slab.c 117.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
 * slabs and you must pass objects with the same intializations to
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
L
Linus Torvalds 已提交
98 99 100 101 102 103 104
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
105
#include	<linux/string.h>
106
#include	<linux/uaccess.h>
107
#include	<linux/nodemask.h>
108
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
109
#include	<linux/mutex.h>
110
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
111
#include	<linux/rtmutex.h>
112
#include	<linux/reciprocal_div.h>
L
Linus Torvalds 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176

#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
 *		  SLAB_RED_ZONE & SLAB_POISON.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)

#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
 * Note that this flag disables some debug features.
 */
#define ARCH_KMALLOC_MINALIGN 0
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
177
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
178 179
			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
180
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
181
#else
182
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
L
Linus Torvalds 已提交
183 184
			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
185
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

207
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
208 209
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
210 211
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
212 213 214 215 216 217 218 219 220

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
221 222 223 224 225 226
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
246
	struct rcu_head head;
247
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
248
	void *addr;
L
Linus Torvalds 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
268
	spinlock_t lock;
A
Andrew Morton 已提交
269 270 271 272 273 274
	void *entry[0];	/*
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 * [0] is for gcc 2.95. It should really be [].
			 */
L
Linus Torvalds 已提交
275 276
};

A
Andrew Morton 已提交
277 278 279
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
280 281 282 283
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
284
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
285 286 287
};

/*
288
 * The slab lists for all objects.
L
Linus Torvalds 已提交
289 290
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
291 292 293 294 295
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
296
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
297 298 299
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
300 301
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
302 303
};

304 305 306 307 308 309 310 311 312
/*
 * Need this for bootstrapping a per node allocator.
 */
#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
#define	SIZE_AC 1
#define	SIZE_L3 (1 + MAX_NUMNODES)

313 314 315 316
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
317
static int enable_cpucache(struct kmem_cache *cachep);
318
static void cache_reap(struct work_struct *unused);
319

320
/*
A
Andrew Morton 已提交
321 322
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
323
 */
324
static __always_inline int index_of(const size_t size)
325
{
326 327
	extern void __bad_size(void);

328 329 330 331 332 333 334 335 336 337
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
#include "linux/kmalloc_sizes.h"
#undef CACHE
338
		__bad_size();
339
	} else
340
		__bad_size();
341 342 343
	return 0;
}

344 345
static int slab_early_init = 1;

346 347
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
348

P
Pekka Enberg 已提交
349
static void kmem_list3_init(struct kmem_list3 *parent)
350 351 352 353 354 355
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
356
	parent->colour_next = 0;
357 358 359 360 361
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
362 363 364 365
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
366 367
	} while (0)

A
Andrew Morton 已提交
368 369
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
370 371 372 373
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
374 375

/*
376
 * struct kmem_cache
L
Linus Torvalds 已提交
377 378 379
 *
 * manages a cache.
 */
P
Pekka Enberg 已提交
380

381
struct kmem_cache {
L
Linus Torvalds 已提交
382
/* 1) per-cpu data, touched during every alloc/free */
P
Pekka Enberg 已提交
383
	struct array_cache *array[NR_CPUS];
384
/* 2) Cache tunables. Protected by cache_chain_mutex */
P
Pekka Enberg 已提交
385 386 387
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
388

389
	unsigned int buffer_size;
390
	u32 reciprocal_buffer_size;
391
/* 3) touched by every alloc & free from the backend */
P
Pekka Enberg 已提交
392
	struct kmem_list3 *nodelists[MAX_NUMNODES];
393

A
Andrew Morton 已提交
394 395
	unsigned int flags;		/* constant flags */
	unsigned int num;		/* # of objs per slab */
L
Linus Torvalds 已提交
396

397
/* 4) cache_grow/shrink */
L
Linus Torvalds 已提交
398
	/* order of pgs per slab (2^n) */
P
Pekka Enberg 已提交
399
	unsigned int gfporder;
L
Linus Torvalds 已提交
400 401

	/* force GFP flags, e.g. GFP_DMA */
P
Pekka Enberg 已提交
402
	gfp_t gfpflags;
L
Linus Torvalds 已提交
403

A
Andrew Morton 已提交
404
	size_t colour;			/* cache colouring range */
P
Pekka Enberg 已提交
405
	unsigned int colour_off;	/* colour offset */
406
	struct kmem_cache *slabp_cache;
P
Pekka Enberg 已提交
407
	unsigned int slab_size;
A
Andrew Morton 已提交
408
	unsigned int dflags;		/* dynamic flags */
L
Linus Torvalds 已提交
409 410

	/* constructor func */
411
	void (*ctor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
412 413

	/* de-constructor func */
414
	void (*dtor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
415

416
/* 5) cache creation/removal */
P
Pekka Enberg 已提交
417 418
	const char *name;
	struct list_head next;
L
Linus Torvalds 已提交
419

420
/* 6) statistics */
L
Linus Torvalds 已提交
421
#if STATS
P
Pekka Enberg 已提交
422 423 424 425 426 427 428 429 430
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
431
	unsigned long node_overflow;
P
Pekka Enberg 已提交
432 433 434 435
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
L
Linus Torvalds 已提交
436 437
#endif
#if DEBUG
438 439 440 441 442 443 444 445
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
L
Linus Torvalds 已提交
446 447 448 449 450 451 452
#endif
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
453 454 455
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
456
 *
A
Adrian Bunk 已提交
457
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
458 459 460 461 462 463 464 465 466 467
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
468
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
469 470 471 472 473
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
474 475
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
476
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
477
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
478 479 480 481 482
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
483 484 485 486 487 488 489 490 491
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
492
#define	STATS_ADD_REAPED(x,y)	do { } while (0)
L
Linus Torvalds 已提交
493 494 495
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
496
#define	STATS_INC_NODEFREES(x)	do { } while (0)
497
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
498
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
499 500 501 502 503 504 505 506
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
507 508
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
509
 * 0		: objp
510
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
511 512
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
513
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
514
 * 		redzone word.
515 516
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
517 518
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
519
 */
520
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
521
{
522
	return cachep->obj_offset;
L
Linus Torvalds 已提交
523 524
}

525
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
526
{
527
	return cachep->obj_size;
L
Linus Torvalds 已提交
528 529
}

530
static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
531 532
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
533
	return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
L
Linus Torvalds 已提交
534 535
}

536
static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
537 538 539
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
540
		return (unsigned long *)(objp + cachep->buffer_size -
P
Pekka Enberg 已提交
541
					 2 * BYTES_PER_WORD);
542
	return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
543 544
}

545
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
546 547
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
548
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
549 550 551 552
}

#else

553 554
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
L
Linus Torvalds 已提交
555 556 557 558 559 560 561
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
A
Andrew Morton 已提交
562 563
 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
 * order.
L
Linus Torvalds 已提交
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
 */
#if defined(CONFIG_LARGE_ALLOCS)
#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
#define	MAX_GFP_ORDER	13	/* up to 32Mb */
#elif defined(CONFIG_MMU)
#define	MAX_OBJ_ORDER	5	/* 32 pages */
#define	MAX_GFP_ORDER	5	/* 32 pages */
#else
#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
#define	MAX_GFP_ORDER	8	/* up to 1Mb */
#endif

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
583 584 585 586
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
587
 */
588 589 590 591 592 593 594
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
595 596
	if (unlikely(PageCompound(page)))
		page = (struct page *)page_private(page);
597
	BUG_ON(!PageSlab(page));
598 599 600 601 602 603 604 605 606 607
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
608 609
	if (unlikely(PageCompound(page)))
		page = (struct page *)page_private(page);
610
	BUG_ON(!PageSlab(page));
611 612
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
613

614 615 616 617 618 619 620 621 622 623 624 625
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_slab(page);
}

626 627 628 629 630 631
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

632 633 634 635 636 637 638 639
/*
 * We want to avoid an expensive divide : (offset / cache->buffer_size)
 *   Using the fact that buffer_size is a constant for a particular cache,
 *   we can replace (offset / cache->buffer_size) by
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
640
{
641 642
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
643 644
}

A
Andrew Morton 已提交
645 646 647
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
665
	{NULL,}
L
Linus Torvalds 已提交
666 667 668 669
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
670
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
671
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
672
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
673 674

/* internal cache of cache description objs */
675
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
676 677 678
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
679
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
680
	.name = "kmem_cache",
L
Linus Torvalds 已提交
681
#if DEBUG
682
	.obj_size = sizeof(struct kmem_cache),
L
Linus Torvalds 已提交
683 684 685
#endif
};

686 687
#define BAD_ALIEN_MAGIC 0x01020304ul

688 689 690 691 692 693 694 695
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
696 697 698 699
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
700
 */
701 702 703 704
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

static inline void init_lock_keys(void)
705 706 707

{
	int q;
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
	struct cache_sizes *s = malloc_sizes;

	while (s->cs_size != ULONG_MAX) {
		for_each_node(q) {
			struct array_cache **alc;
			int r;
			struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
			if (!l3 || OFF_SLAB(s->cs_cachep))
				continue;
			lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
			alc = l3->alien;
			/*
			 * FIXME: This check for BAD_ALIEN_MAGIC
			 * should go away when common slab code is taught to
			 * work even without alien caches.
			 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
			 * for alloc_alien_cache,
			 */
			if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
				continue;
			for_each_node(r) {
				if (alc[r])
					lockdep_set_class(&alc[r]->lock,
					     &on_slab_alc_key);
			}
		}
		s++;
735 736 737
	}
}
#else
738
static inline void init_lock_keys(void)
739 740 741 742
{
}
#endif

