slab.c 113.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
 * slabs and you must pass objects with the same intializations to
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
L
Linus Torvalds 已提交
98 99 100 101 102 103 104
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
105
#include	<linux/string.h>
106
#include	<linux/uaccess.h>
107
#include	<linux/nodemask.h>
108
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
109
#include	<linux/mutex.h>
I
Ingo Molnar 已提交
110
#include	<linux/rtmutex.h>
L
Linus Torvalds 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174

#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
 *		  SLAB_RED_ZONE & SLAB_POISON.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)

#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
 * Note that this flag disables some debug features.
 */
#define ARCH_KMALLOC_MINALIGN 0
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
175
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
176 177
			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
178
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
179
#else
180
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
L
Linus Torvalds 已提交
181 182
			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
183
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

205
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
206 207
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
208 209
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
210 211 212 213 214 215 216 217 218

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
219 220 221 222 223 224
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
244
	struct rcu_head head;
245
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
246
	void *addr;
L
Linus Torvalds 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
266
	spinlock_t lock;
A
Andrew Morton 已提交
267 268 269 270 271 272
	void *entry[0];	/*
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 * [0] is for gcc 2.95. It should really be [].
			 */
L
Linus Torvalds 已提交
273 274
};

A
Andrew Morton 已提交
275 276 277
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
278 279 280 281
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
282
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
283 284 285
};

/*
286
 * The slab lists for all objects.
L
Linus Torvalds 已提交
287 288
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
289 290 291 292 293
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
294
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
295 296 297
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
298 299
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
300 301
};

302 303 304 305 306 307 308 309 310
/*
 * Need this for bootstrapping a per node allocator.
 */
#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
#define	SIZE_AC 1
#define	SIZE_L3 (1 + MAX_NUMNODES)

311 312 313 314
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
315
static int enable_cpucache(struct kmem_cache *cachep);
316
static void cache_reap(struct work_struct *unused);
317

318
/*
A
Andrew Morton 已提交
319 320
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
321
 */
322
static __always_inline int index_of(const size_t size)
323
{
324 325
	extern void __bad_size(void);

326 327 328 329 330 331 332 333 334 335
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
#include "linux/kmalloc_sizes.h"
#undef CACHE
336
		__bad_size();
337
	} else
338
		__bad_size();
339 340 341
	return 0;
}

342 343
static int slab_early_init = 1;

344 345
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
346

P
Pekka Enberg 已提交
347
static void kmem_list3_init(struct kmem_list3 *parent)
348 349 350 351 352 353
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
354
	parent->colour_next = 0;
355 356 357 358 359
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
360 361 362 363
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
364 365
	} while (0)

A
Andrew Morton 已提交
366 367
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
368 369 370 371
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
372 373

/*
374
 * struct kmem_cache
L
Linus Torvalds 已提交
375 376 377
 *
 * manages a cache.
 */
P
Pekka Enberg 已提交
378

379
struct kmem_cache {
L
Linus Torvalds 已提交
380
/* 1) per-cpu data, touched during every alloc/free */
P
Pekka Enberg 已提交
381
	struct array_cache *array[NR_CPUS];
382
/* 2) Cache tunables. Protected by cache_chain_mutex */
P
Pekka Enberg 已提交
383 384 385
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
386

387
	unsigned int buffer_size;
388
/* 3) touched by every alloc & free from the backend */
P
Pekka Enberg 已提交
389
	struct kmem_list3 *nodelists[MAX_NUMNODES];
390

A
Andrew Morton 已提交
391 392
	unsigned int flags;		/* constant flags */
	unsigned int num;		/* # of objs per slab */
L
Linus Torvalds 已提交
393

394
/* 4) cache_grow/shrink */
L
Linus Torvalds 已提交
395
	/* order of pgs per slab (2^n) */
P
Pekka Enberg 已提交
396
	unsigned int gfporder;
L
Linus Torvalds 已提交
397 398

	/* force GFP flags, e.g. GFP_DMA */
P
Pekka Enberg 已提交
399
	gfp_t gfpflags;
L
Linus Torvalds 已提交
400

A
Andrew Morton 已提交
401
	size_t colour;			/* cache colouring range */
P
Pekka Enberg 已提交
402
	unsigned int colour_off;	/* colour offset */
403
	struct kmem_cache *slabp_cache;
P
Pekka Enberg 已提交
404
	unsigned int slab_size;
A
Andrew Morton 已提交
405
	unsigned int dflags;		/* dynamic flags */
L
Linus Torvalds 已提交
406 407

	/* constructor func */
408
	void (*ctor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
409 410

	/* de-constructor func */
411
	void (*dtor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
412

413
/* 5) cache creation/removal */
P
Pekka Enberg 已提交
414 415
	const char *name;
	struct list_head next;
L
Linus Torvalds 已提交
416

417
/* 6) statistics */
L
Linus Torvalds 已提交
418
#if STATS
P
Pekka Enberg 已提交
419 420 421 422 423 424 425 426 427
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
428
	unsigned long node_overflow;
P
Pekka Enberg 已提交
429 430 431 432
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
L
Linus Torvalds 已提交
433 434
#endif
#if DEBUG
435 436 437 438 439 440 441 442
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
L
Linus Torvalds 已提交
443 444 445 446 447 448 449
#endif
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
450 451 452
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
453
 *
A
Adrian Bunk 已提交
454
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
455 456 457 458 459 460 461 462 463 464
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
465
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
466 467 468 469 470
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
471 472
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
473
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
474
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
475 476 477 478 479
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
480 481 482 483 484 485 486 487 488
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
489
#define	STATS_ADD_REAPED(x,y)	do { } while (0)
L
Linus Torvalds 已提交
490 491 492
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
493
#define	STATS_INC_NODEFREES(x)	do { } while (0)
494
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
495
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
496 497 498 499 500 501 502 503
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
504 505
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
506
 * 0		: objp
507
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
508 509
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
510
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
511
 * 		redzone word.
512 513
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
514 515
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
516
 */
517
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
518
{
519
	return cachep->obj_offset;
L
Linus Torvalds 已提交
520 521
}

522
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
523
{
524
	return cachep->obj_size;
L
Linus Torvalds 已提交
525 526
}

527
static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
528 529
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
530
	return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
L
Linus Torvalds 已提交
531 532
}

533
static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
534 535 536
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
537
		return (unsigned long *)(objp + cachep->buffer_size -
P
Pekka Enberg 已提交
538
					 2 * BYTES_PER_WORD);
539
	return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
540 541
}

542
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
543 544
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
545
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
546 547 548 549
}

#else

550 551
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
L
Linus Torvalds 已提交
552 553 554 555 556 557 558
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
A
Andrew Morton 已提交
559 560
 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
 * order.
L
Linus Torvalds 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
 */
#if defined(CONFIG_LARGE_ALLOCS)
#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
#define	MAX_GFP_ORDER	13	/* up to 32Mb */
#elif defined(CONFIG_MMU)
#define	MAX_OBJ_ORDER	5	/* 32 pages */
#define	MAX_GFP_ORDER	5	/* 32 pages */
#else
#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
#define	MAX_GFP_ORDER	8	/* up to 1Mb */
#endif

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
580 581 582 583
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
584
 */
585 586 587 588 589 590 591
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
592 593
	if (unlikely(PageCompound(page)))
		page = (struct page *)page_private(page);
594
	BUG_ON(!PageSlab(page));
595 596 597 598 599 600 601 602 603 604
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
605 606
	if (unlikely(PageCompound(page)))
		page = (struct page *)page_private(page);
607
	BUG_ON(!PageSlab(page));
608 609
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
610

611 612 613 614 615 616 617 618 619 620 621 622
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_slab(page);
}

623 624 625 626 627 628 629 630 631 632 633 634
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

static inline unsigned int obj_to_index(struct kmem_cache *cache,
					struct slab *slab, void *obj)
{
	return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
}

A
Andrew Morton 已提交
635 636 637
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
655
	{NULL,}
L
Linus Torvalds 已提交
656 657 658 659
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
660
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
661
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
662
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
663 664

/* internal cache of cache description objs */
665
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
666 667 668
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
669
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
670
	.name = "kmem_cache",
L
Linus Torvalds 已提交
671
#if DEBUG
672
	.obj_size = sizeof(struct kmem_cache),
L
Linus Torvalds 已提交
673 674 675
#endif
};

676 677
#define BAD_ALIEN_MAGIC 0x01020304ul

678 679 680 681 682 683 684 685
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
686 687 688 689
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
690
 */
691 692 693 694
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

static inline void init_lock_keys(void)
695 696 697

{
	int q;
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
	struct cache_sizes *s = malloc_sizes;

	while (s->cs_size != ULONG_MAX) {
		for_each_node(q) {
			struct array_cache **alc;
			int r;
			struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
			if (!l3 || OFF_SLAB(s->cs_cachep))
				continue;
			lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
			alc = l3->alien;
			/*
			 * FIXME: This check for BAD_ALIEN_MAGIC
			 * should go away when common slab code is taught to
			 * work even without alien caches.
			 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
			 * for alloc_alien_cache,
			 */
			if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
				continue;
			for_each_node(r) {
				if (alc[r])
					lockdep_set_class(&alc[r]->lock,
					     &on_slab_alc_key);
			}
		}
		s++;
725 726 727
	}
}
#else
728
static inline void init_lock_keys(void)
729 730 731 732
{
}
#endif

