slab.c 107.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
 * slabs and you must pass objects with the same intializations to
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90 91 92 93 94 95 96
 */

#include	<linux/config.h>
#include	<linux/slab.h>
#include	<linux/mm.h>
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
L
Linus Torvalds 已提交
98 99 100 101 102 103 104
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
105
#include	<linux/string.h>
106
#include	<linux/nodemask.h>
107
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
108
#include	<linux/mutex.h>
L
Linus Torvalds 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

#include	<asm/uaccess.h>
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
 *		  SLAB_RED_ZONE & SLAB_POISON.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)

#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
 * Note that this flag disables some debug features.
 */
#define ARCH_KMALLOC_MINALIGN 0
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
174
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
175 176
			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
177
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
178
#else
179
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
L
Linus Torvalds 已提交
180 181
			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
182
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

204
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
205 206
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
207 208
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
209 210 211 212 213 214 215 216 217

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
218 219 220 221 222 223
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
243
	struct rcu_head head;
244
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
245
	void *addr;
L
Linus Torvalds 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
265
	spinlock_t lock;
A
Andrew Morton 已提交
266 267 268 269 270 271
	void *entry[0];	/*
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 * [0] is for gcc 2.95. It should really be [].
			 */
L
Linus Torvalds 已提交
272 273
};

A
Andrew Morton 已提交
274 275 276
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
277 278 279 280
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
281
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
282 283 284
};

/*
285
 * The slab lists for all objects.
L
Linus Torvalds 已提交
286 287
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
288 289 290 291 292
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
293
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
294 295 296
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
297 298
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
299 300
};

301 302 303 304 305 306 307 308 309 310
/*
 * Need this for bootstrapping a per node allocator.
 */
#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
#define	SIZE_AC 1
#define	SIZE_L3 (1 + MAX_NUMNODES)

/*
A
Andrew Morton 已提交
311 312
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
313
 */
314
static __always_inline int index_of(const size_t size)
315
{
316 317
	extern void __bad_size(void);

318 319 320 321 322 323 324 325 326 327
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
#include "linux/kmalloc_sizes.h"
#undef CACHE
328
		__bad_size();
329
	} else
330
		__bad_size();
331 332 333 334 335
	return 0;
}

#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
336

P
Pekka Enberg 已提交
337
static void kmem_list3_init(struct kmem_list3 *parent)
338 339 340 341 342 343
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
344
	parent->colour_next = 0;
345 346 347 348 349
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
350 351 352 353
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
354 355
	} while (0)

A
Andrew Morton 已提交
356 357
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
358 359 360 361
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
362 363

/*
364
 * struct kmem_cache
L
Linus Torvalds 已提交
365 366 367
 *
 * manages a cache.
 */
P
Pekka Enberg 已提交
368

369
struct kmem_cache {
L
Linus Torvalds 已提交
370
/* 1) per-cpu data, touched during every alloc/free */
P
Pekka Enberg 已提交
371
	struct array_cache *array[NR_CPUS];
372
/* 2) Cache tunables. Protected by cache_chain_mutex */
P
Pekka Enberg 已提交
373 374 375
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
376

377
	unsigned int buffer_size;
378
/* 3) touched by every alloc & free from the backend */
P
Pekka Enberg 已提交
379
	struct kmem_list3 *nodelists[MAX_NUMNODES];
380

A
Andrew Morton 已提交
381 382
	unsigned int flags;		/* constant flags */
	unsigned int num;		/* # of objs per slab */
L
Linus Torvalds 已提交
383

384
/* 4) cache_grow/shrink */
L
Linus Torvalds 已提交
385
	/* order of pgs per slab (2^n) */
P
Pekka Enberg 已提交
386
	unsigned int gfporder;
L
Linus Torvalds 已提交
387 388

	/* force GFP flags, e.g. GFP_DMA */
P
Pekka Enberg 已提交
389
	gfp_t gfpflags;
L
Linus Torvalds 已提交
390

A
Andrew Morton 已提交
391
	size_t colour;			/* cache colouring range */
P
Pekka Enberg 已提交
392
	unsigned int colour_off;	/* colour offset */
393
	struct kmem_cache *slabp_cache;
P
Pekka Enberg 已提交
394
	unsigned int slab_size;
A
Andrew Morton 已提交
395
	unsigned int dflags;		/* dynamic flags */
L
Linus Torvalds 已提交
396 397

	/* constructor func */
398
	void (*ctor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
399 400

	/* de-constructor func */
401
	void (*dtor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
402

403
/* 5) cache creation/removal */
P
Pekka Enberg 已提交
404 405
	const char *name;
	struct list_head next;
L
Linus Torvalds 已提交
406

407
/* 6) statistics */
L
Linus Torvalds 已提交
408
#if STATS
P
Pekka Enberg 已提交
409 410 411 412 413 414 415 416 417
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
418
	unsigned long node_overflow;
P
Pekka Enberg 已提交
419 420 421 422
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
L
Linus Torvalds 已提交
423 424
#endif
#if DEBUG
425 426 427 428 429 430 431 432
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
L
Linus Torvalds 已提交
433 434 435 436 437 438 439
#endif
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
440 441 442
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
443
 *
A
Adrian Bunk 已提交
444
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
445 446 447 448 449 450 451 452 453 454 455
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
#define	STATS_INC_REAPED(x)	((x)->reaped++)
A
Andrew Morton 已提交
456 457 458 459 460
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
461 462
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
463
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
464
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
465 466 467 468 469
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
470 471 472 473 474 475 476 477 478 479 480 481 482
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
#define	STATS_INC_REAPED(x)	do { } while (0)
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
483
#define	STATS_INC_NODEFREES(x)	do { } while (0)
484
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
485
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
486 487 488 489 490 491 492
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG
A
Andrew Morton 已提交
493 494
/*
 * Magic nums for obj red zoning.
L
Linus Torvalds 已提交
495 496 497 498 499 500 501 502 503 504
 * Placed in the first word before and the first word after an obj.
 */
#define	RED_INACTIVE	0x5A2CF071UL	/* when obj is inactive */
#define	RED_ACTIVE	0x170FC2A5UL	/* when obj is active */

/* ...and for poisoning */
#define	POISON_INUSE	0x5a	/* for use-uninitialised poisoning */
#define POISON_FREE	0x6b	/* for use-after-free poisoning */
#define	POISON_END	0xa5	/* end-byte of poisoning */

A
Andrew Morton 已提交
505 506
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
507
 * 0		: objp
508
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
509 510
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
511
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
512
 * 		redzone word.
513 514
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
515 516
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
517
 */
518
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
519
{
520
	return cachep->obj_offset;
L
Linus Torvalds 已提交
521 522
}

523
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
524
{
525
	return cachep->obj_size;
L
Linus Torvalds 已提交
526 527
}

528
static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
529 530
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
531
	return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
L
Linus Torvalds 已提交
532 533
}

534
static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
535 536 537
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
538
		return (unsigned long *)(objp + cachep->buffer_size -
P
Pekka Enberg 已提交
539
					 2 * BYTES_PER_WORD);
540
	return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
541 542
}

543
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
544 545
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
546
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
547 548 549 550
}

#else

551 552
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
L
Linus Torvalds 已提交
553 554 555 556 557 558 559
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
A
Andrew Morton 已提交
560 561
 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
 * order.
L
Linus Torvalds 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
 */
#if defined(CONFIG_LARGE_ALLOCS)
#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
#define	MAX_GFP_ORDER	13	/* up to 32Mb */
#elif defined(CONFIG_MMU)
#define	MAX_OBJ_ORDER	5	/* 32 pages */
#define	MAX_GFP_ORDER	5	/* 32 pages */
#else
#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
#define	MAX_GFP_ORDER	8	/* up to 1Mb */
#endif

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
581 582 583 584
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
585
 */
586 587 588 589 590 591 592
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
593 594
	if (unlikely(PageCompound(page)))
		page = (struct page *)page_private(page);
595 596 597 598 599 600 601 602 603 604
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
605 606
	if (unlikely(PageCompound(page)))
		page = (struct page *)page_private(page);
607 608
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
609

610 611 612 613 614 615 616 617 618 619 620 621
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_slab(page);
}

622 623 624 625 626 627 628 629 630 631 632 633
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

static inline unsigned int obj_to_index(struct kmem_cache *cache,
					struct slab *slab, void *obj)
{
	return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
}

A
Andrew Morton 已提交
634 635 636
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
654
	{NULL,}
L
Linus Torvalds 已提交
655 656 657 658
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
659
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
660
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
661
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
662 663

/* internal cache of cache description objs */
664
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
665 666 667
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
668
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
669
	.name = "kmem_cache",
L
Linus Torvalds 已提交
670
#if DEBUG
671
	.obj_size = sizeof(struct kmem_cache),
L
Linus Torvalds 已提交
672 673 674 675
#endif
};

/* Guard access to the cache-chain. */
I
Ingo Molnar 已提交
676
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
677 678 679
static struct list_head cache_chain;

/*
A
Andrew Morton 已提交
680 681
 * vm_enough_memory() looks at this to determine how many slab-allocated pages
 * are possibly freeable under pressure
L
Linus Torvalds 已提交
682 683 684 685 686 687 688 689 690 691 692
 *
 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
 */
atomic_t slab_reclaim_pages;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
693 694
	PARTIAL_AC,
	PARTIAL_L3,
L
Linus Torvalds 已提交
695 696 697
	FULL
} g_cpucache_up;

698 699 700 701 702 703 704 705
/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up == FULL;
}

L
Linus Torvalds 已提交
706 707
static DEFINE_PER_CPU(struct work_struct, reap_work);

A
Andrew Morton 已提交
708 709
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
710
static void enable_cpucache(struct kmem_cache *cachep);
P
Pekka Enberg 已提交
711
static void cache_reap(void *unused);
712
static int __node_shrink(struct kmem_cache *cachep, int node);
L
Linus Torvalds 已提交
713