743 744 745 746
/*
 * 1. Guard access to the cache-chain.
 * 2. Protect sanity of cpu_online_map against cpu hotplug events
 */
I
Ingo Molnar 已提交
747
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
748 749 750 751 752 753 754 755
static struct list_head cache_chain;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
756 757
	PARTIAL_AC,
	PARTIAL_L3,
L
Linus Torvalds 已提交
758 759 760
	FULL
} g_cpucache_up;

761 762 763 764 765 766 767 768
/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up == FULL;
}

769
static DEFINE_PER_CPU(struct delayed_work, reap_work);
L
Linus Torvalds 已提交
770

771
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
772 773 774 775
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
776 777
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
778 779 780 781 782
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
783 784 785
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
786
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
787 788 789 790 791
#endif
	while (size > csizep->cs_size)
		csizep++;

	/*
792
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
793 794 795
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
796
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
797 798
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
799
#endif
L
Linus Torvalds 已提交
800 801 802
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
803
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
804 805 806 807
{
	return __find_general_cachep(size, gfpflags);
}

808
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
809
{
810 811
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
812

A
Andrew Morton 已提交
813 814 815
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
816 817 818 819 820 821 822
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
823

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
872 873 874 875
}

#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)

A
Andrew Morton 已提交
876 877
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
878 879
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
880
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
881 882 883
	dump_stack();
}

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
915
		node = first_node(node_online_map);
916

917
	per_cpu(reap_node, cpu) = node;
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	/*
	 * Also drain per cpu pages on remote zones
	 */
	if (node != numa_node_id())
		drain_node_pages(node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
941 942 943 944 945 946 947 948 949
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
static void __devinit start_cpu_timer(int cpu)
{
950
	struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
L
Linus Torvalds 已提交
951 952 953 954 955 956

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
957
	if (keventd_up() && reap_work->work.func == NULL) {
958
		init_reap_node(cpu);
959
		INIT_DELAYED_WORK(reap_work, cache_reap);
960 961
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
962 963 964
	}
}

965
static struct array_cache *alloc_arraycache(int node, int entries,
P
Pekka Enberg 已提交
966
					    int batchcount)
L
Linus Torvalds 已提交
967
{
P
Pekka Enberg 已提交
968
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
969 970
	struct array_cache *nc = NULL;

971
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
L
Linus Torvalds 已提交
972 973 974 975 976
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
977
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
978 979 980 981
	}
	return nc;
}

982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	to->touched = 1;
	return nr;
}

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

1031
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1032 1033 1034 1035 1036 1037 1038
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1039
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1040
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1041

P
Pekka Enberg 已提交
1042
static struct array_cache **alloc_alien_cache(int node, int limit)
1043 1044
{
	struct array_cache **ac_ptr;
1045
	int memsize = sizeof(void *) * nr_node_ids;
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
P
Pekka Enberg 已提交
1059
				for (i--; i <= 0; i--)
1060 1061 1062 1063 1064 1065 1066 1067 1068
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1069
static void free_alien_cache(struct array_cache **ac_ptr)
1070 1071 1072 1073 1074 1075
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1076
	    kfree(ac_ptr[i]);
1077 1078 1079
	kfree(ac_ptr);
}

1080
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1081
				struct array_cache *ac, int node)
1082 1083 1084 1085 1086
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1087 1088 1089 1090 1091
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1092 1093
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1094

1095
		free_block(cachep, ac->entry, ac->avail, node);
1096 1097 1098 1099 1100
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1101 1102 1103 1104 1105 1106 1107 1108 1109
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
	int node = __get_cpu_var(reap_node);

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1110 1111

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1112 1113 1114 1115 1116 1117
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1118 1119
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1120
{
P
Pekka Enberg 已提交
1121
	int i = 0;
1122 1123 1124 1125
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1126
		ac = alien[i];
1127 1128 1129 1130 1131 1132 1133
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1134

1135
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1136 1137 1138 1139 1140
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1141 1142 1143
	int node;

	node = numa_node_id();
1144 1145 1146 1147 1148

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1149
	if (likely(slabp->nodeid == node))
1150 1151
		return 0;

P
Pekka Enberg 已提交
1152
	l3 = cachep->nodelists[node];
1153 1154 1155
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1156
		spin_lock(&alien->lock);
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1170 1171
#endif

1172
static int __cpuinit cpuup_callback(struct notifier_block *nfb,
P
Pekka Enberg 已提交
1173
				    unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
1174 1175
{
	long cpu = (long)hcpu;
1176
	struct kmem_cache *cachep;
1177 1178 1179
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
	int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
1180 1181 1182

	switch (action) {
	case CPU_UP_PREPARE:
I
Ingo Molnar 已提交
1183
		mutex_lock(&cache_chain_mutex);
A
Andrew Morton 已提交
1184 1185
		/*
		 * We need to do this right in the beginning since
1186 1187 1188 1189 1190
		 * alloc_arraycache's are going to use this list.
		 * kmalloc_node allows us to add the slab to the right
		 * kmem_list3 and not this cpu's kmem_list3
		 */

L
Linus Torvalds 已提交
1191
		list_for_each_entry(cachep, &cache_chain, next) {
A
Andrew Morton 已提交
1192 1193
			/*
			 * Set up the size64 kmemlist for cpu before we can
1194 1195 1196 1197
			 * begin anything. Make sure some other cpu on this
			 * node has not already allocated this
			 */
			if (!cachep->nodelists[node]) {
A
Andrew Morton 已提交
1198 1199
				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
				if (!l3)
1200 1201 1202
					goto bad;
				kmem_list3_init(l3);
				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
1203
				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1204

1205 1206 1207 1208 1209
				/*
				 * The l3s don't come and go as CPUs come and
				 * go.  cache_chain_mutex is sufficient
				 * protection here.
				 */
1210 1211
				cachep->nodelists[node] = l3;
			}
L
Linus Torvalds 已提交
1212

1213 1214
			spin_lock_irq(&cachep->nodelists[node]->list_lock);
			cachep->nodelists[node]->free_limit =
A
Andrew Morton 已提交
1215 1216
				(1 + nr_cpus_node(node)) *
				cachep->batchcount + cachep->num;
1217 1218 1219
			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
		}

A
Andrew Morton 已提交
1220 1221 1222 1223
		/*
		 * Now we can go ahead with allocating the shared arrays and
		 * array caches
		 */
1224
		list_for_each_entry(cachep, &cache_chain, next) {
1225
			struct array_cache *nc;
1226
			struct array_cache *shared = NULL;
1227
			struct array_cache **alien = NULL;
1228

1229
			nc = alloc_arraycache(node, cachep->limit,
1230
						cachep->batchcount);
L
Linus Torvalds 已提交
1231 1232
			if (!nc)
				goto bad;
1233 1234
			if (cachep->shared) {
				shared = alloc_arraycache(node,
1235 1236
					cachep->shared * cachep->batchcount,
					0xbaadf00d);
1237 1238 1239
				if (!shared)
					goto bad;
			}
1240 1241 1242 1243 1244
			if (use_alien_caches) {
                                alien = alloc_alien_cache(node, cachep->limit);
                                if (!alien)
                                        goto bad;
                        }
L
Linus Torvalds 已提交
1245
			cachep->array[cpu] = nc;
1246 1247 1248
			l3 = cachep->nodelists[node];
			BUG_ON(!l3);

1249 1250 1251 1252 1253 1254 1255 1256
			spin_lock_irq(&l3->list_lock);
			if (!l3->shared) {
				/*
				 * We are serialised from CPU_DEAD or
				 * CPU_UP_CANCELLED by the cpucontrol lock
				 */
				l3->shared = shared;
				shared = NULL;
1257
			}
1258 1259 1260 1261 1262 1263 1264 1265 1266
#ifdef CONFIG_NUMA
			if (!l3->alien) {
				l3->alien = alien;
				alien = NULL;
			}
#endif
			spin_unlock_irq(&l3->list_lock);
			kfree(shared);
			free_alien_cache(alien);
L
Linus Torvalds 已提交
1267 1268 1269
		}
		break;
	case CPU_ONLINE:
1270
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1271 1272 1273
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1274 1275 1276 1277 1278 1279
	case CPU_DOWN_PREPARE:
		mutex_lock(&cache_chain_mutex);
		break;
	case CPU_DOWN_FAILED:
		mutex_unlock(&cache_chain_mutex);
		break;
L
Linus Torvalds 已提交
1280
	case CPU_DEAD:
1281 1282 1283 1284 1285 1286 1287 1288
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
L
Linus Torvalds 已提交
1289
		/* fall thru */
1290
#endif
L
Linus Torvalds 已提交
1291 1292 1293
	case CPU_UP_CANCELED:
		list_for_each_entry(cachep, &cache_chain, next) {
			struct array_cache *nc;
1294 1295
			struct array_cache *shared;
			struct array_cache **alien;
1296
			cpumask_t mask;
L
Linus Torvalds 已提交
1297