733 734 735 736
/*
 * 1. Guard access to the cache-chain.
 * 2. Protect sanity of cpu_online_map against cpu hotplug events
 */
I
Ingo Molnar 已提交
737
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
738 739 740 741 742 743 744 745
static struct list_head cache_chain;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
746 747
	PARTIAL_AC,
	PARTIAL_L3,
L
Linus Torvalds 已提交
748 749 750
	FULL
} g_cpucache_up;

751 752 753 754 755 756 757 758
/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up == FULL;
}

759
static DEFINE_PER_CPU(struct delayed_work, reap_work);
L
Linus Torvalds 已提交
760

761
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
762 763 764 765
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
766 767
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
768 769 770 771 772
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
773 774 775
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
776
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
777 778 779 780 781
#endif
	while (size > csizep->cs_size)
		csizep++;

	/*
782
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
783 784 785 786 787 788 789 790
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
791
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
792 793 794 795
{
	return __find_general_cachep(size, gfpflags);
}

796
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
797
{
798 799
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
800

A
Andrew Morton 已提交
801 802 803
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
804 805 806 807 808 809 810
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
811

812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
860 861 862 863
}

#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)

A
Andrew Morton 已提交
864 865
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
866 867
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
868
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
869 870 871
	dump_stack();
}

872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
903
		node = first_node(node_online_map);
904

905
	per_cpu(reap_node, cpu) = node;
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	/*
	 * Also drain per cpu pages on remote zones
	 */
	if (node != numa_node_id())
		drain_node_pages(node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
929 930 931 932 933 934 935 936 937
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
static void __devinit start_cpu_timer(int cpu)
{
938
	struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
L
Linus Torvalds 已提交
939 940 941 942 943 944

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
945
	if (keventd_up() && reap_work->work.func == NULL) {
946
		init_reap_node(cpu);
947
		INIT_DELAYED_WORK(reap_work, cache_reap);
L
Linus Torvalds 已提交
948 949 950 951
		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
	}
}

952
static struct array_cache *alloc_arraycache(int node, int entries,
P
Pekka Enberg 已提交
953
					    int batchcount)
L
Linus Torvalds 已提交
954
{
P
Pekka Enberg 已提交
955
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
956 957
	struct array_cache *nc = NULL;

958
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
L
Linus Torvalds 已提交
959 960 961 962 963
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
964
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
965 966 967 968
	}
	return nc;
}

969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	to->touched = 1;
	return nr;
}

993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

1018
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1019 1020 1021 1022 1023 1024 1025
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1026
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1027
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1028

P
Pekka Enberg 已提交
1029
static struct array_cache **alloc_alien_cache(int node, int limit)
1030 1031
{
	struct array_cache **ac_ptr;
P
Pekka Enberg 已提交
1032
	int memsize = sizeof(void *) * MAX_NUMNODES;
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
P
Pekka Enberg 已提交
1046
				for (i--; i <= 0; i--)
1047 1048 1049 1050 1051 1052 1053 1054 1055
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1056
static void free_alien_cache(struct array_cache **ac_ptr)
1057 1058 1059 1060 1061 1062
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1063
	    kfree(ac_ptr[i]);
1064 1065 1066
	kfree(ac_ptr);
}

1067
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1068
				struct array_cache *ac, int node)
1069 1070 1071 1072 1073
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1074 1075 1076 1077 1078
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1079 1080
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1081

1082
		free_block(cachep, ac->entry, ac->avail, node);
1083 1084 1085 1086 1087
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1088 1089 1090 1091 1092 1093 1094 1095 1096
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
	int node = __get_cpu_var(reap_node);

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1097 1098

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1099 1100 1101 1102 1103 1104
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1105 1106
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1107
{
P
Pekka Enberg 已提交
1108
	int i = 0;
1109 1110 1111 1112
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1113
		ac = alien[i];
1114 1115 1116 1117 1118 1119 1120
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1121

1122
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1123 1124 1125 1126 1127
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1128 1129 1130
	int node;

	node = numa_node_id();
1131 1132 1133 1134 1135

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1136
	if (likely(slabp->nodeid == node) || unlikely(!use_alien_caches))
1137 1138
		return 0;

P
Pekka Enberg 已提交
1139
	l3 = cachep->nodelists[node];
1140 1141 1142
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1143
		spin_lock(&alien->lock);
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1157 1158
#endif

1159
static int __cpuinit cpuup_callback(struct notifier_block *nfb,
P
Pekka Enberg 已提交
1160
				    unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
1161 1162
{
	long cpu = (long)hcpu;
1163
	struct kmem_cache *cachep;
1164 1165 1166
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
	int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
1167 1168 1169

	switch (action) {
	case CPU_UP_PREPARE:
I
Ingo Molnar 已提交
1170
		mutex_lock(&cache_chain_mutex);
A
Andrew Morton 已提交
1171 1172
		/*
		 * We need to do this right in the beginning since
1173 1174 1175 1176 1177
		 * alloc_arraycache's are going to use this list.
		 * kmalloc_node allows us to add the slab to the right
		 * kmem_list3 and not this cpu's kmem_list3
		 */

L
Linus Torvalds 已提交
1178
		list_for_each_entry(cachep, &cache_chain, next) {
A
Andrew Morton 已提交
1179 1180
			/*
			 * Set up the size64 kmemlist for cpu before we can
1181 1182 1183 1184
			 * begin anything. Make sure some other cpu on this
			 * node has not already allocated this
			 */
			if (!cachep->nodelists[node]) {
A
Andrew Morton 已提交
1185 1186
				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
				if (!l3)
1187 1188 1189
					goto bad;
				kmem_list3_init(l3);
				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
1190
				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1191

1192 1193 1194 1195 1196
				/*
				 * The l3s don't come and go as CPUs come and
				 * go.  cache_chain_mutex is sufficient
				 * protection here.
				 */
1197 1198
				cachep->nodelists[node] = l3;
			}
L
Linus Torvalds 已提交
1199

1200 1201
			spin_lock_irq(&cachep->nodelists[node]->list_lock);
			cachep->nodelists[node]->free_limit =
A
Andrew Morton 已提交
1202 1203
				(1 + nr_cpus_node(node)) *
				cachep->batchcount + cachep->num;
1204 1205 1206
			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
		}

A
Andrew Morton 已提交
1207 1208 1209 1210
		/*
		 * Now we can go ahead with allocating the shared arrays and
		 * array caches
		 */
1211
		list_for_each_entry(cachep, &cache_chain, next) {
1212
			struct array_cache *nc;
1213
			struct array_cache *shared;
1214
			struct array_cache **alien = NULL;
1215

1216
			nc = alloc_arraycache(node, cachep->limit,
1217
						cachep->batchcount);
L
Linus Torvalds 已提交
1218 1219
			if (!nc)
				goto bad;
1220 1221 1222 1223 1224
			shared = alloc_arraycache(node,
					cachep->shared * cachep->batchcount,
					0xbaadf00d);
			if (!shared)
				goto bad;
1225

1226 1227 1228 1229 1230
			if (use_alien_caches) {
                                alien = alloc_alien_cache(node, cachep->limit);
                                if (!alien)
                                        goto bad;
                        }
L
Linus Torvalds 已提交
1231
			cachep->array[cpu] = nc;
1232 1233 1234
			l3 = cachep->nodelists[node];
			BUG_ON(!l3);

1235 1236 1237 1238 1239 1240 1241 1242
			spin_lock_irq(&l3->list_lock);
			if (!l3->shared) {
				/*
				 * We are serialised from CPU_DEAD or
				 * CPU_UP_CANCELLED by the cpucontrol lock
				 */
				l3->shared = shared;
				shared = NULL;
1243
			}
1244 1245 1246 1247 1248 1249 1250 1251 1252
#ifdef CONFIG_NUMA
			if (!l3->alien) {
				l3->alien = alien;
				alien = NULL;
			}
#endif
			spin_unlock_irq(&l3->list_lock);
			kfree(shared);
			free_alien_cache(alien);
L
Linus Torvalds 已提交
1253 1254 1255
		}
		break;
	case CPU_ONLINE:
1256
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1257 1258 1259
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1260 1261 1262 1263 1264 1265
	case CPU_DOWN_PREPARE:
		mutex_lock(&cache_chain_mutex);
		break;
	case CPU_DOWN_FAILED:
		mutex_unlock(&cache_chain_mutex);
		break;
L
Linus Torvalds 已提交
1266
	case CPU_DEAD:
1267 1268 1269 1270 1271 1272 1273 1274
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
L
Linus Torvalds 已提交
1275
		/* fall thru */
1276
#endif
L
Linus Torvalds 已提交
1277 1278 1279
	case CPU_UP_CANCELED:
		list_for_each_entry(cachep, &cache_chain, next) {
			struct array_cache *nc;
1280 1281
			struct array_cache *shared;
			struct array_cache **alien;
1282
			cpumask_t mask;
L
Linus Torvalds 已提交
1283

