slab.c 115.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
L
Linus Torvalds 已提交
98 99 100 101 102 103 104
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
105
#include	<linux/string.h>
106
#include	<linux/uaccess.h>
107
#include	<linux/nodemask.h>
108
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
109
#include	<linux/mutex.h>
110
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
111
#include	<linux/rtmutex.h>
112
#include	<linux/reciprocal_div.h>
113
#include	<linux/debugobjects.h>
L
Linus Torvalds 已提交
114 115 116 117 118 119

#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
120
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
141
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
142 143 144 145 146 147 148

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
149 150 151
 * alignment larger than the alignment of a 64-bit integer.
 * ARCH_KMALLOC_MINALIGN allows that.
 * Note that increasing this value may disable some debug features.
L
Linus Torvalds 已提交
152
 */
153
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
L
Linus Torvalds 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
173
# define CREATE_MASK	(SLAB_RED_ZONE | \
L
Linus Torvalds 已提交
174
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
175
			 SLAB_CACHE_DMA | \
176
			 SLAB_STORE_USER | \
L
Linus Torvalds 已提交
177
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
178 179
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
			 SLAB_DEBUG_OBJECTS)
L
Linus Torvalds 已提交
180
#else
181
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
182
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
183
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
184 185
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
			 SLAB_DEBUG_OBJECTS)
L
Linus Torvalds 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

207
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
208 209
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
210 211
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
212 213 214 215 216 217 218 219 220

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
221 222 223 224 225 226
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
246
	struct rcu_head head;
247
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
248
	void *addr;
L
Linus Torvalds 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
268
	spinlock_t lock;
269
	void *entry[];	/*
A
Andrew Morton 已提交
270 271 272 273
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
L
Linus Torvalds 已提交
274 275
};

A
Andrew Morton 已提交
276 277 278
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
279 280 281 282
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
283
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
284 285 286
};

/*
287
 * The slab lists for all objects.
L
Linus Torvalds 已提交
288 289
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
290 291 292 293 294
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
295
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
296 297 298
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
299 300
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
301 302
};

303 304 305
/*
 * Need this for bootstrapping a per node allocator.
 */
306
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
307 308
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
309 310
#define	SIZE_AC MAX_NUMNODES
#define	SIZE_L3 (2 * MAX_NUMNODES)
311

312 313 314 315
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
316
static int enable_cpucache(struct kmem_cache *cachep);
317
static void cache_reap(struct work_struct *unused);
318

319
/*
A
Andrew Morton 已提交
320 321
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
322
 */
323
static __always_inline int index_of(const size_t size)
324
{
325 326
	extern void __bad_size(void);

327 328 329 330 331 332 333 334
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
335
#include <linux/kmalloc_sizes.h>
336
#undef CACHE
337
		__bad_size();
338
	} else
339
		__bad_size();
340 341 342
	return 0;
}

343 344
static int slab_early_init = 1;

345 346
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
347

P
Pekka Enberg 已提交
348
static void kmem_list3_init(struct kmem_list3 *parent)
349 350 351 352 353 354
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
355
	parent->colour_next = 0;
356 357 358 359 360
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
361 362 363 364
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
365 366
	} while (0)

A
Andrew Morton 已提交
367 368
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
369 370 371 372
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
373 374

/*
375
 * struct kmem_cache
L
Linus Torvalds 已提交
376 377 378
 *
 * manages a cache.
 */
P
Pekka Enberg 已提交
379

380
struct kmem_cache {
L
Linus Torvalds 已提交
381
/* 1) per-cpu data, touched during every alloc/free */
P
Pekka Enberg 已提交
382
	struct array_cache *array[NR_CPUS];
383
/* 2) Cache tunables. Protected by cache_chain_mutex */
P
Pekka Enberg 已提交
384 385 386
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
387

388
	unsigned int buffer_size;
389
	u32 reciprocal_buffer_size;
390 391
/* 3) touched by every alloc & free from the backend */

A
Andrew Morton 已提交
392 393
	unsigned int flags;		/* constant flags */
	unsigned int num;		/* # of objs per slab */
L
Linus Torvalds 已提交
394

395
/* 4) cache_grow/shrink */
L
Linus Torvalds 已提交
396
	/* order of pgs per slab (2^n) */
P
Pekka Enberg 已提交
397
	unsigned int gfporder;
L
Linus Torvalds 已提交
398 399

	/* force GFP flags, e.g. GFP_DMA */
P
Pekka Enberg 已提交
400
	gfp_t gfpflags;
L
Linus Torvalds 已提交
401

A
Andrew Morton 已提交
402
	size_t colour;			/* cache colouring range */
P
Pekka Enberg 已提交
403
	unsigned int colour_off;	/* colour offset */
404
	struct kmem_cache *slabp_cache;
P
Pekka Enberg 已提交
405
	unsigned int slab_size;
A
Andrew Morton 已提交
406
	unsigned int dflags;		/* dynamic flags */
L
Linus Torvalds 已提交
407 408

	/* constructor func */
409
	void (*ctor)(struct kmem_cache *, void *);
L
Linus Torvalds 已提交
410

411
/* 5) cache creation/removal */
P
Pekka Enberg 已提交
412 413
	const char *name;
	struct list_head next;
L
Linus Torvalds 已提交
414

415
/* 6) statistics */
L
Linus Torvalds 已提交
416
#if STATS
P
Pekka Enberg 已提交
417 418 419 420 421 422 423 424 425
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
426
	unsigned long node_overflow;
P
Pekka Enberg 已提交
427 428 429 430
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
L
Linus Torvalds 已提交
431 432
#endif
#if DEBUG
433 434 435 436 437 438 439 440
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
L
Linus Torvalds 已提交
441
#endif
E
Eric Dumazet 已提交
442 443 444 445 446 447 448 449 450 451 452
	/*
	 * We put nodelists[] at the end of kmem_cache, because we want to size
	 * this array to nr_node_ids slots instead of MAX_NUMNODES
	 * (see kmem_cache_init())
	 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
	 * is statically defined, so we reserve the max number of nodes.
	 */
	struct kmem_list3 *nodelists[MAX_NUMNODES];
	/*
	 * Do not add fields after nodelists[]
	 */
L
Linus Torvalds 已提交
453 454 455 456 457 458
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
459 460 461
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
462
 *
A
Adrian Bunk 已提交
463
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
464 465 466 467 468 469 470 471 472 473
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
474
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
475 476 477 478 479
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
480 481
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
482
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
483
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
484 485 486 487 488
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
489 490 491 492 493 494 495 496 497
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
498
#define	STATS_ADD_REAPED(x,y)	do { } while (0)
L
Linus Torvalds 已提交
499 500 501
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
502
#define	STATS_INC_NODEFREES(x)	do { } while (0)
503
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
504
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
505 506 507 508 509 510 511 512
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
513 514
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
515
 * 0		: objp
516
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
517 518
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
519
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
520
 * 		redzone word.
521 522
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
523 524
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
525
 */
526
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
527
{
528
	return cachep->obj_offset;
L
Linus Torvalds 已提交
529 530
}

531
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
532
{
533
	return cachep->obj_size;
L
Linus Torvalds 已提交
534 535
}

536
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
537 538
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
539 540
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
541 542
}

543
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
544 545 546
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
547 548
		return (unsigned long long *)(objp + cachep->buffer_size -
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
549
					      REDZONE_ALIGN);
550 551
	return (unsigned long long *) (objp + cachep->buffer_size -
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
552 553
}

554
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
555 556
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
557
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
558 559 560 561
}

#else

562 563
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
564 565
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
566 567 568 569 570 571 572 573 574 575 576
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
577 578 579 580
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
581
 */
582 583 584 585 586 587 588
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
589
	page = compound_head(page);
590
	BUG_ON(!PageSlab(page));
591 592 593 594 595 596 597 598 599 600
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
601
	BUG_ON(!PageSlab(page));
602 603
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
604

605 606
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
607
	struct page *page = virt_to_head_page(obj);
608 609 610 611 612
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
613
	struct page *page = virt_to_head_page(obj);
614 615 616
	return page_get_slab(page);
}

617 618 619 620 621 622
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

623 624 625 626 627 628 629 630
/*
 * We want to avoid an expensive divide : (offset / cache->buffer_size)
 *   Using the fact that buffer_size is a constant for a particular cache,
 *   we can replace (offset / cache->buffer_size) by
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
631
{
632 633
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
634 635
}

A
Andrew Morton 已提交
636 637 638
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
656
	{NULL,}
L
Linus Torvalds 已提交
657 658 659 660
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
661
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
662
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
663
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
664 665

