slab.c 116.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
 * slabs and you must pass objects with the same intializations to
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
L
Linus Torvalds 已提交
98 99 100 101 102 103 104
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
105
#include	<linux/string.h>
106
#include	<linux/uaccess.h>
107
#include	<linux/nodemask.h>
108
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
109
#include	<linux/mutex.h>
110
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
111
#include	<linux/rtmutex.h>
112
#include	<linux/reciprocal_div.h>
L
Linus Torvalds 已提交
113 114 115 116 117 118

#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
119
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)

#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
151 152 153
 * alignment larger than the alignment of a 64-bit integer.
 * ARCH_KMALLOC_MINALIGN allows that.
 * Note that increasing this value may disable some debug features.
L
Linus Torvalds 已提交
154
 */
155
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
L
Linus Torvalds 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
175
# define CREATE_MASK	(SLAB_RED_ZONE | \
L
Linus Torvalds 已提交
176
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
177
			 SLAB_CACHE_DMA | \
178
			 SLAB_STORE_USER | \
L
Linus Torvalds 已提交
179
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
180
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
181
#else
182
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
183
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
184
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
185
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

207
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
208 209
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
210 211
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
212 213 214 215 216 217 218 219 220

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
221 222 223 224 225 226
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
246
	struct rcu_head head;
247
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
248
	void *addr;
L
Linus Torvalds 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
268
	spinlock_t lock;
A
Andrew Morton 已提交
269 270 271 272 273 274
	void *entry[0];	/*
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 * [0] is for gcc 2.95. It should really be [].
			 */
L
Linus Torvalds 已提交
275 276
};

A
Andrew Morton 已提交
277 278 279
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
280 281 282 283
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
284
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
285 286 287
};

/*
288
 * The slab lists for all objects.
L
Linus Torvalds 已提交
289 290
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
291 292 293 294 295
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
296
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
297 298 299
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
300 301
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
302 303
};

304 305 306 307 308 309 310 311 312
/*
 * Need this for bootstrapping a per node allocator.
 */
#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
#define	SIZE_AC 1
#define	SIZE_L3 (1 + MAX_NUMNODES)

313 314 315 316
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
317
static int enable_cpucache(struct kmem_cache *cachep);
318
static void cache_reap(struct work_struct *unused);
319

320
/*
A
Andrew Morton 已提交
321 322
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
323
 */
324
static __always_inline int index_of(const size_t size)
325
{
326 327
	extern void __bad_size(void);

328 329 330 331 332 333 334 335 336 337
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
#include "linux/kmalloc_sizes.h"
#undef CACHE
338
		__bad_size();
339
	} else
340
		__bad_size();
341 342 343
	return 0;
}

344 345
static int slab_early_init = 1;

346 347
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
348

P
Pekka Enberg 已提交
349
static void kmem_list3_init(struct kmem_list3 *parent)
350 351 352 353 354 355
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
356
	parent->colour_next = 0;
357 358 359 360 361
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
362 363 364 365
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
366 367
	} while (0)

A
Andrew Morton 已提交
368 369
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
370 371 372 373
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
374 375

/*
376
 * struct kmem_cache
L
Linus Torvalds 已提交
377 378 379
 *
 * manages a cache.
 */
P
Pekka Enberg 已提交
380

381
struct kmem_cache {
L
Linus Torvalds 已提交
382
/* 1) per-cpu data, touched during every alloc/free */
P
Pekka Enberg 已提交
383
	struct array_cache *array[NR_CPUS];
384
/* 2) Cache tunables. Protected by cache_chain_mutex */
P
Pekka Enberg 已提交
385 386 387
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
388

389
	unsigned int buffer_size;
390
	u32 reciprocal_buffer_size;
391 392
/* 3) touched by every alloc & free from the backend */

A
Andrew Morton 已提交
393 394
	unsigned int flags;		/* constant flags */
	unsigned int num;		/* # of objs per slab */
L
Linus Torvalds 已提交
395

396
/* 4) cache_grow/shrink */
L
Linus Torvalds 已提交
397
	/* order of pgs per slab (2^n) */
P
Pekka Enberg 已提交
398
	unsigned int gfporder;
L
Linus Torvalds 已提交
399 400

	/* force GFP flags, e.g. GFP_DMA */
P
Pekka Enberg 已提交
401
	gfp_t gfpflags;
L
Linus Torvalds 已提交
402

A
Andrew Morton 已提交
403
	size_t colour;			/* cache colouring range */
P
Pekka Enberg 已提交
404
	unsigned int colour_off;	/* colour offset */
405
	struct kmem_cache *slabp_cache;
P
Pekka Enberg 已提交
406
	unsigned int slab_size;
A
Andrew Morton 已提交
407
	unsigned int dflags;		/* dynamic flags */
L
Linus Torvalds 已提交
408 409

	/* constructor func */
410
	void (*ctor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
411

412
/* 5) cache creation/removal */
P
Pekka Enberg 已提交
413 414
	const char *name;
	struct list_head next;
L
Linus Torvalds 已提交
415

416
/* 6) statistics */
L
Linus Torvalds 已提交
417
#if STATS
P
Pekka Enberg 已提交
418 419 420 421 422 423 424 425 426
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
427
	unsigned long node_overflow;
P
Pekka Enberg 已提交
428 429 430 431
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
L
Linus Torvalds 已提交
432 433
#endif
#if DEBUG
434 435 436 437 438 439 440 441
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
L
Linus Torvalds 已提交
442
#endif
E
Eric Dumazet 已提交
443 444 445 446 447 448 449 450 451 452 453
	/*
	 * We put nodelists[] at the end of kmem_cache, because we want to size
	 * this array to nr_node_ids slots instead of MAX_NUMNODES
	 * (see kmem_cache_init())
	 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
	 * is statically defined, so we reserve the max number of nodes.
	 */
	struct kmem_list3 *nodelists[MAX_NUMNODES];
	/*
	 * Do not add fields after nodelists[]
	 */
L
Linus Torvalds 已提交
454 455 456 457 458 459
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
460 461 462
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
463
 *
A
Adrian Bunk 已提交
464
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
465 466 467 468 469 470 471 472 473 474
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
475
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
476 477 478 479 480
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
481 482
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
483
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
484
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
485 486 487 488 489
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
490 491 492 493 494 495 496 497 498
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
499
#define	STATS_ADD_REAPED(x,y)	do { } while (0)
L
Linus Torvalds 已提交
500 501 502
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
503
#define	STATS_INC_NODEFREES(x)	do { } while (0)
504
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
505
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
506 507 508 509 510 511 512 513
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
514 515
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
516
 * 0		: objp
517
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
518 519
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
520
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
521
 * 		redzone word.
522 523
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
524 525
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
526
 */
527
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
528
{
529
	return cachep->obj_offset;
L
Linus Torvalds 已提交
530 531
}

532
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
533
{
534
	return cachep->obj_size;
L
Linus Torvalds 已提交
535 536
}

537
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
538 539
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
540 541
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
542 543
}

544
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
545 546 547
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
548 549 550 551 552
		return (unsigned long long *)(objp + cachep->buffer_size -
					      sizeof(unsigned long long) -
					      BYTES_PER_WORD);
	return (unsigned long long *) (objp + cachep->buffer_size -
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
553 554
}

555
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
556 557
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
558
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
559 560 561 562
}

#else

563 564
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
565 566
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
567 568 569 570 571 572 573 574 575 576 577
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
578 579 580 581
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
582
 */
583 584 585 586 587 588 589
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
590
	page = compound_head(page);
591
	BUG_ON(!PageSlab(page));
592 593 594 595 596 597 598 599 600 601
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
602
	BUG_ON(!PageSlab(page));
603 604
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
605

606 607
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
608
	struct page *page = virt_to_head_page(obj);
609 610 611 612 613
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
614
	struct page *page = virt_to_head_page(obj);
615 616 617
	return page_get_slab(page);
}

618 619 620 621 622 623
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

624 625 626 627 628 629 630 631
/*
 * We want to avoid an expensive divide : (offset / cache->buffer_size)
 *   Using the fact that buffer_size is a constant for a particular cache,
 *   we can replace (offset / cache->buffer_size) by
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
632
{
633 634
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
635 636
}

A
Andrew Morton 已提交
637 638 639
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
657
	{NULL,}
L
Linus Torvalds 已提交
658 659 660 661
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
662
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
663
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
664
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
665 666

/* internal cache of cache description objs */
667
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
668 669 670
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
671
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
672
	.name = "kmem_cache",
L
Linus Torvalds 已提交
673 674
};

675 676
#define BAD_ALIEN_MAGIC 0x01020304ul

677 678 679 680 681 682 683 684
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
685 686 687 688
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
689
 */
690 691 692 693
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

static inline void init_lock_keys(void)
694 695 696

{
	int q;
697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
	struct cache_sizes *s = malloc_sizes;

	while (s->cs_size != ULONG_MAX) {
		for_each_node(q) {
			struct array_cache **alc;
			int r;
			struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
			if (!l3 || OFF_SLAB(s->cs_cachep))
				continue;
			lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
			alc = l3->alien;
			/*
			 * FIXME: This check for BAD_ALIEN_MAGIC
			 * should go away when common slab code is taught to
			 * work even without alien caches.
			 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
			 * for alloc_alien_cache,
			 */
			if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
				continue;
			for_each_node(r) {
				if (alc[r])
					lockdep_set_class(&alc[r]->lock,
					     &on_slab_alc_key);
			}
		}
		s++;
724 725 726
	}
}
#else
727
static inline void init_lock_keys(void)
728 729 730 731
{
}
#endif