1298
			mask = node_to_cpumask(node);
L
Linus Torvalds 已提交
1299 1300 1301
			/* cpu is dead; no one can alloc from it. */
			nc = cachep->array[cpu];
			cachep->array[cpu] = NULL;
1302 1303 1304
			l3 = cachep->nodelists[node];

			if (!l3)
1305
				goto free_array_cache;
1306

1307
			spin_lock_irq(&l3->list_lock);
1308 1309 1310 1311

			/* Free limit for this kmem_list3 */
			l3->free_limit -= cachep->batchcount;
			if (nc)
1312
				free_block(cachep, nc->entry, nc->avail, node);
1313 1314

			if (!cpus_empty(mask)) {
1315
				spin_unlock_irq(&l3->list_lock);
1316
				goto free_array_cache;
P
Pekka Enberg 已提交
1317
			}
1318

1319 1320
			shared = l3->shared;
			if (shared) {
1321 1322
				free_block(cachep, shared->entry,
					   shared->avail, node);
1323 1324 1325
				l3->shared = NULL;
			}

1326 1327 1328 1329 1330 1331 1332 1333 1334
			alien = l3->alien;
			l3->alien = NULL;

			spin_unlock_irq(&l3->list_lock);

			kfree(shared);
			if (alien) {
				drain_alien_cache(cachep, alien);
				free_alien_cache(alien);
1335
			}
1336
free_array_cache:
L
Linus Torvalds 已提交
1337 1338
			kfree(nc);
		}
1339 1340 1341 1342 1343 1344 1345 1346 1347
		/*
		 * In the previous loop, all the objects were freed to
		 * the respective cache's slabs,  now we can go ahead and
		 * shrink each nodelist to its limit.
		 */
		list_for_each_entry(cachep, &cache_chain, next) {
			l3 = cachep->nodelists[node];
			if (!l3)
				continue;
1348
			drain_freelist(cachep, l3, l3->free_objects);
1349
		}
I
Ingo Molnar 已提交
1350
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1351 1352 1353
		break;
	}
	return NOTIFY_OK;
A
Andrew Morton 已提交
1354
bad:
L
Linus Torvalds 已提交
1355 1356 1357
	return NOTIFY_BAD;
}

1358 1359 1360
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1361

1362 1363 1364
/*
 * swap the static kmem_list3 with kmalloced memory
 */
A
Andrew Morton 已提交
1365 1366
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
			int nodeid)
1367 1368 1369 1370 1371 1372 1373 1374
{
	struct kmem_list3 *ptr;

	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
	BUG_ON(!ptr);

	local_irq_disable();
	memcpy(ptr, list, sizeof(struct kmem_list3));
1375 1376 1377 1378 1379
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1380 1381 1382 1383 1384
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
	local_irq_enable();
}

A
Andrew Morton 已提交
1385 1386 1387
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1388 1389 1390 1391 1392 1393
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1394
	int i;
1395
	int order;
P
Pekka Enberg 已提交
1396
	int node;
1397

1398 1399 1400
	if (num_possible_nodes() == 1)
		use_alien_caches = 0;

1401 1402 1403 1404 1405
	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
L
Linus Torvalds 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1416 1417 1418
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1419 1420 1421
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1422
	 * 2) Create the first kmalloc cache.
1423
	 *    The struct kmem_cache for the new cache is allocated normally.
1424 1425 1426
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1427 1428
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1429 1430 1431
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1432 1433
	 */

P
Pekka Enberg 已提交
1434 1435
	node = numa_node_id();

L
Linus Torvalds 已提交
1436 1437 1438 1439 1440
	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
P
Pekka Enberg 已提交
1441
	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
L
Linus Torvalds 已提交
1442

A
Andrew Morton 已提交
1443 1444
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
1445 1446
	cache_cache.reciprocal_buffer_size =
		reciprocal_value(cache_cache.buffer_size);
L
Linus Torvalds 已提交
1447

1448 1449 1450 1451 1452 1453
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1454
	BUG_ON(!cache_cache.num);
1455
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1456 1457 1458
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1459 1460 1461 1462 1463

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1464 1465 1466 1467
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1468 1469 1470
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1471 1472 1473 1474
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
1475

A
Andrew Morton 已提交
1476
	if (INDEX_AC != INDEX_L3) {
1477
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1478 1479 1480 1481 1482 1483
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
				NULL, NULL);
	}
1484

1485 1486
	slab_early_init = 0;

L
Linus Torvalds 已提交
1487
	while (sizes->cs_size != ULONG_MAX) {
1488 1489
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1490 1491 1492
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1493 1494
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1495
		if (!sizes->cs_cachep) {
1496
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1497 1498 1499 1500 1501
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
		}
1502 1503 1504
#ifdef CONFIG_ZONE_DMA
		sizes->cs_dmacachep = kmem_cache_create(
					names->name_dma,
A
Andrew Morton 已提交
1505 1506 1507 1508 1509
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
					NULL, NULL);
1510
#endif
L
Linus Torvalds 已提交
1511 1512 1513 1514 1515
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1516
		struct array_cache *ptr;
1517

L
Linus Torvalds 已提交
1518
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1519

L
Linus Torvalds 已提交
1520
		local_irq_disable();
1521 1522
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1523
		       sizeof(struct arraycache_init));
1524 1525 1526 1527 1528
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1529 1530
		cache_cache.array[smp_processor_id()] = ptr;
		local_irq_enable();
1531

L
Linus Torvalds 已提交
1532
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1533

L
Linus Torvalds 已提交
1534
		local_irq_disable();
1535
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1536
		       != &initarray_generic.cache);
1537
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1538
		       sizeof(struct arraycache_init));
1539 1540 1541 1542 1543
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1544
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1545
		    ptr;
L
Linus Torvalds 已提交
1546 1547
		local_irq_enable();
	}
1548 1549
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1550 1551
		int nid;

1552
		/* Replace the static kmem_list3 structures for the boot cpu */
P
Pekka Enberg 已提交
1553
		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1554

P
Pekka Enberg 已提交
1555
		for_each_online_node(nid) {
1556
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1557
				  &initkmem_list3[SIZE_AC + nid], nid);
1558 1559 1560

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1561
					  &initkmem_list3[SIZE_L3 + nid], nid);
1562 1563 1564
			}
		}
	}
L
Linus Torvalds 已提交
1565

1566
	/* 6) resize the head arrays to their final sizes */
L
Linus Torvalds 已提交
1567
	{
1568
		struct kmem_cache *cachep;
I
Ingo Molnar 已提交
1569
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1570
		list_for_each_entry(cachep, &cache_chain, next)
1571 1572
			if (enable_cpucache(cachep))
				BUG();
I
Ingo Molnar 已提交
1573
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1574 1575
	}

1576 1577 1578 1579
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();


L
Linus Torvalds 已提交
1580 1581 1582
	/* Done! */
	g_cpucache_up = FULL;

A
Andrew Morton 已提交
1583 1584 1585
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1586 1587 1588
	 */
	register_cpu_notifier(&cpucache_notifier);

A
Andrew Morton 已提交
1589 1590 1591
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1592 1593 1594 1595 1596 1597 1598
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1599 1600
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1601
	 */
1602
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1603
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1615
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1616 1617
{
	struct page *page;
1618
	int nr_pages;
L
Linus Torvalds 已提交
1619 1620
	int i;

1621
#ifndef CONFIG_MMU
1622 1623 1624
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1625
	 */
1626
	flags |= __GFP_COMP;
1627
#endif
1628

1629
	flags |= cachep->gfpflags;
1630 1631

	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
L
Linus Torvalds 已提交
1632 1633 1634
	if (!page)
		return NULL;

1635
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1636
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1637 1638 1639 1640 1641
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1642 1643 1644
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
	return page_address(page);
L
Linus Torvalds 已提交
1645 1646 1647 1648 1649
}

/*
 * Interface to system's page release.
 */
1650
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1651
{
P
Pekka Enberg 已提交
1652
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1653 1654 1655
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1656 1657 1658 1659 1660 1661
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1662
	while (i--) {
N
Nick Piggin 已提交
1663 1664
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1665 1666 1667 1668 1669 1670 1671 1672 1673
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1674
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1675
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1676 1677 1678 1679 1680 1681 1682 1683 1684

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1685
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1686
			    unsigned long caller)
L
Linus Torvalds 已提交
1687
{
1688
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1689

1690
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1691

P
Pekka Enberg 已提交
1692
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1693 1694
		return;

P
Pekka Enberg 已提交
1695 1696 1697 1698
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1699 1700 1701 1702 1703 1704 1705
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1706
				*addr++ = svalue;
L
Linus Torvalds 已提交
1707 1708 1709 1710 1711 1712 1713
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1714
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1715 1716 1717
}
#endif

1718
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1719
{
1720 1721
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1722 1723

	memset(addr, val, size);
P
Pekka Enberg 已提交
1724
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1725 1726 1727 1728 1729
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1730 1731 1732
	unsigned char error = 0;
	int bad_count = 0;

L
Linus Torvalds 已提交
1733
	printk(KERN_ERR "%03x:", offset);
D
Dave Jones 已提交
1734 1735 1736 1737 1738
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
P
Pekka Enberg 已提交
1739
		printk(" %02x", (unsigned char)data[offset + i]);
D
Dave Jones 已提交
1740
	}
L
Linus Torvalds 已提交
1741
	printk("\n");
D
Dave Jones 已提交
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1756 1757 1758 1759 1760
}
#endif