/* internal cache of cache description objs */
666
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
667 668 669
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
670
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
671
	.name = "kmem_cache",
L
Linus Torvalds 已提交
672 673
};

674 675
#define BAD_ALIEN_MAGIC 0x01020304ul

676 677 678 679 680 681 682 683
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
684 685 686 687
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
688
 */
689 690 691 692
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

static inline void init_lock_keys(void)
693 694 695

{
	int q;
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
	struct cache_sizes *s = malloc_sizes;

	while (s->cs_size != ULONG_MAX) {
		for_each_node(q) {
			struct array_cache **alc;
			int r;
			struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
			if (!l3 || OFF_SLAB(s->cs_cachep))
				continue;
			lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
			alc = l3->alien;
			/*
			 * FIXME: This check for BAD_ALIEN_MAGIC
			 * should go away when common slab code is taught to
			 * work even without alien caches.
			 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
			 * for alloc_alien_cache,
			 */
			if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
				continue;
			for_each_node(r) {
				if (alc[r])
					lockdep_set_class(&alc[r]->lock,
					     &on_slab_alc_key);
			}
		}
		s++;
723 724 725
	}
}
#else
726
static inline void init_lock_keys(void)
727 728 729 730
{
}
#endif

731
/*
732
 * Guard access to the cache-chain.
733
 */
I
Ingo Molnar 已提交
734
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
735 736 737 738 739 740 741 742
static struct list_head cache_chain;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
743 744
	PARTIAL_AC,
	PARTIAL_L3,
L
Linus Torvalds 已提交
745 746 747
	FULL
} g_cpucache_up;

748 749 750 751 752 753 754 755
/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up == FULL;
}

756
static DEFINE_PER_CPU(struct delayed_work, reap_work);
L
Linus Torvalds 已提交
757

758
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
759 760 761 762
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
763 764
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
765 766 767 768 769
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
770 771 772
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
773
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
774
#endif
775 776 777
	if (!size)
		return ZERO_SIZE_PTR;

L
Linus Torvalds 已提交
778 779 780 781
	while (size > csizep->cs_size)
		csizep++;

	/*
782
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
783 784 785
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
786
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
787 788
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
789
#endif
L
Linus Torvalds 已提交
790 791 792
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
793
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
794 795 796 797
{
	return __find_general_cachep(size, gfpflags);
}

798
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
799
{
800 801
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
802

A
Andrew Morton 已提交
803 804 805
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
806 807 808 809 810 811 812
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
813

814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
862 863 864 865
}

#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)

A
Andrew Morton 已提交
866 867
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
868 869
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
870
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
871 872 873
	dump_stack();
}

874 875 876 877 878 879 880 881 882
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
883
static int numa_platform __read_mostly = 1;
884 885 886 887 888 889 890
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
906
		node = first_node(node_online_map);
907

908
	per_cpu(reap_node, cpu) = node;
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
926 927 928 929 930 931 932
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
933
static void __cpuinit start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
934
{
935
	struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
L
Linus Torvalds 已提交
936 937 938 939 940 941

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
942
	if (keventd_up() && reap_work->work.func == NULL) {
943
		init_reap_node(cpu);
944
		INIT_DELAYED_WORK(reap_work, cache_reap);
945 946
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
947 948 949
	}
}

950
static struct array_cache *alloc_arraycache(int node, int entries,
P
Pekka Enberg 已提交
951
					    int batchcount)
L
Linus Torvalds 已提交
952
{
P
Pekka Enberg 已提交
953
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
954 955
	struct array_cache *nc = NULL;

956
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
L
Linus Torvalds 已提交
957 958 959 960 961
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
962
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
963 964 965 966
	}
	return nc;
}

967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	to->touched = 1;
	return nr;
}

991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

1016
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1017 1018 1019 1020 1021 1022 1023
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1024
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1025
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1026

P
Pekka Enberg 已提交
1027
static struct array_cache **alloc_alien_cache(int node, int limit)
1028 1029
{
	struct array_cache **ac_ptr;
1030
	int memsize = sizeof(void *) * nr_node_ids;
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
1044
				for (i--; i >= 0; i--)
1045 1046 1047 1048 1049 1050 1051 1052 1053
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1054
static void free_alien_cache(struct array_cache **ac_ptr)
1055 1056 1057 1058 1059 1060
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1061
	    kfree(ac_ptr[i]);
1062 1063 1064
	kfree(ac_ptr);
}

1065
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1066
				struct array_cache *ac, int node)
1067 1068 1069 1070 1071
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1072 1073 1074 1075 1076
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1077 1078
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1079

1080
		free_block(cachep, ac->entry, ac->avail, node);
1081 1082 1083 1084 1085
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1086 1087 1088 1089 1090 1091 1092 1093 1094
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
	int node = __get_cpu_var(reap_node);

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1095 1096

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1097 1098 1099 1100 1101 1102
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1103 1104
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1105
{
P
Pekka Enberg 已提交
1106
	int i = 0;
1107 1108 1109 1110
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1111
		ac = alien[i];
1112 1113 1114 1115 1116 1117 1118
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1119

1120
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1121 1122 1123 1124 1125
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1126 1127 1128
	int node;

	node = numa_node_id();
1129 1130 1131 1132 1133

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1134
	if (likely(slabp->nodeid == node))
1135 1136
		return 0;

P
Pekka Enberg 已提交
1137
	l3 = cachep->nodelists[node];
1138 1139 1140
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1141
		spin_lock(&alien->lock);
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1155 1156
#endif

1157 1158 1159 1160 1161
static void __cpuinit cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
1162
	node_to_cpumask_ptr(mask, node);
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183

	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
		l3 = cachep->nodelists[node];

		if (!l3)
			goto free_array_cache;

		spin_lock_irq(&l3->list_lock);

		/* Free limit for this kmem_list3 */
		l3->free_limit -= cachep->batchcount;
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1184
		if (!cpus_empty(*mask)) {
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
			spin_unlock_irq(&l3->list_lock);
			goto free_array_cache;
		}

		shared = l3->shared;
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
			l3->shared = NULL;
		}

		alien = l3->alien;
		l3->alien = NULL;

		spin_unlock_irq(&l3->list_lock);

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;
		drain_freelist(cachep, l3, l3->free_objects);
	}
}

static int __cpuinit cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1223
{
1224
	struct kmem_cache *cachep;
1225 1226
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
1227
	const int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
1228

1229 1230 1231 1232 1233 1234 1235 1236
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
	 * kmem_list3 and not this cpu's kmem_list3
	 */

	list_for_each_entry(cachep, &cache_chain, next) {
A
Andrew Morton 已提交
1237
		/*
1238 1239 1240
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
1241
		 */
1242 1243 1244 1245 1246 1247 1248
		if (!cachep->nodelists[node]) {
			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!l3)
				goto bad;
			kmem_list3_init(l3);
			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1249

A
Andrew Morton 已提交
1250
			/*
1251 1252 1253
			 * The l3s don't come and go as CPUs come and
			 * go.  cache_chain_mutex is sufficient
			 * protection here.
1254
			 */
1255
			cachep->nodelists[node] = l3;
1256 1257
		}

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
		spin_lock_irq(&cachep->nodelists[node]->list_lock);
		cachep->nodelists[node]->free_limit =
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
	}

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
					cachep->batchcount);
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
				0xbaadf00d);
1282 1283
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1284
				goto bad;
1285
			}
1286 1287 1288
		}
		if (use_alien_caches) {
			alien = alloc_alien_cache(node, cachep->limit);
1289 1290 1291
			if (!alien) {
				kfree(shared);
				kfree(nc);
1292
				goto bad;
1293
			}
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
		}
		cachep->array[cpu] = nc;
		l3 = cachep->nodelists[node];
		BUG_ON(!l3);

		spin_lock_irq(&l3->list_lock);
		if (!l3->shared) {
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
			l3->shared = shared;
			shared = NULL;
		}
1308
#ifdef CONFIG_NUMA
1309 1310 1311
		if (!l3->alien) {
			l3->alien = alien;
			alien = NULL;
L
Linus Torvalds 已提交
1312
		}
1313 1314 1315 1316 1317 1318 1319
#endif
		spin_unlock_irq(&l3->list_lock);
		kfree(shared);
		free_alien_cache(alien);
	}
	return 0;
bad:
1320
	cpuup_canceled(cpu);
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	return -ENOMEM;
}

static int __cpuinit cpuup_callback(struct notifier_block *nfb,
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1333
		mutex_lock(&cache_chain_mutex);
1334
		err = cpuup_prepare(cpu);
1335
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1336 1337
		break;
	case CPU_ONLINE:
1338
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1339 1340 1341
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1342
  	case CPU_DOWN_PREPARE:
1343
  	case CPU_DOWN_PREPARE_FROZEN:
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
		/*
		 * Shutdown cache reaper. Note that the cache_chain_mutex is
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
		cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
		/* Now the cache_reaper is guaranteed to be not running. */
		per_cpu(reap_work, cpu).work.func = NULL;
  		break;
  	case CPU_DOWN_FAILED:
1355
  	case CPU_DOWN_FAILED_FROZEN:
1356 1357
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1358
	case CPU_DEAD:
1359
	case CPU_DEAD_FROZEN:
1360 1361 1362 1363 1364 1365 1366 1367
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1368
		/* fall through */
1369
#endif
L
Linus Torvalds 已提交
1370
	case CPU_UP_CANCELED:
1371
	case CPU_UP_CANCELED_FROZEN:
1372
		mutex_lock(&cache_chain_mutex);
1373
		cpuup_canceled(cpu);
I
Ingo Molnar 已提交
1374
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1375 1376
		break;
	}
1377
	return err ? NOTIFY_BAD : NOTIFY_OK;
L
Linus Torvalds 已提交
1378 1379
}