714
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
715 716 717 718
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
719 720
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
721 722 723 724 725
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
726 727 728
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
729
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
730 731 732 733 734
#endif
	while (size > csizep->cs_size)
		csizep++;

	/*
735
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
736 737 738 739 740 741 742 743
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
	return csizep->cs_cachep;
}

744
struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
745 746 747 748 749
{
	return __find_general_cachep(size, gfpflags);
}
EXPORT_SYMBOL(kmem_find_general_cachep);

750
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
751
{
752 753
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
754

A
Andrew Morton 已提交
755 756 757
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
758 759 760 761 762 763 764
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
765

766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
814 815 816 817
}

#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)

A
Andrew Morton 已提交
818 819
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
820 821
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
822
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
823 824 825
	dump_stack();
}

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
841
		node = first_node(node_online_map);
842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866

	__get_cpu_var(reap_node) = node;
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	/*
	 * Also drain per cpu pages on remote zones
	 */
	if (node != numa_node_id())
		drain_node_pages(node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
static void __devinit start_cpu_timer(int cpu)
{
	struct work_struct *reap_work = &per_cpu(reap_work, cpu);

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
	if (keventd_up() && reap_work->func == NULL) {
884
		init_reap_node(cpu);
L
Linus Torvalds 已提交
885 886 887 888 889
		INIT_WORK(reap_work, cache_reap, NULL);
		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
	}
}

890
static struct array_cache *alloc_arraycache(int node, int entries,
P
Pekka Enberg 已提交
891
					    int batchcount)
L
Linus Torvalds 已提交
892
{
P
Pekka Enberg 已提交
893
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
894 895
	struct array_cache *nc = NULL;

896
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
L
Linus Torvalds 已提交
897 898 899 900 901
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
902
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
903 904 905 906
	}
	return nc;
}

907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	to->touched = 1;
	return nr;
}

931
#ifdef CONFIG_NUMA
932
static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
933
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
934

P
Pekka Enberg 已提交
935
static struct array_cache **alloc_alien_cache(int node, int limit)
936 937
{
	struct array_cache **ac_ptr;
P
Pekka Enberg 已提交
938
	int memsize = sizeof(void *) * MAX_NUMNODES;
939 940 941 942 943 944 945 946 947 948 949 950 951
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
P
Pekka Enberg 已提交
952
				for (i--; i <= 0; i--)
953 954 955 956 957 958 959 960 961
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
962
static void free_alien_cache(struct array_cache **ac_ptr)
963 964 965 966 967 968
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
969
	    kfree(ac_ptr[i]);
970 971 972
	kfree(ac_ptr);
}

973
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
974
				struct array_cache *ac, int node)
975 976 977 978 979
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
980 981 982 983 984
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
985 986
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
987

988
		free_block(cachep, ac->entry, ac->avail, node);
989 990 991 992 993
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

994 995 996 997 998 999 1000 1001 1002
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
	int node = __get_cpu_var(reap_node);

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1003 1004

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1005 1006 1007 1008 1009 1010
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1011 1012
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1013
{
P
Pekka Enberg 已提交
1014
	int i = 0;
1015 1016 1017 1018
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1019
		ac = alien[i];
1020 1021 1022 1023 1024 1025 1026
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(slabp->nodeid == numa_node_id()))
		return 0;

	l3 = cachep->nodelists[numa_node_id()];
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
		spin_lock(&alien->lock);
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}

1061
#else
1062

1063
#define drain_alien_cache(cachep, alien) do { } while (0)
1064
#define reap_alien(cachep, l3) do { } while (0)
1065

1066 1067 1068 1069 1070
static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
	return (struct array_cache **) 0x01020304ul;
}

1071 1072 1073
static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}
1074

1075 1076 1077 1078 1079
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

1080 1081
#endif

1082
static int cpuup_callback(struct notifier_block *nfb,
P
Pekka Enberg 已提交
1083
				    unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
1084 1085
{
	long cpu = (long)hcpu;
1086
	struct kmem_cache *cachep;
1087 1088 1089
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
	int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
1090 1091 1092

	switch (action) {
	case CPU_UP_PREPARE:
I
Ingo Molnar 已提交
1093
		mutex_lock(&cache_chain_mutex);
A
Andrew Morton 已提交
1094 1095
		/*
		 * We need to do this right in the beginning since
1096 1097 1098 1099 1100
		 * alloc_arraycache's are going to use this list.
		 * kmalloc_node allows us to add the slab to the right
		 * kmem_list3 and not this cpu's kmem_list3
		 */

L
Linus Torvalds 已提交
1101
		list_for_each_entry(cachep, &cache_chain, next) {
A
Andrew Morton 已提交
1102 1103
			/*
			 * Set up the size64 kmemlist for cpu before we can
1104 1105 1106 1107
			 * begin anything. Make sure some other cpu on this
			 * node has not already allocated this
			 */
			if (!cachep->nodelists[node]) {
A
Andrew Morton 已提交
1108 1109
				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
				if (!l3)
1110 1111 1112
					goto bad;
				kmem_list3_init(l3);
				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
1113
				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1114

1115 1116 1117 1118 1119
				/*
				 * The l3s don't come and go as CPUs come and
				 * go.  cache_chain_mutex is sufficient
				 * protection here.
				 */
1120 1121
				cachep->nodelists[node] = l3;
			}
L
Linus Torvalds 已提交
1122

1123 1124
			spin_lock_irq(&cachep->nodelists[node]->list_lock);
			cachep->nodelists[node]->free_limit =
A
Andrew Morton 已提交
1125 1126
				(1 + nr_cpus_node(node)) *
				cachep->batchcount + cachep->num;
1127 1128 1129
			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
		}

A
Andrew Morton 已提交
1130 1131 1132 1133
		/*
		 * Now we can go ahead with allocating the shared arrays and
		 * array caches
		 */
1134
		list_for_each_entry(cachep, &cache_chain, next) {
1135
			struct array_cache *nc;
1136 1137
			struct array_cache *shared;
			struct array_cache **alien;
1138

1139
			nc = alloc_arraycache(node, cachep->limit,
1140
						cachep->batchcount);
L
Linus Torvalds 已提交
1141 1142
			if (!nc)
				goto bad;
1143 1144 1145 1146 1147
			shared = alloc_arraycache(node,
					cachep->shared * cachep->batchcount,
					0xbaadf00d);
			if (!shared)
				goto bad;
1148

1149 1150 1151
			alien = alloc_alien_cache(node, cachep->limit);
			if (!alien)
				goto bad;
L
Linus Torvalds 已提交
1152
			cachep->array[cpu] = nc;
1153 1154 1155
			l3 = cachep->nodelists[node];
			BUG_ON(!l3);

1156 1157 1158 1159 1160 1161 1162 1163
			spin_lock_irq(&l3->list_lock);
			if (!l3->shared) {
				/*
				 * We are serialised from CPU_DEAD or
				 * CPU_UP_CANCELLED by the cpucontrol lock
				 */
				l3->shared = shared;
				shared = NULL;
1164
			}
1165 1166 1167 1168 1169 1170 1171 1172 1173
#ifdef CONFIG_NUMA
			if (!l3->alien) {
				l3->alien = alien;
				alien = NULL;
			}
#endif
			spin_unlock_irq(&l3->list_lock);
			kfree(shared);
			free_alien_cache(alien);
L
Linus Torvalds 已提交
1174
		}
I
Ingo Molnar 已提交
1175
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1176 1177 1178 1179 1180 1181
		break;
	case CPU_ONLINE:
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1182 1183 1184 1185 1186 1187 1188 1189
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
L
Linus Torvalds 已提交
1190 1191
		/* fall thru */
	case CPU_UP_CANCELED:
I
Ingo Molnar 已提交
1192
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1193 1194
		list_for_each_entry(cachep, &cache_chain, next) {
			struct array_cache *nc;
1195 1196
			struct array_cache *shared;
			struct array_cache **alien;
1197
			cpumask_t mask;
L
Linus Torvalds 已提交
1198

1199
			mask = node_to_cpumask(node);
L
Linus Torvalds 已提交
1200 1201 1202
			/* cpu is dead; no one can alloc from it. */
			nc = cachep->array[cpu];
			cachep->array[cpu] = NULL;
1203 1204 1205
			l3 = cachep->nodelists[node];

			if (!l3)
1206
				goto free_array_cache;
1207

1208
			spin_lock_irq(&l3->list_lock);
1209 1210 1211 1212

			/* Free limit for this kmem_list3 */
			l3->free_limit -= cachep->batchcount;
			if (nc)
1213
				free_block(cachep, nc->entry, nc->avail, node);
1214 1215

			if (!cpus_empty(mask)) {
1216
				spin_unlock_irq(&l3->list_lock);
1217
				goto free_array_cache;
P
Pekka Enberg 已提交
1218
			}
1219

1220 1221
			shared = l3->shared;
			if (shared) {
1222
				free_block(cachep, l3->shared->entry,
P
Pekka Enberg 已提交
1223
					   l3->shared->avail, node);
1224 1225 1226
				l3->shared = NULL;
			}

1227 1228 1229 1230 1231 1232 1233 1234 1235
			alien = l3->alien;
			l3->alien = NULL;

			spin_unlock_irq(&l3->list_lock);

			kfree(shared);
			if (alien) {
				drain_alien_cache(cachep, alien);
				free_alien_cache(alien);
1236
			}
1237
free_array_cache:
L
Linus Torvalds 已提交
1238 1239
			kfree(nc);
		}
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
		/*
		 * In the previous loop, all the objects were freed to
		 * the respective cache's slabs,  now we can go ahead and
		 * shrink each nodelist to its limit.
		 */
		list_for_each_entry(cachep, &cache_chain, next) {
			l3 = cachep->nodelists[node];
			if (!l3)
				continue;
			spin_lock_irq(&l3->list_lock);
			/* free slabs belonging to this node */
			__node_shrink(cachep, node);
			spin_unlock_irq(&l3->list_lock);
		}
I
Ingo Molnar 已提交
1254
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1255 1256 1257 1258
		break;
#endif
	}
	return NOTIFY_OK;
A
Andrew Morton 已提交
1259
bad:
I
Ingo Molnar 已提交
1260
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1261 1262 1263 1264 1265
	return NOTIFY_BAD;
}

static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };

