unlock(&(cachep->nodelists[nodeid])->
P
Pekka Enberg 已提交
2909
					    list_lock);
2910 2911 2912 2913 2914
			}
			return;
		}
	}
#endif
L
Linus Torvalds 已提交
2915 2916
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
2917
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
2918 2919 2920 2921
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
2922
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
2934
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2935
{
2936
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
}
EXPORT_SYMBOL(kmem_cache_alloc);

/**
 * kmem_ptr_validate - check if an untrusted pointer might
 *	be a slab entry.
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
 * This verifies that the untrusted pointer looks sane:
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
2954
int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
L
Linus Torvalds 已提交
2955
{
P
Pekka Enberg 已提交
2956
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
2957
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
2958
	unsigned long align_mask = BYTES_PER_WORD - 1;
2959
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
2975
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
2976 2977
		goto out;
	return 1;
P
Pekka Enberg 已提交
2978
      out:
L
Linus Torvalds 已提交
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
	return 0;
}

#ifdef CONFIG_NUMA
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc, except that this function is slow
 * and can sleep. And it will allocate memory on the given node, which
 * can improve the performance for cpu bound structures.
2992 2993
 * New and improved: it will now make sure that the object gets
 * put on the correct node list so that there is no false sharing.
L
Linus Torvalds 已提交
2994
 */
2995
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
2996
{
2997 2998
	unsigned long save_flags;
	void *ptr;
L
Linus Torvalds 已提交
2999

3000 3001
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
3002 3003 3004

	if (nodeid == -1 || nodeid == numa_node_id() ||
	    !cachep->nodelists[nodeid])
3005 3006 3007
		ptr = ____cache_alloc(cachep, flags);
	else
		ptr = __cache_alloc_node(cachep, flags, nodeid);
3008
	local_irq_restore(save_flags);
3009 3010 3011

	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
					   __builtin_return_address(0));
L
Linus Torvalds 已提交
3012

3013
	return ptr;
L
Linus Torvalds 已提交
3014 3015 3016
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

A
Al Viro 已提交
3017
void *kmalloc_node(size_t size, gfp_t flags, int node)
3018
{
3019
	struct kmem_cache *cachep;
3020 3021 3022 3023 3024 3025 3026

	cachep = kmem_find_general_cachep(size, flags);
	if (unlikely(cachep == NULL))
		return NULL;
	return kmem_cache_alloc_node(cachep, flags, node);
}
EXPORT_SYMBOL(kmalloc_node);
L
Linus Torvalds 已提交
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
#endif

/**
 * kmalloc - allocate memory
 * @size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * kmalloc is the normal method of allocating memory
 * in the kernel.
 *
 * The @flags argument may be one of:
 *
 * %GFP_USER - Allocate memory on behalf of user.  May sleep.
 *
 * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
 *
 * %GFP_ATOMIC - Allocation will not sleep.  Use inside interrupt handlers.
 *
 * Additionally, the %GFP_DMA flag may be set to indicate the memory
 * must be suitable for DMA.  This can mean different things on different
 * platforms.  For example, on i386, it means that the memory must come
 * from the first 16MB.
 */
3050 3051
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3052
{
3053
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3054

3055 3056 3057 3058 3059 3060
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3061 3062
	if (unlikely(cachep == NULL))
		return NULL;
3063 3064 3065 3066 3067 3068 3069 3070
	return __cache_alloc(cachep, flags, caller);
}

#ifndef CONFIG_DEBUG_SLAB

void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
L
Linus Torvalds 已提交
3071 3072 3073
}
EXPORT_SYMBOL(__kmalloc);

3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
#else

void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
{
	return __do_kmalloc(size, flags, caller);
}
EXPORT_SYMBOL(__kmalloc_track_caller);

#endif

L
Linus Torvalds 已提交
3084 3085 3086 3087 3088 3089 3090 3091
#ifdef CONFIG_SMP
/**
 * __alloc_percpu - allocate one copy of the object for every present
 * cpu in the system, zeroing them.
 * Objects should be dereferenced using the per_cpu_ptr macro only.
 *
 * @size: how many bytes of memory are required.
 */
3092
void *__alloc_percpu(size_t size)
L
Linus Torvalds 已提交
3093 3094
{
	int i;
P
Pekka Enberg 已提交
3095
	struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
L
Linus Torvalds 已提交
3096 3097 3098 3099

	if (!pdata)
		return NULL;