1380 1381 1382
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1383

1384 1385 1386
/*
 * swap the static kmem_list3 with kmalloced memory
 */
A
Andrew Morton 已提交
1387 1388
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
			int nodeid)
1389 1390 1391 1392 1393 1394 1395 1396
{
	struct kmem_list3 *ptr;

	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
	BUG_ON(!ptr);

	local_irq_disable();
	memcpy(ptr, list, sizeof(struct kmem_list3));
1397 1398 1399 1400 1401
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1402 1403 1404 1405 1406
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
	local_irq_enable();
}

1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
{
	int node;

	for_each_online_node(node) {
		cachep->nodelists[node] = &initkmem_list3[index + node];
		cachep->nodelists[node]->next_reap = jiffies +
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

A
Andrew Morton 已提交
1423 1424 1425
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1426 1427 1428 1429 1430 1431
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1432
	int i;
1433
	int order;
P
Pekka Enberg 已提交
1434
	int node;
1435

1436
	if (num_possible_nodes() == 1) {
1437
		use_alien_caches = 0;
1438 1439
		numa_platform = 0;
	}
1440

1441 1442 1443 1444 1445
	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
1446
	set_up_list3s(&cache_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1457 1458 1459
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1460 1461 1462
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1463
	 * 2) Create the first kmalloc cache.
1464
	 *    The struct kmem_cache for the new cache is allocated normally.
1465 1466 1467
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1468 1469
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1470 1471 1472
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1473 1474
	 */

P
Pekka Enberg 已提交
1475 1476
	node = numa_node_id();

L
Linus Torvalds 已提交
1477 1478 1479 1480 1481
	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1482
	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
L
Linus Torvalds 已提交
1483

E
Eric Dumazet 已提交
1484 1485 1486 1487 1488 1489 1490 1491 1492
	/*
	 * struct kmem_cache size depends on nr_node_ids, which
	 * can be less than MAX_NUMNODES.
	 */
	cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
				 nr_node_ids * sizeof(struct kmem_list3 *);
#if DEBUG
	cache_cache.obj_size = cache_cache.buffer_size;
#endif
A
Andrew Morton 已提交
1493 1494
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
1495 1496
	cache_cache.reciprocal_buffer_size =
		reciprocal_value(cache_cache.buffer_size);
L
Linus Torvalds 已提交
1497

1498 1499 1500 1501 1502 1503
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1504
	BUG_ON(!cache_cache.num);
1505
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1506 1507 1508
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1509 1510 1511 1512 1513

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1514 1515 1516 1517
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1518 1519 1520
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1521 1522 1523
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1524
					NULL);
1525

A
Andrew Morton 已提交
1526
	if (INDEX_AC != INDEX_L3) {
1527
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1528 1529 1530 1531
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1532
				NULL);
A
Andrew Morton 已提交
1533
	}
1534

1535 1536
	slab_early_init = 0;

L
Linus Torvalds 已提交
1537
	while (sizes->cs_size != ULONG_MAX) {
1538 1539
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1540 1541 1542
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1543 1544
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1545
		if (!sizes->cs_cachep) {
1546
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1547 1548 1549
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1550
					NULL);
A
Andrew Morton 已提交
1551
		}
1552 1553 1554
#ifdef CONFIG_ZONE_DMA
		sizes->cs_dmacachep = kmem_cache_create(
					names->name_dma,
A
Andrew Morton 已提交
1555 1556 1557 1558
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
1559
					NULL);
1560
#endif
L
Linus Torvalds 已提交
1561 1562 1563 1564 1565
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1566
		struct array_cache *ptr;
1567

L
Linus Torvalds 已提交
1568
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1569

L
Linus Torvalds 已提交
1570
		local_irq_disable();
1571 1572
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1573
		       sizeof(struct arraycache_init));
1574 1575 1576 1577 1578
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1579 1580
		cache_cache.array[smp_processor_id()] = ptr;
		local_irq_enable();
1581

L
Linus Torvalds 已提交
1582
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1583

L
Linus Torvalds 已提交
1584
		local_irq_disable();
1585
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1586
		       != &initarray_generic.cache);
1587
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1588
		       sizeof(struct arraycache_init));
1589 1590 1591 1592 1593
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1594
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1595
		    ptr;
L
Linus Torvalds 已提交
1596 1597
		local_irq_enable();
	}
1598 1599
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1600 1601
		int nid;

1602
		for_each_online_node(nid) {
1603
			init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1604

1605
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1606
				  &initkmem_list3[SIZE_AC + nid], nid);
1607 1608 1609

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1610
					  &initkmem_list3[SIZE_L3 + nid], nid);
1611 1612 1613
			}
		}
	}
L
Linus Torvalds 已提交
1614

1615
	/* 6) resize the head arrays to their final sizes */
L
Linus Torvalds 已提交
1616
	{
1617
		struct kmem_cache *cachep;
I
Ingo Molnar 已提交
1618
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1619
		list_for_each_entry(cachep, &cache_chain, next)
1620 1621
			if (enable_cpucache(cachep))
				BUG();
I
Ingo Molnar 已提交
1622
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1623 1624
	}

1625 1626 1627 1628
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();


L
Linus Torvalds 已提交
1629 1630 1631
	/* Done! */
	g_cpucache_up = FULL;

A
Andrew Morton 已提交
1632 1633 1634
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1635 1636 1637
	 */
	register_cpu_notifier(&cpucache_notifier);

A
Andrew Morton 已提交
1638 1639 1640
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1641 1642 1643 1644 1645 1646 1647
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1648 1649
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1650
	 */
1651
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1652
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1664
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1665 1666
{
	struct page *page;
1667
	int nr_pages;
L
Linus Torvalds 已提交
1668 1669
	int i;

1670
#ifndef CONFIG_MMU
1671 1672 1673
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1674
	 */
1675
	flags |= __GFP_COMP;
1676
#endif
1677

1678
	flags |= cachep->gfpflags;
1679 1680
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1681 1682

	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
L
Linus Torvalds 已提交
1683 1684 1685
	if (!page)
		return NULL;

1686
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1687
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1688 1689 1690 1691 1692
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1693 1694 1695
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
	return page_address(page);
L
Linus Torvalds 已提交
1696 1697 1698 1699 1700
}

/*
 * Interface to system's page release.
 */
1701
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1702
{
P
Pekka Enberg 已提交
1703
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1704 1705 1706
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1707 1708 1709 1710 1711 1712
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1713
	while (i--) {
N
Nick Piggin 已提交
1714 1715
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1716 1717 1718 1719 1720 1721 1722 1723 1724
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1725
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1726
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1727 1728 1729 1730 1731 1732 1733 1734 1735

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1736
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1737
			    unsigned long caller)
L
Linus Torvalds 已提交
1738
{
1739
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1740

1741
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1742

P
Pekka Enberg 已提交
1743
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1744 1745
		return;

P
Pekka Enberg 已提交
1746 1747 1748 1749
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1750 1751 1752 1753 1754 1755 1756
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1757
				*addr++ = svalue;
L
Linus Torvalds 已提交
1758 1759 1760 1761 1762 1763 1764
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1765
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1766 1767 1768
}
#endif

1769
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1770
{
1771 1772
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1773 1774

	memset(addr, val, size);
P
Pekka Enberg 已提交
1775
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1776 1777 1778 1779 1780
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1781 1782 1783
	unsigned char error = 0;
	int bad_count = 0;