732 733 734 735
/*
 * 1. Guard access to the cache-chain.
 * 2. Protect sanity of cpu_online_map against cpu hotplug events
 */
I
Ingo Molnar 已提交
736
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
737 738 739 740 741 742 743 744
static struct list_head cache_chain;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
745 746
	PARTIAL_AC,
	PARTIAL_L3,
L
Linus Torvalds 已提交
747 748 749
	FULL
} g_cpucache_up;

750 751 752 753 754 755 756 757
/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up == FULL;
}

758
static DEFINE_PER_CPU(struct delayed_work, reap_work);
L
Linus Torvalds 已提交
759

760
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
761 762 763 764
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
765 766
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
767 768 769 770 771
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
772 773 774
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
775
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
776 777 778 779 780
#endif
	while (size > csizep->cs_size)
		csizep++;

	/*
781
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
782 783 784
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
785
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
786 787
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
788
#endif
L
Linus Torvalds 已提交
789 790 791
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
792
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
793 794 795 796
{
	return __find_general_cachep(size, gfpflags);
}

797
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
798
{
799 800
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
801

A
Andrew Morton 已提交
802 803 804
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
805 806 807 808 809 810 811
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
812

813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
861 862 863 864
}

#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)

A
Andrew Morton 已提交
865 866
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
867 868
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
869
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
870 871 872
	dump_stack();
}

873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
904
		node = first_node(node_online_map);
905

906
	per_cpu(reap_node, cpu) = node;
907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
924 925 926 927 928 929 930 931 932
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
static void __devinit start_cpu_timer(int cpu)
{
933
	struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
L
Linus Torvalds 已提交
934 935 936 937 938 939

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
940
	if (keventd_up() && reap_work->work.func == NULL) {
941
		init_reap_node(cpu);
942
		INIT_DELAYED_WORK(reap_work, cache_reap);
943 944
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
945 946 947
	}
}

948
static struct array_cache *alloc_arraycache(int node, int entries,
P
Pekka Enberg 已提交
949
					    int batchcount)
L
Linus Torvalds 已提交
950
{
P
Pekka Enberg 已提交
951
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
952 953
	struct array_cache *nc = NULL;

954
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
L
Linus Torvalds 已提交
955 956 957 958 959
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
960
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
961 962 963 964
	}
	return nc;
}

965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	to->touched = 1;
	return nr;
}

989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

1014
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
1015 1016 1017 1018 1019 1020 1021
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

1022
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
1023
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
1024

P
Pekka Enberg 已提交
1025
static struct array_cache **alloc_alien_cache(int node, int limit)
1026 1027
{
	struct array_cache **ac_ptr;
1028
	int memsize = sizeof(void *) * nr_node_ids;
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
P
Pekka Enberg 已提交
1042
				for (i--; i <= 0; i--)
1043 1044 1045 1046 1047 1048 1049 1050 1051
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1052
static void free_alien_cache(struct array_cache **ac_ptr)
1053 1054 1055 1056 1057 1058
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1059
	    kfree(ac_ptr[i]);
1060 1061 1062
	kfree(ac_ptr);
}

1063
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1064
				struct array_cache *ac, int node)
1065 1066 1067 1068 1069
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1070 1071 1072 1073 1074
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1075 1076
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1077

1078
		free_block(cachep, ac->entry, ac->avail, node);
1079 1080 1081 1082 1083
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1084 1085 1086 1087 1088 1089 1090 1091 1092
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
	int node = __get_cpu_var(reap_node);

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1093 1094

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1095 1096 1097 1098 1099 1100
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1101 1102
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1103
{
P
Pekka Enberg 已提交
1104
	int i = 0;
1105 1106 1107 1108
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1109
		ac = alien[i];
1110 1111 1112 1113 1114 1115 1116
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1117

1118
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1119 1120 1121 1122 1123
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1124 1125 1126
	int node;

	node = numa_node_id();
1127 1128 1129 1130 1131

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1132
	if (likely(slabp->nodeid == node))
1133 1134
		return 0;

P
Pekka Enberg 已提交
1135
	l3 = cachep->nodelists[node];
1136 1137 1138
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1139
		spin_lock(&alien->lock);
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1153 1154
#endif

1155
static int __cpuinit cpuup_callback(struct notifier_block *nfb,
P
Pekka Enberg 已提交
1156
				    unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
1157 1158
{
	long cpu = (long)hcpu;
1159
	struct kmem_cache *cachep;
1160 1161 1162
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
	int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
1163 1164

	switch (action) {
1165
	case CPU_LOCK_ACQUIRE:
I
Ingo Molnar 已提交
1166
		mutex_lock(&cache_chain_mutex);
1167 1168
		break;
	case CPU_UP_PREPARE:
1169
	case CPU_UP_PREPARE_FROZEN:
A
Andrew Morton 已提交
1170 1171
		/*
		 * We need to do this right in the beginning since
1172 1173 1174 1175 1176
		 * alloc_arraycache's are going to use this list.
		 * kmalloc_node allows us to add the slab to the right
		 * kmem_list3 and not this cpu's kmem_list3
		 */

L
Linus Torvalds 已提交
1177
		list_for_each_entry(cachep, &cache_chain, next) {
A
Andrew Morton 已提交
1178 1179
			/*
			 * Set up the size64 kmemlist for cpu before we can
1180 1181 1182 1183
			 * begin anything. Make sure some other cpu on this
			 * node has not already allocated this
			 */
			if (!cachep->nodelists[node]) {
A
Andrew Morton 已提交
1184 1185
				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
				if (!l3)
1186 1187 1188
					goto bad;
				kmem_list3_init(l3);
				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
1189
				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1190

1191 1192 1193 1194 1195
				/*
				 * The l3s don't come and go as CPUs come and
				 * go.  cache_chain_mutex is sufficient
				 * protection here.
				 */
1196 1197
				cachep->nodelists[node] = l3;
			}
L
Linus Torvalds 已提交
1198

1199 1200
			spin_lock_irq(&cachep->nodelists[node]->list_lock);
			cachep->nodelists[node]->free_limit =
A
Andrew Morton 已提交
1201 1202
				(1 + nr_cpus_node(node)) *
				cachep->batchcount + cachep->num;
1203 1204 1205
			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
		}

A
Andrew Morton 已提交
1206 1207 1208 1209
		/*
		 * Now we can go ahead with allocating the shared arrays and
		 * array caches
		 */
1210
		list_for_each_entry(cachep, &cache_chain, next) {
1211
			struct array_cache *nc;
1212
			struct array_cache *shared = NULL;
1213
			struct array_cache **alien = NULL;
1214

1215
			nc = alloc_arraycache(node, cachep->limit,
1216
						cachep->batchcount);
L
Linus Torvalds 已提交
1217 1218
			if (!nc)
				goto bad;
1219 1220
			if (cachep->shared) {
				shared = alloc_arraycache(node,
1221 1222
					cachep->shared * cachep->batchcount,
					0xbaadf00d);
1223 1224 1225
				if (!shared)
					goto bad;
			}
1226 1227 1228 1229 1230
			if (use_alien_caches) {
                                alien = alloc_alien_cache(node, cachep->limit);
                                if (!alien)
                                        goto bad;
                        }
L
Linus Torvalds 已提交
1231
			cachep->array[cpu] = nc;
1232 1233 1234
			l3 = cachep->nodelists[node];
			BUG_ON(!l3);

1235 1236 1237 1238 1239 1240 1241 1242
			spin_lock_irq(&l3->list_lock);
			if (!l3->shared) {
				/*
				 * We are serialised from CPU_DEAD or
				 * CPU_UP_CANCELLED by the cpucontrol lock
				 */
				l3->shared = shared;
				shared = NULL;
1243
			}
1244 1245 1246 1247 1248 1249 1250 1251 1252
#ifdef CONFIG_NUMA
			if (!l3->alien) {
				l3->alien = alien;
				alien = NULL;
			}
#endif
			spin_unlock_irq(&l3->list_lock);
			kfree(shared);
			free_alien_cache(alien);
L
Linus Torvalds 已提交
1253 1254 1255
		}
		break;
	case CPU_ONLINE:
1256
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1257 1258 1259
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1260
  	case CPU_DOWN_PREPARE:
1261
  	case CPU_DOWN_PREPARE_FROZEN:
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
		/*
		 * Shutdown cache reaper. Note that the cache_chain_mutex is
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
		cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
		/* Now the cache_reaper is guaranteed to be not running. */
		per_cpu(reap_work, cpu).work.func = NULL;
  		break;
  	case CPU_DOWN_FAILED:
1273
  	case CPU_DOWN_FAILED_FROZEN:
1274 1275
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1276
	case CPU_DEAD:
1277
	case CPU_DEAD_FROZEN:
1278 1279 1280 1281 1282 1283 1284 1285
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
L
Linus Torvalds 已提交
1286
		/* fall thru */
1287
#endif
L
Linus Torvalds 已提交
1288
	case CPU_UP_CANCELED:
1289
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
1290 1291
		list_for_each_entry(cachep, &cache_chain, next) {
			struct array_cache *nc;
1292 1293
			struct array_cache *shared;
			struct array_cache **alien;
1294
			cpumask_t mask;
L
Linus Torvalds 已提交
1295