1266 1267 1268
/*
 * swap the static kmem_list3 with kmalloced memory
 */
A
Andrew Morton 已提交
1269 1270
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
			int nodeid)
1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
{
	struct kmem_list3 *ptr;

	BUG_ON(cachep->nodelists[nodeid] != list);
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
	BUG_ON(!ptr);

	local_irq_disable();
	memcpy(ptr, list, sizeof(struct kmem_list3));
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
	local_irq_enable();
}

A
Andrew Morton 已提交
1285 1286 1287
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1288 1289 1290 1291 1292 1293
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1294
	int i;
1295
	int order;
1296 1297 1298 1299 1300 1301

	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
L
Linus Torvalds 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1312 1313 1314
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1315 1316 1317
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1318
	 * 2) Create the first kmalloc cache.
1319
	 *    The struct kmem_cache for the new cache is allocated normally.
1320 1321 1322
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1323 1324
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1325 1326 1327
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1328 1329 1330 1331 1332 1333 1334
	 */

	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1335
	cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
L
Linus Torvalds 已提交
1336

A
Andrew Morton 已提交
1337 1338
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
L
Linus Torvalds 已提交
1339

1340 1341 1342 1343 1344 1345
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1346
	BUG_ON(!cache_cache.num);
1347
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1348 1349 1350
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1351 1352 1353 1354 1355

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1356 1357 1358 1359
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1360 1361 1362
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1363 1364 1365 1366
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
1367

A
Andrew Morton 已提交
1368
	if (INDEX_AC != INDEX_L3) {
1369
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1370 1371 1372 1373 1374 1375
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
				NULL, NULL);
	}
1376

L
Linus Torvalds 已提交
1377
	while (sizes->cs_size != ULONG_MAX) {
1378 1379
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1380 1381 1382
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1383 1384
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1385
		if (!sizes->cs_cachep) {
1386
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1387 1388 1389 1390 1391
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
		}
L
Linus Torvalds 已提交
1392 1393

		sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
A
Andrew Morton 已提交
1394 1395 1396 1397 1398
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
					NULL, NULL);
L
Linus Torvalds 已提交
1399 1400 1401 1402 1403
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
P
Pekka Enberg 已提交
1404
		void *ptr;
1405

L
Linus Torvalds 已提交
1406
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1407

L
Linus Torvalds 已提交
1408
		local_irq_disable();
1409 1410
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1411
		       sizeof(struct arraycache_init));
L
Linus Torvalds 已提交
1412 1413
		cache_cache.array[smp_processor_id()] = ptr;
		local_irq_enable();
1414

L
Linus Torvalds 已提交
1415
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1416

L
Linus Torvalds 已提交
1417
		local_irq_disable();
1418
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1419
		       != &initarray_generic.cache);
1420
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1421
		       sizeof(struct arraycache_init));
1422
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1423
		    ptr;
L
Linus Torvalds 已提交
1424 1425
		local_irq_enable();
	}
1426 1427 1428 1429 1430
	/* 5) Replace the bootstrap kmem_list3's */
	{
		int node;
		/* Replace the static kmem_list3 structures for the boot cpu */
		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
P
Pekka Enberg 已提交
1431
			  numa_node_id());
1432 1433 1434

		for_each_online_node(node) {
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1435
				  &initkmem_list3[SIZE_AC + node], node);
1436 1437 1438

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1439 1440
					  &initkmem_list3[SIZE_L3 + node],
					  node);
1441 1442 1443
			}
		}
	}
L
Linus Torvalds 已提交
1444

1445
	/* 6) resize the head arrays to their final sizes */
L
Linus Torvalds 已提交
1446
	{
1447
		struct kmem_cache *cachep;
I
Ingo Molnar 已提交
1448
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1449
		list_for_each_entry(cachep, &cache_chain, next)
A
Andrew Morton 已提交
1450
			enable_cpucache(cachep);
I
Ingo Molnar 已提交
1451
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1452 1453 1454 1455 1456
	}

	/* Done! */
	g_cpucache_up = FULL;

A
Andrew Morton 已提交
1457 1458 1459
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1460 1461 1462
	 */
	register_cpu_notifier(&cpucache_notifier);

A
Andrew Morton 已提交
1463 1464 1465
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1466 1467 1468 1469 1470 1471 1472
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1473 1474
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1475
	 */
1476
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1477
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1489
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1490 1491 1492 1493 1494 1495
{
	struct page *page;
	void *addr;
	int i;

	flags |= cachep->gfpflags;
1496 1497 1498 1499 1500 1501
#ifndef CONFIG_MMU
	/* nommu uses slab's for process anonymous memory allocations, so
	 * requires __GFP_COMP to properly refcount higher order allocations"
	 */
	page = alloc_pages_node(nodeid, (flags | __GFP_COMP), cachep->gfporder);
#else
1502
	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1503
#endif
L
Linus Torvalds 已提交
1504 1505 1506 1507 1508 1509 1510 1511 1512
	if (!page)
		return NULL;
	addr = page_address(page);

	i = (1 << cachep->gfporder);
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		atomic_add(i, &slab_reclaim_pages);
	add_page_state(nr_slab, i);
	while (i--) {
N
Nick Piggin 已提交
1513
		__SetPageSlab(page);
L
Linus Torvalds 已提交
1514 1515 1516 1517 1518 1519 1520 1521
		page++;
	}
	return addr;
}

/*
 * Interface to system's page release.
 */
1522
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1523
{
P
Pekka Enberg 已提交
1524
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1525 1526 1527 1528
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

	while (i--) {
N
Nick Piggin 已提交
1529 1530
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1531 1532 1533 1534 1535 1536
		page++;
	}
	sub_page_state(nr_slab, nr_freed);
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
P
Pekka Enberg 已提交
1537 1538
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
L
Linus Torvalds 已提交
1539 1540 1541 1542
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1543
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1544
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1545 1546 1547 1548 1549 1550 1551 1552 1553

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1554
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1555
			    unsigned long caller)
L
Linus Torvalds 已提交
1556
{
1557
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1558

1559
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1560

P
Pekka Enberg 已提交
1561
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1562 1563
		return;

P
Pekka Enberg 已提交
1564 1565 1566 1567
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1568 1569 1570 1571 1572 1573 1574
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1575
				*addr++ = svalue;
L
Linus Torvalds 已提交
1576 1577 1578 1579 1580 1581 1582
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1583
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1584 1585 1586
}
#endif

1587
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1588
{
1589 1590
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1591 1592

	memset(addr, val, size);
P
Pekka Enberg 已提交
1593
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1594 1595 1596 1597 1598 1599
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
	printk(KERN_ERR "%03x:", offset);
A
Andrew Morton 已提交
1600
	for (i = 0; i < limit; i++)
P
Pekka Enberg 已提交
1601
		printk(" %02x", (unsigned char)data[offset + i]);
L
Linus Torvalds 已提交
1602 1603 1604 1605 1606 1607
	printk("\n");
}
#endif

#if DEBUG

1608
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1609 1610 1611 1612 1613 1614
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
		printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
A
Andrew Morton 已提交
1615 1616
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1617 1618 1619 1620
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1621
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1622
		print_symbol("(%s)",
A
Andrew Morton 已提交
1623
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1624 1625
		printk("\n");
	}
1626 1627
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1628
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1629 1630
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1631 1632
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1633 1634 1635 1636
		dump_line(realobj, i, limit);
	}
}

1637
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1638 1639 1640 1641 1642
{
	char *realobj;
	int size, i;
	int lines = 0;

1643 1644
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1645

P
Pekka Enberg 已提交
1646
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1647
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1648
		if (i == size - 1)
L
Linus Torvalds 已提交
1649 1650 1651 1652 1653 1654
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1655
				printk(KERN_ERR
A
Andrew Morton 已提交
1656 1657
					"Slab corruption: start=%p, len=%d\n",
					realobj, size);
L
Linus Torvalds 已提交
1658 1659 1660
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1661
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1662
			limit = 16;
P
Pekka Enberg 已提交
1663 1664
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1677
		struct slab *slabp = virt_to_slab(objp);
1678
		unsigned int objnr;
L
Linus Torvalds 已提交
1679

1680
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1681
		if (objnr) {
1682
			objp = index_to_obj(cachep, slabp, objnr - 1);
1683
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1684
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1685
			       realobj, size);
L
Linus Torvalds 已提交
1686 1687
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1688
		if (objnr + 1 < cachep->num) {
1689
			objp = index_to_obj(cachep, slabp, objnr + 1);
1690
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1691
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1692
			       realobj, size);
L
Linus Torvalds 已提交
1693 1694 1695 1696 1697 1698
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1699 1700
#if DEBUG
/**
1701 1702 1703 1704 1705 1706
 * slab_destroy_objs - destroy a slab and its objects
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
 * Call the registered destructor for each object in a slab that is being
 * destroyed.
L
Linus Torvalds 已提交
1707
 */
1708
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1709 1710 1711
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1712
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1713 1714 1715