L
Linus Torvalds 已提交
1784
	printk(KERN_ERR "%03x:", offset);
D
Dave Jones 已提交
1785 1786 1787 1788 1789
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
P
Pekka Enberg 已提交
1790
		printk(" %02x", (unsigned char)data[offset + i]);
D
Dave Jones 已提交
1791
	}
L
Linus Torvalds 已提交
1792
	printk("\n");
D
Dave Jones 已提交
1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1807 1808 1809 1810 1811
}
#endif

#if DEBUG

1812
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1813 1814 1815 1816 1817
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1818
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1819 1820
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1821 1822 1823 1824
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1825
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1826
		print_symbol("(%s)",
A
Andrew Morton 已提交
1827
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1828 1829
		printk("\n");
	}
1830 1831
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1832
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1833 1834
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1835 1836
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1837 1838 1839 1840
		dump_line(realobj, i, limit);
	}
}

1841
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1842 1843 1844 1845 1846
{
	char *realobj;
	int size, i;
	int lines = 0;

1847 1848
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1849

P
Pekka Enberg 已提交
1850
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1851
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1852
		if (i == size - 1)
L
Linus Torvalds 已提交
1853 1854 1855 1856 1857 1858
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1859
				printk(KERN_ERR
1860 1861
					"Slab corruption: %s start=%p, len=%d\n",
					cachep->name, realobj, size);
L
Linus Torvalds 已提交
1862 1863 1864
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1865
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1866
			limit = 16;
P
Pekka Enberg 已提交
1867 1868
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1881
		struct slab *slabp = virt_to_slab(objp);
1882
		unsigned int objnr;
L
Linus Torvalds 已提交
1883

1884
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1885
		if (objnr) {
1886
			objp = index_to_obj(cachep, slabp, objnr - 1);
1887
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1888
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1889
			       realobj, size);
L
Linus Torvalds 已提交
1890 1891
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1892
		if (objnr + 1 < cachep->num) {
1893
			objp = index_to_obj(cachep, slabp, objnr + 1);
1894
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1895
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1896
			       realobj, size);
L
Linus Torvalds 已提交
1897 1898 1899 1900 1901 1902
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1903 1904
#if DEBUG
/**
1905 1906 1907 1908 1909 1910
 * slab_destroy_objs - destroy a slab and its objects
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
 * Call the registered destructor for each object in a slab that is being
 * destroyed.
L
Linus Torvalds 已提交
1911
 */
1912
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1913 1914 1915
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1916
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1917 1918 1919

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1920 1921
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1922
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1923
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1924 1925 1926 1927 1928 1929 1930 1931 1932
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1933
					   "was overwritten");
L
Linus Torvalds 已提交
1934 1935
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1936
					   "was overwritten");
L
Linus Torvalds 已提交
1937 1938
		}
	}
1939
}
L
Linus Torvalds 已提交
1940
#else
1941
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1942 1943
{
}
L
Linus Torvalds 已提交
1944 1945
#endif

1946 1947 1948 1949 1950
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1951
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1952 1953
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1954
 */
1955
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1956 1957 1958 1959
{
	void *addr = slabp->s_mem - slabp->colouroff;

	slab_destroy_objs(cachep, slabp);
L
Linus Torvalds 已提交
1960 1961 1962
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1963
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1964 1965 1966 1967 1968
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
1969 1970
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
1971 1972 1973
	}
}

1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


1995
/**
1996 1997 1998 1999 2000 2001 2002
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
2003 2004 2005 2006 2007
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
2008
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
2009
			size_t size, size_t align, unsigned long flags)
2010
{
2011
	unsigned long offslab_limit;
2012
	size_t left_over = 0;
2013
	int gfporder;
2014

2015
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2016 2017 2018
		unsigned int num;
		size_t remainder;

2019
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2020 2021
		if (!num)
			continue;
2022

2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2035

2036
		/* Found something acceptable - save it away */
2037
		cachep->num = num;
2038
		cachep->gfporder = gfporder;
2039 2040
		left_over = remainder;

2041 2042 2043 2044 2045 2046 2047 2048
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2049 2050 2051 2052
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2053
		if (gfporder >= slab_break_gfp_order)
2054 2055
			break;

2056 2057 2058
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2059
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2060 2061 2062 2063 2064
			break;
	}
	return left_over;
}

2065
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
2066
{
2067 2068 2069
	if (g_cpucache_up == FULL)
		return enable_cpucache(cachep);

2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
2097
			for_each_online_node(node) {
2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
						GFP_KERNEL, node);
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
	cachep->nodelists[numa_node_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2116
	return 0;
2117 2118
}

L
Linus Torvalds 已提交
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2129
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2130 2131
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
2132 2133
 * the module calling this has to destroy the cache before getting unloaded.
 *
L
Linus Torvalds 已提交
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2146
struct kmem_cache *
L
Linus Torvalds 已提交
2147
kmem_cache_create (const char *name, size_t size, size_t align,
A
Andrew Morton 已提交
2148
	unsigned long flags,
2149
	void (*ctor)(struct kmem_cache *, void *))
L
Linus Torvalds 已提交
2150 2151
{
	size_t left_over, slab_size, ralign;
2152
	struct kmem_cache *cachep = NULL, *pc;
L
Linus Torvalds 已提交
2153 2154 2155 2156

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
2157
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2158
	    size > KMALLOC_MAX_SIZE) {
A
Andrew Morton 已提交
2159 2160
		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
				name);
P
Pekka Enberg 已提交
2161 2162
		BUG();
	}
L
Linus Torvalds 已提交
2163

2164
	/*
2165 2166
	 * We use cache_chain_mutex to ensure a consistent view of
	 * cpu_online_map as well.  Please see cpuup_callback
2167
	 */
2168
	get_online_cpus();
I
Ingo Molnar 已提交
2169
	mutex_lock(&cache_chain_mutex);
2170

2171
	list_for_each_entry(pc, &cache_chain, next) {
2172 2173 2174 2175 2176 2177 2178 2179
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
2180
		res = probe_kernel_address(pc->name, tmp);
2181
		if (res) {
2182 2183
			printk(KERN_ERR
			       "SLAB: cache with size %d has lost its name\n",
2184
			       pc->buffer_size);
2185 2186 2187
			continue;
		}

P
Pekka Enberg 已提交
2188
		if (!strcmp(pc->name, name)) {
2189 2190
			printk(KERN_ERR
			       "kmem_cache_create: duplicate cache %s\n", name);
2191 2192 2193 2194 2195
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
2196 2197 2198 2199 2200 2201 2202 2203 2204
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2205 2206
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2207
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2208 2209 2210 2211 2212 2213 2214
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	/*
A
Andrew Morton 已提交
2215 2216
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2217
	 */
2218
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2219

A
Andrew Morton 已提交
2220 2221
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2222 2223 2224
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2225 2226 2227
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2228 2229
	}

A
Andrew Morton 已提交
2230 2231
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2232 2233
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2234 2235 2236 2237
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2238 2239
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2240
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2241 2242 2243 2244
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2245 2246

	/*
D
David Woodhouse 已提交
2247 2248 2249
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2250
	 */
D
David Woodhouse 已提交
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2261

2262
	/* 2) arch mandated alignment */
L
Linus Torvalds 已提交
2263 2264 2265
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2266
	/* 3) caller mandated alignment */
L
Linus Torvalds 已提交
2267 2268 2269
	if (ralign < align) {
		ralign = align;
	}
2270
	/* disable debug if necessary */
2271
	if (ralign > __alignof__(unsigned long long))
2272
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2273
	/*
2274
	 * 4) Store it.
L
Linus Torvalds 已提交
2275 2276 2277 2278
	 */
	align = ralign;

	/* Get cache's description obj. */
2279
	cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
L
Linus Torvalds 已提交
2280
	if (!cachep)
2281
		goto oops;
L
Linus Torvalds 已提交
2282 2283

#if DEBUG
2284
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2285

2286 2287 2288 2289
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2290 2291
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2292 2293
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2294 2295
	}
	if (flags & SLAB_STORE_USER) {
2296
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2297 2298
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2299
		 */
D
David Woodhouse 已提交
2300 2301 2302 2303
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2304 2305
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2306
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2307 2308
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
2309 2310 2311 2312 2313
		size = PAGE_SIZE;
	}
#endif
#endif