#if DEBUG

1761
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1762 1763 1764 1765 1766 1767
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
		printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
A
Andrew Morton 已提交
1768 1769
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1770 1771 1772 1773
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1774
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1775
		print_symbol("(%s)",
A
Andrew Morton 已提交
1776
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1777 1778
		printk("\n");
	}
1779 1780
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1781
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1782 1783
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1784 1785
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1786 1787 1788 1789
		dump_line(realobj, i, limit);
	}
}

1790
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1791 1792 1793 1794 1795
{
	char *realobj;
	int size, i;
	int lines = 0;

1796 1797
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1798

P
Pekka Enberg 已提交
1799
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1800
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1801
		if (i == size - 1)
L
Linus Torvalds 已提交
1802 1803 1804 1805 1806 1807
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1808
				printk(KERN_ERR
1809 1810
					"Slab corruption: %s start=%p, len=%d\n",
					cachep->name, realobj, size);
L
Linus Torvalds 已提交
1811 1812 1813
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1814
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1815
			limit = 16;
P
Pekka Enberg 已提交
1816 1817
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1830
		struct slab *slabp = virt_to_slab(objp);
1831
		unsigned int objnr;
L
Linus Torvalds 已提交
1832

1833
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1834
		if (objnr) {
1835
			objp = index_to_obj(cachep, slabp, objnr - 1);
1836
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1837
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1838
			       realobj, size);
L
Linus Torvalds 已提交
1839 1840
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1841
		if (objnr + 1 < cachep->num) {
1842
			objp = index_to_obj(cachep, slabp, objnr + 1);
1843
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1844
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1845
			       realobj, size);
L
Linus Torvalds 已提交
1846 1847 1848 1849 1850 1851
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1852 1853
#if DEBUG
/**
1854 1855 1856 1857 1858 1859
 * slab_destroy_objs - destroy a slab and its objects
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
 * Call the registered destructor for each object in a slab that is being
 * destroyed.
L
Linus Torvalds 已提交
1860
 */
1861
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1862 1863 1864
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1865
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1866 1867 1868

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1869 1870
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1871
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1872
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1873 1874 1875 1876 1877 1878 1879 1880 1881
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1882
					   "was overwritten");
L
Linus Torvalds 已提交
1883 1884
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1885
					   "was overwritten");
L
Linus Torvalds 已提交
1886 1887
		}
		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1888
			(cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
1889
	}
1890
}
L
Linus Torvalds 已提交
1891
#else
1892
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1893
{
L
Linus Torvalds 已提交
1894 1895 1896
	if (cachep->dtor) {
		int i;
		for (i = 0; i < cachep->num; i++) {
1897
			void *objp = index_to_obj(cachep, slabp, i);
P
Pekka Enberg 已提交
1898
			(cachep->dtor) (objp, cachep, 0);
L
Linus Torvalds 已提交
1899 1900
		}
	}
1901
}
L
Linus Torvalds 已提交
1902 1903
#endif

1904 1905 1906 1907 1908
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1909
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1910 1911
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1912
 */
1913
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1914 1915 1916 1917
{
	void *addr = slabp->s_mem - slabp->colouroff;

	slab_destroy_objs(cachep, slabp);
L
Linus Torvalds 已提交
1918 1919 1920
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1921
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1922 1923 1924 1925 1926
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
1927 1928
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
1929 1930 1931
	}
}

A
Andrew Morton 已提交
1932 1933 1934 1935
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
1936
static void set_up_list3s(struct kmem_cache *cachep, int index)
1937 1938 1939 1940
{
	int node;

	for_each_online_node(node) {
P
Pekka Enberg 已提交
1941
		cachep->nodelists[node] = &initkmem_list3[index + node];
1942
		cachep->nodelists[node]->next_reap = jiffies +
P
Pekka Enberg 已提交
1943 1944
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1945 1946 1947
	}
}

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


1969
/**
1970 1971 1972 1973 1974 1975 1976
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1977 1978 1979 1980 1981
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1982
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
1983
			size_t size, size_t align, unsigned long flags)
1984
{
1985
	unsigned long offslab_limit;
1986
	size_t left_over = 0;
1987
	int gfporder;
1988

A
Andrew Morton 已提交
1989
	for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1990 1991 1992
		unsigned int num;
		size_t remainder;

1993
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1994 1995
		if (!num)
			continue;
1996

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2009

2010
		/* Found something acceptable - save it away */
2011
		cachep->num = num;
2012
		cachep->gfporder = gfporder;
2013 2014
		left_over = remainder;

2015 2016 2017 2018 2019 2020 2021 2022
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2023 2024 2025 2026
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2027
		if (gfporder >= slab_break_gfp_order)
2028 2029
			break;

2030 2031 2032
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2033
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2034 2035 2036 2037 2038
			break;
	}
	return left_over;
}

2039
static int setup_cpu_cache(struct kmem_cache *cachep)
2040
{
2041 2042 2043
	if (g_cpucache_up == FULL)
		return enable_cpucache(cachep);

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
			for_each_online_node(node) {
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
						GFP_KERNEL, node);
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
	cachep->nodelists[numa_node_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2090
	return 0;
2091 2092
}

L
Linus Torvalds 已提交
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 * @dtor: A destructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache
 * and the @dtor is run before the pages are handed back.
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
2108 2109
 * the module calling this has to destroy the cache before getting unloaded.
 *
L
Linus Torvalds 已提交
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2122
struct kmem_cache *
L
Linus Torvalds 已提交
2123
kmem_cache_create (const char *name, size_t size, size_t align,
A
Andrew Morton 已提交
2124 2125
	unsigned long flags,
	void (*ctor)(void*, struct kmem_cache *, unsigned long),
2126
	void (*dtor)(void*, struct kmem_cache *, unsigned long))
L
Linus Torvalds 已提交
2127 2128
{
	size_t left_over, slab_size, ralign;
2129
	struct kmem_cache *cachep = NULL, *pc;
L
Linus Torvalds 已提交
2130 2131 2132 2133

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
2134
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
P
Pekka Enberg 已提交
2135
	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
A
Andrew Morton 已提交
2136 2137
		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
				name);
P
Pekka Enberg 已提交
2138 2139
		BUG();
	}
L
Linus Torvalds 已提交
2140

2141
	/*
2142 2143
	 * We use cache_chain_mutex to ensure a consistent view of
	 * cpu_online_map as well.  Please see cpuup_callback
2144
	 */
I
Ingo Molnar 已提交
2145
	mutex_lock(&cache_chain_mutex);
2146

2147
	list_for_each_entry(pc, &cache_chain, next) {
2148 2149 2150 2151 2152 2153 2154 2155
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
2156
		res = probe_kernel_address(pc->name, tmp);
2157 2158
		if (res) {
			printk("SLAB: cache with size %d has lost its name\n",
2159
			       pc->buffer_size);
2160 2161 2162
			continue;
		}

P
Pekka Enberg 已提交
2163
		if (!strcmp(pc->name, name)) {
2164 2165 2166 2167 2168 2169
			printk("kmem_cache_create: duplicate cache %s\n", name);
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
2170 2171 2172 2173 2174
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
		/* No constructor, but inital state check requested */
		printk(KERN_ERR "%s: No con, but init state check "
P
Pekka Enberg 已提交
2175
		       "requested - %s\n", __FUNCTION__, name);
L
Linus Torvalds 已提交
2176 2177 2178 2179 2180 2181 2182 2183 2184
		flags &= ~SLAB_DEBUG_INITIAL;
	}
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
A
Andrew Morton 已提交
2185
	if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
P
Pekka Enberg 已提交
2186
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2187 2188 2189 2190 2191 2192 2193 2194 2195 2196
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(dtor);

	/*
A
Andrew Morton 已提交
2197 2198
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2199
	 */
2200
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2201

A
Andrew Morton 已提交
2202 2203
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2204 2205 2206
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2207 2208 2209
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2210 2211
	}

A
Andrew Morton 已提交
2212 2213
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2214 2215
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2216 2217 2218 2219
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2220 2221
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2222
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2223 2224 2225 2226
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2227 2228 2229 2230 2231 2232 2233 2234 2235

	/*
	 * Redzoning and user store require word alignment. Note this will be
	 * overridden by architecture or caller mandated alignment if either
	 * is greater than BYTES_PER_WORD.
	 */
	if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

2236
	/* 2) arch mandated alignment */
L
Linus Torvalds 已提交
2237 2238 2239
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2240
	/* 3) caller mandated alignment */
L
Linus Torvalds 已提交
2241 2242 2243
	if (ralign < align) {
		ralign = align;
	}
2244 2245 2246
	/* disable debug if necessary */
	if (ralign > BYTES_PER_WORD)
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2247
	/*
2248
	 * 4) Store it.
L
Linus Torvalds 已提交
2249 2250 2251 2252
	 */
	align = ralign;

	/* Get cache's description obj. */
2253
	cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
L
Linus Torvalds 已提交
2254
	if (!cachep)
2255
		goto oops;
L
Linus Torvalds 已提交
2256 2257

#if DEBUG
2258
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2259

2260 2261 2262 2263
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2264 2265
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2266
		cachep->obj_offset += BYTES_PER_WORD;
P
Pekka Enberg 已提交
2267
		size += 2 * BYTES_PER_WORD;
L
Linus Torvalds 已提交
2268 2269
	}
	if (flags & SLAB_STORE_USER) {
2270 2271
		/* user store requires one word storage behind the end of
		 * the real object.
L
Linus Torvalds 已提交
2272 2273 2274 2275
		 */
		size += BYTES_PER_WORD;
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2276
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2277 2278
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
2279 2280 2281 2282 2283
		size = PAGE_SIZE;
	}
#endif
#endif