1284
			mask = node_to_cpumask(node);
L
Linus Torvalds 已提交
1285 1286 1287
			/* cpu is dead; no one can alloc from it. */
			nc = cachep->array[cpu];
			cachep->array[cpu] = NULL;
1288 1289 1290
			l3 = cachep->nodelists[node];

			if (!l3)
1291
				goto free_array_cache;
1292

1293
			spin_lock_irq(&l3->list_lock);
1294 1295 1296 1297

			/* Free limit for this kmem_list3 */
			l3->free_limit -= cachep->batchcount;
			if (nc)
1298
				free_block(cachep, nc->entry, nc->avail, node);
1299 1300

			if (!cpus_empty(mask)) {
1301
				spin_unlock_irq(&l3->list_lock);
1302
				goto free_array_cache;
P
Pekka Enberg 已提交
1303
			}
1304

1305 1306
			shared = l3->shared;
			if (shared) {
1307
				free_block(cachep, l3->shared->entry,
P
Pekka Enberg 已提交
1308
					   l3->shared->avail, node);
1309 1310 1311
				l3->shared = NULL;
			}

1312 1313 1314 1315 1316 1317 1318 1319 1320
			alien = l3->alien;
			l3->alien = NULL;

			spin_unlock_irq(&l3->list_lock);

			kfree(shared);
			if (alien) {
				drain_alien_cache(cachep, alien);
				free_alien_cache(alien);
1321
			}
1322
free_array_cache:
L
Linus Torvalds 已提交
1323 1324
			kfree(nc);
		}
1325 1326 1327 1328 1329 1330 1331 1332 1333
		/*
		 * In the previous loop, all the objects were freed to
		 * the respective cache's slabs,  now we can go ahead and
		 * shrink each nodelist to its limit.
		 */
		list_for_each_entry(cachep, &cache_chain, next) {
			l3 = cachep->nodelists[node];
			if (!l3)
				continue;
1334
			drain_freelist(cachep, l3, l3->free_objects);
1335
		}
I
Ingo Molnar 已提交
1336
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1337 1338 1339
		break;
	}
	return NOTIFY_OK;
A
Andrew Morton 已提交
1340
bad:
L
Linus Torvalds 已提交
1341 1342 1343
	return NOTIFY_BAD;
}

1344 1345 1346
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1347

1348 1349 1350
/*
 * swap the static kmem_list3 with kmalloced memory
 */
A
Andrew Morton 已提交
1351 1352
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
			int nodeid)
1353 1354 1355 1356 1357 1358 1359 1360
{
	struct kmem_list3 *ptr;

	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
	BUG_ON(!ptr);

	local_irq_disable();
	memcpy(ptr, list, sizeof(struct kmem_list3));
1361 1362 1363 1364 1365
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1366 1367 1368 1369 1370
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
	local_irq_enable();
}

A
Andrew Morton 已提交
1371 1372 1373
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1374 1375 1376 1377 1378 1379
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1380
	int i;
1381
	int order;
P
Pekka Enberg 已提交
1382
	int node;
1383 1384 1385 1386 1387 1388

	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
L
Linus Torvalds 已提交
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1399 1400 1401
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1402 1403 1404
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1405
	 * 2) Create the first kmalloc cache.
1406
	 *    The struct kmem_cache for the new cache is allocated normally.
1407 1408 1409
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1410 1411
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1412 1413 1414
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1415 1416
	 */

P
Pekka Enberg 已提交
1417 1418
	node = numa_node_id();

L
Linus Torvalds 已提交
1419 1420 1421 1422 1423
	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
P
Pekka Enberg 已提交
1424
	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
L
Linus Torvalds 已提交
1425

A
Andrew Morton 已提交
1426 1427
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
L
Linus Torvalds 已提交
1428

1429 1430 1431 1432 1433 1434
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1435
	BUG_ON(!cache_cache.num);
1436
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1437 1438 1439
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1440 1441 1442 1443 1444

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1445 1446 1447 1448
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1449 1450 1451
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1452 1453 1454 1455
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
1456

A
Andrew Morton 已提交
1457
	if (INDEX_AC != INDEX_L3) {
1458
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1459 1460 1461 1462 1463 1464
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
				NULL, NULL);
	}
1465

1466 1467
	slab_early_init = 0;

L
Linus Torvalds 已提交
1468
	while (sizes->cs_size != ULONG_MAX) {
1469 1470
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1471 1472 1473
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1474 1475
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1476
		if (!sizes->cs_cachep) {
1477
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1478 1479 1480 1481 1482
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
		}
L
Linus Torvalds 已提交
1483 1484

		sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
A
Andrew Morton 已提交
1485 1486 1487 1488 1489
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
					NULL, NULL);
L
Linus Torvalds 已提交
1490 1491 1492 1493 1494
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1495
		struct array_cache *ptr;
1496

L
Linus Torvalds 已提交
1497
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1498

L
Linus Torvalds 已提交
1499
		local_irq_disable();
1500 1501
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1502
		       sizeof(struct arraycache_init));
1503 1504 1505 1506 1507
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1508 1509
		cache_cache.array[smp_processor_id()] = ptr;
		local_irq_enable();
1510

L
Linus Torvalds 已提交
1511
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1512

L
Linus Torvalds 已提交
1513
		local_irq_disable();
1514
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1515
		       != &initarray_generic.cache);
1516
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1517
		       sizeof(struct arraycache_init));
1518 1519 1520 1521 1522
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1523
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1524
		    ptr;
L
Linus Torvalds 已提交
1525 1526
		local_irq_enable();
	}
1527 1528
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1529 1530
		int nid;

1531
		/* Replace the static kmem_list3 structures for the boot cpu */
P
Pekka Enberg 已提交
1532
		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1533

P
Pekka Enberg 已提交
1534
		for_each_online_node(nid) {
1535
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1536
				  &initkmem_list3[SIZE_AC + nid], nid);
1537 1538 1539

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1540
					  &initkmem_list3[SIZE_L3 + nid], nid);
1541 1542 1543
			}
		}
	}
L
Linus Torvalds 已提交
1544

1545
	/* 6) resize the head arrays to their final sizes */
L
Linus Torvalds 已提交
1546
	{
1547
		struct kmem_cache *cachep;
I
Ingo Molnar 已提交
1548
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1549
		list_for_each_entry(cachep, &cache_chain, next)
1550 1551
			if (enable_cpucache(cachep))
				BUG();
I
Ingo Molnar 已提交
1552
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1553 1554
	}

1555 1556 1557 1558
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();


L
Linus Torvalds 已提交
1559 1560 1561
	/* Done! */
	g_cpucache_up = FULL;

A
Andrew Morton 已提交
1562 1563 1564
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1565 1566 1567
	 */
	register_cpu_notifier(&cpucache_notifier);

A
Andrew Morton 已提交
1568 1569 1570
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1571 1572 1573 1574 1575 1576 1577
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1578 1579
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1580
	 */
1581
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1582
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1594
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1595 1596
{
	struct page *page;
1597
	int nr_pages;
L
Linus Torvalds 已提交
1598 1599
	int i;

1600
#ifndef CONFIG_MMU
1601 1602 1603
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1604
	 */
1605
	flags |= __GFP_COMP;
1606
#endif
1607

1608
	flags |= cachep->gfpflags;
1609 1610

	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
L
Linus Torvalds 已提交
1611 1612 1613
	if (!page)
		return NULL;

1614
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1615
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1616 1617 1618 1619 1620
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1621 1622 1623
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
	return page_address(page);
L
Linus Torvalds 已提交
1624 1625 1626 1627 1628
}

/*
 * Interface to system's page release.
 */
1629
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1630
{
P
Pekka Enberg 已提交
1631
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1632 1633 1634
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1635 1636 1637 1638 1639 1640
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1641
	while (i--) {
N
Nick Piggin 已提交
1642 1643
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1644 1645 1646 1647 1648 1649 1650 1651 1652
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1653
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1654
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1655 1656 1657 1658 1659 1660 1661 1662 1663

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1664
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1665
			    unsigned long caller)
L
Linus Torvalds 已提交
1666
{
1667
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1668

1669
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1670

P
Pekka Enberg 已提交
1671
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1672 1673
		return;

P
Pekka Enberg 已提交
1674 1675 1676 1677
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1678 1679 1680 1681 1682 1683 1684
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1685
				*addr++ = svalue;
L
Linus Torvalds 已提交
1686 1687 1688 1689 1690 1691 1692
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1693
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1694 1695 1696
}
#endif

1697
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1698
{
1699 1700
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1701 1702

	memset(addr, val, size);
P
Pekka Enberg 已提交
1703
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1704 1705 1706 1707 1708
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1709 1710 1711
	unsigned char error = 0;
	int bad_count = 0;

L
Linus Torvalds 已提交
1712
	printk(KERN_ERR "%03x:", offset);
D
Dave Jones 已提交
1713 1714 1715 1716 1717
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
P
Pekka Enberg 已提交
1718
		printk(" %02x", (unsigned char)data[offset + i]);
D
Dave Jones 已提交
1719
	}
L
Linus Torvalds 已提交
1720
	printk("\n");
D
Dave Jones 已提交
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1735 1736 1737 1738 1739
}
#endif

#if DEBUG

1740
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1741 1742 1743 1744 1745 1746
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
		printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
A
Andrew Morton 已提交
1747 1748
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1749 1750 1751 1752
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1753
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1754
		print_symbol("(%s)",
A
Andrew Morton 已提交
1755
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1756 1757
		printk("\n");
	}
1758 1759
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1760
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1761 1762
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1763 1764
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1765 1766 1767 1768
		dump_line(realobj, i, limit);
	}
}