3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
	/*
	 * Cannot use for_each_online_cpu since a cpu may come online
	 * and we have no way of figuring out how to fix the array
	 * that we have allocated then....
	 */
	for_each_cpu(i) {
		int node = cpu_to_node(i);

		if (node_online(node))
			pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
		else
			pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
L
Linus Torvalds 已提交
3112 3113 3114 3115 3116 3117 3118

		if (!pdata->ptrs[i])
			goto unwind_oom;
		memset(pdata->ptrs[i], 0, size);
	}

	/* Catch derefs w/o wrappers */
P
Pekka Enberg 已提交
3119
	return (void *)(~(unsigned long)pdata);
L
Linus Torvalds 已提交
3120

P
Pekka Enberg 已提交
3121
      unwind_oom:
L
Linus Torvalds 已提交
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140
	while (--i >= 0) {
		if (!cpu_possible(i))
			continue;
		kfree(pdata->ptrs[i]);
	}
	kfree(pdata);
	return NULL;
}
EXPORT_SYMBOL(__alloc_percpu);
#endif

/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3141
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
{
	unsigned long flags;

	local_irq_save(flags);
	__cache_free(cachep, objp);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3155 3156
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3157 3158 3159 3160 3161
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3162
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3163 3164 3165 3166 3167 3168
	unsigned long flags;

	if (unlikely(!objp))
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3169
	c = virt_to_cache(objp);
3170
	mutex_debug_check_no_locks_freed(objp, obj_size(c));
P
Pekka Enberg 已提交
3171
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

#ifdef CONFIG_SMP
/**
 * free_percpu - free previously allocated percpu memory
 * @objp: pointer returned by alloc_percpu.
 *
 * Don't free memory not originally allocated by alloc_percpu()
 * The complemented objp is to check for that.
 */
P
Pekka Enberg 已提交
3184
void free_percpu(const void *objp)
L
Linus Torvalds 已提交
3185 3186
{
	int i;
P
Pekka Enberg 已提交
3187
	struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
L
Linus Torvalds 已提交
3188

3189 3190 3191 3192
	/*
	 * We allocate for all cpus so we cannot use for online cpu here.
	 */
	for_each_cpu(i)
P
Pekka Enberg 已提交
3193
	    kfree(p->ptrs[i]);
L
Linus Torvalds 已提交
3194 3195 3196 3197 3198
	kfree(p);
}
EXPORT_SYMBOL(free_percpu);
#endif

3199
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3200
{
3201
	return obj_size(cachep);
L
Linus Torvalds 已提交
3202 3203 3204
}
EXPORT_SYMBOL(kmem_cache_size);

3205
const char *kmem_cache_name(struct kmem_cache *cachep)
3206 3207 3208 3209 3210
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3211 3212 3213
/*
 * This initializes kmem_list3 for all nodes.
 */
3214
static int alloc_kmemlist(struct kmem_cache *cachep)
3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226
{
	int node;
	struct kmem_list3 *l3;
	int err = 0;

	for_each_online_node(node) {
		struct array_cache *nc = NULL, *new;
		struct array_cache **new_alien = NULL;
#ifdef CONFIG_NUMA
		if (!(new_alien = alloc_alien_cache(node, cachep->limit)))
			goto fail;
#endif
P
Pekka Enberg 已提交
3227 3228 3229
		if (!(new = alloc_arraycache(node, (cachep->shared *
						    cachep->batchcount),
					     0xbaadf00d)))
3230 3231 3232 3233 3234 3235
			goto fail;
		if ((l3 = cachep->nodelists[node])) {

			spin_lock_irq(&l3->list_lock);

			if ((nc = cachep->nodelists[node]->shared))
P
Pekka Enberg 已提交
3236
				free_block(cachep, nc->entry, nc->avail, node);
3237 3238 3239 3240 3241 3242

			l3->shared = new;
			if (!cachep->nodelists[node]->alien) {
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3243 3244
			l3->free_limit = (1 + nr_cpus_node(node)) *
			    cachep->batchcount + cachep->num;
3245 3246 3247 3248 3249 3250
			spin_unlock_irq(&l3->list_lock);
			kfree(nc);
			free_alien_cache(new_alien);
			continue;
		}
		if (!(l3 = kmalloc_node(sizeof(struct kmem_list3),
P
Pekka Enberg 已提交
3251
					GFP_KERNEL, node)))
3252 3253 3254 3255
			goto fail;