2284 2285 2286 2287 2288 2289
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
	 * it too early on.)
	 */
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
L
Linus Torvalds 已提交
2290 2291 2292 2293 2294 2295 2296 2297
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2298
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2299 2300 2301 2302 2303

	if (!cachep->num) {
		printk("kmem_cache_create: couldn't create cache %s.\n", name);
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2304
		goto oops;
L
Linus Torvalds 已提交
2305
	}
P
Pekka Enberg 已提交
2306 2307
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2320 2321
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
L
Linus Torvalds 已提交
2322 2323 2324 2325 2326 2327
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2328
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2329 2330 2331
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
2332
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
L
Linus Torvalds 已提交
2333
		cachep->gfpflags |= GFP_DMA;
2334
	cachep->buffer_size = size;
2335
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2336

2337
	if (flags & CFLGS_OFF_SLAB) {
2338
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2339 2340 2341 2342 2343 2344 2345 2346 2347
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
		BUG_ON(!cachep->slabp_cache);
	}
L
Linus Torvalds 已提交
2348 2349 2350 2351
	cachep->ctor = ctor;
	cachep->dtor = dtor;
	cachep->name = name;

2352 2353 2354 2355 2356
	if (setup_cpu_cache(cachep)) {
		__kmem_cache_destroy(cachep);
		cachep = NULL;
		goto oops;
	}
L
Linus Torvalds 已提交
2357 2358 2359

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2360
oops:
L
Linus Torvalds 已提交
2361 2362
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2363
		      name);
I
Ingo Molnar 已提交
2364
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2380
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2381 2382 2383
{
#ifdef CONFIG_SMP
	check_irq_off();
2384
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2385 2386
#endif
}
2387

2388
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2389 2390 2391 2392 2393 2394 2395
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2396 2397 2398 2399
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2400
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2401 2402
#endif

2403 2404 2405 2406
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2407 2408
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2409
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2410
	struct array_cache *ac;
2411
	int node = numa_node_id();
L
Linus Torvalds 已提交
2412 2413

	check_irq_off();
2414
	ac = cpu_cache_get(cachep);
2415 2416 2417
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2418 2419 2420
	ac->avail = 0;
}

2421
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2422
{
2423 2424 2425
	struct kmem_list3 *l3;
	int node;

A
Andrew Morton 已提交
2426
	on_each_cpu(do_drain, cachep, 1, 1);
L
Linus Torvalds 已提交
2427
	check_irq_on();
P
Pekka Enberg 已提交
2428
	for_each_online_node(node) {
2429
		l3 = cachep->nodelists[node];
2430 2431 2432 2433 2434 2435 2436
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2437
			drain_array(cachep, l3, l3->shared, 1, node);
2438
	}
L
Linus Torvalds 已提交
2439 2440
}

2441 2442 2443 2444 2445 2446 2447 2448
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2449
{
2450 2451
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2452 2453
	struct slab *slabp;

2454 2455
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2456

2457
		spin_lock_irq(&l3->list_lock);
2458
		p = l3->slabs_free.prev;
2459 2460 2461 2462
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2463

2464
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2465
#if DEBUG
2466
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2467 2468
#endif
		list_del(&slabp->list);
2469 2470 2471 2472 2473
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2474
		spin_unlock_irq(&l3->list_lock);
2475 2476
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2477
	}
2478 2479
out:
	return nr_freed;
L
Linus Torvalds 已提交
2480 2481
}

2482
/* Called with cache_chain_mutex held to protect against cpu hotplug */
2483
static int __cache_shrink(struct kmem_cache *cachep)
2484 2485 2486 2487 2488 2489 2490 2491 2492
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2493 2494 2495 2496 2497 2498 2499
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2500 2501 2502 2503
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2504 2505 2506 2507 2508 2509 2510
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2511
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2512
{
2513
	int ret;
2514
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2515

2516 2517 2518 2519
	mutex_lock(&cache_chain_mutex);
	ret = __cache_shrink(cachep);
	mutex_unlock(&cache_chain_mutex);
	return ret;
L
Linus Torvalds 已提交
2520 2521 2522 2523 2524 2525 2526
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2527
 * Remove a &struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2539
void kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2540
{
2541
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2542 2543

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
2544
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2545 2546 2547 2548 2549 2550
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
P
Pekka Enberg 已提交
2551
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2552
		mutex_unlock(&cache_chain_mutex);
2553
		return;
L
Linus Torvalds 已提交
2554 2555 2556
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2557
		synchronize_rcu();
L
Linus Torvalds 已提交
2558

2559
	__kmem_cache_destroy(cachep);
2560
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2561 2562 2563
}
EXPORT_SYMBOL(kmem_cache_destroy);

2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2575
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2576 2577
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2578 2579
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2580

L
Linus Torvalds 已提交
2581 2582
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2583
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2584
					      local_flags & ~GFP_THISNODE, nodeid);
L
Linus Torvalds 已提交
2585 2586 2587
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2588
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2589 2590 2591 2592
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2593
	slabp->s_mem = objp + colour_off;
2594
	slabp->nodeid = nodeid;
L
Linus Torvalds 已提交
2595 2596 2597 2598 2599
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2600
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2601 2602
}

2603
static void cache_init_objs(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
2604
			    struct slab *slabp, unsigned long ctor_flags)
L
Linus Torvalds 已提交
2605 2606 2607 2608
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2609
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2622 2623 2624
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2625 2626
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2627
			cachep->ctor(objp + obj_offset(cachep), cachep,
P
Pekka Enberg 已提交
2628
				     ctor_flags);
L
Linus Torvalds 已提交
2629 2630 2631 2632

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2633
					   " end of an object");
L
Linus Torvalds 已提交
2634 2635
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2636
					   " start of an object");
L
Linus Torvalds 已提交
2637
		}
A
Andrew Morton 已提交
2638 2639
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2640
			kernel_map_pages(virt_to_page(objp),
2641
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2642 2643 2644 2645
#else
		if (cachep->ctor)
			cachep->ctor(objp, cachep, ctor_flags);
#endif
P
Pekka Enberg 已提交
2646
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2647
	}
P
Pekka Enberg 已提交
2648
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2649 2650 2651
	slabp->free = 0;
}

2652
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2653
{
2654 2655 2656 2657 2658 2659
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
			BUG_ON(!(cachep->gfpflags & GFP_DMA));
		else
			BUG_ON(cachep->gfpflags & GFP_DMA);
	}
L
Linus Torvalds 已提交
2660 2661
}

A
Andrew Morton 已提交
2662 2663
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2664
{
2665
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2679 2680
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2681
{
2682
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2683 2684 2685 2686 2687

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2688
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2689
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2690
				"'%s', objp %p\n", cachep->name, objp);
2691 2692 2693 2694 2695 2696 2697 2698
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2699 2700 2701 2702 2703 2704 2705
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2706
{
2707
	int nr_pages;
L
Linus Torvalds 已提交
2708 2709
	struct page *page;

2710
	page = virt_to_page(addr);
2711

2712
	nr_pages = 1;
2713
	if (likely(!PageCompound(page)))
2714 2715
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2716
	do {
2717 2718
		page_set_cache(page, cache);
		page_set_slab(page, slab);
L
Linus Torvalds 已提交
2719
		page++;
2720
	} while (--nr_pages);
L
Linus Torvalds 已提交
2721 2722 2723 2724 2725 2726
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2727 2728
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2729
{
P
Pekka Enberg 已提交
2730 2731 2732 2733
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
	unsigned long ctor_flags;
2734
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2735

A
Andrew Morton 已提交
2736 2737 2738
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2739
	 */
C
Christoph Lameter 已提交
2740
	BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK | __GFP_NO_GROW));
2741
	if (flags & __GFP_NO_GROW)
L
Linus Torvalds 已提交
2742 2743 2744
		return 0;

	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2745
	local_flags = (flags & GFP_LEVEL_MASK);
L
Linus Torvalds 已提交
2746 2747 2748 2749 2750 2751 2752
	if (!(local_flags & __GFP_WAIT))
		/*
		 * Not allowed to sleep.  Need to tell a constructor about
		 * this - it might need to know...
		 */
		ctor_flags |= SLAB_CTOR_ATOMIC;

2753
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2754
	check_irq_off();
2755 2756
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2757 2758

	/* Get colour for the slab, and cal the next value. */
2759 2760 2761 2762 2763
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2764

2765
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2778 2779 2780
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2781
	 */
2782 2783
	if (!objp)
		objp = kmem_getpages(cachep, flags, nodeid);
A
Andrew Morton 已提交
2784
	if (!objp)
L
Linus Torvalds 已提交
2785 2786 2787
		goto failed;

	/* Get slab management. */
2788 2789
	slabp = alloc_slabmgmt(cachep, objp, offset,
			local_flags & ~GFP_THISNODE, nodeid);
A
Andrew Morton 已提交
2790
	if (!slabp)
L
Linus Torvalds 已提交
2791 2792
		goto opps1;

2793
	slabp->nodeid = nodeid;
2794
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2795 2796 2797 2798 2799 2800

	cache_init_objs(cachep, slabp, ctor_flags);

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2801
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2802 2803