1769
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1770 1771 1772 1773 1774
{
	char *realobj;
	int size, i;
	int lines = 0;

1775 1776
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1777

P
Pekka Enberg 已提交
1778
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1779
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1780
		if (i == size - 1)
L
Linus Torvalds 已提交
1781 1782 1783 1784 1785 1786
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1787
				printk(KERN_ERR
A
Andrew Morton 已提交
1788 1789
					"Slab corruption: start=%p, len=%d\n",
					realobj, size);
L
Linus Torvalds 已提交
1790 1791 1792
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1793
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1794
			limit = 16;
P
Pekka Enberg 已提交
1795 1796
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1809
		struct slab *slabp = virt_to_slab(objp);
1810
		unsigned int objnr;
L
Linus Torvalds 已提交
1811

1812
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1813
		if (objnr) {
1814
			objp = index_to_obj(cachep, slabp, objnr - 1);
1815
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1816
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1817
			       realobj, size);
L
Linus Torvalds 已提交
1818 1819
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1820
		if (objnr + 1 < cachep->num) {
1821
			objp = index_to_obj(cachep, slabp, objnr + 1);
1822
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1823
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1824
			       realobj, size);
L
Linus Torvalds 已提交
1825 1826 1827 1828 1829 1830
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1831 1832
#if DEBUG
/**
1833 1834 1835 1836 1837 1838
 * slab_destroy_objs - destroy a slab and its objects
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
 * Call the registered destructor for each object in a slab that is being
 * destroyed.
L
Linus Torvalds 已提交
1839
 */
1840
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1841 1842 1843
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1844
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1845 1846 1847

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1848 1849
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1850
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1851
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1852 1853 1854 1855 1856 1857 1858 1859 1860
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1861
					   "was overwritten");
L
Linus Torvalds 已提交
1862 1863
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1864
					   "was overwritten");
L
Linus Torvalds 已提交
1865 1866
		}
		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1867
			(cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
1868
	}
1869
}
L
Linus Torvalds 已提交
1870
#else
1871
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1872
{
L
Linus Torvalds 已提交
1873 1874 1875
	if (cachep->dtor) {
		int i;
		for (i = 0; i < cachep->num; i++) {
1876
			void *objp = index_to_obj(cachep, slabp, i);
P
Pekka Enberg 已提交
1877
			(cachep->dtor) (objp, cachep, 0);
L
Linus Torvalds 已提交
1878 1879
		}
	}
1880
}
L
Linus Torvalds 已提交
1881 1882
#endif

1883 1884 1885 1886 1887
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1888
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1889 1890
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1891
 */
1892
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1893 1894 1895 1896
{
	void *addr = slabp->s_mem - slabp->colouroff;

	slab_destroy_objs(cachep, slabp);
L
Linus Torvalds 已提交
1897 1898 1899
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1900
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1901 1902 1903 1904 1905
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
1906 1907
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
1908 1909 1910
	}
}

A
Andrew Morton 已提交
1911 1912 1913 1914
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
1915
static void set_up_list3s(struct kmem_cache *cachep, int index)
1916 1917 1918 1919
{
	int node;

	for_each_online_node(node) {
P
Pekka Enberg 已提交
1920
		cachep->nodelists[node] = &initkmem_list3[index + node];
1921
		cachep->nodelists[node]->next_reap = jiffies +
P
Pekka Enberg 已提交
1922 1923
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1924 1925 1926
	}
}

1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


1948
/**
1949 1950 1951 1952 1953 1954 1955
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1956 1957 1958 1959 1960
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1961
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
1962
			size_t size, size_t align, unsigned long flags)
1963
{
1964
	unsigned long offslab_limit;
1965
	size_t left_over = 0;
1966
	int gfporder;
1967

A
Andrew Morton 已提交
1968
	for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1969 1970 1971
		unsigned int num;
		size_t remainder;

1972
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1973 1974
		if (!num)
			continue;
1975

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
1988

1989
		/* Found something acceptable - save it away */
1990
		cachep->num = num;
1991
		cachep->gfporder = gfporder;
1992 1993
		left_over = remainder;

1994 1995 1996 1997 1998 1999 2000 2001
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2002 2003 2004 2005
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2006
		if (gfporder >= slab_break_gfp_order)
2007 2008
			break;

2009 2010 2011
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2012
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2013 2014 2015 2016 2017
			break;
	}
	return left_over;
}

2018
static int setup_cpu_cache(struct kmem_cache *cachep)
2019
{
2020 2021 2022
	if (g_cpucache_up == FULL)
		return enable_cpucache(cachep);

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
			for_each_online_node(node) {
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
						GFP_KERNEL, node);
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
	cachep->nodelists[numa_node_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2069
	return 0;
2070 2071
}

L
Linus Torvalds 已提交
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 * @dtor: A destructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache
 * and the @dtor is run before the pages are handed back.
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
2087 2088
 * the module calling this has to destroy the cache before getting unloaded.
 *
L
Linus Torvalds 已提交
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2101
struct kmem_cache *
L
Linus Torvalds 已提交
2102
kmem_cache_create (const char *name, size_t size, size_t align,
A
Andrew Morton 已提交
2103 2104
	unsigned long flags,
	void (*ctor)(void*, struct kmem_cache *, unsigned long),
2105
	void (*dtor)(void*, struct kmem_cache *, unsigned long))
L
Linus Torvalds 已提交
2106 2107
{
	size_t left_over, slab_size, ralign;
2108
	struct kmem_cache *cachep = NULL, *pc;
L
Linus Torvalds 已提交
2109 2110 2111 2112

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
2113
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
P
Pekka Enberg 已提交
2114
	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
A
Andrew Morton 已提交
2115 2116
		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
				name);
P
Pekka Enberg 已提交
2117 2118
		BUG();
	}
L
Linus Torvalds 已提交
2119

2120
	/*
2121 2122
	 * We use cache_chain_mutex to ensure a consistent view of
	 * cpu_online_map as well.  Please see cpuup_callback
2123
	 */
I
Ingo Molnar 已提交
2124
	mutex_lock(&cache_chain_mutex);
2125

2126
	list_for_each_entry(pc, &cache_chain, next) {
2127 2128 2129 2130 2131 2132 2133 2134
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
2135
		res = probe_kernel_address(pc->name, tmp);
2136 2137
		if (res) {
			printk("SLAB: cache with size %d has lost its name\n",
2138
			       pc->buffer_size);
2139 2140 2141
			continue;
		}

P
Pekka Enberg 已提交
2142
		if (!strcmp(pc->name, name)) {
2143 2144 2145 2146 2147 2148
			printk("kmem_cache_create: duplicate cache %s\n", name);
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
2149 2150 2151 2152 2153
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
		/* No constructor, but inital state check requested */
		printk(KERN_ERR "%s: No con, but init state check "
P
Pekka Enberg 已提交
2154
		       "requested - %s\n", __FUNCTION__, name);
L
Linus Torvalds 已提交
2155 2156 2157 2158 2159 2160 2161 2162 2163
		flags &= ~SLAB_DEBUG_INITIAL;
	}
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
A
Andrew Morton 已提交
2164
	if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
P
Pekka Enberg 已提交
2165
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(dtor);

	/*
A
Andrew Morton 已提交
2176 2177
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2178
	 */
2179
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2180

A
Andrew Morton 已提交
2181 2182
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2183 2184 2185
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2186 2187 2188
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2189 2190
	}

A
Andrew Morton 已提交
2191 2192
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2193 2194
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2195 2196 2197 2198
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2199 2200
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2201
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2202 2203 2204 2205
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2206 2207 2208 2209 2210 2211 2212 2213 2214

	/*
	 * Redzoning and user store require word alignment. Note this will be
	 * overridden by architecture or caller mandated alignment if either
	 * is greater than BYTES_PER_WORD.
	 */
	if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

2215
	/* 2) arch mandated alignment */
L
Linus Torvalds 已提交
2216 2217 2218
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2219
	/* 3) caller mandated alignment */
L
Linus Torvalds 已提交
2220 2221 2222
	if (ralign < align) {
		ralign = align;
	}
2223 2224 2225
	/* disable debug if necessary */
	if (ralign > BYTES_PER_WORD)
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2226
	/*
2227
	 * 4) Store it.
L
Linus Torvalds 已提交
2228 2229 2230 2231
	 */
	align = ralign;

	/* Get cache's description obj. */
2232
	cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
L
Linus Torvalds 已提交
2233
	if (!cachep)
2234
		goto oops;
L
Linus Torvalds 已提交
2235 2236

#if DEBUG
2237
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2238

2239 2240 2241 2242
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2243 2244
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2245
		cachep->obj_offset += BYTES_PER_WORD;
P
Pekka Enberg 已提交
2246
		size += 2 * BYTES_PER_WORD;
L
Linus Torvalds 已提交
2247 2248
	}
	if (flags & SLAB_STORE_USER) {
2249 2250
		/* user store requires one word storage behind the end of
		 * the real object.
L
Linus Torvalds 已提交
2251 2252 2253 2254
		 */
		size += BYTES_PER_WORD;
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2255
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2256 2257
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
2258 2259 2260 2261 2262
		size = PAGE_SIZE;
	}
#endif
#endif