1296
			mask = node_to_cpumask(node);
L
Linus Torvalds 已提交
1297 1298 1299
			/* cpu is dead; no one can alloc from it. */
			nc = cachep->array[cpu];
			cachep->array[cpu] = NULL;
1300 1301 1302
			l3 = cachep->nodelists[node];

			if (!l3)
1303
				goto free_array_cache;
1304

1305
			spin_lock_irq(&l3->list_lock);
1306 1307 1308 1309

			/* Free limit for this kmem_list3 */
			l3->free_limit -= cachep->batchcount;
			if (nc)
1310
				free_block(cachep, nc->entry, nc->avail, node);
1311 1312

			if (!cpus_empty(mask)) {
1313
				spin_unlock_irq(&l3->list_lock);
1314
				goto free_array_cache;
P
Pekka Enberg 已提交
1315
			}
1316

1317 1318
			shared = l3->shared;
			if (shared) {
1319 1320
				free_block(cachep, shared->entry,
					   shared->avail, node);
1321 1322 1323
				l3->shared = NULL;
			}

1324 1325 1326 1327 1328 1329 1330 1331 1332
			alien = l3->alien;
			l3->alien = NULL;

			spin_unlock_irq(&l3->list_lock);

			kfree(shared);
			if (alien) {
				drain_alien_cache(cachep, alien);
				free_alien_cache(alien);
1333
			}
1334
free_array_cache:
L
Linus Torvalds 已提交
1335 1336
			kfree(nc);
		}
1337 1338 1339 1340 1341 1342 1343 1344 1345
		/*
		 * In the previous loop, all the objects were freed to
		 * the respective cache's slabs,  now we can go ahead and
		 * shrink each nodelist to its limit.
		 */
		list_for_each_entry(cachep, &cache_chain, next) {
			l3 = cachep->nodelists[node];
			if (!l3)
				continue;
1346
			drain_freelist(cachep, l3, l3->free_objects);
1347
		}
1348 1349
		break;
	case CPU_LOCK_RELEASE:
I
Ingo Molnar 已提交
1350
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1351 1352 1353
		break;
	}
	return NOTIFY_OK;
A
Andrew Morton 已提交
1354
bad:
L
Linus Torvalds 已提交
1355 1356 1357
	return NOTIFY_BAD;
}

1358 1359 1360
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1361

1362 1363 1364
/*
 * swap the static kmem_list3 with kmalloced memory
 */
A
Andrew Morton 已提交
1365 1366
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
			int nodeid)
1367 1368 1369 1370 1371 1372 1373 1374
{
	struct kmem_list3 *ptr;

	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
	BUG_ON(!ptr);

	local_irq_disable();
	memcpy(ptr, list, sizeof(struct kmem_list3));
1375 1376 1377 1378 1379
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1380 1381 1382 1383 1384
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
	local_irq_enable();
}

A
Andrew Morton 已提交
1385 1386 1387
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1388 1389 1390 1391 1392 1393
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1394
	int i;
1395
	int order;
P
Pekka Enberg 已提交
1396
	int node;
1397

1398 1399 1400
	if (num_possible_nodes() == 1)
		use_alien_caches = 0;

1401 1402 1403 1404 1405
	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
L
Linus Torvalds 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1416 1417 1418
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1419 1420 1421
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1422
	 * 2) Create the first kmalloc cache.
1423
	 *    The struct kmem_cache for the new cache is allocated normally.
1424 1425 1426
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1427 1428
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1429 1430 1431
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1432 1433
	 */

P
Pekka Enberg 已提交
1434 1435
	node = numa_node_id();

L
Linus Torvalds 已提交
1436 1437 1438 1439 1440
	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
P
Pekka Enberg 已提交
1441
	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
L
Linus Torvalds 已提交
1442

E
Eric Dumazet 已提交
1443 1444 1445 1446 1447 1448 1449 1450 1451
	/*
	 * struct kmem_cache size depends on nr_node_ids, which
	 * can be less than MAX_NUMNODES.
	 */
	cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
				 nr_node_ids * sizeof(struct kmem_list3 *);
#if DEBUG
	cache_cache.obj_size = cache_cache.buffer_size;
#endif
A
Andrew Morton 已提交
1452 1453
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
1454 1455
	cache_cache.reciprocal_buffer_size =
		reciprocal_value(cache_cache.buffer_size);
L
Linus Torvalds 已提交
1456

1457 1458 1459 1460 1461 1462
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1463
	BUG_ON(!cache_cache.num);
1464
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1465 1466 1467
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1468 1469 1470 1471 1472

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1473 1474 1475 1476
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1477 1478 1479
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1480 1481 1482 1483
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
1484

A
Andrew Morton 已提交
1485
	if (INDEX_AC != INDEX_L3) {
1486
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1487 1488 1489 1490 1491 1492
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
				NULL, NULL);
	}
1493

1494 1495
	slab_early_init = 0;

L
Linus Torvalds 已提交
1496
	while (sizes->cs_size != ULONG_MAX) {
1497 1498
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1499 1500 1501
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1502 1503
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1504
		if (!sizes->cs_cachep) {
1505
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1506 1507 1508 1509 1510
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
		}
1511 1512 1513
#ifdef CONFIG_ZONE_DMA
		sizes->cs_dmacachep = kmem_cache_create(
					names->name_dma,
A
Andrew Morton 已提交
1514 1515 1516 1517 1518
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
					NULL, NULL);
1519
#endif
L
Linus Torvalds 已提交
1520 1521 1522 1523 1524
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1525
		struct array_cache *ptr;
1526

L
Linus Torvalds 已提交
1527
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1528

L
Linus Torvalds 已提交
1529
		local_irq_disable();
1530 1531
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1532
		       sizeof(struct arraycache_init));
1533 1534 1535 1536 1537
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1538 1539
		cache_cache.array[smp_processor_id()] = ptr;
		local_irq_enable();
1540

L
Linus Torvalds 已提交
1541
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1542

L
Linus Torvalds 已提交
1543
		local_irq_disable();
1544
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1545
		       != &initarray_generic.cache);
1546
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1547
		       sizeof(struct arraycache_init));
1548 1549 1550 1551 1552
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1553
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1554
		    ptr;
L
Linus Torvalds 已提交
1555 1556
		local_irq_enable();
	}
1557 1558
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1559 1560
		int nid;

1561
		/* Replace the static kmem_list3 structures for the boot cpu */
P
Pekka Enberg 已提交
1562
		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
1563

P
Pekka Enberg 已提交
1564
		for_each_online_node(nid) {
1565
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1566
				  &initkmem_list3[SIZE_AC + nid], nid);
1567 1568 1569

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1570
					  &initkmem_list3[SIZE_L3 + nid], nid);
1571 1572 1573
			}
		}
	}
L
Linus Torvalds 已提交
1574

1575
	/* 6) resize the head arrays to their final sizes */
L
Linus Torvalds 已提交
1576
	{
1577
		struct kmem_cache *cachep;
I
Ingo Molnar 已提交
1578
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1579
		list_for_each_entry(cachep, &cache_chain, next)
1580 1581
			if (enable_cpucache(cachep))
				BUG();
I
Ingo Molnar 已提交
1582
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1583 1584
	}

1585 1586 1587 1588
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();


L
Linus Torvalds 已提交
1589 1590 1591
	/* Done! */
	g_cpucache_up = FULL;

A
Andrew Morton 已提交
1592 1593 1594
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1595 1596 1597
	 */
	register_cpu_notifier(&cpucache_notifier);

A
Andrew Morton 已提交
1598 1599 1600
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1601 1602 1603 1604 1605 1606 1607
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1608 1609
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1610
	 */
1611
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1612
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1624
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1625 1626
{
	struct page *page;
1627
	int nr_pages;
L
Linus Torvalds 已提交
1628 1629
	int i;

1630
#ifndef CONFIG_MMU
1631 1632 1633
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1634
	 */
1635
	flags |= __GFP_COMP;
1636
#endif
1637

1638
	flags |= cachep->gfpflags;
1639 1640

	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
L
Linus Torvalds 已提交
1641 1642 1643
	if (!page)
		return NULL;

1644
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1645
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1646 1647 1648 1649 1650
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1651 1652 1653
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
	return page_address(page);
L
Linus Torvalds 已提交
1654 1655 1656 1657 1658
}

/*
 * Interface to system's page release.
 */
1659
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1660
{
P
Pekka Enberg 已提交
1661
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1662 1663 1664
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1665 1666 1667 1668 1669 1670
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1671
	while (i--) {
N
Nick Piggin 已提交
1672 1673
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1674 1675 1676 1677 1678 1679 1680 1681 1682
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1683
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1684
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1685 1686 1687 1688 1689 1690 1691 1692 1693

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1694
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1695
			    unsigned long caller)
L
Linus Torvalds 已提交
1696
{
1697
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1698