	/* Make slab active. */
2804
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2805
	STATS_INC_GROWN(cachep);
2806 2807
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2808
	return 1;
A
Andrew Morton 已提交
2809
opps1:
L
Linus Torvalds 已提交
2810
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2811
failed:
L
Linus Torvalds 已提交
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 * - destructor calls, for caches with POISON+dtor
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2829 2830
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2831 2832 2833
	}
}

2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
	unsigned long redzone1, redzone2;

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

	printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
			obj, redzone1, redzone2);
}

2856
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2857
				   void *caller)
L
Linus Torvalds 已提交
2858 2859 2860 2861 2862
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2863
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2864 2865 2866
	kfree_debugcheck(objp);
	page = virt_to_page(objp);

2867
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2868 2869

	if (cachep->flags & SLAB_RED_ZONE) {
2870
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2871 2872 2873 2874 2875 2876
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2877
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2878 2879

	BUG_ON(objnr >= cachep->num);
2880
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2881 2882

	if (cachep->flags & SLAB_DEBUG_INITIAL) {
A
Andrew Morton 已提交
2883 2884 2885 2886
		/*
		 * Need to call the slab's constructor so the caller can
		 * perform a verify of its state (debugging).  Called without
		 * the cache-lock held.
L
Linus Torvalds 已提交
2887
		 */
2888
		cachep->ctor(objp + obj_offset(cachep),
P
Pekka Enberg 已提交
2889
			     cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
L
Linus Torvalds 已提交
2890 2891 2892 2893 2894
	}
	if (cachep->flags & SLAB_POISON && cachep->dtor) {
		/* we want to cache poison the object,
		 * call the destruction callback
		 */
2895
		cachep->dtor(objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
2896
	}
2897 2898 2899
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2900 2901
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
2902
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2903
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2904
			kernel_map_pages(virt_to_page(objp),
2905
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2916
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2917 2918 2919
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2920

L
Linus Torvalds 已提交
2921 2922 2923 2924 2925 2926 2927
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2928 2929 2930 2931
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
2932
		for (i = 0;
2933
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2934
		     i++) {
A
Andrew Morton 已提交
2935
			if (i % 16 == 0)
L
Linus Torvalds 已提交
2936
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2937
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2949
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2950 2951 2952 2953
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
2954 2955 2956
	int node;

	node = numa_node_id();
L
Linus Torvalds 已提交
2957 2958

	check_irq_off();
2959
	ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
2960
retry:
L
Linus Torvalds 已提交
2961 2962
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2963 2964 2965 2966
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2967 2968 2969
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
2970
	l3 = cachep->nodelists[node];
2971 2972 2973

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2974

2975 2976 2977 2978
	/* See if we can refill from the shared array */
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
		goto alloc_done;

L
Linus Torvalds 已提交
2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
2994 2995 2996 2997 2998 2999 3000 3001

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
		BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);

L
Linus Torvalds 已提交
3002 3003 3004 3005 3006
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

3007
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
P
Pekka Enberg 已提交
3008
							    node);
L
Linus Torvalds 已提交
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
3020
must_grow:
L
Linus Torvalds 已提交
3021
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
3022
alloc_done:
3023
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3024 3025 3026

	if (unlikely(!ac->avail)) {
		int x;
3027
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3028

A
Andrew Morton 已提交
3029
		/* cache_grow can reenable interrupts, then ac could change. */
3030
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
3031
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
3032 3033
			return NULL;

A
Andrew Morton 已提交
3034
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3035 3036 3037
			goto retry;
	}
	ac->touched = 1;
3038
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3039 3040
}

A
Andrew Morton 已提交
3041 3042
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3043 3044 3045 3046 3047 3048 3049 3050
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3051 3052
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
3053
{
P
Pekka Enberg 已提交
3054
	if (!objp)
L
Linus Torvalds 已提交
3055
		return objp;
P
Pekka Enberg 已提交
3056
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3057
#ifdef CONFIG_DEBUG_PAGEALLOC
3058
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3059
			kernel_map_pages(virt_to_page(objp),
3060
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3072 3073 3074 3075
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3076
			printk(KERN_ERR
A
Andrew Morton 已提交
3077 3078 3079
				"%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3080 3081 3082 3083
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

		slabp = page_get_slab(virt_to_page(objp));
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3094
	objp += obj_offset(cachep);
L
Linus Torvalds 已提交
3095
	if (cachep->ctor && cachep->flags & SLAB_POISON) {
P
Pekka Enberg 已提交
3096
		unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
L
Linus Torvalds 已提交
3097 3098 3099 3100 3101

		if (!(flags & __GFP_WAIT))
			ctor_flags |= SLAB_CTOR_ATOMIC;

		cachep->ctor(objp, cachep, ctor_flags);
P
Pekka Enberg 已提交
3102
	}
3103 3104 3105 3106 3107 3108
#if ARCH_SLAB_MINALIGN
	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
		       objp, ARCH_SLAB_MINALIGN);
	}
#endif
L
Linus Torvalds 已提交
3109 3110 3111 3112 3113 3114
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127
#ifdef CONFIG_FAILSLAB

static struct failslab_attr {

	struct fault_attr attr;

	u32 ignore_gfp_wait;
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
	struct dentry *ignore_gfp_wait_file;
#endif

} failslab = {
	.attr = FAULT_ATTR_INITIALIZER,
3128
	.ignore_gfp_wait = 1,
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
};

static int __init setup_failslab(char *str)
{
	return setup_fault_attr(&failslab.attr, str);
}
__setup("failslab=", setup_failslab);

static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
{
	if (cachep == &cache_cache)
		return 0;
	if (flags & __GFP_NOFAIL)
		return 0;
	if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
		return 0;

	return should_fail(&failslab.attr, obj_size(cachep));
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init failslab_debugfs(void)
{
	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
	struct dentry *dir;
	int err;

       	err = init_fault_attr_dentries(&failslab.attr, "failslab");
	if (err)
		return err;
	dir = failslab.attr.dentries.dir;

	failslab.ignore_gfp_wait_file =
		debugfs_create_bool("ignore-gfp-wait", mode, dir,
				      &failslab.ignore_gfp_wait);

	if (!failslab.ignore_gfp_wait_file) {
		err = -ENOMEM;
		debugfs_remove(failslab.ignore_gfp_wait_file);
		cleanup_fault_attr_dentries(&failslab.attr);
	}

	return err;
}

late_initcall(failslab_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAILSLAB */

static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
{
	return 0;
}

#endif /* CONFIG_FAILSLAB */

3188
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3189
{
P
Pekka Enberg 已提交
3190
	void *objp;
L
Linus Torvalds 已提交
3191 3192
	struct array_cache *ac;

3193
	check_irq_off();
3194 3195 3196 3197

	if (should_failslab(cachep, flags))
		return NULL;

3198
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3199 3200 3201
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
3202
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3203 3204 3205 3206
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
3207 3208 3209
	return objp;
}

3210
#ifdef CONFIG_NUMA
3211
/*
3212
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3213 3214 3215 3216 3217 3218 3219 3220
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3221
	if (in_interrupt() || (flags & __GFP_THISNODE))
3222 3223 3224 3225 3226 3227 3228
		return NULL;
	nid_alloc = nid_here = numa_node_id();
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
		nid_alloc = cpuset_mem_spread_node();
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
	if (nid_alloc != nid_here)
3229
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3230 3231 3232
	return NULL;
}

3233 3234
/*
 * Fallback function if there was no memory available and no objects on a
3235 3236 3237 3238 3239
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3240
 */
3241
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3242
{
3243 3244
	struct zonelist *zonelist;
	gfp_t local_flags;
3245 3246
	struct zone **z;
	void *obj = NULL;
3247
	int nid;
3248 3249 3250 3251 3252 3253 3254

	if (flags & __GFP_THISNODE)
		return NULL;

	zonelist = &NODE_DATA(slab_node(current->mempolicy))
			->node_zonelists[gfp_zone(flags)];
	local_flags = (flags & GFP_LEVEL_MASK);
3255

3256 3257 3258 3259 3260
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3261
	for (z = zonelist->zones; *z && !obj; z++) {
3262
		nid = zone_to_nid(*z);
3263

3264
		if (cpuset_zone_allowed_hardwall(*z, flags) &&
3265 3266 3267 3268 3269 3270
			cache->nodelists[nid] &&
			cache->nodelists[nid]->free_objects)
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
	}

3271
	if (!obj && !(flags & __GFP_NO_GROW)) {
3272 3273 3274 3275 3276 3277
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3278 3279 3280
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3281
		obj = kmem_getpages(cache, flags, -1);
3282 3283
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3300
				/* cache_grow already freed obj */
3301 3302 3303
				obj = NULL;
			}
		}
3304
	}
3305 3306 3307
	return obj;
}

3308 3309
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3310
 */
3311
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3312
				int nodeid)
3313 3314
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3315 3316 3317 3318 3319 3320 3321 3322
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3323
retry:
3324
	check_irq_off();
P
Pekka Enberg 已提交
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3344
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3345 3346 3347 3348 3349
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3350
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3351
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3352
	else
P
Pekka Enberg 已提交
3353
		list_add(&slabp->list, &l3->slabs_partial);
3354

P
Pekka Enberg 已提交
3355 3356
	spin_unlock(&l3->list_lock);
	goto done;
3357

A
Andrew Morton 已提交
3358
must_grow:
P
Pekka Enberg 已提交
3359
	spin_unlock(&l3->list_lock);
3360
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3361 3362
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3363