2314 2315 2316 2317 2318 2319
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
	 * it too early on.)
	 */
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
L
Linus Torvalds 已提交
2320 2321 2322 2323 2324 2325 2326 2327
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2328
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2329 2330

	if (!cachep->num) {
2331 2332
		printk(KERN_ERR
		       "kmem_cache_create: couldn't create cache %s.\n", name);
L
Linus Torvalds 已提交
2333 2334
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2335
		goto oops;
L
Linus Torvalds 已提交
2336
	}
P
Pekka Enberg 已提交
2337 2338
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2351 2352
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
L
Linus Torvalds 已提交
2353 2354 2355 2356 2357 2358
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2359
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2360 2361 2362
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
2363
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
L
Linus Torvalds 已提交
2364
		cachep->gfpflags |= GFP_DMA;
2365
	cachep->buffer_size = size;
2366
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2367

2368
	if (flags & CFLGS_OFF_SLAB) {
2369
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2370 2371 2372 2373 2374 2375 2376
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2377
		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2378
	}
L
Linus Torvalds 已提交
2379 2380 2381
	cachep->ctor = ctor;
	cachep->name = name;

2382 2383 2384 2385 2386
	if (setup_cpu_cache(cachep)) {
		__kmem_cache_destroy(cachep);
		cachep = NULL;
		goto oops;
	}
L
Linus Torvalds 已提交
2387 2388 2389

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2390
oops:
L
Linus Torvalds 已提交
2391 2392
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2393
		      name);
I
Ingo Molnar 已提交
2394
	mutex_unlock(&cache_chain_mutex);
2395
	put_online_cpus();
L
Linus Torvalds 已提交
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2411
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2412 2413 2414
{
#ifdef CONFIG_SMP
	check_irq_off();
2415
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2416 2417
#endif
}
2418

2419
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2420 2421 2422 2423 2424 2425 2426
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2427 2428 2429 2430
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2431
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2432 2433
#endif

2434 2435 2436 2437
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2438 2439
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2440
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2441
	struct array_cache *ac;
2442
	int node = numa_node_id();
L
Linus Torvalds 已提交
2443 2444

	check_irq_off();
2445
	ac = cpu_cache_get(cachep);
2446 2447 2448
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2449 2450 2451
	ac->avail = 0;
}

2452
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2453
{
2454 2455 2456
	struct kmem_list3 *l3;
	int node;

A
Andrew Morton 已提交
2457
	on_each_cpu(do_drain, cachep, 1, 1);
L
Linus Torvalds 已提交
2458
	check_irq_on();
P
Pekka Enberg 已提交
2459
	for_each_online_node(node) {
2460
		l3 = cachep->nodelists[node];
2461 2462 2463 2464 2465 2466 2467
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2468
			drain_array(cachep, l3, l3->shared, 1, node);
2469
	}
L
Linus Torvalds 已提交
2470 2471
}

2472 2473 2474 2475 2476 2477 2478 2479
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2480
{
2481 2482
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2483 2484
	struct slab *slabp;

2485 2486
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2487

2488
		spin_lock_irq(&l3->list_lock);
2489
		p = l3->slabs_free.prev;
2490 2491 2492 2493
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2494

2495
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2496
#if DEBUG
2497
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2498 2499
#endif
		list_del(&slabp->list);
2500 2501 2502 2503 2504
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2505
		spin_unlock_irq(&l3->list_lock);
2506 2507
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2508
	}
2509 2510
out:
	return nr_freed;
L
Linus Torvalds 已提交
2511 2512
}

2513
/* Called with cache_chain_mutex held to protect against cpu hotplug */
2514
static int __cache_shrink(struct kmem_cache *cachep)
2515 2516 2517 2518 2519 2520 2521 2522 2523
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2524 2525 2526 2527 2528 2529 2530
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2531 2532 2533 2534
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2535 2536 2537 2538 2539 2540 2541
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2542
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2543
{
2544
	int ret;
2545
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2546

2547
	get_online_cpus();
2548 2549 2550
	mutex_lock(&cache_chain_mutex);
	ret = __cache_shrink(cachep);
	mutex_unlock(&cache_chain_mutex);
2551
	put_online_cpus();
2552
	return ret;
L
Linus Torvalds 已提交
2553 2554 2555 2556 2557 2558 2559
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2560
 * Remove a &struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2572
void kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2573
{
2574
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2575 2576

	/* Find the cache in the chain of caches. */
2577
	get_online_cpus();
I
Ingo Molnar 已提交
2578
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2579 2580 2581 2582 2583 2584
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
P
Pekka Enberg 已提交
2585
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2586
		mutex_unlock(&cache_chain_mutex);
2587
		put_online_cpus();
2588
		return;
L
Linus Torvalds 已提交
2589 2590 2591
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2592
		synchronize_rcu();
L
Linus Torvalds 已提交
2593

2594
	__kmem_cache_destroy(cachep);
2595
	mutex_unlock(&cache_chain_mutex);
2596
	put_online_cpus();
L
Linus Torvalds 已提交
2597 2598 2599
}
EXPORT_SYMBOL(kmem_cache_destroy);

2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2611
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2612 2613
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2614 2615
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2616

L
Linus Torvalds 已提交
2617 2618
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2619
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2620
					      local_flags & ~GFP_THISNODE, nodeid);
L
Linus Torvalds 已提交
2621 2622 2623
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2624
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2625 2626 2627 2628
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2629
	slabp->s_mem = objp + colour_off;
2630
	slabp->nodeid = nodeid;
2631
	slabp->free = 0;
L
Linus Torvalds 已提交
2632 2633 2634 2635 2636
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2637
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2638 2639
}

2640
static void cache_init_objs(struct kmem_cache *cachep,
C
Christoph Lameter 已提交
2641
			    struct slab *slabp)
L
Linus Torvalds 已提交
2642 2643 2644 2645
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2646
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2659 2660 2661
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2662 2663
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2664
			cachep->ctor(cachep, objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2665 2666 2667 2668

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2669
					   " end of an object");
L
Linus Torvalds 已提交
2670 2671
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2672
					   " start of an object");
L
Linus Torvalds 已提交
2673
		}
A
Andrew Morton 已提交
2674 2675
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2676
			kernel_map_pages(virt_to_page(objp),
2677
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2678 2679
#else
		if (cachep->ctor)
2680
			cachep->ctor(cachep, objp);
L
Linus Torvalds 已提交
2681
#endif
P
Pekka Enberg 已提交
2682
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2683
	}
P
Pekka Enberg 已提交
2684
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2685 2686
}

2687
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2688
{
2689 2690 2691 2692 2693 2694
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
			BUG_ON(!(cachep->gfpflags & GFP_DMA));
		else
			BUG_ON(cachep->gfpflags & GFP_DMA);
	}
L
Linus Torvalds 已提交
2695 2696
}

A
Andrew Morton 已提交
2697 2698
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2699
{
2700
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2714 2715
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2716
{
2717
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2718 2719 2720 2721 2722

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2723
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2724
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2725
				"'%s', objp %p\n", cachep->name, objp);
2726 2727 2728 2729 2730 2731 2732 2733
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2734 2735 2736 2737 2738 2739 2740
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2741
{
2742
	int nr_pages;
L
Linus Torvalds 已提交
2743 2744
	struct page *page;

2745
	page = virt_to_page(addr);
2746

2747
	nr_pages = 1;
2748
	if (likely(!PageCompound(page)))
2749 2750
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2751
	do {
2752 2753
		page_set_cache(page, cache);
		page_set_slab(page, slab);
L
Linus Torvalds 已提交
2754
		page++;
2755
	} while (--nr_pages);
L
Linus Torvalds 已提交
2756 2757 2758 2759 2760 2761
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2762 2763
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2764
{
P
Pekka Enberg 已提交
2765 2766 2767
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
2768
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2769

A
Andrew Morton 已提交
2770 2771 2772
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2773
	 */
C
Christoph Lameter 已提交
2774 2775
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2776

2777
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2778
	check_irq_off();
2779 2780
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2781 2782

	/* Get colour for the slab, and cal the next value. */
2783 2784 2785 2786 2787
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2788

2789
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2802 2803 2804
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2805
	 */
2806
	if (!objp)
2807
		objp = kmem_getpages(cachep, local_flags, nodeid);
A
Andrew Morton 已提交
2808
	if (!objp)
L
Linus Torvalds 已提交
2809 2810 2811
		goto failed;

	/* Get slab management. */
2812
	slabp = alloc_slabmgmt(cachep, objp, offset,
C
Christoph Lameter 已提交
2813
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
A
Andrew Morton 已提交
2814
	if (!slabp)
L
Linus Torvalds 已提交
2815 2816
		goto opps1;

2817
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2818

C
Christoph Lameter 已提交
2819
	cache_init_objs(cachep, slabp);
L
Linus Torvalds 已提交
2820 2821 2822 2823