1699
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1700

P
Pekka Enberg 已提交
1701
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1702 1703
		return;

P
Pekka Enberg 已提交
1704 1705 1706 1707
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1708 1709 1710 1711 1712 1713 1714
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1715
				*addr++ = svalue;
L
Linus Torvalds 已提交
1716 1717 1718 1719 1720 1721 1722
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1723
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1724 1725 1726
}
#endif

1727
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1728
{
1729 1730
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1731 1732

	memset(addr, val, size);
P
Pekka Enberg 已提交
1733
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1734 1735 1736 1737 1738
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1739 1740 1741
	unsigned char error = 0;
	int bad_count = 0;

L
Linus Torvalds 已提交
1742
	printk(KERN_ERR "%03x:", offset);
D
Dave Jones 已提交
1743 1744 1745 1746 1747
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
P
Pekka Enberg 已提交
1748
		printk(" %02x", (unsigned char)data[offset + i]);
D
Dave Jones 已提交
1749
	}
L
Linus Torvalds 已提交
1750
	printk("\n");
D
Dave Jones 已提交
1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1765 1766 1767 1768 1769
}
#endif

#if DEBUG

1770
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1771 1772 1773 1774 1775
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1776
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1777 1778
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1779 1780 1781 1782
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1783
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1784
		print_symbol("(%s)",
A
Andrew Morton 已提交
1785
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1786 1787
		printk("\n");
	}
1788 1789
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1790
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1791 1792
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1793 1794
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1795 1796 1797 1798
		dump_line(realobj, i, limit);
	}
}

1799
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1800 1801 1802 1803 1804
{
	char *realobj;
	int size, i;
	int lines = 0;

1805 1806
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1807

P
Pekka Enberg 已提交
1808
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1809
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1810
		if (i == size - 1)
L
Linus Torvalds 已提交
1811 1812 1813 1814 1815 1816
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1817
				printk(KERN_ERR
1818 1819
					"Slab corruption: %s start=%p, len=%d\n",
					cachep->name, realobj, size);
L
Linus Torvalds 已提交
1820 1821 1822
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1823
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1824
			limit = 16;
P
Pekka Enberg 已提交
1825 1826
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1839
		struct slab *slabp = virt_to_slab(objp);
1840
		unsigned int objnr;
L
Linus Torvalds 已提交
1841

1842
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1843
		if (objnr) {
1844
			objp = index_to_obj(cachep, slabp, objnr - 1);
1845
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1846
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1847
			       realobj, size);
L
Linus Torvalds 已提交
1848 1849
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1850
		if (objnr + 1 < cachep->num) {
1851
			objp = index_to_obj(cachep, slabp, objnr + 1);
1852
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1853
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1854
			       realobj, size);
L
Linus Torvalds 已提交
1855 1856 1857 1858 1859 1860
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1861 1862
#if DEBUG
/**
1863 1864 1865 1866 1867 1868
 * slab_destroy_objs - destroy a slab and its objects
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
 * Call the registered destructor for each object in a slab that is being
 * destroyed.
L
Linus Torvalds 已提交
1869
 */
1870
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1871 1872 1873
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1874
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1875 1876 1877

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1878 1879
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1880
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1881
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1882 1883 1884 1885 1886 1887 1888 1889 1890
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1891
					   "was overwritten");
L
Linus Torvalds 已提交
1892 1893
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1894
					   "was overwritten");
L
Linus Torvalds 已提交
1895 1896
		}
	}
1897
}
L
Linus Torvalds 已提交
1898
#else
1899
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1900 1901
{
}
L
Linus Torvalds 已提交
1902 1903
#endif

1904 1905 1906 1907 1908
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1909
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1910 1911
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1912
 */
1913
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1914 1915 1916 1917
{
	void *addr = slabp->s_mem - slabp->colouroff;

	slab_destroy_objs(cachep, slabp);
L
Linus Torvalds 已提交
1918 1919 1920
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1921
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1922 1923 1924 1925 1926
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
1927 1928
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
1929 1930 1931
	}
}

A
Andrew Morton 已提交
1932 1933 1934 1935
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
1936
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1937 1938 1939 1940
{
	int node;

	for_each_online_node(node) {
P
Pekka Enberg 已提交
1941
		cachep->nodelists[node] = &initkmem_list3[index + node];
1942
		cachep->nodelists[node]->next_reap = jiffies +
P
Pekka Enberg 已提交
1943 1944
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1945 1946 1947
	}
}

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


1969
/**
1970 1971 1972 1973 1974 1975 1976
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1977 1978 1979 1980 1981
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1982
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
1983
			size_t size, size_t align, unsigned long flags)
1984
{
1985
	unsigned long offslab_limit;
1986
	size_t left_over = 0;
1987
	int gfporder;
1988

1989
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1990 1991 1992
		unsigned int num;
		size_t remainder;

1993
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1994 1995
		if (!num)
			continue;
1996

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2009

2010
		/* Found something acceptable - save it away */
2011
		cachep->num = num;
2012
		cachep->gfporder = gfporder;
2013 2014
		left_over = remainder;

2015 2016 2017 2018 2019 2020 2021 2022
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2023 2024 2025 2026
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2027
		if (gfporder >= slab_break_gfp_order)
2028 2029
			break;

2030 2031 2032
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2033
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2034 2035 2036 2037 2038
			break;
	}
	return left_over;
}

2039
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
2040
{
2041 2042 2043
	if (g_cpucache_up == FULL)
		return enable_cpucache(cachep);

2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
			for_each_online_node(node) {
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
						GFP_KERNEL, node);
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
	cachep->nodelists[numa_node_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2090
	return 0;
2091 2092
}

L
Linus Torvalds 已提交
2093 2094 2095 2096 2097 2098 2099
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
2100
 * @dtor: A destructor for the objects (not implemented anymore).
L
Linus Torvalds 已提交
2101 2102 2103 2104 2105 2106 2107
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache
 * and the @dtor is run before the pages are handed back.
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
2108 2109
 * the module calling this has to destroy the cache before getting unloaded.
 *
L
Linus Torvalds 已提交
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2122
struct kmem_cache *
L
Linus Torvalds 已提交
2123
kmem_cache_create (const char *name, size_t size, size_t align,
A
Andrew Morton 已提交
2124 2125
	unsigned long flags,
	void (*ctor)(void*, struct kmem_cache *, unsigned long),
2126
	void (*dtor)(void*, struct kmem_cache *, unsigned long))
L
Linus Torvalds 已提交
2127 2128
{
	size_t left_over, slab_size, ralign;
2129
	struct kmem_cache *cachep = NULL, *pc;
L
Linus Torvalds 已提交
2130 2131 2132 2133

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
2134
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2135
	    size > KMALLOC_MAX_SIZE || dtor) {
A
Andrew Morton 已提交
2136 2137
		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
				name);
P
Pekka Enberg 已提交
2138 2139
		BUG();
	}
L
Linus Torvalds 已提交
2140

2141
	/*
2142 2143
	 * We use cache_chain_mutex to ensure a consistent view of
	 * cpu_online_map as well.  Please see cpuup_callback
2144
	 */
I
Ingo Molnar 已提交
2145
	mutex_lock(&cache_chain_mutex);
2146

2147
	list_for_each_entry(pc, &cache_chain, next) {
2148 2149 2150 2151 2152 2153 2154 2155
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
2156
		res = probe_kernel_address(pc->name, tmp);
2157
		if (res) {
2158 2159
			printk(KERN_ERR
			       "SLAB: cache with size %d has lost its name\n",
2160
			       pc->buffer_size);
2161 2162 2163
			continue;
		}

P
Pekka Enberg 已提交
2164
		if (!strcmp(pc->name, name)) {
2165 2166
			printk(KERN_ERR
			       "kmem_cache_create: duplicate cache %s\n", name);
2167 2168 2169 2170 2171
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
2172 2173 2174 2175 2176 2177 2178 2179 2180
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
A
Andrew Morton 已提交
2181
	if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
P
Pekka Enberg 已提交
2182
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2183 2184 2185 2186 2187 2188 2189
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	/*
A
Andrew Morton 已提交
2190 2191
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2192
	 */
2193
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2194

A
Andrew Morton 已提交
2195 2196
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2197 2198 2199
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2200 2201 2202
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2203 2204
	}

A
Andrew Morton 已提交
2205 2206
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2207 2208
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2209 2210 2211 2212
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2213 2214
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2215
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2216 2217 2218 2219
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2220 2221 2222 2223 2224 2225 2226

	/*
	 * Redzoning and user store require word alignment. Note this will be
	 * overridden by architecture or caller mandated alignment if either
	 * is greater than BYTES_PER_WORD.
	 */
	if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2227
		ralign = __alignof__(unsigned long long);
2228

2229
	/* 2) arch mandated alignment */
L
Linus Torvalds 已提交
2230 2231 2232
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2233
	/* 3) caller mandated alignment */
L
Linus Torvalds 已提交
2234 2235 2236
	if (ralign < align) {
		ralign = align;
	}
2237
	/* disable debug if necessary */
2238
	if (ralign > __alignof__(unsigned long long))
2239
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2240
	/*
2241
	 * 4) Store it.
L
Linus Torvalds 已提交
2242 2243 2244 2245
	 */
	align = ralign;