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1716 1717
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1718
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1719
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1720 1721 1722 1723 1724 1725 1726 1727 1728
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1729
					   "was overwritten");
L
Linus Torvalds 已提交
1730 1731
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1732
					   "was overwritten");
L
Linus Torvalds 已提交
1733 1734
		}
		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1735
			(cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
1736
	}
1737
}
L
Linus Torvalds 已提交
1738
#else
1739
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1740
{
L
Linus Torvalds 已提交
1741 1742 1743
	if (cachep->dtor) {
		int i;
		for (i = 0; i < cachep->num; i++) {
1744
			void *objp = index_to_obj(cachep, slabp, i);
P
Pekka Enberg 已提交
1745
			(cachep->dtor) (objp, cachep, 0);
L
Linus Torvalds 已提交
1746 1747
		}
	}
1748
}
L
Linus Torvalds 已提交
1749 1750
#endif

1751 1752 1753 1754 1755
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1756
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1757 1758
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1759
 */
1760
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1761 1762 1763 1764
{
	void *addr = slabp->s_mem - slabp->colouroff;

	slab_destroy_objs(cachep, slabp);
L
Linus Torvalds 已提交
1765 1766 1767
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1768
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
	}
}

A
Andrew Morton 已提交
1779 1780 1781 1782
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
1783
static void set_up_list3s(struct kmem_cache *cachep, int index)
1784 1785 1786 1787
{
	int node;

	for_each_online_node(node) {
P
Pekka Enberg 已提交
1788
		cachep->nodelists[node] = &initkmem_list3[index + node];
1789
		cachep->nodelists[node]->next_reap = jiffies +
P
Pekka Enberg 已提交
1790 1791
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1792 1793 1794
	}
}

1795
/**
1796 1797 1798 1799 1800 1801 1802
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1803 1804 1805 1806 1807
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1808
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
1809
			size_t size, size_t align, unsigned long flags)
1810
{
1811
	unsigned long offslab_limit;
1812
	size_t left_over = 0;
1813
	int gfporder;
1814

A
Andrew Morton 已提交
1815
	for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1816 1817 1818
		unsigned int num;
		size_t remainder;

1819
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1820 1821
		if (!num)
			continue;
1822

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
1835

1836
		/* Found something acceptable - save it away */
1837
		cachep->num = num;
1838
		cachep->gfporder = gfporder;
1839 1840
		left_over = remainder;

1841 1842 1843 1844 1845 1846 1847 1848
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1849 1850 1851 1852
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1853
		if (gfporder >= slab_break_gfp_order)
1854 1855
			break;

1856 1857 1858
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
1859
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1860 1861 1862 1863 1864
			break;
	}
	return left_over;
}

1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
static void setup_cpu_cache(struct kmem_cache *cachep)
{
	if (g_cpucache_up == FULL) {
		enable_cpucache(cachep);
		return;
	}
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
			for_each_online_node(node) {
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
						GFP_KERNEL, node);
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
	cachep->nodelists[numa_node_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
}

L
Linus Torvalds 已提交
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 * @dtor: A destructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache
 * and the @dtor is run before the pages are handed back.
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
1934 1935
 * the module calling this has to destroy the cache before getting unloaded.
 *
L
Linus Torvalds 已提交
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
1948
struct kmem_cache *
L
Linus Torvalds 已提交
1949
kmem_cache_create (const char *name, size_t size, size_t align,
A
Andrew Morton 已提交
1950 1951
	unsigned long flags,
	void (*ctor)(void*, struct kmem_cache *, unsigned long),
1952
	void (*dtor)(void*, struct kmem_cache *, unsigned long))
L
Linus Torvalds 已提交
1953 1954
{
	size_t left_over, slab_size, ralign;
1955
	struct kmem_cache *cachep = NULL;
1956
	struct list_head *p;
L
Linus Torvalds 已提交
1957 1958 1959 1960

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
1961
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
P
Pekka Enberg 已提交
1962
	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
A
Andrew Morton 已提交
1963 1964
		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
				name);
P
Pekka Enberg 已提交
1965 1966
		BUG();
	}
L
Linus Torvalds 已提交
1967

1968 1969 1970 1971 1972 1973
	/*
	 * Prevent CPUs from coming and going.
	 * lock_cpu_hotplug() nests outside cache_chain_mutex
	 */
	lock_cpu_hotplug();

I
Ingo Molnar 已提交
1974
	mutex_lock(&cache_chain_mutex);
1975 1976

	list_for_each(p, &cache_chain) {
1977
		struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
		mm_segment_t old_fs = get_fs();
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		set_fs(KERNEL_DS);
		res = __get_user(tmp, pc->name);
		set_fs(old_fs);
		if (res) {
			printk("SLAB: cache with size %d has lost its name\n",
1992
			       pc->buffer_size);
1993 1994 1995
			continue;
		}

P
Pekka Enberg 已提交
1996
		if (!strcmp(pc->name, name)) {
1997 1998 1999 2000 2001 2002
			printk("kmem_cache_create: duplicate cache %s\n", name);
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
2003 2004 2005 2006 2007
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
		/* No constructor, but inital state check requested */
		printk(KERN_ERR "%s: No con, but init state check "
P
Pekka Enberg 已提交
2008
		       "requested - %s\n", __FUNCTION__, name);
L
Linus Torvalds 已提交
2009 2010 2011 2012 2013 2014 2015 2016 2017
		flags &= ~SLAB_DEBUG_INITIAL;
	}
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
A
Andrew Morton 已提交
2018
	if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
P
Pekka Enberg 已提交
2019
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(dtor);

	/*
A
Andrew Morton 已提交
2030 2031
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2032
	 */
2033
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2034

A
Andrew Morton 已提交
2035 2036
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2037 2038 2039
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2040 2041 2042
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2043 2044
	}

A
Andrew Morton 已提交
2045 2046
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2047 2048
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2049 2050 2051 2052
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2053 2054
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2055
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2056 2057 2058 2059 2060 2061 2062 2063
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
	/* 2) arch mandated alignment: disables debug if necessary */
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
		if (ralign > BYTES_PER_WORD)
P
Pekka Enberg 已提交
2064
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
L
Linus Torvalds 已提交
2065 2066 2067 2068 2069
	}
	/* 3) caller mandated alignment: disables debug if necessary */
	if (ralign < align) {
		ralign = align;
		if (ralign > BYTES_PER_WORD)
P
Pekka Enberg 已提交
2070
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
L
Linus Torvalds 已提交
2071
	}
A
Andrew Morton 已提交
2072 2073
	/*
	 * 4) Store it. Note that the debug code below can reduce
L
Linus Torvalds 已提交
2074 2075 2076 2077 2078
	 *    the alignment to BYTES_PER_WORD.
	 */
	align = ralign;

	/* Get cache's description obj. */
P
Pekka Enberg 已提交
2079
	cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
L
Linus Torvalds 已提交
2080
	if (!cachep)
2081
		goto oops;
L
Linus Torvalds 已提交
2082 2083

#if DEBUG
2084
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2085 2086 2087 2088 2089 2090

	if (flags & SLAB_RED_ZONE) {
		/* redzoning only works with word aligned caches */
		align = BYTES_PER_WORD;

		/* add space for red zone words */
2091
		cachep->obj_offset += BYTES_PER_WORD;
P
Pekka Enberg 已提交
2092
		size += 2 * BYTES_PER_WORD;
L
Linus Torvalds 已提交
2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
	}
	if (flags & SLAB_STORE_USER) {
		/* user store requires word alignment and
		 * one word storage behind the end of the real
		 * object.
		 */
		align = BYTES_PER_WORD;
		size += BYTES_PER_WORD;
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2103
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2104 2105
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
2106 2107 2108 2109 2110 2111
		size = PAGE_SIZE;
	}
#endif
#endif

	/* Determine if the slab management is 'on' or 'off' slab. */
P
Pekka Enberg 已提交
2112
	if (size >= (PAGE_SIZE >> 3))
L
Linus Torvalds 已提交
2113 2114 2115 2116 2117 2118 2119 2120
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2121
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2122 2123 2124 2125 2126

	if (!cachep->num) {
		printk("kmem_cache_create: couldn't create cache %s.\n", name);
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2127
		goto oops;
L
Linus Torvalds 已提交
2128
	}
P
Pekka Enberg 已提交
2129 2130
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2143 2144
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
L
Linus Torvalds 已提交
2145 2146 2147 2148 2149 2150
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2151
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2152 2153 2154 2155 2156
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
	if (flags & SLAB_CACHE_DMA)
		cachep->gfpflags |= GFP_DMA;
2157
	cachep->buffer_size = size;
L
Linus Torvalds 已提交
2158 2159

	if (flags & CFLGS_OFF_SLAB)
2160
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
L
Linus Torvalds 已提交
2161 2162 2163 2164 2165
	cachep->ctor = ctor;
	cachep->dtor = dtor;
	cachep->name = name;


2166
	setup_cpu_cache(cachep);
L
Linus Torvalds 已提交
2167 2168 2169

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2170
oops:
L
Linus Torvalds 已提交
2171 2172
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2173
		      name);
I
Ingo Molnar 已提交
2174
	mutex_unlock(&cache_chain_mutex);
2175
	unlock_cpu_hotplug();
L
Linus Torvalds 已提交
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2191
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2192 2193 2194
{
#ifdef CONFIG_SMP
	check_irq_off();
2195
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2196 2197
#endif
}
2198

2199
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2200 2201 2202 2203 2204 2205 2206
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2207 2208 2209 2210
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2211
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2212 2213
#endif

2214 2215 2216 2217
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2218 2219
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2220
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2221
	struct array_cache *ac;
2222
	int node = numa_node_id();
L
Linus Torvalds 已提交
2223 2224

	check_irq_off();
2225
	ac = cpu_cache_get(cachep);
2226 2227 2228
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2229 2230 2231
	ac->avail = 0;
}

2232
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2233
{
2234 2235 2236
	struct kmem_list3 *l3;
	int node;

A
Andrew Morton 已提交
2237
	on_each_cpu(do_drain, cachep, 1, 1);
L
Linus Torvalds 已提交
2238
	check_irq_on();
P
Pekka Enberg 已提交
2239
	for_each_online_node(node) {
2240
		l3 = cachep->nodelists[node];
2241 2242 2243 2244 2245 2246 2247
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2248
			drain_array(cachep, l3, l3->shared, 1, node);
2249
	}
L
Linus Torvalds 已提交
2250 2251
}