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
3256
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3257 3258
		l3->shared = new;
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3259 3260
		l3->free_limit = (1 + nr_cpus_node(node)) *
		    cachep->batchcount + cachep->num;
3261 3262 3263
		cachep->nodelists[node] = l3;
	}
	return err;
P
Pekka Enberg 已提交
3264
      fail:
3265 3266 3267 3268
	err = -ENOMEM;
	return err;
}

L
Linus Torvalds 已提交
3269
struct ccupdate_struct {
3270
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3271 3272 3273 3274 3275 3276 3277 3278 3279
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
	struct ccupdate_struct *new = (struct ccupdate_struct *)info;
	struct array_cache *old;

	check_irq_off();
3280
	old = cpu_cache_get(new->cachep);
3281

L
Linus Torvalds 已提交
3282 3283 3284 3285
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3286
static int do_tune_cpucache(struct kmem_cache *cachep, int limit, int batchcount,
P
Pekka Enberg 已提交
3287
			    int shared)
L
Linus Torvalds 已提交
3288 3289
{
	struct ccupdate_struct new;
3290
	int i, err;
L
Linus Torvalds 已提交
3291

P
Pekka Enberg 已提交
3292
	memset(&new.new, 0, sizeof(new.new));
3293
	for_each_online_cpu(i) {
P
Pekka Enberg 已提交
3294 3295
		new.new[i] =
		    alloc_arraycache(cpu_to_node(i), limit, batchcount);
3296
		if (!new.new[i]) {
P
Pekka Enberg 已提交
3297 3298
			for (i--; i >= 0; i--)
				kfree(new.new[i]);
3299
			return -ENOMEM;
L
Linus Torvalds 已提交
3300 3301 3302 3303 3304
		}
	}
	new.cachep = cachep;

	smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
3305

L
Linus Torvalds 已提交
3306 3307 3308 3309
	check_irq_on();
	spin_lock_irq(&cachep->spinlock);
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3310
	cachep->shared = shared;
L
Linus Torvalds 已提交
3311 3312
	spin_unlock_irq(&cachep->spinlock);

3313
	for_each_online_cpu(i) {
L
Linus Torvalds 已提交
3314 3315 3316
		struct array_cache *ccold = new.new[i];
		if (!ccold)
			continue;
3317
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3318
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3319
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
3320 3321 3322
		kfree(ccold);
	}

3323 3324 3325
	err = alloc_kmemlist(cachep);
	if (err) {
		printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3326
		       cachep->name, -err);
3327
		BUG();
L
Linus Torvalds 已提交
3328 3329 3330 3331
	}
	return 0;
}

3332
static void enable_cpucache(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
{
	int err;
	int limit, shared;

	/* The head array serves three purposes:
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
	 * - reduce the number of linked list operations on the slab and 
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3345
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
3346
		limit = 1;
3347
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
3348
		limit = 8;
3349
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
3350
		limit = 24;
3351
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365
		limit = 54;
	else
		limit = 120;

	/* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
#ifdef CONFIG_SMP
3366
	if (cachep->buffer_size <= PAGE_SIZE)
L
Linus Torvalds 已提交
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
		shared = 8;
#endif

#if DEBUG
	/* With debugging enabled, large batchcount lead to excessively
	 * long periods with disabled local interrupts. Limit the 
	 * batchcount
	 */
	if (limit > 32)
		limit = 32;
#endif
P
Pekka Enberg 已提交
3378
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
L
Linus Torvalds 已提交
3379 3380
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3381
		       cachep->name, -err);
L
Linus Torvalds 已提交
3382 3383
}

3384
static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
P
Pekka Enberg 已提交
3385
				int force, int node)
L
Linus Torvalds 已提交
3386 3387 3388
{
	int tofree;

3389
	check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3390 3391 3392
	if (ac->touched && !force) {
		ac->touched = 0;
	} else if (ac->avail) {
P
Pekka Enberg 已提交
3393
		tofree = force ? ac->avail : (ac->limit + 4) / 5;
L
Linus Torvalds 已提交
3394
		if (tofree > ac->avail) {
P
Pekka Enberg 已提交
3395
			tofree = (ac->avail + 1) / 2;
L
Linus Torvalds 已提交
3396
		}
3397
		free_block(cachep, ac->entry, tofree, node);
L
Linus Torvalds 已提交
3398
		ac->avail -= tofree;
3399
		memmove(ac->entry, &(ac->entry[tofree]),
P
Pekka Enberg 已提交
3400
			sizeof(void *) * ac->avail);
L
Linus Torvalds 已提交
3401 3402 3403 3404 3405
	}
}