	/* Get cache's description obj. */
2246
	cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
L
Linus Torvalds 已提交
2247
	if (!cachep)
2248
		goto oops;
L
Linus Torvalds 已提交
2249 2250

#if DEBUG
2251
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2252

2253 2254 2255 2256
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2257 2258
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2259 2260
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2261 2262
	}
	if (flags & SLAB_STORE_USER) {
2263 2264
		/* user store requires one word storage behind the end of
		 * the real object.
L
Linus Torvalds 已提交
2265 2266 2267 2268
		 */
		size += BYTES_PER_WORD;
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2269
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2270 2271
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
2272 2273 2274 2275 2276
		size = PAGE_SIZE;
	}
#endif
#endif

2277 2278 2279 2280 2281 2282
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
	 * it too early on.)
	 */
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
L
Linus Torvalds 已提交
2283 2284 2285 2286 2287 2288 2289 2290
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2291
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2292 2293

	if (!cachep->num) {
2294 2295
		printk(KERN_ERR
		       "kmem_cache_create: couldn't create cache %s.\n", name);
L
Linus Torvalds 已提交
2296 2297
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2298
		goto oops;
L
Linus Torvalds 已提交
2299
	}
P
Pekka Enberg 已提交
2300 2301
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2314 2315
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
L
Linus Torvalds 已提交
2316 2317 2318 2319 2320 2321
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2322
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2323 2324 2325
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
2326
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
L
Linus Torvalds 已提交
2327
		cachep->gfpflags |= GFP_DMA;
2328
	cachep->buffer_size = size;
2329
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2330

2331
	if (flags & CFLGS_OFF_SLAB) {
2332
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2333 2334 2335 2336 2337 2338 2339 2340 2341
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
		BUG_ON(!cachep->slabp_cache);
	}
L
Linus Torvalds 已提交
2342 2343 2344
	cachep->ctor = ctor;
	cachep->name = name;

2345 2346 2347 2348 2349
	if (setup_cpu_cache(cachep)) {
		__kmem_cache_destroy(cachep);
		cachep = NULL;
		goto oops;
	}
L
Linus Torvalds 已提交
2350 2351 2352

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2353
oops:
L
Linus Torvalds 已提交
2354 2355
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2356
		      name);
I
Ingo Molnar 已提交
2357
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2373
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2374 2375 2376
{
#ifdef CONFIG_SMP
	check_irq_off();
2377
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2378 2379
#endif
}
2380

2381
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2382 2383 2384 2385 2386 2387 2388
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2389 2390 2391 2392
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2393
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2394 2395
#endif

2396 2397 2398 2399
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2400 2401
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2402
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2403
	struct array_cache *ac;
2404
	int node = numa_node_id();
L
Linus Torvalds 已提交
2405 2406

	check_irq_off();
2407
	ac = cpu_cache_get(cachep);
2408 2409 2410
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2411 2412 2413
	ac->avail = 0;
}

2414
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2415
{
2416 2417 2418
	struct kmem_list3 *l3;
	int node;

A
Andrew Morton 已提交
2419
	on_each_cpu(do_drain, cachep, 1, 1);
L
Linus Torvalds 已提交
2420
	check_irq_on();
P
Pekka Enberg 已提交
2421
	for_each_online_node(node) {
2422
		l3 = cachep->nodelists[node];
2423 2424 2425 2426 2427 2428 2429
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2430
			drain_array(cachep, l3, l3->shared, 1, node);
2431
	}
L
Linus Torvalds 已提交
2432 2433
}

2434 2435 2436 2437 2438 2439 2440 2441
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2442
{
2443 2444
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2445 2446
	struct slab *slabp;

2447 2448
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2449

2450
		spin_lock_irq(&l3->list_lock);
2451
		p = l3->slabs_free.prev;
2452 2453 2454 2455
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2456

2457
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2458
#if DEBUG
2459
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2460 2461
#endif
		list_del(&slabp->list);
2462 2463 2464 2465 2466
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2467
		spin_unlock_irq(&l3->list_lock);
2468 2469
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2470
	}
2471 2472
out:
	return nr_freed;
L
Linus Torvalds 已提交
2473 2474
}

2475
/* Called with cache_chain_mutex held to protect against cpu hotplug */
2476
static int __cache_shrink(struct kmem_cache *cachep)
2477 2478 2479 2480 2481 2482 2483 2484 2485
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2486 2487 2488 2489 2490 2491 2492
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2493 2494 2495 2496
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2497 2498 2499 2500 2501 2502 2503
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2504
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2505
{
2506
	int ret;
2507
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2508

2509 2510 2511 2512
	mutex_lock(&cache_chain_mutex);
	ret = __cache_shrink(cachep);
	mutex_unlock(&cache_chain_mutex);
	return ret;
L
Linus Torvalds 已提交
2513 2514 2515 2516 2517 2518 2519
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2520
 * Remove a &struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2532
void kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2533
{
2534
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2535 2536

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
2537
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2538 2539 2540 2541 2542 2543
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
P
Pekka Enberg 已提交
2544
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2545
		mutex_unlock(&cache_chain_mutex);
2546
		return;
L
Linus Torvalds 已提交
2547 2548 2549
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2550
		synchronize_rcu();
L
Linus Torvalds 已提交
2551

2552
	__kmem_cache_destroy(cachep);
2553
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2554 2555 2556
}
EXPORT_SYMBOL(kmem_cache_destroy);

2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2568
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2569 2570
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2571 2572
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2573

L
Linus Torvalds 已提交
2574 2575
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2576
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2577
					      local_flags & ~GFP_THISNODE, nodeid);
L
Linus Torvalds 已提交
2578 2579 2580
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2581
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2582 2583 2584 2585
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2586
	slabp->s_mem = objp + colour_off;
2587
	slabp->nodeid = nodeid;
L
Linus Torvalds 已提交
2588 2589 2590 2591 2592
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2593
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2594 2595
}

2596
static void cache_init_objs(struct kmem_cache *cachep,
C
Christoph Lameter 已提交
2597
			    struct slab *slabp)
L
Linus Torvalds 已提交
2598 2599 2600 2601
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2602
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2615 2616 2617
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2618 2619
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2620
			cachep->ctor(objp + obj_offset(cachep), cachep,
C
Christoph Lameter 已提交
2621
				     0);
L
Linus Torvalds 已提交
2622 2623 2624 2625

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2626
					   " end of an object");
L
Linus Torvalds 已提交
2627 2628
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2629
					   " start of an object");
L
Linus Torvalds 已提交
2630
		}
A
Andrew Morton 已提交
2631 2632
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2633
			kernel_map_pages(virt_to_page(objp),
2634
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2635 2636
#else
		if (cachep->ctor)
C
Christoph Lameter 已提交
2637
			cachep->ctor(objp, cachep, 0);
L
Linus Torvalds 已提交
2638
#endif
P
Pekka Enberg 已提交
2639
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2640
	}
P
Pekka Enberg 已提交
2641
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2642 2643 2644
	slabp->free = 0;
}

2645
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2646
{
2647 2648 2649 2650 2651 2652
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
			BUG_ON(!(cachep->gfpflags & GFP_DMA));
		else
			BUG_ON(cachep->gfpflags & GFP_DMA);
	}
L
Linus Torvalds 已提交
2653 2654
}

A
Andrew Morton 已提交
2655 2656
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2657
{
2658
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2672 2673
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2674
{
2675
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2676 2677 2678 2679 2680

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2681
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2682
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2683
				"'%s', objp %p\n", cachep->name, objp);
2684 2685 2686 2687 2688 2689 2690 2691
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2692 2693 2694 2695 2696 2697 2698
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2699
{
2700
	int nr_pages;
L
Linus Torvalds 已提交
2701 2702
	struct page *page;

2703
	page = virt_to_page(addr);
2704

2705
	nr_pages = 1;
2706
	if (likely(!PageCompound(page)))
2707 2708
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2709
	do {
2710 2711
		page_set_cache(page, cache);
		page_set_slab(page, slab);
L
Linus Torvalds 已提交
2712
		page++;
2713
	} while (--nr_pages);
L
Linus Torvalds 已提交
2714 2715 2716 2717 2718 2719
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2720 2721
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2722
{
P
Pekka Enberg 已提交
2723 2724 2725
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
2726
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2727

A
Andrew Morton 已提交
2728 2729 2730
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2731
	 */
2732
	BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
L
Linus Torvalds 已提交
2733

2734
	local_flags = (flags & GFP_LEVEL_MASK);
2735
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2736
	check_irq_off();
2737 2738
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2739 2740

	/* Get colour for the slab, and cal the next value. */
2741 2742 2743 2744 2745
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2746

2747
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2760 2761 2762
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2763
	 */
2764 2765
	if (!objp)
		objp = kmem_getpages(cachep, flags, nodeid);
A
Andrew Morton 已提交
2766
	if (!objp)
L
Linus Torvalds 已提交
2767 2768 2769
		goto failed;

	/* Get slab management. */
2770 2771
	slabp = alloc_slabmgmt(cachep, objp, offset,
			local_flags & ~GFP_THISNODE, nodeid);
A
Andrew Morton 已提交
2772
	if (!slabp)
L
Linus Torvalds 已提交
2773 2774
		goto opps1;