2252
static int __node_shrink(struct kmem_cache *cachep, int node)
L
Linus Torvalds 已提交
2253 2254
{
	struct slab *slabp;
2255
	struct kmem_list3 *l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
2256 2257
	int ret;

2258
	for (;;) {
L
Linus Torvalds 已提交
2259 2260
		struct list_head *p;

2261 2262
		p = l3->slabs_free.prev;
		if (p == &l3->slabs_free)
L
Linus Torvalds 已提交
2263 2264
			break;

2265
		slabp = list_entry(l3->slabs_free.prev, struct slab, list);
L
Linus Torvalds 已提交
2266
#if DEBUG
2267
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2268 2269 2270
#endif
		list_del(&slabp->list);

2271 2272
		l3->free_objects -= cachep->num;
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
2273
		slab_destroy(cachep, slabp);
2274
		spin_lock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
2275
	}
P
Pekka Enberg 已提交
2276
	ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
L
Linus Torvalds 已提交
2277 2278 2279
	return ret;
}

2280
static int __cache_shrink(struct kmem_cache *cachep)
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			spin_lock_irq(&l3->list_lock);
			ret += __node_shrink(cachep, i);
			spin_unlock_irq(&l3->list_lock);
		}
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2299 2300 2301 2302 2303 2304 2305
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2306
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2307
{
2308
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2309 2310 2311 2312 2313 2314 2315 2316 2317

	return __cache_shrink(cachep);
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2318
 * Remove a struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
 * Returns 0 on success.
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2331
int kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2332 2333
{
	int i;
2334
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2335

2336
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2337 2338 2339 2340 2341

	/* Don't let CPUs to come and go */
	lock_cpu_hotplug();

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
2342
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2343 2344 2345 2346
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
I
Ingo Molnar 已提交
2347
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2348 2349 2350

	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
I
Ingo Molnar 已提交
2351
		mutex_lock(&cache_chain_mutex);
P
Pekka Enberg 已提交
2352
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2353
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2354 2355 2356 2357 2358
		unlock_cpu_hotplug();
		return 1;
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2359
		synchronize_rcu();
L
Linus Torvalds 已提交
2360

2361
	for_each_online_cpu(i)
P
Pekka Enberg 已提交
2362
	    kfree(cachep->array[i]);
L
Linus Torvalds 已提交
2363 2364

	/* NUMA: free the list3 structures */
2365
	for_each_online_node(i) {
A
Andrew Morton 已提交
2366 2367
		l3 = cachep->nodelists[i];
		if (l3) {
2368 2369 2370 2371 2372
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
L
Linus Torvalds 已提交
2373 2374 2375 2376 2377 2378 2379
	kmem_cache_free(&cache_cache, cachep);
	unlock_cpu_hotplug();
	return 0;
}
EXPORT_SYMBOL(kmem_cache_destroy);

/* Get the memory for a slab management obj. */
2380
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2381 2382
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2383 2384
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2385

L
Linus Torvalds 已提交
2386 2387
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2388 2389
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
					      local_flags, nodeid);
L
Linus Torvalds 已提交
2390 2391 2392
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2393
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2394 2395 2396 2397
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2398
	slabp->s_mem = objp + colour_off;
2399
	slabp->nodeid = nodeid;
L
Linus Torvalds 已提交
2400 2401 2402 2403 2404
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2405
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2406 2407
}

2408
static void cache_init_objs(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
2409
			    struct slab *slabp, unsigned long ctor_flags)
L
Linus Torvalds 已提交
2410 2411 2412 2413
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2414
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2427 2428 2429
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2430 2431
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2432
			cachep->ctor(objp + obj_offset(cachep), cachep,
P
Pekka Enberg 已提交
2433
				     ctor_flags);
L
Linus Torvalds 已提交
2434 2435 2436 2437

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2438
					   " end of an object");
L
Linus Torvalds 已提交
2439 2440
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2441
					   " start of an object");
L
Linus Torvalds 已提交
2442
		}
A
Andrew Morton 已提交
2443 2444
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2445
			kernel_map_pages(virt_to_page(objp),
2446
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2447 2448 2449 2450
#else
		if (cachep->ctor)
			cachep->ctor(objp, cachep, ctor_flags);
#endif
P
Pekka Enberg 已提交
2451
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2452
	}
P
Pekka Enberg 已提交
2453
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2454 2455 2456
	slabp->free = 0;
}

2457
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2458
{
A
Andrew Morton 已提交
2459 2460 2461 2462
	if (flags & SLAB_DMA)
		BUG_ON(!(cachep->gfpflags & GFP_DMA));
	else
		BUG_ON(cachep->gfpflags & GFP_DMA);
L
Linus Torvalds 已提交
2463 2464
}

A
Andrew Morton 已提交
2465 2466
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2467
{
2468
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2482 2483
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2484
{
2485
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2486 2487 2488 2489 2490

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2491
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2492
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2493
				"'%s', objp %p\n", cachep->name, objp);
2494 2495 2496 2497 2498 2499 2500 2501
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

A
Andrew Morton 已提交
2502 2503
static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp,
			void *objp)
L
Linus Torvalds 已提交
2504 2505 2506 2507 2508 2509
{
	int i;
	struct page *page;

	/* Nasty!!!!!! I hope this is OK. */
	page = virt_to_page(objp);
2510 2511 2512 2513

	i = 1;
	if (likely(!PageCompound(page)))
		i <<= cachep->gfporder;
L
Linus Torvalds 已提交
2514
	do {
2515 2516
		page_set_cache(page, cachep);
		page_set_slab(page, slabp);
L
Linus Torvalds 已提交
2517 2518 2519 2520 2521 2522 2523 2524
		page++;
	} while (--i);
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2525
static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
2526
{
P
Pekka Enberg 已提交
2527 2528 2529 2530 2531
	struct slab *slabp;
	void *objp;
	size_t offset;
	gfp_t local_flags;
	unsigned long ctor_flags;
2532
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2533

A
Andrew Morton 已提交
2534 2535 2536
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2537
	 */
2538
	BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
L
Linus Torvalds 已提交
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
	if (flags & SLAB_NO_GROW)
		return 0;

	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
	local_flags = (flags & SLAB_LEVEL_MASK);
	if (!(local_flags & __GFP_WAIT))
		/*
		 * Not allowed to sleep.  Need to tell a constructor about
		 * this - it might need to know...
		 */
		ctor_flags |= SLAB_CTOR_ATOMIC;

2551
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2552
	check_irq_off();
2553 2554
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2555 2556

	/* Get colour for the slab, and cal the next value. */
2557 2558 2559 2560 2561
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2562

2563
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2576 2577 2578
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2579
	 */
A
Andrew Morton 已提交
2580 2581
	objp = kmem_getpages(cachep, flags, nodeid);
	if (!objp)
L
Linus Torvalds 已提交
2582 2583 2584
		goto failed;

	/* Get slab management. */
2585
	slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
A
Andrew Morton 已提交
2586
	if (!slabp)
L
Linus Torvalds 已提交
2587 2588
		goto opps1;

2589
	slabp->nodeid = nodeid;
L
Linus Torvalds 已提交
2590 2591 2592 2593 2594 2595 2596
	set_slab_attr(cachep, slabp, objp);

	cache_init_objs(cachep, slabp, ctor_flags);

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2597
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2598 2599

	/* Make slab active. */
2600
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2601
	STATS_INC_GROWN(cachep);
2602 2603
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2604
	return 1;
A
Andrew Morton 已提交
2605
opps1:
L
Linus Torvalds 已提交
2606
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2607
failed:
L
Linus Torvalds 已提交
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 * - destructor calls, for caches with POISON+dtor
 */
static void kfree_debugcheck(const void *objp)
{
	struct page *page;

	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2627 2628
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2629 2630 2631
	}
	page = virt_to_page(objp);
	if (!PageSlab(page)) {
P
Pekka Enberg 已提交
2632 2633
		printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
		       (unsigned long)objp);
L
Linus Torvalds 已提交
2634 2635 2636 2637
		BUG();
	}
}

2638
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2639
				   void *caller)
L
Linus Torvalds 已提交
2640 2641 2642 2643 2644
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2645
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2646 2647 2648
	kfree_debugcheck(objp);
	page = virt_to_page(objp);

2649
	if (page_get_cache(page) != cachep) {
A
Andrew Morton 已提交
2650 2651
		printk(KERN_ERR "mismatch in kmem_cache_free: expected "
				"cache %p, got %p\n",
P
Pekka Enberg 已提交
2652
		       page_get_cache(page), cachep);
L
Linus Torvalds 已提交
2653
		printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
P
Pekka Enberg 已提交
2654 2655
		printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
		       page_get_cache(page)->name);
L
Linus Torvalds 已提交
2656 2657
		WARN_ON(1);
	}
2658
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2659 2660

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
2661 2662 2663 2664 2665 2666
		if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_ACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
			printk(KERN_ERR "%p: redzone 1:0x%lx, "
					"redzone 2:0x%lx.\n",
P
Pekka Enberg 已提交
2667 2668
			       objp, *dbg_redzone1(cachep, objp),
			       *dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2669 2670 2671 2672 2673 2674 2675
		}
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2676
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2677 2678