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2824
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2825 2826

	/* Make slab active. */
2827
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2828
	STATS_INC_GROWN(cachep);
2829 2830
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2831
	return 1;
A
Andrew Morton 已提交
2832
opps1:
L
Linus Torvalds 已提交
2833
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2834
failed:
L
Linus Torvalds 已提交
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2851 2852
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2853 2854 2855
	}
}

2856 2857
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2858
	unsigned long long redzone1, redzone2;
2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2874
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2875 2876 2877
			obj, redzone1, redzone2);
}

2878
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2879
				   void *caller)
L
Linus Torvalds 已提交
2880 2881 2882 2883 2884
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2885 2886
	BUG_ON(virt_to_cache(objp) != cachep);

2887
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2888
	kfree_debugcheck(objp);
2889
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2890

2891
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2892 2893

	if (cachep->flags & SLAB_RED_ZONE) {
2894
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2895 2896 2897 2898 2899 2900
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2901
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2902 2903

	BUG_ON(objnr >= cachep->num);
2904
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2905

2906 2907 2908
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2909 2910
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
2911
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2912
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2913
			kernel_map_pages(virt_to_page(objp),
2914
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2915 2916 2917 2918 2919 2920 2921 2922 2923 2924
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2925
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2926 2927 2928
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2929

L
Linus Torvalds 已提交
2930 2931 2932 2933 2934 2935 2936
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2937 2938 2939 2940
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
2941
		for (i = 0;
2942
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2943
		     i++) {
A
Andrew Morton 已提交
2944
			if (i % 16 == 0)
L
Linus Torvalds 已提交
2945
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2946
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2958
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2959 2960 2961 2962
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
2963 2964
	int node;

2965
retry:
L
Linus Torvalds 已提交
2966
	check_irq_off();
2967
	node = numa_node_id();
2968
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2969 2970
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2971 2972 2973 2974
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2975 2976 2977
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
2978
	l3 = cachep->nodelists[node];
2979 2980 2981

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2982

2983 2984 2985 2986
	/* See if we can refill from the shared array */
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
		goto alloc_done;

L
Linus Torvalds 已提交
2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
3002 3003 3004 3005 3006 3007 3008 3009

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
		BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);

L
Linus Torvalds 已提交
3010 3011 3012 3013 3014
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

3015
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
P
Pekka Enberg 已提交
3016
							    node);
L
Linus Torvalds 已提交
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
3028
must_grow:
L
Linus Torvalds 已提交
3029
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
3030
alloc_done:
3031
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3032 3033 3034

	if (unlikely(!ac->avail)) {
		int x;
3035
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3036

A
Andrew Morton 已提交
3037
		/* cache_grow can reenable interrupts, then ac could change. */
3038
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
3039
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
3040 3041
			return NULL;

A
Andrew Morton 已提交
3042
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3043 3044 3045
			goto retry;
	}
	ac->touched = 1;
3046
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3047 3048
}

A
Andrew Morton 已提交
3049 3050
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3051 3052 3053 3054 3055 3056 3057 3058
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3059 3060
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
3061
{
P
Pekka Enberg 已提交
3062
	if (!objp)
L
Linus Torvalds 已提交
3063
		return objp;
P
Pekka Enberg 已提交
3064
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3065
#ifdef CONFIG_DEBUG_PAGEALLOC
3066
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3067
			kernel_map_pages(virt_to_page(objp),
3068
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3080 3081 3082 3083
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3084
			printk(KERN_ERR
3085
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3086 3087
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3088 3089 3090 3091
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3092 3093 3094 3095 3096
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

3097
		slabp = page_get_slab(virt_to_head_page(objp));
3098 3099 3100 3101
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3102
	objp += obj_offset(cachep);
3103
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3104
		cachep->ctor(cachep, objp);
3105 3106 3107 3108 3109 3110
#if ARCH_SLAB_MINALIGN
	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
		       objp, ARCH_SLAB_MINALIGN);
	}
#endif
L
Linus Torvalds 已提交
3111 3112 3113 3114 3115 3116
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
#ifdef CONFIG_FAILSLAB

static struct failslab_attr {

	struct fault_attr attr;

	u32 ignore_gfp_wait;
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
	struct dentry *ignore_gfp_wait_file;
#endif

} failslab = {
	.attr = FAULT_ATTR_INITIALIZER,
3130
	.ignore_gfp_wait = 1,
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
};

static int __init setup_failslab(char *str)
{
	return setup_fault_attr(&failslab.attr, str);
}
__setup("failslab=", setup_failslab);

static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
{
	if (cachep == &cache_cache)
		return 0;
	if (flags & __GFP_NOFAIL)
		return 0;
	if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
		return 0;

	return should_fail(&failslab.attr, obj_size(cachep));
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init failslab_debugfs(void)
{
	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
	struct dentry *dir;
	int err;

3159
	err = init_fault_attr_dentries(&failslab.attr, "failslab");
3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189
	if (err)
		return err;
	dir = failslab.attr.dentries.dir;

	failslab.ignore_gfp_wait_file =
		debugfs_create_bool("ignore-gfp-wait", mode, dir,
				      &failslab.ignore_gfp_wait);

	if (!failslab.ignore_gfp_wait_file) {
		err = -ENOMEM;
		debugfs_remove(failslab.ignore_gfp_wait_file);
		cleanup_fault_attr_dentries(&failslab.attr);
	}

	return err;
}

late_initcall(failslab_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAILSLAB */

static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
{
	return 0;
}

#endif /* CONFIG_FAILSLAB */

3190
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3191
{
P
Pekka Enberg 已提交
3192
	void *objp;
L
Linus Torvalds 已提交
3193 3194
	struct array_cache *ac;

3195
	check_irq_off();
3196

3197
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3198 3199 3200
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
3201
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3202 3203 3204 3205
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
3206 3207 3208
	return objp;
}

3209
#ifdef CONFIG_NUMA
3210
/*
3211
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3212 3213 3214 3215 3216 3217 3218 3219
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3220
	if (in_interrupt() || (flags & __GFP_THISNODE))
3221 3222 3223 3224 3225 3226 3227
		return NULL;
	nid_alloc = nid_here = numa_node_id();
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
		nid_alloc = cpuset_mem_spread_node();
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
	if (nid_alloc != nid_here)
3228
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3229 3230 3231
	return NULL;
}

3232 3233
/*
 * Fallback function if there was no memory available and no objects on a
3234 3235 3236 3237 3238
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3239
 */
3240
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3241
{
3242 3243
	struct zonelist *zonelist;
	gfp_t local_flags;
3244
	struct zoneref *z;
3245 3246
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3247
	void *obj = NULL;
3248
	int nid;
3249 3250 3251 3252

	if (flags & __GFP_THISNODE)
		return NULL;

3253
	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
C
Christoph Lameter 已提交
3254
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3255

3256 3257 3258 3259 3260
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3261 3262
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3263

3264
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3265 3266 3267 3268 3269 3270
			cache->nodelists[nid] &&
			cache->nodelists[nid]->free_objects)
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
	}

3271
	if (!obj) {
3272 3273 3274 3275 3276 3277
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3278 3279 3280
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3281
		obj = kmem_getpages(cache, local_flags, -1);
3282 3283
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3300
				/* cache_grow already freed obj */
3301 3302 3303
				obj = NULL;
			}
		}
3304
	}
3305 3306 3307
	return obj;
}

3308 3309
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3310
 */
3311
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3312
				int nodeid)
3313 3314
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3315 3316 3317 3318 3319 3320 3321 3322
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3323
retry:
3324
	check_irq_off();
P
Pekka Enberg 已提交
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3344
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3345 3346 3347 3348 3349
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3350
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3351
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3352
	else
P
Pekka Enberg 已提交
3353
		list_add(&slabp->list, &l3->slabs_partial);
3354

P
Pekka Enberg 已提交
3355 3356
	spin_unlock(&l3->list_lock);
	goto done;
3357

A
Andrew Morton 已提交
3358
must_grow:
P
Pekka Enberg 已提交
3359
	spin_unlock(&l3->list_lock);
3360
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3361 3362
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3363

3364
	return fallback_alloc(cachep, flags);
3365

A
Andrew Morton 已提交
3366
done:
P
Pekka Enberg 已提交
3367
	return obj;
3368
}
3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
		   void *caller)
{
	unsigned long save_flags;
	void *ptr;

3389 3390 3391
	if (should_failslab(cachep, flags))
		return NULL;

3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

	if (unlikely(nodeid == -1))
		nodeid = numa_node_id();