2775
	slabp->nodeid = nodeid;
2776
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2777

C
Christoph Lameter 已提交
2778
	cache_init_objs(cachep, slabp);
L
Linus Torvalds 已提交
2779 2780 2781 2782

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2783
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2784 2785

	/* Make slab active. */
2786
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2787
	STATS_INC_GROWN(cachep);
2788 2789
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2790
	return 1;
A
Andrew Morton 已提交
2791
opps1:
L
Linus Torvalds 已提交
2792
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2793
failed:
L
Linus Torvalds 已提交
2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2810 2811
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2812 2813 2814
	}
}

2815 2816
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2817
	unsigned long long redzone1, redzone2;
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2833
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2834 2835 2836
			obj, redzone1, redzone2);
}

2837
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2838
				   void *caller)
L
Linus Torvalds 已提交
2839 2840 2841 2842 2843
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2844
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2845
	kfree_debugcheck(objp);
2846
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2847

2848
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2849 2850

	if (cachep->flags & SLAB_RED_ZONE) {
2851
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2852 2853 2854 2855 2856 2857
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2858
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2859 2860

	BUG_ON(objnr >= cachep->num);
2861
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2862

2863 2864 2865
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2866 2867
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
2868
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2869
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2870
			kernel_map_pages(virt_to_page(objp),
2871
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2882
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2883 2884 2885
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2886

L
Linus Torvalds 已提交
2887 2888 2889 2890 2891 2892 2893
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2894 2895 2896 2897
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
2898
		for (i = 0;
2899
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2900
		     i++) {
A
Andrew Morton 已提交
2901
			if (i % 16 == 0)
L
Linus Torvalds 已提交
2902
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2903
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2915
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2916 2917 2918 2919
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
2920 2921 2922
	int node;

	node = numa_node_id();
L
Linus Torvalds 已提交
2923 2924

	check_irq_off();
2925
	ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
2926
retry:
L
Linus Torvalds 已提交
2927 2928
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2929 2930 2931 2932
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2933 2934 2935
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
2936
	l3 = cachep->nodelists[node];
2937 2938 2939

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2940

2941 2942 2943 2944
	/* See if we can refill from the shared array */
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
		goto alloc_done;

L
Linus Torvalds 已提交
2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
2960 2961 2962 2963 2964 2965 2966 2967

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
		BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);

L
Linus Torvalds 已提交
2968 2969 2970 2971 2972
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2973
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
P
Pekka Enberg 已提交
2974
							    node);
L
Linus Torvalds 已提交
2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
2986
must_grow:
L
Linus Torvalds 已提交
2987
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
2988
alloc_done:
2989
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2990 2991 2992

	if (unlikely(!ac->avail)) {
		int x;
2993
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2994

A
Andrew Morton 已提交
2995
		/* cache_grow can reenable interrupts, then ac could change. */
2996
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
2997
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
2998 2999
			return NULL;

A
Andrew Morton 已提交
3000
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3001 3002 3003
			goto retry;
	}
	ac->touched = 1;
3004
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3005 3006
}

A
Andrew Morton 已提交
3007 3008
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3009 3010 3011 3012 3013 3014 3015 3016
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3017 3018
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
3019
{
P
Pekka Enberg 已提交
3020
	if (!objp)
L
Linus Torvalds 已提交
3021
		return objp;
P
Pekka Enberg 已提交
3022
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3023
#ifdef CONFIG_DEBUG_PAGEALLOC
3024
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3025
			kernel_map_pages(virt_to_page(objp),
3026
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3038 3039 3040 3041
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3042
			printk(KERN_ERR
3043
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3044 3045
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3046 3047 3048 3049
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3050 3051 3052 3053 3054
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

3055
		slabp = page_get_slab(virt_to_head_page(objp));
3056 3057 3058 3059
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3060
	objp += obj_offset(cachep);
3061
	if (cachep->ctor && cachep->flags & SLAB_POISON)
C
Christoph Lameter 已提交
3062
		cachep->ctor(objp, cachep, 0);
3063 3064 3065 3066 3067 3068
#if ARCH_SLAB_MINALIGN
	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
		       objp, ARCH_SLAB_MINALIGN);
	}
#endif
L
Linus Torvalds 已提交
3069 3070 3071 3072 3073 3074
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
#ifdef CONFIG_FAILSLAB

static struct failslab_attr {

	struct fault_attr attr;

	u32 ignore_gfp_wait;
#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
	struct dentry *ignore_gfp_wait_file;
#endif

} failslab = {
	.attr = FAULT_ATTR_INITIALIZER,
3088
	.ignore_gfp_wait = 1,
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116
};

static int __init setup_failslab(char *str)
{
	return setup_fault_attr(&failslab.attr, str);
}
__setup("failslab=", setup_failslab);

static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
{
	if (cachep == &cache_cache)
		return 0;
	if (flags & __GFP_NOFAIL)
		return 0;
	if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
		return 0;

	return should_fail(&failslab.attr, obj_size(cachep));
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init failslab_debugfs(void)
{
	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
	struct dentry *dir;
	int err;

3117
	err = init_fault_attr_dentries(&failslab.attr, "failslab");
3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147
	if (err)
		return err;
	dir = failslab.attr.dentries.dir;

	failslab.ignore_gfp_wait_file =
		debugfs_create_bool("ignore-gfp-wait", mode, dir,
				      &failslab.ignore_gfp_wait);

	if (!failslab.ignore_gfp_wait_file) {
		err = -ENOMEM;
		debugfs_remove(failslab.ignore_gfp_wait_file);
		cleanup_fault_attr_dentries(&failslab.attr);
	}

	return err;
}

late_initcall(failslab_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAILSLAB */

static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
{
	return 0;
}

#endif /* CONFIG_FAILSLAB */

3148
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3149
{
P
Pekka Enberg 已提交
3150
	void *objp;
L
Linus Torvalds 已提交
3151 3152
	struct array_cache *ac;

3153
	check_irq_off();
3154

3155
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3156 3157 3158
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
3159
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3160 3161 3162 3163
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
3164 3165 3166
	return objp;
}

3167
#ifdef CONFIG_NUMA
3168
/*
3169
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3170 3171 3172 3173 3174 3175 3176 3177
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3178
	if (in_interrupt() || (flags & __GFP_THISNODE))
3179 3180 3181 3182 3183 3184 3185
		return NULL;
	nid_alloc = nid_here = numa_node_id();
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
		nid_alloc = cpuset_mem_spread_node();
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
	if (nid_alloc != nid_here)
3186
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3187 3188 3189
	return NULL;
}

3190 3191
/*
 * Fallback function if there was no memory available and no objects on a
3192 3193 3194 3195 3196
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3197
 */
3198
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3199
{
3200 3201
	struct zonelist *zonelist;
	gfp_t local_flags;
3202 3203
	struct zone **z;
	void *obj = NULL;
3204
	int nid;
3205 3206 3207 3208 3209 3210 3211

	if (flags & __GFP_THISNODE)
		return NULL;

	zonelist = &NODE_DATA(slab_node(current->mempolicy))
			->node_zonelists[gfp_zone(flags)];
	local_flags = (flags & GFP_LEVEL_MASK);
3212

3213 3214 3215 3216 3217
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3218
	for (z = zonelist->zones; *z && !obj; z++) {
3219
		nid = zone_to_nid(*z);
3220

3221
		if (cpuset_zone_allowed_hardwall(*z, flags) &&
3222 3223 3224 3225 3226 3227
			cache->nodelists[nid] &&
			cache->nodelists[nid]->free_objects)
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
	}

3228
	if (!obj) {
3229 3230 3231 3232 3233 3234
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3235 3236 3237
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3238
		obj = kmem_getpages(cache, flags, -1);
3239 3240
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3257
				/* cache_grow already freed obj */
3258 3259 3260
				obj = NULL;
			}
		}
3261
	}
3262 3263 3264
	return obj;
}

3265 3266
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3267
 */
3268
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3269
				int nodeid)
3270 3271
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3272 3273 3274 3275 3276 3277 3278 3279
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3280
retry:
3281
	check_irq_off();
P
Pekka Enberg 已提交
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3301
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3302 3303 3304 3305 3306
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3307
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3308
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3309
	else
P
Pekka Enberg 已提交
3310
		list_add(&slabp->list, &l3->slabs_partial);
3311

P
Pekka Enberg 已提交
3312 3313
	spin_unlock(&l3->list_lock);
	goto done;
3314

A
Andrew Morton 已提交
3315
must_grow:
P
Pekka Enberg 已提交
3316
	spin_unlock(&l3->list_lock);
3317
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3318 3319
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3320

3321
	return fallback_alloc(cachep, flags);
3322

A
Andrew Morton 已提交
3323
done:
P
Pekka Enberg 已提交
3324
	return obj;
3325
}
3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
		   void *caller)
{
	unsigned long save_flags;
	void *ptr;

3346 3347 3348
	if (should_failslab(cachep, flags))
		return NULL;

3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

	if (unlikely(nodeid == -1))
		nodeid = numa_node_id();

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

	if (nodeid == numa_node_id()) {
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);

	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
 	if (!objp)
 		objp = ____cache_alloc_node(cache, flags, numa_node_id());

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
{
	unsigned long save_flags;
	void *objp;