	BUG_ON(objnr >= cachep->num);
2679
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2680 2681

	if (cachep->flags & SLAB_DEBUG_INITIAL) {
A
Andrew Morton 已提交
2682 2683 2684 2685
		/*
		 * Need to call the slab's constructor so the caller can
		 * perform a verify of its state (debugging).  Called without
		 * the cache-lock held.
L
Linus Torvalds 已提交
2686
		 */
2687
		cachep->ctor(objp + obj_offset(cachep),
P
Pekka Enberg 已提交
2688
			     cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
L
Linus Torvalds 已提交
2689 2690 2691 2692 2693
	}
	if (cachep->flags & SLAB_POISON && cachep->dtor) {
		/* we want to cache poison the object,
		 * call the destruction callback
		 */
2694
		cachep->dtor(objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
2695
	}
2696 2697 2698
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2699 2700
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
2701
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2702
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2703
			kernel_map_pages(virt_to_page(objp),
2704
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2715
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2716 2717 2718
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2719

L
Linus Torvalds 已提交
2720 2721 2722 2723 2724 2725 2726
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2727 2728 2729 2730
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
2731
		for (i = 0;
2732
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2733
		     i++) {
A
Andrew Morton 已提交
2734
			if (i % 16 == 0)
L
Linus Torvalds 已提交
2735
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2736
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2748
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2749 2750 2751 2752 2753 2754
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;

	check_irq_off();
2755
	ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
2756
retry:
L
Linus Torvalds 已提交
2757 2758
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2759 2760 2761 2762
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2763 2764 2765
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2766 2767 2768 2769
	l3 = cachep->nodelists[numa_node_id()];

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2770

2771 2772 2773 2774
	/* See if we can refill from the shared array */
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
		goto alloc_done;

L
Linus Torvalds 已提交
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2795 2796
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
							    numa_node_id());
L
Linus Torvalds 已提交
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
2808
must_grow:
L
Linus Torvalds 已提交
2809
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
2810
alloc_done:
2811
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2812 2813 2814

	if (unlikely(!ac->avail)) {
		int x;
2815 2816
		x = cache_grow(cachep, flags, numa_node_id());

A
Andrew Morton 已提交
2817
		/* cache_grow can reenable interrupts, then ac could change. */
2818
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
2819
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
2820 2821
			return NULL;

A
Andrew Morton 已提交
2822
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
2823 2824 2825
			goto retry;
	}
	ac->touched = 1;
2826
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
2827 2828
}

A
Andrew Morton 已提交
2829 2830
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
2831 2832 2833 2834 2835 2836 2837 2838
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
2839 2840
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
2841
{
P
Pekka Enberg 已提交
2842
	if (!objp)
L
Linus Torvalds 已提交
2843
		return objp;
P
Pekka Enberg 已提交
2844
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
2845
#ifdef CONFIG_DEBUG_PAGEALLOC
2846
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2847
			kernel_map_pages(virt_to_page(objp),
2848
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
2860 2861 2862 2863
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
2864
			printk(KERN_ERR
A
Andrew Morton 已提交
2865 2866 2867
				"%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
2868 2869 2870 2871
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

		slabp = page_get_slab(virt_to_page(objp));
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
2882
	objp += obj_offset(cachep);
L
Linus Torvalds 已提交
2883
	if (cachep->ctor && cachep->flags & SLAB_POISON) {
P
Pekka Enberg 已提交
2884
		unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
L
Linus Torvalds 已提交
2885 2886 2887 2888 2889

		if (!(flags & __GFP_WAIT))
			ctor_flags |= SLAB_CTOR_ATOMIC;

		cachep->ctor(objp, cachep, ctor_flags);
P
Pekka Enberg 已提交
2890
	}
L
Linus Torvalds 已提交
2891 2892 2893 2894 2895 2896
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

2897
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2898
{
P
Pekka Enberg 已提交
2899
	void *objp;
L
Linus Torvalds 已提交
2900 2901
	struct array_cache *ac;

2902
#ifdef CONFIG_NUMA
2903
	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
2904 2905 2906
		objp = alternate_node_alloc(cachep, flags);
		if (objp != NULL)
			return objp;
2907 2908 2909
	}
#endif

2910
	check_irq_off();
2911
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2912 2913 2914
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
2915
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
2916 2917 2918 2919
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
2920 2921 2922
	return objp;
}

A
Andrew Morton 已提交
2923 2924
static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
						gfp_t flags, void *caller)
2925 2926
{
	unsigned long save_flags;
P
Pekka Enberg 已提交
2927
	void *objp;
2928 2929 2930 2931 2932

	cache_alloc_debugcheck_before(cachep, flags);

	local_irq_save(save_flags);
	objp = ____cache_alloc(cachep, flags);
L
Linus Torvalds 已提交
2933
	local_irq_restore(save_flags);
2934
	objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2935
					    caller);
2936
	prefetchw(objp);
L
Linus Torvalds 已提交
2937 2938 2939
	return objp;
}

2940
#ifdef CONFIG_NUMA
2941
/*
2942
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

	if (in_interrupt())
		return NULL;
	nid_alloc = nid_here = numa_node_id();
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
		nid_alloc = cpuset_mem_spread_node();
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
	if (nid_alloc != nid_here)
		return __cache_alloc_node(cachep, flags, nid_alloc);
	return NULL;
}

2963 2964
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
2965
 */
A
Andrew Morton 已提交
2966 2967
static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
				int nodeid)
2968 2969
{
	struct list_head *entry;
P
Pekka Enberg 已提交
2970 2971 2972 2973 2974 2975 2976 2977
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
2978
retry:
2979
	check_irq_off();
P
Pekka Enberg 已提交
2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

2999
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3000 3001 3002 3003 3004
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3005
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3006
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3007
	else
P
Pekka Enberg 已提交
3008
		list_add(&slabp->list, &l3->slabs_partial);
3009

P
Pekka Enberg 已提交
3010 3011
	spin_unlock(&l3->list_lock);
	goto done;
3012

A
Andrew Morton 已提交
3013
must_grow:
P
Pekka Enberg 已提交
3014 3015
	spin_unlock(&l3->list_lock);
	x = cache_grow(cachep, flags, nodeid);
L
Linus Torvalds 已提交
3016

P
Pekka Enberg 已提交
3017 3018
	if (!x)
		return NULL;
3019

P
Pekka Enberg 已提交
3020
	goto retry;
A
Andrew Morton 已提交
3021
done:
P
Pekka Enberg 已提交
3022
	return obj;
3023 3024 3025 3026 3027 3028
}
#endif

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3029
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3030
		       int node)
L
Linus Torvalds 已提交
3031 3032
{
	int i;
3033
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3034 3035 3036 3037 3038

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3039
		slabp = virt_to_slab(objp);
3040
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3041
		list_del(&slabp->list);
3042
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3043
		check_slabp(cachep, slabp);
3044
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3045
		STATS_DEC_ACTIVE(cachep);
3046
		l3->free_objects++;
L
Linus Torvalds 已提交
3047 3048 3049 3050
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3051 3052
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
L
Linus Torvalds 已提交
3053 3054
				slab_destroy(cachep, slabp);
			} else {
3055
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3056 3057 3058 3059 3060 3061
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3062
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3063 3064 3065 3066
		}
	}
}

3067
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3068 3069
{
	int batchcount;
3070
	struct kmem_list3 *l3;
3071
	int node = numa_node_id();
L
Linus Torvalds 已提交
3072 3073 3074 3075 3076 3077

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3078
	l3 = cachep->nodelists[node];
3079 3080 3081
	spin_lock(&l3->list_lock);
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3082
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3083 3084 3085
		if (max) {
			if (batchcount > max)
				batchcount = max;
3086
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3087
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3088 3089 3090 3091 3092
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3093
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3094
free_done:
L
Linus Torvalds 已提交
3095 3096 3097 3098 3099
#if STATS
	{
		int i = 0;
		struct list_head *p;

3100 3101
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3113
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3114
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3115
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3116 3117 3118
}

/*
A
Andrew Morton 已提交
3119 3120
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3121
 */
3122
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3123
{
3124
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3125 3126 3127 3128

	check_irq_off();
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

3129 3130 3131
	if (cache_free_alien(cachep, objp))
		return;

L
Linus Torvalds 已提交
3132 3133
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3134
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3135 3136 3137 3138
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3139
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3151
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3152
{
3153
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3154 3155 3156
}
EXPORT_SYMBOL(kmem_cache_alloc);

3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
/**
 * kmem_cache_alloc - Allocate an object. The memory is set to zero.
 * @cache: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache and set the allocated memory to zero.
 * The flags are only relevant if the cache has no available objects.
 */
void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
{
	void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
	if (ret)
		memset(ret, 0, obj_size(cache));
	return ret;
}
EXPORT_SYMBOL(kmem_cache_zalloc);

L
Linus Torvalds 已提交
3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
/**
 * kmem_ptr_validate - check if an untrusted pointer might
 *	be a slab entry.
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
 * This verifies that the untrusted pointer looks sane:
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3188
int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
L
Linus Torvalds 已提交
3189
{
P
Pekka Enberg 已提交
3190
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
3191
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
3192
	unsigned long align_mask = BYTES_PER_WORD - 1;
3193
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3209
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3210 3211
		goto out;
	return 1;
A
Andrew Morton 已提交
3212
out:
L
Linus Torvalds 已提交
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
	return 0;
}

#ifdef CONFIG_NUMA
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc, except that this function is slow
 * and can sleep. And it will allocate memory on the given node, which
 * can improve the performance for cpu bound structures.
3226 3227
 * New and improved: it will now make sure that the object gets
 * put on the correct node list so that there is no false sharing.
L
Linus Torvalds 已提交
3228
 */
3229
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
3230
{
3231 3232
	unsigned long save_flags;
	void *ptr;
L
Linus Torvalds 已提交
3233

3234 3235
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
3236 3237

	if (nodeid == -1 || nodeid == numa_node_id() ||
A
Andrew Morton 已提交
3238
			!cachep->nodelists[nodeid])
3239 3240 3241
		ptr = ____cache_alloc(cachep, flags);
	else
		ptr = __cache_alloc_node(cachep, flags, nodeid);
3242
	local_irq_restore(save_flags);
3243 3244 3245