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

	if (nodeid == numa_node_id()) {
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);

3421 3422 3423
	if (unlikely((flags & __GFP_ZERO) && ptr))
		memset(ptr, 0, obj_size(cachep));

3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
 	if (!objp)
 		objp = ____cache_alloc_node(cache, flags, numa_node_id());

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
{
	unsigned long save_flags;
	void *objp;

3465 3466 3467
	if (should_failslab(cachep, flags))
		return NULL;

3468 3469 3470 3471 3472 3473 3474
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
	prefetchw(objp);

3475 3476 3477
	if (unlikely((flags & __GFP_ZERO) && objp))
		memset(objp, 0, obj_size(cachep));

3478 3479
	return objp;
}
3480 3481 3482 3483

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3484
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3485
		       int node)
L
Linus Torvalds 已提交
3486 3487
{
	int i;
3488
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3489 3490 3491 3492 3493

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3494
		slabp = virt_to_slab(objp);
3495
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3496
		list_del(&slabp->list);
3497
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3498
		check_slabp(cachep, slabp);
3499
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3500
		STATS_DEC_ACTIVE(cachep);
3501
		l3->free_objects++;
L
Linus Torvalds 已提交
3502 3503 3504 3505
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3506 3507
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3508 3509 3510 3511 3512 3513
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3514 3515
				slab_destroy(cachep, slabp);
			} else {
3516
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3517 3518 3519 3520 3521 3522
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3523
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3524 3525 3526 3527
		}
	}
}

3528
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3529 3530
{
	int batchcount;
3531
	struct kmem_list3 *l3;
3532
	int node = numa_node_id();
L
Linus Torvalds 已提交
3533 3534 3535 3536 3537 3538

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3539
	l3 = cachep->nodelists[node];
3540
	spin_lock(&l3->list_lock);
3541 3542
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3543
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3544 3545 3546
		if (max) {
			if (batchcount > max)
				batchcount = max;
3547
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3548
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3549 3550 3551 3552 3553
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3554
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3555
free_done:
L
Linus Torvalds 已提交
3556 3557 3558 3559 3560
#if STATS
	{
		int i = 0;
		struct list_head *p;

3561 3562
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3574
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3575
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3576
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3577 3578 3579
}

/*
A
Andrew Morton 已提交
3580 3581
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3582
 */
3583
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3584
{
3585
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3586 3587 3588 3589

	check_irq_off();
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

3590 3591 3592 3593 3594 3595 3596 3597
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
	if (numa_platform && cache_free_alien(cachep, objp))
3598 3599
		return;

L
Linus Torvalds 已提交
3600 3601
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3602
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3603 3604 3605 3606
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3607
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3619
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3620
{
3621
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3622 3623 3624 3625
}
EXPORT_SYMBOL(kmem_cache_alloc);

/**
3626
 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
L
Linus Torvalds 已提交
3627 3628 3629
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
3630
 * This verifies that the untrusted pointer looks sane;
L
Linus Torvalds 已提交
3631 3632 3633 3634 3635 3636 3637
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3638
int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
L
Linus Torvalds 已提交
3639
{
P
Pekka Enberg 已提交
3640
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
3641
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
3642
	unsigned long align_mask = BYTES_PER_WORD - 1;
3643
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3659
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3660 3661
		goto out;
	return 1;
A
Andrew Morton 已提交
3662
out:
L
Linus Torvalds 已提交
3663 3664 3665 3666
	return 0;
}

#ifdef CONFIG_NUMA
3667 3668 3669 3670 3671
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
	return __cache_alloc_node(cachep, flags, nodeid,
			__builtin_return_address(0));
}
L
Linus Torvalds 已提交
3672 3673
EXPORT_SYMBOL(kmem_cache_alloc_node);

3674 3675
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3676
{
3677
	struct kmem_cache *cachep;
3678 3679

	cachep = kmem_find_general_cachep(size, flags);
3680 3681
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3682 3683
	return kmem_cache_alloc_node(cachep, flags, node);
}
3684 3685 3686 3687 3688 3689 3690

#ifdef CONFIG_DEBUG_SLAB
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node,
			__builtin_return_address(0));
}
3691
EXPORT_SYMBOL(__kmalloc_node);
3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
		int node, void *caller)
{
	return __do_kmalloc_node(size, flags, node, caller);
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node, NULL);
}
EXPORT_SYMBOL(__kmalloc_node);
#endif /* CONFIG_DEBUG_SLAB */
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3707 3708

/**
3709
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3710
 * @size: how many bytes of memory are required.
3711
 * @flags: the type of memory to allocate (see kmalloc).
3712
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3713
 */
3714 3715
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3716
{
3717
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3718

3719 3720 3721 3722 3723 3724
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3725 3726
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3727 3728 3729 3730
	return __cache_alloc(cachep, flags, caller);
}


3731
#ifdef CONFIG_DEBUG_SLAB
3732 3733
void *__kmalloc(size_t size, gfp_t flags)
{
3734
	return __do_kmalloc(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3735 3736 3737
}
EXPORT_SYMBOL(__kmalloc);

3738 3739 3740 3741 3742
void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
{
	return __do_kmalloc(size, flags, caller);
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3743 3744 3745 3746 3747 3748 3749

#else
void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
3750 3751
#endif

L
Linus Torvalds 已提交
3752 3753 3754 3755 3756 3757 3758 3759
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3760
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3761 3762 3763 3764
{
	unsigned long flags;

	local_irq_save(flags);
3765
	debug_check_no_locks_freed(objp, obj_size(cachep));
3766 3767
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(objp, obj_size(cachep));
3768
	__cache_free(cachep, objp);
L
Linus Torvalds 已提交
3769 3770 3771 3772 3773 3774 3775 3776
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3777 3778
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3779 3780 3781 3782 3783
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3784
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3785 3786
	unsigned long flags;

3787
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3788 3789 3790
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3791
	c = virt_to_cache(objp);
3792
	debug_check_no_locks_freed(objp, obj_size(c));
3793
	debug_check_no_obj_freed(objp, obj_size(c));
3794
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3795 3796 3797 3798
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3799
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3800
{
3801
	return obj_size(cachep);
L
Linus Torvalds 已提交
3802 3803 3804
}
EXPORT_SYMBOL(kmem_cache_size);

3805
const char *kmem_cache_name(struct kmem_cache *cachep)
3806 3807 3808 3809 3810
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3811
/*
S
Simon Arlott 已提交
3812
 * This initializes kmem_list3 or resizes various caches for all nodes.
3813
 */
3814
static int alloc_kmemlist(struct kmem_cache *cachep)
3815 3816 3817
{
	int node;
	struct kmem_list3 *l3;
3818
	struct array_cache *new_shared;
3819
	struct array_cache **new_alien = NULL;
3820

3821
	for_each_online_node(node) {
3822

3823 3824 3825 3826 3827
                if (use_alien_caches) {
                        new_alien = alloc_alien_cache(node, cachep->limit);
                        if (!new_alien)
                                goto fail;
                }
3828

3829 3830 3831
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3832
				cachep->shared*cachep->batchcount,
A
Andrew Morton 已提交
3833
					0xbaadf00d);
3834 3835 3836 3837
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3838
		}
3839

A
Andrew Morton 已提交
3840 3841
		l3 = cachep->nodelists[node];
		if (l3) {
3842 3843
			struct array_cache *shared = l3->shared;

3844 3845
			spin_lock_irq(&l3->list_lock);

3846
			if (shared)
3847 3848
				free_block(cachep, shared->entry,
						shared->avail, node);
3849

3850 3851
			l3->shared = new_shared;
			if (!l3->alien) {
3852 3853 3854
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3855
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3856
					cachep->batchcount + cachep->num;
3857
			spin_unlock_irq(&l3->list_lock);
3858
			kfree(shared);
3859 3860 3861
			free_alien_cache(new_alien);
			continue;
		}
A
Andrew Morton 已提交
3862
		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3863 3864 3865
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3866
			goto fail;
3867
		}
3868 3869 3870

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3871
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3872
		l3->shared = new_shared;
3873
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3874
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3875
					cachep->batchcount + cachep->num;
3876 3877
		cachep->nodelists[node] = l3;
	}
3878
	return 0;
3879

A
Andrew Morton 已提交
3880
fail:
3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3896
	return -ENOMEM;
3897 3898
}