3419 3420 3421
	if (should_failslab(cachep, flags))
		return NULL;

3422 3423 3424 3425 3426 3427 3428 3429 3430
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
	prefetchw(objp);

	return objp;
}
3431 3432 3433 3434

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3435
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3436
		       int node)
L
Linus Torvalds 已提交
3437 3438
{
	int i;
3439
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3440 3441 3442 3443 3444

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3445
		slabp = virt_to_slab(objp);
3446
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3447
		list_del(&slabp->list);
3448
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3449
		check_slabp(cachep, slabp);
3450
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3451
		STATS_DEC_ACTIVE(cachep);
3452
		l3->free_objects++;
L
Linus Torvalds 已提交
3453 3454 3455 3456
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3457 3458
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3459 3460 3461 3462 3463 3464
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3465 3466
				slab_destroy(cachep, slabp);
			} else {
3467
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3468 3469 3470 3471 3472 3473
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3474
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3475 3476 3477 3478
		}
	}
}

3479
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3480 3481
{
	int batchcount;
3482
	struct kmem_list3 *l3;
3483
	int node = numa_node_id();
L
Linus Torvalds 已提交
3484 3485 3486 3487 3488 3489

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3490
	l3 = cachep->nodelists[node];
3491
	spin_lock(&l3->list_lock);
3492 3493
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3494
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3495 3496 3497
		if (max) {
			if (batchcount > max)
				batchcount = max;
3498
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3499
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3500 3501 3502 3503 3504
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3505
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3506
free_done:
L
Linus Torvalds 已提交
3507 3508 3509 3510 3511
#if STATS
	{
		int i = 0;
		struct list_head *p;

3512 3513
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3525
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3526
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3527
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3528 3529 3530
}

/*
A
Andrew Morton 已提交
3531 3532
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3533
 */
3534
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3535
{
3536
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3537 3538 3539 3540

	check_irq_off();
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

3541
	if (cache_free_alien(cachep, objp))
3542 3543
		return;

L
Linus Torvalds 已提交
3544 3545
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3546
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3547 3548 3549 3550
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3551
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3563
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3564
{
3565
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3566 3567 3568
}
EXPORT_SYMBOL(kmem_cache_alloc);

3569
/**
3570
 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
 * @cache: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache and set the allocated memory to zero.
 * The flags are only relevant if the cache has no available objects.
 */
void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
{
	void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
	if (ret)
		memset(ret, 0, obj_size(cache));
	return ret;
}
EXPORT_SYMBOL(kmem_cache_zalloc);

L
Linus Torvalds 已提交
3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
/**
 * kmem_ptr_validate - check if an untrusted pointer might
 *	be a slab entry.
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
 * This verifies that the untrusted pointer looks sane:
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3600
int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
L
Linus Torvalds 已提交
3601
{
P
Pekka Enberg 已提交
3602
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
3603
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
3604
	unsigned long align_mask = BYTES_PER_WORD - 1;
3605
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3621
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3622 3623
		goto out;
	return 1;
A
Andrew Morton 已提交
3624
out:
L
Linus Torvalds 已提交
3625 3626 3627 3628
	return 0;
}

#ifdef CONFIG_NUMA
3629 3630 3631 3632 3633
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
	return __cache_alloc_node(cachep, flags, nodeid,
			__builtin_return_address(0));
}
L
Linus Torvalds 已提交
3634 3635
EXPORT_SYMBOL(kmem_cache_alloc_node);

3636 3637
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3638
{
3639
	struct kmem_cache *cachep;
3640 3641 3642 3643 3644 3645

	cachep = kmem_find_general_cachep(size, flags);
	if (unlikely(cachep == NULL))
		return NULL;
	return kmem_cache_alloc_node(cachep, flags, node);
}
3646 3647 3648 3649 3650 3651 3652

#ifdef CONFIG_DEBUG_SLAB
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node,
			__builtin_return_address(0));
}
3653
EXPORT_SYMBOL(__kmalloc_node);
3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
		int node, void *caller)
{
	return __do_kmalloc_node(size, flags, node, caller);
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node, NULL);
}
EXPORT_SYMBOL(__kmalloc_node);
#endif /* CONFIG_DEBUG_SLAB */
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3669 3670

/**
3671
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3672
 * @size: how many bytes of memory are required.
3673
 * @flags: the type of memory to allocate (see kmalloc).
3674
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3675
 */
3676 3677
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3678
{
3679
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3680

3681 3682 3683 3684 3685 3686
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3687 3688
	if (unlikely(cachep == NULL))
		return NULL;
3689 3690 3691 3692
	return __cache_alloc(cachep, flags, caller);
}


3693
#ifdef CONFIG_DEBUG_SLAB
3694 3695
void *__kmalloc(size_t size, gfp_t flags)
{
3696
	return __do_kmalloc(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3697 3698 3699
}
EXPORT_SYMBOL(__kmalloc);

3700 3701 3702 3703 3704
void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
{
	return __do_kmalloc(size, flags, caller);
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3705 3706 3707 3708 3709 3710 3711

#else
void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
3712 3713
#endif

P
Pekka Enberg 已提交
3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
/**
 * krealloc - reallocate memory. The contents will remain unchanged.
 * @p: object to reallocate memory for.
 * @new_size: how many bytes of memory are required.
 * @flags: the type of memory to allocate.
 *
 * The contents of the object pointed to are preserved up to the
 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
 * behaves exactly like kmalloc().  If @size is 0 and @p is not a
 * %NULL pointer, the object pointed to is freed.
 */
void *krealloc(const void *p, size_t new_size, gfp_t flags)
{
	struct kmem_cache *cache, *new_cache;
	void *ret;

	if (unlikely(!p))
		return kmalloc_track_caller(new_size, flags);

	if (unlikely(!new_size)) {
		kfree(p);
		return NULL;
	}

	cache = virt_to_cache(p);
	new_cache = __find_general_cachep(new_size, flags);

	/*
 	 * If new size fits in the current cache, bail out.
 	 */
	if (likely(cache == new_cache))
		return (void *)p;

	/*
 	 * We are on the slow-path here so do not use __cache_alloc
 	 * because it bloats kernel text.
 	 */
	ret = kmalloc_track_caller(new_size, flags);
	if (ret) {
		memcpy(ret, p, min(new_size, ksize(p)));
		kfree(p);
	}
	return ret;
}
EXPORT_SYMBOL(krealloc);

L
Linus Torvalds 已提交
3760 3761 3762 3763 3764 3765 3766 3767
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3768
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3769 3770 3771
{
	unsigned long flags;

3772 3773
	BUG_ON(virt_to_cache(objp) != cachep);

L
Linus Torvalds 已提交
3774
	local_irq_save(flags);
3775
	debug_check_no_locks_freed(objp, obj_size(cachep));
3776
	__cache_free(cachep, objp);
L
Linus Torvalds 已提交
3777 3778 3779 3780 3781 3782 3783 3784
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3785 3786
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3787 3788 3789 3790 3791
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3792
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3793 3794 3795 3796 3797 3798
	unsigned long flags;

	if (unlikely(!objp))
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3799
	c = virt_to_cache(objp);
3800
	debug_check_no_locks_freed(objp, obj_size(c));
3801
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3802 3803 3804 3805
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3806
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3807
{
3808
	return obj_size(cachep);
L
Linus Torvalds 已提交
3809 3810 3811
}
EXPORT_SYMBOL(kmem_cache_size);

3812
const char *kmem_cache_name(struct kmem_cache *cachep)
3813 3814 3815 3816 3817
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3818
/*
3819
 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3820
 */
3821
static int alloc_kmemlist(struct kmem_cache *cachep)
3822 3823 3824
{
	int node;
	struct kmem_list3 *l3;
3825
	struct array_cache *new_shared;
3826
	struct array_cache **new_alien = NULL;
3827 3828

	for_each_online_node(node) {
3829

3830 3831 3832 3833 3834
                if (use_alien_caches) {
                        new_alien = alloc_alien_cache(node, cachep->limit);
                        if (!new_alien)
                                goto fail;
                }
3835

3836 3837 3838
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3839
				cachep->shared*cachep->batchcount,
A
Andrew Morton 已提交
3840
					0xbaadf00d);
3841 3842 3843 3844
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3845
		}
3846

A
Andrew Morton 已提交
3847 3848
		l3 = cachep->nodelists[node];
		if (l3) {
3849 3850
			struct array_cache *shared = l3->shared;

3851 3852
			spin_lock_irq(&l3->list_lock);

3853
			if (shared)
3854 3855
				free_block(cachep, shared->entry,
						shared->avail, node);
3856

3857 3858
			l3->shared = new_shared;
			if (!l3->alien) {
3859 3860 3861
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3862
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3863
					cachep->batchcount + cachep->num;
3864
			spin_unlock_irq(&l3->list_lock);
3865
			kfree(shared);
3866 3867 3868
			free_alien_cache(new_alien);
			continue;
		}
A
Andrew Morton 已提交
3869
		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3870 3871 3872
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3873
			goto fail;
3874
		}
3875 3876 3877

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3878
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3879
		l3->shared = new_shared;
3880
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3881
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3882
					cachep->batchcount + cachep->num;
3883 3884
		cachep->nodelists[node] = l3;
	}
3885
	return 0;
3886