	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
					   __builtin_return_address(0));
L
Linus Torvalds 已提交
3246

3247
	return ptr;
L
Linus Torvalds 已提交
3248 3249 3250
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

A
Al Viro 已提交
3251
void *kmalloc_node(size_t size, gfp_t flags, int node)
3252
{
3253
	struct kmem_cache *cachep;
3254 3255 3256 3257 3258 3259 3260

	cachep = kmem_find_general_cachep(size, flags);
	if (unlikely(cachep == NULL))
		return NULL;
	return kmem_cache_alloc_node(cachep, flags, node);
}
EXPORT_SYMBOL(kmalloc_node);
L
Linus Torvalds 已提交
3261 3262 3263 3264 3265 3266
#endif

/**
 * kmalloc - allocate memory
 * @size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
3267
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284
 *
 * kmalloc is the normal method of allocating memory
 * in the kernel.
 *
 * The @flags argument may be one of:
 *
 * %GFP_USER - Allocate memory on behalf of user.  May sleep.
 *
 * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
 *
 * %GFP_ATOMIC - Allocation will not sleep.  Use inside interrupt handlers.
 *
 * Additionally, the %GFP_DMA flag may be set to indicate the memory
 * must be suitable for DMA.  This can mean different things on different
 * platforms.  For example, on i386, it means that the memory must come
 * from the first 16MB.
 */
3285 3286
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3287
{
3288
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3289

3290 3291 3292 3293 3294 3295
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3296 3297
	if (unlikely(cachep == NULL))
		return NULL;
3298 3299 3300 3301 3302 3303
	return __cache_alloc(cachep, flags, caller);
}


void *__kmalloc(size_t size, gfp_t flags)
{
3304
#ifndef CONFIG_DEBUG_SLAB
3305
	return __do_kmalloc(size, flags, NULL);
3306 3307 3308
#else
	return __do_kmalloc(size, flags, __builtin_return_address(0));
#endif
L
Linus Torvalds 已提交
3309 3310 3311
}
EXPORT_SYMBOL(__kmalloc);

3312
#ifdef CONFIG_DEBUG_SLAB
3313 3314 3315 3316 3317 3318 3319
void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
{
	return __do_kmalloc(size, flags, caller);
}
EXPORT_SYMBOL(__kmalloc_track_caller);
#endif

L
Linus Torvalds 已提交
3320 3321 3322 3323 3324 3325 3326 3327
#ifdef CONFIG_SMP
/**
 * __alloc_percpu - allocate one copy of the object for every present
 * cpu in the system, zeroing them.
 * Objects should be dereferenced using the per_cpu_ptr macro only.
 *
 * @size: how many bytes of memory are required.
 */
3328
void *__alloc_percpu(size_t size)
L
Linus Torvalds 已提交
3329 3330
{
	int i;
P
Pekka Enberg 已提交
3331
	struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
L
Linus Torvalds 已提交
3332 3333 3334 3335

	if (!pdata)
		return NULL;

3336 3337 3338 3339 3340
	/*
	 * Cannot use for_each_online_cpu since a cpu may come online
	 * and we have no way of figuring out how to fix the array
	 * that we have allocated then....
	 */
3341
	for_each_possible_cpu(i) {
3342 3343 3344 3345 3346 3347
		int node = cpu_to_node(i);

		if (node_online(node))
			pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
		else
			pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
L
Linus Torvalds 已提交
3348 3349 3350 3351 3352 3353 3354

		if (!pdata->ptrs[i])
			goto unwind_oom;
		memset(pdata->ptrs[i], 0, size);
	}

	/* Catch derefs w/o wrappers */
P
Pekka Enberg 已提交
3355
	return (void *)(~(unsigned long)pdata);
L
Linus Torvalds 已提交
3356

A
Andrew Morton 已提交
3357
unwind_oom:
L
Linus Torvalds 已提交
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376
	while (--i >= 0) {
		if (!cpu_possible(i))
			continue;
		kfree(pdata->ptrs[i]);
	}
	kfree(pdata);
	return NULL;
}
EXPORT_SYMBOL(__alloc_percpu);
#endif

/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3377
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390
{
	unsigned long flags;

	local_irq_save(flags);
	__cache_free(cachep, objp);
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3391 3392
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3393 3394 3395 3396 3397
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3398
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3399 3400 3401 3402 3403 3404
	unsigned long flags;

	if (unlikely(!objp))
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3405
	c = virt_to_cache(objp);
3406
	mutex_debug_check_no_locks_freed(objp, obj_size(c));
P
Pekka Enberg 已提交
3407
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

#ifdef CONFIG_SMP
/**
 * free_percpu - free previously allocated percpu memory
 * @objp: pointer returned by alloc_percpu.
 *
 * Don't free memory not originally allocated by alloc_percpu()
 * The complemented objp is to check for that.
 */
P
Pekka Enberg 已提交
3420
void free_percpu(const void *objp)
L
Linus Torvalds 已提交
3421 3422
{
	int i;
P
Pekka Enberg 已提交
3423
	struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
L
Linus Torvalds 已提交
3424

3425 3426 3427
	/*
	 * We allocate for all cpus so we cannot use for online cpu here.
	 */
3428
	for_each_possible_cpu(i)
P
Pekka Enberg 已提交
3429
	    kfree(p->ptrs[i]);
L
Linus Torvalds 已提交
3430 3431 3432 3433 3434
	kfree(p);
}
EXPORT_SYMBOL(free_percpu);
#endif

3435
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3436
{
3437
	return obj_size(cachep);
L
Linus Torvalds 已提交
3438 3439 3440
}
EXPORT_SYMBOL(kmem_cache_size);

3441
const char *kmem_cache_name(struct kmem_cache *cachep)
3442 3443 3444 3445 3446
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3447
/*
3448
 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3449
 */
3450
static int alloc_kmemlist(struct kmem_cache *cachep)
3451 3452 3453
{
	int node;
	struct kmem_list3 *l3;
3454 3455
	struct array_cache *new_shared;
	struct array_cache **new_alien;
3456 3457

	for_each_online_node(node) {
3458

A
Andrew Morton 已提交
3459 3460
		new_alien = alloc_alien_cache(node, cachep->limit);
		if (!new_alien)
3461
			goto fail;
3462

3463 3464
		new_shared = alloc_arraycache(node,
				cachep->shared*cachep->batchcount,
A
Andrew Morton 已提交
3465
					0xbaadf00d);
3466 3467
		if (!new_shared) {
			free_alien_cache(new_alien);
3468
			goto fail;
3469
		}
3470

A
Andrew Morton 已提交
3471 3472
		l3 = cachep->nodelists[node];
		if (l3) {
3473 3474
			struct array_cache *shared = l3->shared;

3475 3476
			spin_lock_irq(&l3->list_lock);

3477
			if (shared)
3478 3479
				free_block(cachep, shared->entry,
						shared->avail, node);
3480

3481 3482
			l3->shared = new_shared;
			if (!l3->alien) {
3483 3484 3485
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3486
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3487
					cachep->batchcount + cachep->num;
3488
			spin_unlock_irq(&l3->list_lock);
3489
			kfree(shared);
3490 3491 3492
			free_alien_cache(new_alien);
			continue;
		}
A
Andrew Morton 已提交
3493
		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3494 3495 3496
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3497
			goto fail;
3498
		}
3499 3500 3501

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3502
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3503
		l3->shared = new_shared;
3504
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3505
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3506
					cachep->batchcount + cachep->num;
3507 3508
		cachep->nodelists[node] = l3;
	}
3509
	return 0;
3510

A
Andrew Morton 已提交
3511
fail:
3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3527
	return -ENOMEM;
3528 3529
}

L
Linus Torvalds 已提交
3530
struct ccupdate_struct {
3531
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3532 3533 3534 3535 3536
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3537
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3538 3539 3540
	struct array_cache *old;

	check_irq_off();
3541
	old = cpu_cache_get(new->cachep);
3542

L
Linus Torvalds 已提交
3543 3544 3545 3546
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3547
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
3548 3549
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared)
L
Linus Torvalds 已提交
3550 3551
{
	struct ccupdate_struct new;
3552
	int i, err;
L
Linus Torvalds 已提交
3553

P
Pekka Enberg 已提交
3554
	memset(&new.new, 0, sizeof(new.new));
3555
	for_each_online_cpu(i) {
A
Andrew Morton 已提交
3556 3557
		new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
						batchcount);
3558
		if (!new.new[i]) {
P
Pekka Enberg 已提交
3559 3560
			for (i--; i >= 0; i--)
				kfree(new.new[i]);
3561
			return -ENOMEM;
L
Linus Torvalds 已提交
3562 3563 3564 3565
		}
	}
	new.cachep = cachep;

A
Andrew Morton 已提交
3566
	on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
3567

L
Linus Torvalds 已提交
3568 3569 3570
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3571
	cachep->shared = shared;
L
Linus Torvalds 已提交
3572

3573
	for_each_online_cpu(i) {
L
Linus Torvalds 已提交
3574 3575 3576
		struct array_cache *ccold = new.new[i];
		if (!ccold)
			continue;
3577
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3578
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3579
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
3580 3581 3582
		kfree(ccold);
	}

3583 3584 3585
	err = alloc_kmemlist(cachep);
	if (err) {
		printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3586
		       cachep->name, -err);
3587
		BUG();
L
Linus Torvalds 已提交
3588 3589 3590 3591
	}
	return 0;
}

3592
/* Called with cache_chain_mutex held always */
3593
static void enable_cpucache(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3594 3595 3596 3597
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
3598 3599
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3600 3601
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3602
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3603 3604 3605 3606
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3607
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
3608
		limit = 1;
3609
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
3610
		limit = 8;
3611
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
3612
		limit = 24;
3613
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
3614 3615 3616 3617
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3618 3619
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3620 3621 3622 3623 3624 3625 3626 3627 3628
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
#ifdef CONFIG_SMP
3629
	if (cachep->buffer_size <= PAGE_SIZE)
L
Linus Torvalds 已提交
3630 3631 3632 3633
		shared = 8;
#endif