L
Linus Torvalds 已提交
3899
struct ccupdate_struct {
3900
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3901 3902 3903 3904 3905
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3906
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3907 3908 3909
	struct array_cache *old;

	check_irq_off();
3910
	old = cpu_cache_get(new->cachep);
3911

L
Linus Torvalds 已提交
3912 3913 3914 3915
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3916
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
3917 3918
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared)
L
Linus Torvalds 已提交
3919
{
3920
	struct ccupdate_struct *new;
3921
	int i;
L
Linus Torvalds 已提交
3922

3923 3924 3925 3926
	new = kzalloc(sizeof(*new), GFP_KERNEL);
	if (!new)
		return -ENOMEM;

3927
	for_each_online_cpu(i) {
3928
		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
A
Andrew Morton 已提交
3929
						batchcount);
3930
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3931
			for (i--; i >= 0; i--)
3932 3933
				kfree(new->new[i]);
			kfree(new);
3934
			return -ENOMEM;
L
Linus Torvalds 已提交
3935 3936
		}
	}
3937
	new->cachep = cachep;
L
Linus Torvalds 已提交
3938

3939
	on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3940

L
Linus Torvalds 已提交
3941 3942 3943
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3944
	cachep->shared = shared;
L
Linus Torvalds 已提交
3945

3946
	for_each_online_cpu(i) {
3947
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3948 3949
		if (!ccold)
			continue;
3950
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3951
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3952
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
3953 3954
		kfree(ccold);
	}
3955
	kfree(new);
3956
	return alloc_kmemlist(cachep);
L
Linus Torvalds 已提交
3957 3958
}

3959
/* Called with cache_chain_mutex held always */
3960
static int enable_cpucache(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3961 3962 3963 3964
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
3965 3966
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3967 3968
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3969
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3970 3971 3972 3973
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3974
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
3975
		limit = 1;
3976
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
3977
		limit = 8;
3978
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
3979
		limit = 24;
3980
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
3981 3982 3983 3984
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3985 3986
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3987 3988 3989 3990 3991 3992 3993 3994
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3995
	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3996 3997 3998
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3999 4000 4001
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4002 4003 4004 4005
	 */
	if (limit > 32)
		limit = 32;
#endif
P
Pekka Enberg 已提交
4006
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
L
Linus Torvalds 已提交
4007 4008
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4009
		       cachep->name, -err);
4010
	return err;
L
Linus Torvalds 已提交
4011 4012
}

4013 4014
/*
 * Drain an array if it contains any elements taking the l3 lock only if
4015 4016
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
4017 4018 4019
 */
void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4020 4021 4022
{
	int tofree;

4023 4024
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4025 4026
	if (ac->touched && !force) {
		ac->touched = 0;
4027
	} else {
4028
		spin_lock_irq(&l3->list_lock);
4029 4030 4031 4032 4033 4034 4035 4036 4037
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4038
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4039 4040 4041 4042 4043
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4044
 * @w: work descriptor
L
Linus Torvalds 已提交
4045 4046 4047 4048 4049 4050
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4051 4052
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4053
 */
4054
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4055
{
4056
	struct kmem_cache *searchp;
4057
	struct kmem_list3 *l3;
4058
	int node = numa_node_id();
4059 4060
	struct delayed_work *work =
		container_of(w, struct delayed_work, work);
L
Linus Torvalds 已提交
4061

4062
	if (!mutex_trylock(&cache_chain_mutex))
L
Linus Torvalds 已提交
4063
		/* Give up. Setup the next iteration. */
4064
		goto out;
L
Linus Torvalds 已提交
4065

4066
	list_for_each_entry(searchp, &cache_chain, next) {
L
Linus Torvalds 已提交
4067 4068
		check_irq_on();

4069 4070 4071 4072 4073
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4074
		l3 = searchp->nodelists[node];
4075

4076
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4077

4078
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4079

4080 4081 4082 4083
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4084
		if (time_after(l3->next_reap, jiffies))
4085
			goto next;
L
Linus Torvalds 已提交
4086

4087
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4088

4089
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4090

4091
		if (l3->free_touched)
4092
			l3->free_touched = 0;
4093 4094
		else {
			int freed;
L
Linus Torvalds 已提交
4095

4096 4097 4098 4099
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4100
next:
L
Linus Torvalds 已提交
4101 4102 4103
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
4104
	mutex_unlock(&cache_chain_mutex);
4105
	next_reap_node();
4106
out:
A
Andrew Morton 已提交
4107
	/* Set up the next iteration */
4108
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4109 4110
}

4111
#ifdef CONFIG_SLABINFO
L
Linus Torvalds 已提交
4112

4113
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
4114
{
4115 4116 4117 4118
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
4119
#if STATS
4120
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
4121
#else
4122
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
4123
#endif
4124 4125 4126 4127
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
4128
#if STATS
4129
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4130
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4131
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
4132
#endif
4133 4134 4135 4136 4137 4138 4139
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

I
Ingo Molnar 已提交
4140
	mutex_lock(&cache_chain_mutex);
4141 4142
	if (!n)
		print_slabinfo_header(m);
4143 4144

	return seq_list_start(&cache_chain, *pos);
L
Linus Torvalds 已提交
4145 4146 4147 4148
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
4149
	return seq_list_next(p, &cache_chain, pos);
L
Linus Torvalds 已提交
4150 4151 4152 4153
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
4154
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4155 4156 4157 4158
}

static int s_show(struct seq_file *m, void *p)
{
4159
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
P
Pekka Enberg 已提交
4160 4161 4162 4163 4164
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4165
	const char *name;
L
Linus Torvalds 已提交
4166
	char *error = NULL;
4167 4168
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4169 4170 4171

	active_objs = 0;
	num_slabs = 0;
4172 4173 4174 4175 4176
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4177 4178
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4179

4180
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4181 4182 4183 4184 4185
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4186
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4187 4188 4189 4190 4191 4192 4193
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4194
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4195 4196 4197 4198 4199
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4200 4201
		if (l3->shared)
			shared_avail += l3->shared->avail;
4202

4203
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4204
	}
P
Pekka Enberg 已提交
4205 4206
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4207
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4208 4209
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4210
	name = cachep->name;
L
Linus Torvalds 已提交
4211 4212 4213 4214
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4215
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
4216
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4217
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4218
		   cachep->limit, cachep->batchcount, cachep->shared);
4219
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4220
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4221
#if STATS
P
Pekka Enberg 已提交
4222
	{			/* list3 stats */
L
Linus Torvalds 已提交
4223 4224 4225 4226 4227 4228 4229
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4230
		unsigned long node_frees = cachep->node_frees;
4231
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4232

4233
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4234
				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
A
Andrew Morton 已提交
4235
				reaped, errors, max_freeable, node_allocs,
4236
				node_frees, overflows);
L
Linus Torvalds 已提交
4237 4238 4239 4240 4241 4242 4243 4244 4245
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4246
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

4267
const struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4268 4269 4270 4271
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4272 4273 4274 4275 4276 4277 4278 4279 4280 4281
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
4282 4283
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4284
{
P
Pekka Enberg 已提交
4285
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4286
	int limit, batchcount, shared, res;
4287
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4288

L
Linus Torvalds 已提交
4289 4290 4291 4292
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4293
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4294 4295 4296 4297 4298 4299 4300 4301 4302 4303

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
4304
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4305
	res = -EINVAL;
4306
	list_for_each_entry(cachep, &cache_chain, next) {
L
Linus Torvalds 已提交
4307
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4308 4309
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4310
				res = 0;
L
Linus Torvalds 已提交
4311
			} else {
4312
				res = do_tune_cpucache(cachep, limit,
P
Pekka Enberg 已提交
4313
						       batchcount, shared);
L
Linus Torvalds 已提交
4314 4315 4316 4317
			}
			break;
		}
	}
I
Ingo Molnar 已提交
4318
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4319 4320 4321 4322
	if (res >= 0)
		res = count;
	return res;
}
4323 4324 4325 4326 4327 4328

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	mutex_lock(&cache_chain_mutex);
4329
	return seq_list_start(&cache_chain, *pos);
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4380
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4381

4382
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4383
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4384
		if (modname[0])
4385 4386 4387 4388 4389 4390 4391 4392 4393
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4394
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4419
		list_for_each_entry(slabp, &l3->slabs_full, list)
4420
			handle_slab(n, cachep, slabp);
4421
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4448

4449 4450 4451
	return 0;
}

4452
const struct seq_operations slabstats_op = {
4453 4454 4455 4456 4457 4458
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
#endif
L
Linus Torvalds 已提交
4459 4460
#endif

4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4473
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4474
{
4475 4476
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4477
		return 0;
L
Linus Torvalds 已提交
4478

4479
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4480
}
T
Tetsuo Handa 已提交
4481
EXPORT_SYMBOL(ksize);