A
Andrew Morton 已提交
3887
fail:
3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3903
	return -ENOMEM;
3904 3905
}

L
Linus Torvalds 已提交
3906
struct ccupdate_struct {
3907
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3908 3909 3910 3911 3912
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3913
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3914 3915 3916
	struct array_cache *old;

	check_irq_off();
3917
	old = cpu_cache_get(new->cachep);
3918

L
Linus Torvalds 已提交
3919 3920 3921 3922
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3923
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
3924 3925
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared)
L
Linus Torvalds 已提交
3926
{
3927
	struct ccupdate_struct *new;
3928
	int i;
L
Linus Torvalds 已提交
3929

3930 3931 3932 3933
	new = kzalloc(sizeof(*new), GFP_KERNEL);
	if (!new)
		return -ENOMEM;

3934
	for_each_online_cpu(i) {
3935
		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
A
Andrew Morton 已提交
3936
						batchcount);
3937
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3938
			for (i--; i >= 0; i--)
3939 3940
				kfree(new->new[i]);
			kfree(new);
3941
			return -ENOMEM;
L
Linus Torvalds 已提交
3942 3943
		}
	}
3944
	new->cachep = cachep;
L
Linus Torvalds 已提交
3945

3946
	on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
3947

L
Linus Torvalds 已提交
3948 3949 3950
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3951
	cachep->shared = shared;
L
Linus Torvalds 已提交
3952

3953
	for_each_online_cpu(i) {
3954
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3955 3956
		if (!ccold)
			continue;
3957
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3958
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3959
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
3960 3961
		kfree(ccold);
	}
3962
	kfree(new);
3963
	return alloc_kmemlist(cachep);
L
Linus Torvalds 已提交
3964 3965
}

3966
/* Called with cache_chain_mutex held always */
3967
static int enable_cpucache(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3968 3969 3970 3971
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
3972 3973
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3974 3975
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3976
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3977 3978 3979 3980
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3981
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
3982
		limit = 1;
3983
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
3984
		limit = 8;
3985
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
3986
		limit = 24;
3987
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
3988 3989 3990 3991
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3992 3993
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3994 3995 3996 3997 3998 3999 4000 4001
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4002
	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
4003 4004 4005
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
4006 4007 4008
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4009 4010 4011 4012
	 */
	if (limit > 32)
		limit = 32;
#endif
P
Pekka Enberg 已提交
4013
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
L
Linus Torvalds 已提交
4014 4015
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4016
		       cachep->name, -err);
4017
	return err;
L
Linus Torvalds 已提交
4018 4019
}

4020 4021
/*
 * Drain an array if it contains any elements taking the l3 lock only if
4022 4023
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
4024 4025 4026
 */
void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4027 4028 4029
{
	int tofree;

4030 4031
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4032 4033
	if (ac->touched && !force) {
		ac->touched = 0;
4034
	} else {
4035
		spin_lock_irq(&l3->list_lock);
4036 4037 4038 4039 4040 4041 4042 4043 4044
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4045
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4046 4047 4048 4049 4050
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4051
 * @w: work descriptor
L
Linus Torvalds 已提交
4052 4053 4054 4055 4056 4057
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4058 4059
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4060
 */
4061
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4062
{
4063
	struct kmem_cache *searchp;
4064
	struct kmem_list3 *l3;
4065
	int node = numa_node_id();
4066 4067
	struct delayed_work *work =
		container_of(w, struct delayed_work, work);
L
Linus Torvalds 已提交
4068

4069
	if (!mutex_trylock(&cache_chain_mutex))
L
Linus Torvalds 已提交
4070
		/* Give up. Setup the next iteration. */
4071
		goto out;
L
Linus Torvalds 已提交
4072

4073
	list_for_each_entry(searchp, &cache_chain, next) {
L
Linus Torvalds 已提交
4074 4075
		check_irq_on();

4076 4077 4078 4079 4080
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4081
		l3 = searchp->nodelists[node];
4082

4083
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4084

4085
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4086

4087 4088 4089 4090
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4091
		if (time_after(l3->next_reap, jiffies))
4092
			goto next;
L
Linus Torvalds 已提交
4093

4094
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4095

4096
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4097

4098
		if (l3->free_touched)
4099
			l3->free_touched = 0;
4100 4101
		else {
			int freed;
L
Linus Torvalds 已提交
4102

4103 4104 4105 4106
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4107
next:
L
Linus Torvalds 已提交
4108 4109 4110
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
4111
	mutex_unlock(&cache_chain_mutex);
4112
	next_reap_node();
4113
out:
A
Andrew Morton 已提交
4114
	/* Set up the next iteration */
4115
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4116 4117 4118 4119
}

#ifdef CONFIG_PROC_FS

4120
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
4121
{
4122 4123 4124 4125
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
4126
#if STATS
4127
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
4128
#else
4129
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
4130
#endif
4131 4132 4133 4134
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
4135
#if STATS
4136
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4137
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4138
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
4139
#endif
4140 4141 4142 4143 4144 4145 4146 4147
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

I
Ingo Molnar 已提交
4148
	mutex_lock(&cache_chain_mutex);
4149 4150
	if (!n)
		print_slabinfo_header(m);
L
Linus Torvalds 已提交
4151 4152 4153 4154 4155 4156
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
4157
	return list_entry(p, struct kmem_cache, next);
L
Linus Torvalds 已提交
4158 4159 4160 4161
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
4162
	struct kmem_cache *cachep = p;
L
Linus Torvalds 已提交
4163
	++*pos;
A
Andrew Morton 已提交
4164 4165
	return cachep->next.next == &cache_chain ?
		NULL : list_entry(cachep->next.next, struct kmem_cache, next);
L
Linus Torvalds 已提交
4166 4167 4168 4169
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
4170
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4171 4172 4173 4174
}

static int s_show(struct seq_file *m, void *p)
{
4175
	struct kmem_cache *cachep = p;
P
Pekka Enberg 已提交
4176 4177 4178 4179 4180
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4181
	const char *name;
L
Linus Torvalds 已提交
4182
	char *error = NULL;
4183 4184
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4185 4186 4187

	active_objs = 0;
	num_slabs = 0;
4188 4189 4190 4191 4192
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4193 4194
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4195

4196
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4197 4198 4199 4200 4201
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4202
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4203 4204 4205 4206 4207 4208 4209
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4210
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4211 4212 4213 4214 4215
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4216 4217
		if (l3->shared)
			shared_avail += l3->shared->avail;
4218

4219
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4220
	}
P
Pekka Enberg 已提交
4221 4222
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4223
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4224 4225
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4226
	name = cachep->name;
L
Linus Torvalds 已提交
4227 4228 4229 4230
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4231
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
4232
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4233
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4234
		   cachep->limit, cachep->batchcount, cachep->shared);
4235
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4236
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4237
#if STATS
P
Pekka Enberg 已提交
4238
	{			/* list3 stats */
L
Linus Torvalds 已提交
4239 4240 4241 4242 4243 4244 4245
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4246
		unsigned long node_frees = cachep->node_frees;
4247
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4248

4249
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4250
				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
A
Andrew Morton 已提交
4251
				reaped, errors, max_freeable, node_allocs,
4252
				node_frees, overflows);
L
Linus Torvalds 已提交
4253 4254 4255 4256 4257 4258 4259 4260 4261
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4262
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

4283
const struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4284 4285 4286 4287
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4288 4289 4290 4291 4292 4293 4294 4295 4296 4297
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
4298 4299
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4300
{
P
Pekka Enberg 已提交
4301
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4302
	int limit, batchcount, shared, res;
4303
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4304

L
Linus Torvalds 已提交
4305 4306 4307 4308
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4309
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4310 4311 4312 4313 4314 4315 4316 4317 4318 4319

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
4320
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4321
	res = -EINVAL;
4322
	list_for_each_entry(cachep, &cache_chain, next) {
L
Linus Torvalds 已提交
4323
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4324 4325
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4326
				res = 0;
L
Linus Torvalds 已提交
4327
			} else {
4328
				res = do_tune_cpucache(cachep, limit,
P
Pekka Enberg 已提交
4329
						       batchcount, shared);
L
Linus Torvalds 已提交
4330 4331 4332 4333
			}
			break;
		}
	}
I
Ingo Molnar 已提交
4334
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4335 4336 4337 4338
	if (res >= 0)
		res = count;
	return res;
}
4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

	mutex_lock(&cache_chain_mutex);
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
	return list_entry(p, struct kmem_cache, next);
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4405
	char modname[MODULE_NAME_LEN + 1], name[KSYM_NAME_LEN + 1];
4406

4407
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4408
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4409
		if (modname[0])
4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
	struct kmem_cache *cachep = p;
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4444
		list_for_each_entry(slabp, &l3->slabs_full, list)
4445
			handle_slab(n, cachep, slabp);
4446
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4473

4474 4475 4476
	return 0;
}

4477
const struct seq_operations slabstats_op = {
4478 4479 4480 4481 4482 4483
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
#endif
L
Linus Torvalds 已提交
4484 4485
#endif

4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4498
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4499
{
4500 4501
	if (unlikely(objp == NULL))
		return 0;
L
Linus Torvalds 已提交
4502

4503
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4504
}