2263 2264 2265 2266 2267 2268
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
	 * it too early on.)
	 */
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
L
Linus Torvalds 已提交
2269 2270 2271 2272 2273 2274 2275 2276
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2277
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2278 2279 2280 2281 2282

	if (!cachep->num) {
		printk("kmem_cache_create: couldn't create cache %s.\n", name);
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2283
		goto oops;
L
Linus Torvalds 已提交
2284
	}
P
Pekka Enberg 已提交
2285 2286
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2299 2300
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
L
Linus Torvalds 已提交
2301 2302 2303 2304 2305 2306
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2307
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2308 2309 2310 2311 2312
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
	if (flags & SLAB_CACHE_DMA)
		cachep->gfpflags |= GFP_DMA;
2313
	cachep->buffer_size = size;
L
Linus Torvalds 已提交
2314

2315
	if (flags & CFLGS_OFF_SLAB) {
2316
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2317 2318 2319 2320 2321 2322 2323 2324 2325
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
		BUG_ON(!cachep->slabp_cache);
	}
L
Linus Torvalds 已提交
2326 2327 2328 2329
	cachep->ctor = ctor;
	cachep->dtor = dtor;
	cachep->name = name;

2330 2331 2332 2333 2334
	if (setup_cpu_cache(cachep)) {
		__kmem_cache_destroy(cachep);
		cachep = NULL;
		goto oops;
	}
L
Linus Torvalds 已提交
2335 2336 2337

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2338
oops:
L
Linus Torvalds 已提交
2339 2340
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2341
		      name);
I
Ingo Molnar 已提交
2342
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2358
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2359 2360 2361
{
#ifdef CONFIG_SMP
	check_irq_off();
2362
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2363 2364
#endif
}
2365

2366
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2367 2368 2369 2370 2371 2372 2373
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2374 2375 2376 2377
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2378
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2379 2380
#endif

2381 2382 2383 2384
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2385 2386
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2387
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2388
	struct array_cache *ac;
2389
	int node = numa_node_id();
L
Linus Torvalds 已提交
2390 2391

	check_irq_off();
2392
	ac = cpu_cache_get(cachep);
2393 2394 2395
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2396 2397 2398
	ac->avail = 0;
}

2399
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2400
{
2401 2402 2403
	struct kmem_list3 *l3;
	int node;

A
Andrew Morton 已提交
2404
	on_each_cpu(do_drain, cachep, 1, 1);
L
Linus Torvalds 已提交
2405
	check_irq_on();
P
Pekka Enberg 已提交
2406
	for_each_online_node(node) {
2407
		l3 = cachep->nodelists[node];
2408 2409 2410 2411 2412 2413 2414
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2415
			drain_array(cachep, l3, l3->shared, 1, node);
2416
	}
L
Linus Torvalds 已提交
2417 2418
}

2419 2420 2421 2422 2423 2424 2425 2426
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2427
{
2428 2429
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2430 2431
	struct slab *slabp;

2432 2433
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2434

2435
		spin_lock_irq(&l3->list_lock);
2436
		p = l3->slabs_free.prev;
2437 2438 2439 2440
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2441

2442
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2443
#if DEBUG
2444
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2445 2446
#endif
		list_del(&slabp->list);
2447 2448 2449 2450 2451
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2452
		spin_unlock_irq(&l3->list_lock);
2453 2454
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2455
	}
2456 2457
out:
	return nr_freed;
L
Linus Torvalds 已提交
2458 2459
}

2460
/* Called with cache_chain_mutex held to protect against cpu hotplug */
2461
static int __cache_shrink(struct kmem_cache *cachep)
2462 2463 2464 2465 2466 2467 2468 2469 2470
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2471 2472 2473 2474 2475 2476 2477
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2478 2479 2480 2481
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2482 2483 2484 2485 2486 2487 2488
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2489
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2490
{
2491
	int ret;
2492
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2493

2494 2495 2496 2497
	mutex_lock(&cache_chain_mutex);
	ret = __cache_shrink(cachep);
	mutex_unlock(&cache_chain_mutex);
	return ret;
L
Linus Torvalds 已提交
2498 2499 2500 2501 2502 2503 2504
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2505
 * Remove a struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2517
void kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2518
{
2519
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2520 2521

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
2522
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2523 2524 2525 2526 2527 2528
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
P
Pekka Enberg 已提交
2529
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2530
		mutex_unlock(&cache_chain_mutex);
2531
		return;
L
Linus Torvalds 已提交
2532 2533 2534
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2535
		synchronize_rcu();
L
Linus Torvalds 已提交
2536

2537
	__kmem_cache_destroy(cachep);
2538
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2539 2540 2541
}
EXPORT_SYMBOL(kmem_cache_destroy);

2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2553
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2554 2555
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2556 2557
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2558

L
Linus Torvalds 已提交
2559 2560
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2561
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2562
					      local_flags & ~GFP_THISNODE, nodeid);
L
Linus Torvalds 已提交
2563 2564 2565
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2566
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2567 2568 2569 2570
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2571
	slabp->s_mem = objp + colour_off;
2572
	slabp->nodeid = nodeid;
L
Linus Torvalds 已提交
2573 2574 2575 2576 2577
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2578
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2579 2580
}

2581
static void cache_init_objs(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
2582
			    struct slab *slabp, unsigned long ctor_flags)
L
Linus Torvalds 已提交
2583 2584 2585 2586
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2587
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2600 2601 2602
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2603 2604
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2605
			cachep->ctor(objp + obj_offset(cachep), cachep,
P
Pekka Enberg 已提交
2606
				     ctor_flags);
L
Linus Torvalds 已提交
2607 2608 2609 2610

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2611
					   " end of an object");
L
Linus Torvalds 已提交
2612 2613
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2614
					   " start of an object");
L
Linus Torvalds 已提交
2615
		}
A
Andrew Morton 已提交
2616 2617
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2618
			kernel_map_pages(virt_to_page(objp),
2619
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2620 2621 2622 2623
#else
		if (cachep->ctor)
			cachep->ctor(objp, cachep, ctor_flags);
#endif
P
Pekka Enberg 已提交
2624
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2625
	}
P
Pekka Enberg 已提交
2626
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2627 2628 2629
	slabp->free = 0;
}

2630
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2631
{
C
Christoph Lameter 已提交
2632
	if (flags & GFP_DMA)
A
Andrew Morton 已提交
2633 2634 2635
		BUG_ON(!(cachep->gfpflags & GFP_DMA));
	else
		BUG_ON(cachep->gfpflags & GFP_DMA);
L
Linus Torvalds 已提交
2636 2637
}

A
Andrew Morton 已提交
2638 2639
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2640
{
2641
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2655 2656
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2657
{
2658
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2659 2660 2661 2662 2663

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2664
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2665
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2666
				"'%s', objp %p\n", cachep->name, objp);
2667 2668 2669 2670 2671 2672 2673 2674
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2675 2676 2677 2678 2679 2680 2681
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2682
{
2683
	int nr_pages;
L
Linus Torvalds 已提交
2684 2685
	struct page *page;

2686
	page = virt_to_page(addr);
2687

2688
	nr_pages = 1;
2689
	if (likely(!PageCompound(page)))
2690 2691
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2692
	do {
2693 2694
		page_set_cache(page, cache);
		page_set_slab(page, slab);
L
Linus Torvalds 已提交
2695
		page++;
2696
	} while (--nr_pages);
L
Linus Torvalds 已提交
2697 2698 2699 2700 2701 2702
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2703 2704
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2705
{
P
Pekka Enberg 已提交
2706 2707 2708 2709
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
	unsigned long ctor_flags;
2710
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2711

A
Andrew Morton 已提交
2712 2713 2714
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2715
	 */
C
Christoph Lameter 已提交
2716
	BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK | __GFP_NO_GROW));
2717
	if (flags & __GFP_NO_GROW)
L
Linus Torvalds 已提交
2718 2719 2720
		return 0;

	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2721
	local_flags = (flags & GFP_LEVEL_MASK);
L
Linus Torvalds 已提交
2722 2723 2724 2725 2726 2727 2728
	if (!(local_flags & __GFP_WAIT))
		/*
		 * Not allowed to sleep.  Need to tell a constructor about
		 * this - it might need to know...
		 */
		ctor_flags |= SLAB_CTOR_ATOMIC;

2729
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2730
	check_irq_off();
2731 2732
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2733 2734

	/* Get colour for the slab, and cal the next value. */
2735 2736 2737 2738 2739
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2740

2741
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2754 2755 2756
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2757
	 */
2758 2759
	if (!objp)
		objp = kmem_getpages(cachep, flags, nodeid);
A
Andrew Morton 已提交
2760
	if (!objp)
L
Linus Torvalds 已提交
2761 2762 2763
		goto failed;

	/* Get slab management. */
2764 2765
	slabp = alloc_slabmgmt(cachep, objp, offset,
			local_flags & ~GFP_THISNODE, nodeid);
A
Andrew Morton 已提交
2766
	if (!slabp)
L
Linus Torvalds 已提交
2767 2768
		goto opps1;

2769
	slabp->nodeid = nodeid;
2770
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2771 2772 2773 2774 2775 2776

	cache_init_objs(cachep, slabp, ctor_flags);

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2777
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2778 2779