/**
 * cache_reap - Reclaim memory from caches.
3406
 * @unused: unused parameter
L
Linus Torvalds 已提交
3407 3408 3409 3410 3411 3412
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
I
Ingo Molnar 已提交
3413
 * If we cannot acquire the cache chain mutex then just give up - we'll
L
Linus Torvalds 已提交
3414 3415 3416 3417 3418
 * try again on the next iteration.
 */
static void cache_reap(void *unused)
{
	struct list_head *walk;
3419
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3420

I
Ingo Molnar 已提交
3421
	if (!mutex_trylock(&cache_chain_mutex)) {
L
Linus Torvalds 已提交
3422
		/* Give up. Setup the next iteration. */
P
Pekka Enberg 已提交
3423 3424
		schedule_delayed_work(&__get_cpu_var(reap_work),
				      REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3425 3426 3427 3428
		return;
	}

	list_for_each(walk, &cache_chain) {
3429
		struct kmem_cache *searchp;
P
Pekka Enberg 已提交
3430
		struct list_head *p;
L
Linus Torvalds 已提交
3431 3432 3433
		int tofree;
		struct slab *slabp;

3434
		searchp = list_entry(walk, struct kmem_cache, next);
L
Linus Torvalds 已提交
3435 3436 3437 3438 3439 3440

		if (searchp->flags & SLAB_NO_REAP)
			goto next;

		check_irq_on();

3441 3442 3443 3444
		l3 = searchp->nodelists[numa_node_id()];
		if (l3->alien)
			drain_alien_cache(searchp, l3);
		spin_lock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3445

3446
		drain_array_locked(searchp, cpu_cache_get(searchp), 0,
P
Pekka Enberg 已提交
3447
				   numa_node_id());
L
Linus Torvalds 已提交
3448

3449
		if (time_after(l3->next_reap, jiffies))
L
Linus Torvalds 已提交
3450 3451
			goto next_unlock;

3452
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
3453

3454 3455
		if (l3->shared)
			drain_array_locked(searchp, l3->shared, 0,
P
Pekka Enberg 已提交
3456
					   numa_node_id());
L
Linus Torvalds 已提交
3457

3458 3459
		if (l3->free_touched) {
			l3->free_touched = 0;
L
Linus Torvalds 已提交
3460 3461 3462
			goto next_unlock;
		}

P
Pekka Enberg 已提交
3463 3464 3465
		tofree =
		    (l3->free_limit + 5 * searchp->num -
		     1) / (5 * searchp->num);
L
Linus Torvalds 已提交
3466
		do {
3467 3468
			p = l3->slabs_free.next;
			if (p == &(l3->slabs_free))
L
Linus Torvalds 已提交
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
				break;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);
			list_del(&slabp->list);
			STATS_INC_REAPED(searchp);

			/* Safe to drop the lock. The slab is no longer
			 * linked to the cache.
			 * searchp cannot disappear, we hold
			 * cache_chain_lock
			 */
3481 3482
			l3->free_objects -= searchp->num;
			spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3483
			slab_destroy(searchp, slabp);
3484
			spin_lock_irq(&l3->list_lock);
P
Pekka Enberg 已提交
3485 3486
		} while (--tofree > 0);
	      next_unlock:
3487
		spin_unlock_irq(&l3->list_lock);
P
Pekka Enberg 已提交
3488
	      next:
L
Linus Torvalds 已提交
3489 3490 3491
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
3492
	mutex_unlock(&cache_chain_mutex);
3493
	drain_remote_pages();
L
Linus Torvalds 已提交
3494
	/* Setup the next iteration */
3495
	schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3496 3497 3498 3499
}

#ifdef CONFIG_PROC_FS

3500
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
3501
{
3502 3503 3504 3505
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
3506
#if STATS
3507
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
3508
#else
3509
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
3510
#endif
3511 3512 3513 3514
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
3515
#if STATS
3516 3517 3518
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
		 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
3519
#endif
3520 3521 3522 3523 3524 3525 3526 3527
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