#if DEBUG
A
Andrew Morton 已提交
3634 3635 3636
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3637 3638 3639 3640
	 */
	if (limit > 32)
		limit = 32;
#endif
P
Pekka Enberg 已提交
3641
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
L
Linus Torvalds 已提交
3642 3643
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3644
		       cachep->name, -err);
L
Linus Torvalds 已提交
3645 3646
}

3647 3648
/*
 * Drain an array if it contains any elements taking the l3 lock only if
3649 3650
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
3651 3652 3653
 */
void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
3654 3655 3656
{
	int tofree;

3657 3658
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
3659 3660
	if (ac->touched && !force) {
		ac->touched = 0;
3661
	} else {
3662
		spin_lock_irq(&l3->list_lock);
3663 3664 3665 3666 3667 3668 3669 3670 3671
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
3672
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3673 3674 3675 3676 3677
	}
}

/**
 * cache_reap - Reclaim memory from caches.
3678
 * @unused: unused parameter
L
Linus Torvalds 已提交
3679 3680 3681 3682 3683 3684
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
3685 3686
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
3687 3688 3689 3690
 */
static void cache_reap(void *unused)
{
	struct list_head *walk;
3691
	struct kmem_list3 *l3;
3692
	int node = numa_node_id();
L
Linus Torvalds 已提交
3693

I
Ingo Molnar 已提交
3694
	if (!mutex_trylock(&cache_chain_mutex)) {
L
Linus Torvalds 已提交
3695
		/* Give up. Setup the next iteration. */
P
Pekka Enberg 已提交
3696 3697
		schedule_delayed_work(&__get_cpu_var(reap_work),
				      REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3698 3699 3700 3701
		return;
	}

	list_for_each(walk, &cache_chain) {
3702
		struct kmem_cache *searchp;
P
Pekka Enberg 已提交
3703
		struct list_head *p;
L
Linus Torvalds 已提交
3704 3705 3706
		int tofree;
		struct slab *slabp;

3707
		searchp = list_entry(walk, struct kmem_cache, next);
L
Linus Torvalds 已提交
3708 3709
		check_irq_on();

3710 3711 3712 3713 3714
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
3715
		l3 = searchp->nodelists[node];
3716

3717
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
3718

3719
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
3720

3721 3722 3723 3724
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
3725
		if (time_after(l3->next_reap, jiffies))
3726
			goto next;
L
Linus Torvalds 已提交
3727

3728
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
3729

3730
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
3731

3732 3733
		if (l3->free_touched) {
			l3->free_touched = 0;
3734
			goto next;
L
Linus Torvalds 已提交
3735 3736
		}

A
Andrew Morton 已提交
3737 3738
		tofree = (l3->free_limit + 5 * searchp->num - 1) /
				(5 * searchp->num);
L
Linus Torvalds 已提交
3739
		do {
3740 3741 3742 3743 3744 3745 3746
			/*
			 * Do not lock if there are no free blocks.
			 */
			if (list_empty(&l3->slabs_free))
				break;

			spin_lock_irq(&l3->list_lock);
3747
			p = l3->slabs_free.next;
3748 3749
			if (p == &(l3->slabs_free)) {
				spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3750
				break;
3751
			}
L
Linus Torvalds 已提交
3752 3753 3754 3755 3756 3757

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);
			list_del(&slabp->list);
			STATS_INC_REAPED(searchp);

A
Andrew Morton 已提交
3758 3759 3760
			/*
			 * Safe to drop the lock. The slab is no longer linked
			 * to the cache. searchp cannot disappear, we hold
L
Linus Torvalds 已提交
3761 3762
			 * cache_chain_lock
			 */
3763 3764
			l3->free_objects -= searchp->num;
			spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3765
			slab_destroy(searchp, slabp);
P
Pekka Enberg 已提交
3766
		} while (--tofree > 0);
3767
next:
L
Linus Torvalds 已提交
3768 3769 3770
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
3771
	mutex_unlock(&cache_chain_mutex);
3772
	next_reap_node();
A
Andrew Morton 已提交
3773
	/* Set up the next iteration */
3774
	schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3775 3776 3777 3778
}

#ifdef CONFIG_PROC_FS

3779
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
3780
{
3781 3782 3783 3784
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
3785
#if STATS
3786
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
3787
#else
3788
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
3789
#endif
3790 3791 3792 3793
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
3794
#if STATS
3795
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3796
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
3797
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
3798
#endif
3799 3800 3801 3802 3803 3804 3805 3806
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

I
Ingo Molnar 已提交
3807
	mutex_lock(&cache_chain_mutex);
3808 3809
	if (!n)
		print_slabinfo_header(m);
L
Linus Torvalds 已提交
3810 3811 3812 3813 3814 3815
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
3816
	return list_entry(p, struct kmem_cache, next);
L
Linus Torvalds 已提交
3817 3818 3819 3820
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
3821
	struct kmem_cache *cachep = p;
L
Linus Torvalds 已提交
3822
	++*pos;
A
Andrew Morton 已提交
3823 3824
	return cachep->next.next == &cache_chain ?
		NULL : list_entry(cachep->next.next, struct kmem_cache, next);
L
Linus Torvalds 已提交
3825 3826 3827 3828
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
3829
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3830 3831 3832 3833
}

static int s_show(struct seq_file *m, void *p)
{
3834
	struct kmem_cache *cachep = p;
L
Linus Torvalds 已提交
3835
	struct list_head *q;
P
Pekka Enberg 已提交
3836 3837 3838 3839 3840
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3841
	const char *name;
L
Linus Torvalds 已提交
3842
	char *error = NULL;
3843 3844
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3845 3846 3847

	active_objs = 0;
	num_slabs = 0;
3848 3849 3850 3851 3852
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

3853 3854
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
3855

P
Pekka Enberg 已提交
3856
		list_for_each(q, &l3->slabs_full) {
3857 3858 3859 3860 3861 3862
			slabp = list_entry(q, struct slab, list);
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
P
Pekka Enberg 已提交
3863
		list_for_each(q, &l3->slabs_partial) {
3864 3865 3866 3867 3868 3869 3870 3871
			slabp = list_entry(q, struct slab, list);
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
P
Pekka Enberg 已提交
3872
		list_for_each(q, &l3->slabs_free) {
3873 3874 3875 3876 3877 3878
			slabp = list_entry(q, struct slab, list);
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
3879 3880
		if (l3->shared)
			shared_avail += l3->shared->avail;
3881

3882
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3883
	}
P
Pekka Enberg 已提交
3884 3885
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
3886
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
3887 3888
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
3889
	name = cachep->name;
L
Linus Torvalds 已提交
3890 3891 3892 3893
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3894
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
3895
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
3896
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
3897
		   cachep->limit, cachep->batchcount, cachep->shared);
3898
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
3899
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
3900
#if STATS
P
Pekka Enberg 已提交
3901
	{			/* list3 stats */
L
Linus Torvalds 已提交
3902 3903 3904 3905 3906 3907 3908
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
3909
		unsigned long node_frees = cachep->node_frees;
3910
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
3911

3912
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3913
				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
A
Andrew Morton 已提交
3914
				reaped, errors, max_freeable, node_allocs,
3915
				node_frees, overflows);
L
Linus Torvalds 已提交
3916 3917 3918 3919 3920 3921 3922 3923 3924
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
3925
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
3947 3948 3949 3950
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
3951 3952 3953 3954 3955 3956 3957 3958 3959 3960
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
3961 3962
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
3963
{
P
Pekka Enberg 已提交
3964
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
3965 3966
	int limit, batchcount, shared, res;
	struct list_head *p;
P
Pekka Enberg 已提交
3967

L
Linus Torvalds 已提交
3968 3969 3970 3971
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
3972
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
3973 3974 3975 3976 3977 3978 3979 3980 3981 3982

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
3983
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3984
	res = -EINVAL;
P
Pekka Enberg 已提交
3985
	list_for_each(p, &cache_chain) {
A
Andrew Morton 已提交
3986
		struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3987

A
Andrew Morton 已提交
3988
		cachep = list_entry(p, struct kmem_cache, next);
L
Linus Torvalds 已提交
3989
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
3990 3991
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
3992
				res = 0;
L
Linus Torvalds 已提交
3993
			} else {
3994
				res = do_tune_cpucache(cachep, limit,
P
Pekka Enberg 已提交
3995
						       batchcount, shared);
L
Linus Torvalds 已提交
3996 3997 3998 3999
			}
			break;
		}
	}
I
Ingo Molnar 已提交
4000
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4001 4002 4003 4004
	if (res >= 0)
		res = count;
	return res;
}
4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

	mutex_lock(&cache_chain_mutex);
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
	return list_entry(p, struct kmem_cache, next);
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	char *modname;
	const char *name;
	unsigned long offset, size;
	char namebuf[KSYM_NAME_LEN+1];

	name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);

	if (name) {
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
		if (modname)
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
	struct kmem_cache *cachep = p;
	struct list_head *q;
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

		list_for_each(q, &l3->slabs_full) {
			slabp = list_entry(q, struct slab, list);
			handle_slab(n, cachep, slabp);
		}
		list_for_each(q, &l3->slabs_partial) {
			slabp = list_entry(q, struct slab, list);
			handle_slab(n, cachep, slabp);
		}
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
	return 0;
}

struct seq_operations slabstats_op = {
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
#endif
L
Linus Torvalds 已提交
4158 4159
#endif

4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
L
Linus Torvalds 已提交
4172 4173
unsigned int ksize(const void *objp)
{
4174 4175
	if (unlikely(objp == NULL))
		return 0;
L
Linus Torvalds 已提交
4176

4177
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4178
}