	/* Make slab active. */
2780
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2781
	STATS_INC_GROWN(cachep);
2782 2783
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2784
	return 1;
A
Andrew Morton 已提交
2785
opps1:
L
Linus Torvalds 已提交
2786
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2787
failed:
L
Linus Torvalds 已提交
2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 * - destructor calls, for caches with POISON+dtor
 */
static void kfree_debugcheck(const void *objp)
{
	struct page *page;

	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2807 2808
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2809 2810 2811
	}
	page = virt_to_page(objp);
	if (!PageSlab(page)) {
P
Pekka Enberg 已提交
2812 2813
		printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
		       (unsigned long)objp);
L
Linus Torvalds 已提交
2814 2815 2816 2817
		BUG();
	}
}

2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
	unsigned long redzone1, redzone2;

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

	printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
			obj, redzone1, redzone2);
}

2840
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2841
				   void *caller)
L
Linus Torvalds 已提交
2842 2843 2844 2845 2846
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2847
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2848 2849 2850
	kfree_debugcheck(objp);
	page = virt_to_page(objp);

2851
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2852 2853

	if (cachep->flags & SLAB_RED_ZONE) {
2854
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2855 2856 2857 2858 2859 2860
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2861
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2862 2863

	BUG_ON(objnr >= cachep->num);
2864
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2865 2866

	if (cachep->flags & SLAB_DEBUG_INITIAL) {
A
Andrew Morton 已提交
2867 2868 2869 2870
		/*
		 * Need to call the slab's constructor so the caller can
		 * perform a verify of its state (debugging).  Called without
		 * the cache-lock held.
L
Linus Torvalds 已提交
2871
		 */
2872
		cachep->ctor(objp + obj_offset(cachep),
P
Pekka Enberg 已提交
2873
			     cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
L
Linus Torvalds 已提交
2874 2875 2876 2877 2878
	}
	if (cachep->flags & SLAB_POISON && cachep->dtor) {
		/* we want to cache poison the object,
		 * call the destruction callback
		 */
2879
		cachep->dtor(objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
2880
	}
2881 2882 2883
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2884 2885
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
2886
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2887
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2888
			kernel_map_pages(virt_to_page(objp),
2889
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2900
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2901 2902 2903
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2904

L
Linus Torvalds 已提交
2905 2906 2907 2908 2909 2910 2911
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2912 2913 2914 2915
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
2916
		for (i = 0;
2917
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2918
		     i++) {
A
Andrew Morton 已提交
2919
			if (i % 16 == 0)
L
Linus Torvalds 已提交
2920
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2921
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2933
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2934 2935 2936 2937
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
2938 2939 2940
	int node;

	node = numa_node_id();
L
Linus Torvalds 已提交
2941 2942

	check_irq_off();
2943
	ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
2944
retry:
L
Linus Torvalds 已提交
2945 2946
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2947 2948 2949 2950
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2951 2952 2953
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
2954
	l3 = cachep->nodelists[node];
2955 2956 2957

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2958

2959 2960 2961 2962
	/* See if we can refill from the shared array */
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
		goto alloc_done;

L
Linus Torvalds 已提交
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2983
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
P
Pekka Enberg 已提交
2984
							    node);
L
Linus Torvalds 已提交
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
2996
must_grow:
L
Linus Torvalds 已提交
2997
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
2998
alloc_done:
2999
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3000 3001 3002

	if (unlikely(!ac->avail)) {
		int x;
3003
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3004

A
Andrew Morton 已提交
3005
		/* cache_grow can reenable interrupts, then ac could change. */
3006
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
3007
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
3008 3009
			return NULL;

A
Andrew Morton 已提交
3010
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3011 3012 3013
			goto retry;
	}
	ac->touched = 1;
3014
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3015 3016
}

A
Andrew Morton 已提交
3017 3018
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3019 3020 3021 3022 3023 3024 3025 3026
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3027 3028
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
3029
{
P
Pekka Enberg 已提交
3030
	if (!objp)
L
Linus Torvalds 已提交
3031
		return objp;
P
Pekka Enberg 已提交
3032
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3033
#ifdef CONFIG_DEBUG_PAGEALLOC
3034
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3035
			kernel_map_pages(virt_to_page(objp),
3036
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3048 3049 3050 3051
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3052
			printk(KERN_ERR
A
Andrew Morton 已提交
3053 3054 3055
				"%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3056 3057 3058 3059
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

		slabp = page_get_slab(virt_to_page(objp));
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3070
	objp += obj_offset(cachep);
L
Linus Torvalds 已提交
3071
	if (cachep->ctor && cachep->flags & SLAB_POISON) {
P
Pekka Enberg 已提交
3072
		unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
L
Linus Torvalds 已提交
3073 3074 3075 3076 3077

		if (!(flags & __GFP_WAIT))
			ctor_flags |= SLAB_CTOR_ATOMIC;

		cachep->ctor(objp, cachep, ctor_flags);
P
Pekka Enberg 已提交
3078
	}
3079 3080 3081 3082 3083 3084
#if ARCH_SLAB_MINALIGN
	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
		       objp, ARCH_SLAB_MINALIGN);
	}
#endif
L
Linus Torvalds 已提交
3085 3086 3087 3088 3089 3090
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

3091
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3092
{
P
Pekka Enberg 已提交
3093
	void *objp;
L
Linus Torvalds 已提交
3094 3095
	struct array_cache *ac;

3096
	check_irq_off();
3097
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3098 3099 3100
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
3101
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3102 3103 3104 3105
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
3106 3107 3108
	return objp;
}

A
Andrew Morton 已提交
3109 3110
static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
						gfp_t flags, void *caller)
3111 3112
{
	unsigned long save_flags;
3113
	void *objp = NULL;
3114 3115 3116 3117

	cache_alloc_debugcheck_before(cachep, flags);

	local_irq_save(save_flags);
3118

3119 3120
	if (unlikely(NUMA_BUILD &&
			current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY)))
3121 3122 3123 3124
		objp = alternate_node_alloc(cachep, flags);

	if (!objp)
		objp = ____cache_alloc(cachep, flags);
3125 3126
	/*
	 * We may just have run out of memory on the local node.
3127
	 * ____cache_alloc_node() knows how to locate memory on other nodes
3128 3129
	 */
 	if (NUMA_BUILD && !objp)
3130
 		objp = ____cache_alloc_node(cachep, flags, numa_node_id());
L
Linus Torvalds 已提交
3131
	local_irq_restore(save_flags);
3132
	objp = cache_alloc_debugcheck_after(cachep, flags, objp,
3133
					    caller);
3134
	prefetchw(objp);
L
Linus Torvalds 已提交
3135 3136 3137
	return objp;
}

3138
#ifdef CONFIG_NUMA
3139
/*
3140
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3141 3142 3143 3144 3145 3146 3147 3148
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3149
	if (in_interrupt() || (flags & __GFP_THISNODE))
3150 3151 3152 3153 3154 3155 3156
		return NULL;
	nid_alloc = nid_here = numa_node_id();
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
		nid_alloc = cpuset_mem_spread_node();
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
	if (nid_alloc != nid_here)
3157
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3158 3159 3160
	return NULL;
}

3161 3162
/*
 * Fallback function if there was no memory available and no objects on a
3163 3164 3165 3166 3167
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3168 3169 3170 3171 3172 3173 3174
 */
void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
{
	struct zonelist *zonelist = &NODE_DATA(slab_node(current->mempolicy))
					->node_zonelists[gfp_zone(flags)];
	struct zone **z;
	void *obj = NULL;
3175
	int nid;
3176

3177 3178 3179 3180 3181
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3182
	for (z = zonelist->zones; *z && !obj; z++) {
3183
		nid = zone_to_nid(*z);
3184

3185
		if (cpuset_zone_allowed(*z, flags | __GFP_HARDWALL) &&
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
			cache->nodelists[nid] &&
			cache->nodelists[nid]->free_objects)
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
	}

	if (!obj) {
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
		obj = kmem_getpages(cache, flags, -1);
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
				kmem_freepages(cache, obj);
				obj = NULL;
			}
		}
3220
	}
3221 3222 3223
	return obj;
}

3224 3225
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3226
 */
3227
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3228
				int nodeid)
3229 3230
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3231 3232 3233 3234 3235 3236 3237 3238
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3239
retry:
3240
	check_irq_off();
P
Pekka Enberg 已提交
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3260
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3261 3262 3263 3264 3265
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3266
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3267
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3268
	else
P
Pekka Enberg 已提交
3269
		list_add(&slabp->list, &l3->slabs_partial);
3270

P
Pekka Enberg 已提交
3271 3272
	spin_unlock(&l3->list_lock);
	goto done;
3273

A
Andrew Morton 已提交
3274
must_grow:
P
Pekka Enberg 已提交
3275
	spin_unlock(&l3->list_lock);
3276
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3277 3278
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3279

3280 3281 3282 3283 3284
	if (!(flags & __GFP_THISNODE))
		/* Unable to grow the cache. Fall back to other nodes. */
		return fallback_alloc(cachep, flags);

	return NULL;
3285

A
Andrew Morton 已提交
3286
done:
P
Pekka Enberg 已提交
3287
	return obj;
3288 3289 3290 3291 3292 3293
}
#endif

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3294
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3295
		       int node)
L
Linus Torvalds 已提交
3296 3297
{
	int i;
3298
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3299 3300 3301 3302 3303