3364
	return fallback_alloc(cachep, flags);
3365

A
Andrew Morton 已提交
3366
done:
P
Pekka Enberg 已提交
3367
	return obj;
3368
}
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
		   void *caller)
{
	unsigned long save_flags;
	void *ptr;

	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

	if (unlikely(nodeid == -1))
		nodeid = numa_node_id();

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

	if (nodeid == numa_node_id()) {
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);

	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
 	if (!objp)
 		objp = ____cache_alloc_node(cache, flags, numa_node_id());

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
{
	unsigned long save_flags;
	void *objp;

	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
	prefetchw(objp);

	return objp;
}
3468 3469 3470 3471

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3472
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3473
		       int node)
L
Linus Torvalds 已提交
3474 3475
{
	int i;
3476
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3477 3478 3479 3480 3481

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3482
		slabp = virt_to_slab(objp);
3483
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3484
		list_del(&slabp->list);
3485
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3486
		check_slabp(cachep, slabp);
3487
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3488
		STATS_DEC_ACTIVE(cachep);
3489
		l3->free_objects++;
L
Linus Torvalds 已提交
3490 3491 3492 3493
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3494 3495
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3496 3497 3498 3499 3500 3501
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3502 3503
				slab_destroy(cachep, slabp);
			} else {
3504
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3505 3506 3507 3508 3509 3510
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3511
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3512 3513 3514 3515
		}
	}
}

3516
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3517 3518
{
	int batchcount;
3519
	struct kmem_list3 *l3;
3520
	int node = numa_node_id();
L
Linus Torvalds 已提交
3521 3522 3523 3524 3525 3526

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3527
	l3 = cachep->nodelists[node];
3528
	spin_lock(&l3->list_lock);
3529 3530
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3531
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3532 3533 3534
		if (max) {
			if (batchcount > max)
				batchcount = max;
3535
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3536
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3537 3538 3539 3540 3541
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3542
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3543
free_done:
L
Linus Torvalds 已提交
3544 3545 3546 3547 3548
#if STATS
	{
		int i = 0;
		struct list_head *p;

3549 3550
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3562
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3563
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3564
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3565 3566 3567
}

/*
A
Andrew Morton 已提交
3568 3569
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3570
 */
3571
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3572
{
3573
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3574 3575 3576 3577

	check_irq_off();
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

3578
	if (use_alien_caches && cache_free_alien(cachep, objp))
3579 3580
		return;

L
Linus Torvalds 已提交
3581 3582
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3583
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3584 3585 3586 3587
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3588
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3600
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3601
{
3602
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3603 3604 3605
}
EXPORT_SYMBOL(kmem_cache_alloc);

3606
/**
3607
 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622
 * @cache: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache and set the allocated memory to zero.
 * The flags are only relevant if the cache has no available objects.
 */
void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
{
	void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
	if (ret)
		memset(ret, 0, obj_size(cache));
	return ret;
}
EXPORT_SYMBOL(kmem_cache_zalloc);

L
Linus Torvalds 已提交
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
/**
 * kmem_ptr_validate - check if an untrusted pointer might
 *	be a slab entry.
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
 * This verifies that the untrusted pointer looks sane:
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3637
int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
L
Linus Torvalds 已提交
3638
{
P
Pekka Enberg 已提交
3639
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
3640
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
3641
	unsigned long align_mask = BYTES_PER_WORD - 1;
3642
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3658
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3659 3660
		goto out;
	return 1;
A
Andrew Morton 已提交
3661
out:
L
Linus Torvalds 已提交
3662 3663 3664 3665
	return 0;
}

#ifdef CONFIG_NUMA
3666 3667 3668 3669 3670
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
	return __cache_alloc_node(cachep, flags, nodeid,
			__builtin_return_address(0));
}
L
Linus Torvalds 已提交
3671 3672
EXPORT_SYMBOL(kmem_cache_alloc_node);

3673 3674
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3675
{
3676
	struct kmem_cache *cachep;
3677 3678 3679 3680 3681 3682

	cachep = kmem_find_general_cachep(size, flags);
	if (unlikely(cachep == NULL))
		return NULL;
	return kmem_cache_alloc_node(cachep, flags, node);
}
3683 3684 3685 3686 3687 3688 3689

#ifdef CONFIG_DEBUG_SLAB
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node,
			__builtin_return_address(0));
}
3690
EXPORT_SYMBOL(__kmalloc_node);
3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
		int node, void *caller)
{
	return __do_kmalloc_node(size, flags, node, caller);
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node, NULL);
}
EXPORT_SYMBOL(__kmalloc_node);
#endif /* CONFIG_DEBUG_SLAB */
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3706 3707

/**
3708
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3709
 * @size: how many bytes of memory are required.
3710
 * @flags: the type of memory to allocate (see kmalloc).
3711
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3712
 */
3713 3714
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3715
{
3716
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3717

3718 3719 3720 3721 3722 3723
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3724 3725
	if (unlikely(cachep == NULL))
		return NULL;
3726 3727 3728 3729
	return __cache_alloc(cachep, flags, caller);
}


3730
#ifdef CONFIG_DEBUG_SLAB
3731 3732
void *__kmalloc(size_t size, gfp_t flags)
{
3733
	return __do_kmalloc(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3734 3735 3736
}
EXPORT_SYMBOL(__kmalloc);

3737 3738 3739 3740 3741
void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
{
	return __do_kmalloc(size, flags, caller);
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3742 3743 3744 3745 3746 3747 3748

#else
void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
3749 3750
#endif

P
Pekka Enberg 已提交
3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 *
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 * behaves exactly like kmalloc().  If @size is 0 and @p is not a
 * %NULL pointer, the object pointed to is freed.
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	struct kmem_cache *cache, *new_cache;
	void *ret;

	if (unlikely(!p))
		return kmalloc_track_caller(new_size, flags);

	if (unlikely(!new_size)) {
		kfree(p);
		return NULL;
	}

	cache = virt_to_cache(p);
	new_cache = __find_general_cachep(new_size, flags);

	/*
 	 * If new size fits in the current cache, bail out.
 	 */
	if (likely(cache == new_cache))
		return (void *)p;

	/*
 	 * We are on the slow-path here so do not use __cache_alloc
 	 * because it bloats kernel text.
 	 */
	ret = kmalloc_track_caller(new_size, flags);
	if (ret) {
		memcpy(ret, p, min(new_size, ksize(p)));
		kfree(p);
	}
	return ret;
}
EXPORT_SYMBOL(krealloc);

L
Linus Torvalds 已提交
3798 3799 3800 3801 3802 3803 3804 3805
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3806
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3807 3808 3809
{
	unsigned long flags;

3810 3811
	BUG_ON(virt_to_cache(objp) != cachep);

L
Linus Torvalds 已提交
3812
	local_irq_save(flags);
3813
	debug_check_no_locks_freed(objp, obj_size(cachep));
3814
	__cache_free(cachep, objp);
L
Linus Torvalds 已提交
3815 3816 3817 3818 3819 3820 3821 3822
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3823 3824
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3825 3826 3827 3828 3829
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3830
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3831 3832 3833 3834 3835 3836
	unsigned long flags;

	if (unlikely(!objp))
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3837
	c = virt_to_cache(objp);
3838
	debug_check_no_locks_freed(objp, obj_size(c));
3839
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3840 3841 3842 3843
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3844
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3845
{
3846
	return obj_size(cachep);
L
Linus Torvalds 已提交
3847 3848 3849
}
EXPORT_SYMBOL(kmem_cache_size);

3850
const char *kmem_cache_name(struct kmem_cache *cachep)
3851 3852 3853 3854 3855
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3856
/*
3857
 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3858
 */
3859
static int alloc_kmemlist(struct kmem_cache *cachep)
3860 3861 3862
{
	int node;
	struct kmem_list3 *l3;
3863
	struct array_cache *new_shared;
3864
	struct array_cache **new_alien = NULL;
3865 3866

	for_each_online_node(node) {
3867

3868 3869 3870 3871 3872
                if (use_alien_caches) {
                        new_alien = alloc_alien_cache(node, cachep->limit);
                        if (!new_alien)
                                goto fail;
                }
3873

3874 3875 3876
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3877
				cachep->shared*cachep->batchcount,
A
Andrew Morton 已提交
3878
					0xbaadf00d);
3879 3880 3881 3882
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3883
		}
3884

A
Andrew Morton 已提交
3885 3886
		l3 = cachep->nodelists[node];
		if (l3) {
3887 3888
			struct array_cache *shared = l3->shared;

3889 3890
			spin_lock_irq(&l3->list_lock);

3891
			if (shared)
3892 3893
				free_block(cachep, shared->entry,
						shared->avail, node);
3894

3895 3896
			l3->shared = new_shared;
			if (!l3->alien) {
3897 3898 3899
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3900
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3901
					cachep->batchcount + cachep->num;
3902
			spin_unlock_irq(&l3->list_lock);
3903
			kfree(shared);
3904 3905 3906
			free_alien_cache(new_alien);
			continue;
		}
A
Andrew Morton 已提交
3907
		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3908 3909 3910
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3911
			goto fail;
3912
		}
3913 3914 3915

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3916
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3917
		l3->shared = new_shared;
3918
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3919
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3920
					cachep->batchcount + cachep->num;
3921 3922
		cachep->nodelists[node] = l3;
	}
3923
	return 0;
3924