I
Ingo Molnar 已提交
3528
	mutex_lock(&cache_chain_mutex);
3529 3530
	if (!n)
		print_slabinfo_header(m);
L
Linus Torvalds 已提交
3531 3532 3533 3534 3535 3536
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
3537
	return list_entry(p, struct kmem_cache, next);
L
Linus Torvalds 已提交
3538 3539 3540 3541
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
3542
	struct kmem_cache *cachep = p;
L
Linus Torvalds 已提交
3543 3544
	++*pos;
	return cachep->next.next == &cache_chain ? NULL
3545
	    : list_entry(cachep->next.next, struct kmem_cache, next);
L
Linus Torvalds 已提交
3546 3547 3548 3549
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
3550
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3551 3552 3553 3554
}

static int s_show(struct seq_file *m, void *p)
{
3555
	struct kmem_cache *cachep = p;
L
Linus Torvalds 已提交
3556
	struct list_head *q;
P
Pekka Enberg 已提交
3557 3558 3559 3560 3561
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3562
	const char *name;
L
Linus Torvalds 已提交
3563
	char *error = NULL;
3564 3565
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3566 3567 3568 3569 3570

	check_irq_on();
	spin_lock_irq(&cachep->spinlock);
	active_objs = 0;
	num_slabs = 0;
3571 3572 3573 3574 3575 3576 3577
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		spin_lock(&l3->list_lock);

P
Pekka Enberg 已提交
3578
		list_for_each(q, &l3->slabs_full) {
3579 3580 3581 3582 3583 3584
			slabp = list_entry(q, struct slab, list);
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
P
Pekka Enberg 已提交
3585
		list_for_each(q, &l3->slabs_partial) {
3586 3587 3588 3589 3590 3591 3592 3593
			slabp = list_entry(q, struct slab, list);
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
P
Pekka Enberg 已提交
3594
		list_for_each(q, &l3->slabs_free) {
3595 3596 3597 3598 3599 3600 3601 3602 3603
			slabp = list_entry(q, struct slab, list);
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
		shared_avail += l3->shared->avail;

		spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3604
	}
P
Pekka Enberg 已提交
3605 3606
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
3607
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
3608 3609
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
3610
	name = cachep->name;
L
Linus Torvalds 已提交
3611 3612 3613 3614
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3615
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
3616
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
3617
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
3618
		   cachep->limit, cachep->batchcount, cachep->shared);
3619
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
3620
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
3621
#if STATS
P
Pekka Enberg 已提交
3622
	{			/* list3 stats */
L
Linus Torvalds 已提交
3623 3624 3625 3626 3627 3628 3629
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
3630
		unsigned long node_frees = cachep->node_frees;
L
Linus Torvalds 已提交
3631

3632
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
P
Pekka Enberg 已提交
3633
				%4lu %4lu %4lu %4lu", allocs, high, grown, reaped, errors, max_freeable, node_allocs, node_frees);
L
Linus Torvalds 已提交
3634 3635 3636 3637 3638 3639 3640 3641 3642
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
3643
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
	}
#endif
	seq_putc(m, '\n');
	spin_unlock_irq(&cachep->spinlock);
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
3666 3667 3668 3669
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
3680 3681
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
3682
{
P
Pekka Enberg 已提交
3683
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
3684 3685
	int limit, batchcount, shared, res;
	struct list_head *p;
P
Pekka Enberg 已提交
3686

L
Linus Torvalds 已提交
3687 3688 3689 3690
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
3691
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
3692 3693 3694 3695 3696 3697 3698 3699 3700 3701

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
3702
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3703
	res = -EINVAL;
P
Pekka Enberg 已提交
3704
	list_for_each(p, &cache_chain) {
3705 3706
		struct kmem_cache *cachep = list_entry(p, struct kmem_cache,
						       next);
L
Linus Torvalds 已提交
3707 3708 3709 3710

		if (!strcmp(cachep->name, kbuf)) {
			if (limit < 1 ||
			    batchcount < 1 ||
P
Pekka Enberg 已提交
3711
			    batchcount > limit || shared < 0) {
3712
				res = 0;
L
Linus Torvalds 已提交
3713
			} else {
3714
				res = do_tune_cpucache(cachep, limit,
P
Pekka Enberg 已提交
3715
						       batchcount, shared);
L
Linus Torvalds 已提交
3716 3717 3718 3719
			}
			break;
		}
	}
I
Ingo Molnar 已提交
3720
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3721 3722 3723 3724 3725 3726
	if (res >= 0)
		res = count;
	return res;
}
#endif

3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
L
Linus Torvalds 已提交
3739 3740
unsigned int ksize(const void *objp)
{
3741 3742
	if (unlikely(objp == NULL))
		return 0;
L
Linus Torvalds 已提交
3743

3744
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
3745
}