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3304
		slabp = virt_to_slab(objp);
3305
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3306
		list_del(&slabp->list);
3307
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3308
		check_slabp(cachep, slabp);
3309
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3310
		STATS_DEC_ACTIVE(cachep);
3311
		l3->free_objects++;
L
Linus Torvalds 已提交
3312 3313 3314 3315
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3316 3317
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3318 3319 3320 3321 3322 3323
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3324 3325
				slab_destroy(cachep, slabp);
			} else {
3326
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3327 3328 3329 3330 3331 3332
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3333
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3334 3335 3336 3337
		}
	}
}

3338
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3339 3340
{
	int batchcount;
3341
	struct kmem_list3 *l3;
3342
	int node = numa_node_id();
L
Linus Torvalds 已提交
3343 3344 3345 3346 3347 3348

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3349
	l3 = cachep->nodelists[node];
3350
	spin_lock(&l3->list_lock);
3351 3352
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3353
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3354 3355 3356
		if (max) {
			if (batchcount > max)
				batchcount = max;
3357
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3358
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3359 3360 3361 3362 3363
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3364
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3365
free_done:
L
Linus Torvalds 已提交
3366 3367 3368 3369 3370
#if STATS
	{
		int i = 0;
		struct list_head *p;

3371 3372
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3384
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3385
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3386
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3387 3388 3389
}

/*
A
Andrew Morton 已提交
3390 3391
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3392
 */
3393
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3394
{
3395
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3396 3397 3398 3399

	check_irq_off();
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

3400
	if (cache_free_alien(cachep, objp))
3401 3402
		return;

L
Linus Torvalds 已提交
3403 3404
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3405
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3406 3407 3408 3409
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3410
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3422
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3423
{
3424
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3425 3426 3427
}
EXPORT_SYMBOL(kmem_cache_alloc);

3428
/**
3429
 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
 * @cache: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache and set the allocated memory to zero.
 * The flags are only relevant if the cache has no available objects.
 */
void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
{
	void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
	if (ret)
		memset(ret, 0, obj_size(cache));
	return ret;
}
EXPORT_SYMBOL(kmem_cache_zalloc);

L
Linus Torvalds 已提交
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
/**
 * kmem_ptr_validate - check if an untrusted pointer might
 *	be a slab entry.
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
 * This verifies that the untrusted pointer looks sane:
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3459
int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
L
Linus Torvalds 已提交
3460
{
P
Pekka Enberg 已提交
3461
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
3462
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
3463
	unsigned long align_mask = BYTES_PER_WORD - 1;
3464
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3480
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3481 3482
		goto out;
	return 1;
A
Andrew Morton 已提交
3483
out:
L
Linus Torvalds 已提交
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493
	return 0;
}

#ifdef CONFIG_NUMA
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
3494 3495 3496 3497
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
L
Linus Torvalds 已提交
3498
 */
3499 3500 3501
static __always_inline void *
__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
		int nodeid, void *caller)
L
Linus Torvalds 已提交
3502
{
3503
	unsigned long save_flags;
3504
	void *ptr = NULL;
L
Linus Torvalds 已提交
3505

3506 3507
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
3508

3509 3510
	if (unlikely(nodeid == -1))
		nodeid = numa_node_id();
3511

3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
	if (likely(cachep->nodelists[nodeid])) {
		if (nodeid == numa_node_id()) {
			/*
			 * Use the locally cached objects if possible.
			 * However ____cache_alloc does not allow fallback
			 * to other nodes. It may fail while we still have
			 * objects on other nodes available.
			 */
			ptr = ____cache_alloc(cachep, flags);
		}
		if (!ptr) {
			/* ___cache_alloc_node can fall back to other nodes */
			ptr = ____cache_alloc_node(cachep, flags, nodeid);
		}
	} else {
		/* Node not bootstrapped yet */
		if (!(flags & __GFP_THISNODE))
			ptr = fallback_alloc(cachep, flags);
	}

	local_irq_restore(save_flags);
3533
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
L
Linus Torvalds 已提交
3534

3535
	return ptr;
L
Linus Torvalds 已提交
3536
}
3537 3538 3539 3540 3541 3542

void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
	return __cache_alloc_node(cachep, flags, nodeid,
			__builtin_return_address(0));
}
L
Linus Torvalds 已提交
3543 3544
EXPORT_SYMBOL(kmem_cache_alloc_node);

3545 3546
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3547
{
3548
	struct kmem_cache *cachep;
3549 3550 3551 3552 3553 3554

	cachep = kmem_find_general_cachep(size, flags);
	if (unlikely(cachep == NULL))
		return NULL;
	return kmem_cache_alloc_node(cachep, flags, node);
}
3555 3556 3557 3558 3559 3560 3561

#ifdef CONFIG_DEBUG_SLAB
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node,
			__builtin_return_address(0));
}
3562
EXPORT_SYMBOL(__kmalloc_node);
3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
		int node, void *caller)
{
	return __do_kmalloc_node(size, flags, node, caller);
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node, NULL);
}
EXPORT_SYMBOL(__kmalloc_node);
#endif /* CONFIG_DEBUG_SLAB */
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3578 3579

/**
3580
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3581
 * @size: how many bytes of memory are required.
3582
 * @flags: the type of memory to allocate (see kmalloc).
3583
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3584
 */
3585 3586
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3587
{
3588
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3589

3590 3591 3592 3593 3594 3595
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3596 3597
	if (unlikely(cachep == NULL))
		return NULL;
3598 3599 3600 3601
	return __cache_alloc(cachep, flags, caller);
}


3602
#ifdef CONFIG_DEBUG_SLAB
3603 3604
void *__kmalloc(size_t size, gfp_t flags)
{
3605
	return __do_kmalloc(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3606 3607 3608
}
EXPORT_SYMBOL(__kmalloc);

3609 3610 3611 3612 3613
void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
{
	return __do_kmalloc(size, flags, caller);
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3614 3615 3616 3617 3618 3619 3620

#else
void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
3621 3622
#endif

L
Linus Torvalds 已提交
3623 3624 3625 3626 3627 3628 3629 3630
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3631
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3632 3633 3634
{
	unsigned long flags;

3635 3636
	BUG_ON(virt_to_cache(objp) != cachep);

L
Linus Torvalds 已提交
3637
	local_irq_save(flags);
3638
	__cache_free(cachep, objp);
L
Linus Torvalds 已提交
3639 3640 3641 3642 3643 3644 3645 3646
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3647 3648
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3649 3650 3651 3652 3653
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3654
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3655 3656 3657 3658 3659 3660
	unsigned long flags;

	if (unlikely(!objp))
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3661
	c = virt_to_cache(objp);
3662
	debug_check_no_locks_freed(objp, obj_size(c));
3663
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3664 3665 3666 3667
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3668
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3669
{
3670
	return obj_size(cachep);
L
Linus Torvalds 已提交
3671 3672 3673
}
EXPORT_SYMBOL(kmem_cache_size);

3674
const char *kmem_cache_name(struct kmem_cache *cachep)
3675 3676 3677 3678 3679
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3680
/*
3681
 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3682
 */
3683
static int alloc_kmemlist(struct kmem_cache *cachep)
3684 3685 3686
{
	int node;
	struct kmem_list3 *l3;
3687
	struct array_cache *new_shared;
3688
	struct array_cache **new_alien = NULL;
3689 3690

	for_each_online_node(node) {
3691

3692 3693 3694 3695 3696
                if (use_alien_caches) {
                        new_alien = alloc_alien_cache(node, cachep->limit);
                        if (!new_alien)
                                goto fail;
                }
3697

3698 3699
		new_shared = alloc_arraycache(node,
				cachep->shared*cachep->batchcount,
A
Andrew Morton 已提交
3700
					0xbaadf00d);
3701 3702
		if (!new_shared) {
			free_alien_cache(new_alien);
3703
			goto fail;
3704
		}
3705

A
Andrew Morton 已提交
3706 3707
		l3 = cachep->nodelists[node];
		if (l3) {
3708 3709
			struct array_cache *shared = l3->shared;

3710 3711
			spin_lock_irq(&l3->list_lock);

3712
			if (shared)
3713 3714
				free_block(cachep, shared->entry,
						shared->avail, node);
3715

3716 3717
			l3->shared = new_shared;
			if (!l3->alien) {
3718 3719 3720
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3721
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3722
					cachep->batchcount + cachep->num;
3723
			spin_unlock_irq(&l3->list_lock);
3724
			kfree(shared);
3725 3726 3727
			free_alien_cache(new_alien);
			continue;
		}
A
Andrew Morton 已提交
3728
		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3729 3730 3731
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3732
			goto fail;
3733
		}
3734 3735 3736

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3737
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3738
		l3->shared = new_shared;
3739
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3740
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3741
					cachep->batchcount + cachep->num;
3742 3743
		cachep->nodelists[node] = l3;
	}
3744
	return 0;
3745

A
Andrew Morton 已提交
3746
fail:
3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3762
	return -ENOMEM;
3763 3764
}

L
Linus Torvalds 已提交
3765
struct ccupdate_struct {
3766
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3767 3768 3769 3770 3771
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3772
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3773 3774 3775
	struct array_cache *old;

	check_irq_off();
3776
	old = cpu_cache_get(new->cachep);
3777

L
Linus Torvalds 已提交
3778 3779 3780 3781
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3782
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
3783 3784
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared)
L
Linus Torvalds 已提交
3785
{
3786
	struct ccupdate_struct *new;
3787
	int i;
L
Linus Torvalds 已提交
3788