A
Andrew Morton 已提交
3925
fail:
3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3941
	return -ENOMEM;
3942 3943
}

L
Linus Torvalds 已提交
3944
struct ccupdate_struct {
3945
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3946 3947 3948 3949 3950
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3951
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3952 3953 3954
	struct array_cache *old;

	check_irq_off();
3955
	old = cpu_cache_get(new->cachep);
3956

L
Linus Torvalds 已提交
3957 3958 3959 3960
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3961
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
3962 3963
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared)
L
Linus Torvalds 已提交
3964
{
3965
	struct ccupdate_struct *new;
3966
	int i;
L
Linus Torvalds 已提交
3967

3968 3969 3970 3971
	new = kzalloc(sizeof(*new), GFP_KERNEL);
	if (!new)
		return -ENOMEM;

3972
	for_each_online_cpu(i) {
3973
		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
A
Andrew Morton 已提交
3974
						batchcount);
3975
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3976
			for (i--; i >= 0; i--)
3977 3978
				kfree(new->new[i]);
			kfree(new);
3979
			return -ENOMEM;
L
Linus Torvalds 已提交
3980 3981
		}
	}
3982
	new->cachep = cachep;
L
Linus Torvalds 已提交
3983

3984
	on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3985

L
Linus Torvalds 已提交
3986 3987 3988
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3989
	cachep->shared = shared;
L
Linus Torvalds 已提交
3990

3991
	for_each_online_cpu(i) {
3992
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3993 3994
		if (!ccold)
			continue;
3995
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3996
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3997
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
3998 3999
		kfree(ccold);
	}
4000
	kfree(new);
4001
	return alloc_kmemlist(cachep);
L
Linus Torvalds 已提交
4002 4003
}

4004
/* Called with cache_chain_mutex held always */
4005
static int enable_cpucache(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
4006 4007 4008 4009
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
4010 4011
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
4012 4013
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
4014
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
4015 4016 4017 4018
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
4019
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
4020
		limit = 1;
4021
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
4022
		limit = 8;
4023
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
4024
		limit = 24;
4025
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
4026 4027 4028 4029
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
4030 4031
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
4032 4033 4034 4035 4036 4037 4038 4039
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4040
	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
4041 4042 4043
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
4044 4045 4046
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4047 4048 4049 4050
	 */
	if (limit > 32)
		limit = 32;
#endif
P
Pekka Enberg 已提交
4051
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
L
Linus Torvalds 已提交
4052 4053
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4054
		       cachep->name, -err);
4055
	return err;
L
Linus Torvalds 已提交
4056 4057
}

4058 4059
/*
 * Drain an array if it contains any elements taking the l3 lock only if
4060 4061
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
4062 4063 4064
 */
void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4065 4066 4067
{
	int tofree;

4068 4069
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4070 4071
	if (ac->touched && !force) {
		ac->touched = 0;
4072
	} else {
4073
		spin_lock_irq(&l3->list_lock);
4074 4075 4076 4077 4078 4079 4080 4081 4082
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4083
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4084 4085 4086 4087 4088
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4089
 * @w: work descriptor
L
Linus Torvalds 已提交
4090 4091 4092 4093 4094 4095
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4096 4097
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4098
 */
4099
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4100
{
4101
	struct kmem_cache *searchp;
4102
	struct kmem_list3 *l3;
4103
	int node = numa_node_id();
4104 4105
	struct delayed_work *work =
		container_of(w, struct delayed_work, work);
L
Linus Torvalds 已提交
4106

4107
	if (!mutex_trylock(&cache_chain_mutex))
L
Linus Torvalds 已提交
4108
		/* Give up. Setup the next iteration. */
4109
		goto out;
L
Linus Torvalds 已提交
4110

4111
	list_for_each_entry(searchp, &cache_chain, next) {
L
Linus Torvalds 已提交
4112 4113
		check_irq_on();

4114 4115 4116 4117 4118
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4119
		l3 = searchp->nodelists[node];
4120

4121
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4122

4123
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4124

4125 4126 4127 4128
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4129
		if (time_after(l3->next_reap, jiffies))
4130
			goto next;
L
Linus Torvalds 已提交
4131

4132
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4133

4134
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4135

4136
		if (l3->free_touched)
4137
			l3->free_touched = 0;
4138 4139
		else {
			int freed;
L
Linus Torvalds 已提交
4140

4141 4142 4143 4144
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4145
next:
L
Linus Torvalds 已提交
4146 4147 4148
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
4149
	mutex_unlock(&cache_chain_mutex);
4150
	next_reap_node();
4151
	refresh_cpu_vm_stats(smp_processor_id());
4152
out:
A
Andrew Morton 已提交
4153
	/* Set up the next iteration */
4154
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4155 4156 4157 4158
}

#ifdef CONFIG_PROC_FS

4159
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
4160
{
4161 4162 4163 4164
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
4165
#if STATS
4166
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
4167
#else
4168
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
4169
#endif
4170 4171 4172 4173
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
4174
#if STATS
4175
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4176
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4177
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
4178
#endif
4179 4180 4181 4182 4183 4184 4185 4186
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

I
Ingo Molnar 已提交
4187
	mutex_lock(&cache_chain_mutex);
4188 4189
	if (!n)
		print_slabinfo_header(m);
L
Linus Torvalds 已提交
4190 4191 4192 4193 4194 4195
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
4196
	return list_entry(p, struct kmem_cache, next);
L
Linus Torvalds 已提交
4197 4198 4199 4200
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
4201
	struct kmem_cache *cachep = p;
L
Linus Torvalds 已提交
4202
	++*pos;
A
Andrew Morton 已提交
4203 4204
	return cachep->next.next == &cache_chain ?
		NULL : list_entry(cachep->next.next, struct kmem_cache, next);
L
Linus Torvalds 已提交
4205 4206 4207 4208
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
4209
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4210 4211 4212 4213
}

static int s_show(struct seq_file *m, void *p)
{
4214
	struct kmem_cache *cachep = p;
P
Pekka Enberg 已提交
4215 4216 4217 4218 4219
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4220
	const char *name;
L
Linus Torvalds 已提交
4221
	char *error = NULL;
4222 4223
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4224 4225 4226

	active_objs = 0;
	num_slabs = 0;
4227 4228 4229 4230 4231
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4232 4233
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4234

4235
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4236 4237 4238 4239 4240
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4241
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4242 4243 4244 4245 4246 4247 4248
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4249
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4250 4251 4252 4253 4254
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4255 4256
		if (l3->shared)
			shared_avail += l3->shared->avail;
4257

4258
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4259
	}
P
Pekka Enberg 已提交
4260 4261
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4262
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4263 4264
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4265
	name = cachep->name;
L
Linus Torvalds 已提交
4266 4267 4268 4269
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4270
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
4271
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4272
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4273
		   cachep->limit, cachep->batchcount, cachep->shared);
4274
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4275
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4276
#if STATS
P
Pekka Enberg 已提交
4277
	{			/* list3 stats */
L
Linus Torvalds 已提交
4278 4279 4280 4281 4282 4283 4284
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4285
		unsigned long node_frees = cachep->node_frees;
4286
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4287

4288
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4289
				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
A
Andrew Morton 已提交
4290
				reaped, errors, max_freeable, node_allocs,
4291
				node_frees, overflows);
L
Linus Torvalds 已提交
4292 4293 4294 4295 4296 4297 4298 4299 4300
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4301
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

4322
const struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4323 4324 4325 4326
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4327 4328 4329 4330 4331 4332 4333 4334 4335 4336
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
4337 4338
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4339
{
P
Pekka Enberg 已提交
4340
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4341
	int limit, batchcount, shared, res;
4342
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4343

L
Linus Torvalds 已提交
4344 4345 4346 4347
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4348
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4349 4350 4351 4352 4353 4354 4355 4356 4357 4358

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
4359
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4360
	res = -EINVAL;
4361
	list_for_each_entry(cachep, &cache_chain, next) {
L
Linus Torvalds 已提交
4362
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4363 4364
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4365
				res = 0;
L
Linus Torvalds 已提交
4366
			} else {
4367
				res = do_tune_cpucache(cachep, limit,
P
Pekka Enberg 已提交
4368
						       batchcount, shared);
L
Linus Torvalds 已提交
4369 4370 4371 4372
			}
			break;
		}
	}
I
Ingo Molnar 已提交
4373
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4374 4375 4376 4377
	if (res >= 0)
		res = count;
	return res;
}
4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

	mutex_lock(&cache_chain_mutex);
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
	return list_entry(p, struct kmem_cache, next);
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	char *modname;
	const char *name;
	unsigned long offset, size;
	char namebuf[KSYM_NAME_LEN+1];

	name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);

	if (name) {
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
		if (modname)
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
	struct kmem_cache *cachep = p;
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4487
		list_for_each_entry(slabp, &l3->slabs_full, list)
4488
			handle_slab(n, cachep, slabp);
4489
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4516

4517 4518 4519
	return 0;
}

4520
const struct seq_operations slabstats_op = {
4521 4522 4523 4524 4525 4526
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
#endif
L
Linus Torvalds 已提交
4527 4528
#endif

4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4541
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4542
{
4543 4544
	if (unlikely(objp == NULL))
		return 0;
L
Linus Torvalds 已提交
4545

4546
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4547
}