3789 3790 3791 3792
	new = kzalloc(sizeof(*new), GFP_KERNEL);
	if (!new)
		return -ENOMEM;

3793
	for_each_online_cpu(i) {
3794
		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
A
Andrew Morton 已提交
3795
						batchcount);
3796
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3797
			for (i--; i >= 0; i--)
3798 3799
				kfree(new->new[i]);
			kfree(new);
3800
			return -ENOMEM;
L
Linus Torvalds 已提交
3801 3802
		}
	}
3803
	new->cachep = cachep;
L
Linus Torvalds 已提交
3804

3805
	on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3806

L
Linus Torvalds 已提交
3807 3808 3809
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3810
	cachep->shared = shared;
L
Linus Torvalds 已提交
3811

3812
	for_each_online_cpu(i) {
3813
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3814 3815
		if (!ccold)
			continue;
3816
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3817
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3818
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
3819 3820
		kfree(ccold);
	}
3821
	kfree(new);
3822
	return alloc_kmemlist(cachep);
L
Linus Torvalds 已提交
3823 3824
}

3825
/* Called with cache_chain_mutex held always */
3826
static int enable_cpucache(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3827 3828 3829 3830
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
3831 3832
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3833 3834
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3835
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3836 3837 3838 3839
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3840
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
3841
		limit = 1;
3842
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
3843
		limit = 8;
3844
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
3845
		limit = 24;
3846
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
3847 3848 3849 3850
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3851 3852
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3853 3854 3855 3856 3857 3858 3859 3860 3861
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
#ifdef CONFIG_SMP
3862
	if (cachep->buffer_size <= PAGE_SIZE)
L
Linus Torvalds 已提交
3863 3864 3865 3866
		shared = 8;
#endif

#if DEBUG
A
Andrew Morton 已提交
3867 3868 3869
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3870 3871 3872 3873
	 */
	if (limit > 32)
		limit = 32;
#endif
P
Pekka Enberg 已提交
3874
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
L
Linus Torvalds 已提交
3875 3876
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3877
		       cachep->name, -err);
3878
	return err;
L
Linus Torvalds 已提交
3879 3880
}

3881 3882
/*
 * Drain an array if it contains any elements taking the l3 lock only if
3883 3884
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
3885 3886 3887
 */
void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
3888 3889 3890
{
	int tofree;

3891 3892
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
3893 3894
	if (ac->touched && !force) {
		ac->touched = 0;
3895
	} else {
3896
		spin_lock_irq(&l3->list_lock);
3897 3898 3899 3900 3901 3902 3903 3904 3905
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
3906
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3907 3908 3909 3910 3911
	}
}

/**
 * cache_reap - Reclaim memory from caches.
3912
 * @unused: unused parameter
L
Linus Torvalds 已提交
3913 3914 3915 3916 3917 3918
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
3919 3920
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
3921
 */
3922
static void cache_reap(struct work_struct *unused)
L
Linus Torvalds 已提交
3923
{
3924
	struct kmem_cache *searchp;
3925
	struct kmem_list3 *l3;
3926
	int node = numa_node_id();
L
Linus Torvalds 已提交
3927

I
Ingo Molnar 已提交
3928
	if (!mutex_trylock(&cache_chain_mutex)) {
L
Linus Torvalds 已提交
3929
		/* Give up. Setup the next iteration. */
P
Pekka Enberg 已提交
3930 3931
		schedule_delayed_work(&__get_cpu_var(reap_work),
				      REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3932 3933 3934
		return;
	}

3935
	list_for_each_entry(searchp, &cache_chain, next) {
L
Linus Torvalds 已提交
3936 3937
		check_irq_on();

3938 3939 3940 3941 3942
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
3943
		l3 = searchp->nodelists[node];
3944

3945
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
3946

3947
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
3948

3949 3950 3951 3952
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
3953
		if (time_after(l3->next_reap, jiffies))
3954
			goto next;
L
Linus Torvalds 已提交
3955

3956
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
3957

3958
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
3959

3960
		if (l3->free_touched)
3961
			l3->free_touched = 0;
3962 3963
		else {
			int freed;
L
Linus Torvalds 已提交
3964

3965 3966 3967 3968
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
3969
next:
L
Linus Torvalds 已提交
3970 3971 3972
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
3973
	mutex_unlock(&cache_chain_mutex);
3974
	next_reap_node();
3975
	refresh_cpu_vm_stats(smp_processor_id());
A
Andrew Morton 已提交
3976
	/* Set up the next iteration */
3977
	schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3978 3979 3980 3981
}

#ifdef CONFIG_PROC_FS

3982
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
3983
{
3984 3985 3986 3987
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
3988
#if STATS
3989
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
3990
#else
3991
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
3992
#endif
3993 3994 3995 3996
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
3997
#if STATS
3998
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3999
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4000
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
4001
#endif
4002 4003 4004 4005 4006 4007 4008 4009
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

I
Ingo Molnar 已提交
4010
	mutex_lock(&cache_chain_mutex);
4011 4012
	if (!n)
		print_slabinfo_header(m);
L
Linus Torvalds 已提交
4013 4014 4015 4016 4017 4018
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
4019
	return list_entry(p, struct kmem_cache, next);
L
Linus Torvalds 已提交
4020 4021 4022 4023
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
4024
	struct kmem_cache *cachep = p;
L
Linus Torvalds 已提交
4025
	++*pos;
A
Andrew Morton 已提交
4026 4027
	return cachep->next.next == &cache_chain ?
		NULL : list_entry(cachep->next.next, struct kmem_cache, next);
L
Linus Torvalds 已提交
4028 4029 4030 4031
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
4032
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4033 4034 4035 4036
}

static int s_show(struct seq_file *m, void *p)
{
4037
	struct kmem_cache *cachep = p;
P
Pekka Enberg 已提交
4038 4039 4040 4041 4042
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4043
	const char *name;
L
Linus Torvalds 已提交
4044
	char *error = NULL;
4045 4046
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4047 4048 4049

	active_objs = 0;
	num_slabs = 0;
4050 4051 4052 4053 4054
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4055 4056
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4057

4058
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4059 4060 4061 4062 4063
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4064
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4065 4066 4067 4068 4069 4070 4071
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4072
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4073 4074 4075 4076 4077
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4078 4079
		if (l3->shared)
			shared_avail += l3->shared->avail;
4080

4081
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4082
	}
P
Pekka Enberg 已提交
4083 4084
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4085
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4086 4087
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4088
	name = cachep->name;
L
Linus Torvalds 已提交
4089 4090 4091 4092
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4093
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
4094
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4095
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4096
		   cachep->limit, cachep->batchcount, cachep->shared);
4097
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4098
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4099
#if STATS
P
Pekka Enberg 已提交
4100
	{			/* list3 stats */
L
Linus Torvalds 已提交
4101 4102 4103 4104 4105 4106 4107
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4108
		unsigned long node_frees = cachep->node_frees;
4109
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4110

4111
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4112
				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
A
Andrew Morton 已提交
4113
				reaped, errors, max_freeable, node_allocs,
4114
				node_frees, overflows);
L
Linus Torvalds 已提交
4115 4116 4117 4118 4119 4120 4121 4122 4123
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4124
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

4145
const struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4146 4147 4148 4149
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4150 4151 4152 4153 4154 4155 4156 4157 4158 4159
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
4160 4161
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4162
{
P
Pekka Enberg 已提交
4163
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4164
	int limit, batchcount, shared, res;
4165
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4166

L
Linus Torvalds 已提交
4167 4168 4169 4170
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4171
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4172 4173 4174 4175 4176 4177 4178 4179 4180 4181

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
4182
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4183
	res = -EINVAL;
4184
	list_for_each_entry(cachep, &cache_chain, next) {
L
Linus Torvalds 已提交
4185
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4186 4187
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4188
				res = 0;
L
Linus Torvalds 已提交
4189
			} else {
4190
				res = do_tune_cpucache(cachep, limit,
P
Pekka Enberg 已提交
4191
						       batchcount, shared);
L
Linus Torvalds 已提交
4192 4193 4194 4195
			}
			break;
		}
	}
I
Ingo Molnar 已提交
4196
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4197 4198 4199 4200
	if (res >= 0)
		res = count;
	return res;
}
4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

	mutex_lock(&cache_chain_mutex);
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
	return list_entry(p, struct kmem_cache, next);
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	char *modname;
	const char *name;
	unsigned long offset, size;
	char namebuf[KSYM_NAME_LEN+1];

	name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);

	if (name) {
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
		if (modname)
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
	struct kmem_cache *cachep = p;
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4310
		list_for_each_entry(slabp, &l3->slabs_full, list)
4311
			handle_slab(n, cachep, slabp);
4312
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4339

4340 4341 4342
	return 0;
}

4343
const struct seq_operations slabstats_op = {
4344 4345 4346 4347 4348 4349
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
#endif
L
Linus Torvalds 已提交
4350 4351
#endif

4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
L
Linus Torvalds 已提交
4364 4365
unsigned int ksize(const void *objp)
{
4366 4367
	if (unlikely(objp == NULL))
		return 0;
L
Linus Torvalds 已提交
4368

4369
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4370
}