slab.c 111.7 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
 * slabs and you must pass objects with the same intializations to
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90 91
 */

#include	<linux/config.h>
#include	<linux/slab.h>
#include	<linux/mm.h>
92
#include	<linux/poison.h>
L
Linus Torvalds 已提交
93 94 95 96 97
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
98
#include	<linux/cpuset.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/nodemask.h>
108
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
109
#include	<linux/mutex.h>
I
Ingo Molnar 已提交
110
#include	<linux/rtmutex.h>
L
Linus Torvalds 已提交
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

#include	<asm/uaccess.h>
#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
 *		  SLAB_RED_ZONE & SLAB_POISON.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)

#ifndef cache_line_size
#define cache_line_size()	L1_CACHE_BYTES
#endif

#ifndef ARCH_KMALLOC_MINALIGN
/*
 * Enforce a minimum alignment for the kmalloc caches.
 * Usually, the kmalloc caches are cache_line_size() aligned, except when
 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
 * Note that this flag disables some debug features.
 */
#define ARCH_KMALLOC_MINALIGN 0
#endif

#ifndef ARCH_SLAB_MINALIGN
/*
 * Enforce a minimum alignment for all caches.
 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
 * some debug features.
 */
#define ARCH_SLAB_MINALIGN 0
#endif

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
# define CREATE_MASK	(SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
176
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
177 178
			 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
179
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
180
#else
181
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
L
Linus Torvalds 已提交
182 183
			 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
184
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
L
Linus Torvalds 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

206
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
207 208
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
209 210
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
211 212 213 214 215 216 217 218 219

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
220 221 222 223 224 225
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
245
	struct rcu_head head;
246
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
247
	void *addr;
L
Linus Torvalds 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
267
	spinlock_t lock;
A
Andrew Morton 已提交
268 269 270 271 272 273
	void *entry[0];	/*
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 * [0] is for gcc 2.95. It should really be [].
			 */
L
Linus Torvalds 已提交
274 275
};

A
Andrew Morton 已提交
276 277 278
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
279 280 281 282
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
283
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
284 285 286
};

/*
287
 * The slab lists for all objects.
L
Linus Torvalds 已提交
288 289
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
290 291 292 293 294
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
295
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
296 297 298
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
299 300
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
301 302
};

303 304 305 306 307 308 309 310 311
/*
 * Need this for bootstrapping a per node allocator.
 */
#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
#define	SIZE_AC 1
#define	SIZE_L3 (1 + MAX_NUMNODES)

312 313 314 315
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
316
static int enable_cpucache(struct kmem_cache *cachep);
317 318
static void cache_reap(void *unused);

319
/*
A
Andrew Morton 已提交
320 321
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
322
 */
323
static __always_inline int index_of(const size_t size)
324
{
325 326
	extern void __bad_size(void);

327 328 329 330 331 332 333 334 335 336
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
#include "linux/kmalloc_sizes.h"
#undef CACHE
337
		__bad_size();
338
	} else
339
		__bad_size();
340 341 342
	return 0;
}

343 344
static int slab_early_init = 1;

345 346
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
347

P
Pekka Enberg 已提交
348
static void kmem_list3_init(struct kmem_list3 *parent)
349 350 351 352 353 354
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
355
	parent->colour_next = 0;
356 357 358 359 360
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
361 362 363 364
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
365 366
	} while (0)

A
Andrew Morton 已提交
367 368
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
369 370 371 372
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
373 374

/*
375
 * struct kmem_cache
L
Linus Torvalds 已提交
376 377 378
 *
 * manages a cache.
 */
P
Pekka Enberg 已提交
379

380
struct kmem_cache {
L
Linus Torvalds 已提交
381
/* 1) per-cpu data, touched during every alloc/free */
P
Pekka Enberg 已提交
382
	struct array_cache *array[NR_CPUS];
383
/* 2) Cache tunables. Protected by cache_chain_mutex */
P
Pekka Enberg 已提交
384 385 386
	unsigned int batchcount;
	unsigned int limit;
	unsigned int shared;
387

388
	unsigned int buffer_size;
389
/* 3) touched by every alloc & free from the backend */
P
Pekka Enberg 已提交
390
	struct kmem_list3 *nodelists[MAX_NUMNODES];
391

A
Andrew Morton 已提交
392 393
	unsigned int flags;		/* constant flags */
	unsigned int num;		/* # of objs per slab */
L
Linus Torvalds 已提交
394

395
/* 4) cache_grow/shrink */
L
Linus Torvalds 已提交
396
	/* order of pgs per slab (2^n) */
P
Pekka Enberg 已提交
397
	unsigned int gfporder;
L
Linus Torvalds 已提交
398 399

	/* force GFP flags, e.g. GFP_DMA */
P
Pekka Enberg 已提交
400
	gfp_t gfpflags;
L
Linus Torvalds 已提交
401

A
Andrew Morton 已提交
402
	size_t colour;			/* cache colouring range */
P
Pekka Enberg 已提交
403
	unsigned int colour_off;	/* colour offset */
404
	struct kmem_cache *slabp_cache;
P
Pekka Enberg 已提交
405
	unsigned int slab_size;
A
Andrew Morton 已提交
406
	unsigned int dflags;		/* dynamic flags */
L
Linus Torvalds 已提交
407 408

	/* constructor func */
409
	void (*ctor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
410 411

	/* de-constructor func */
412
	void (*dtor) (void *, struct kmem_cache *, unsigned long);
L
Linus Torvalds 已提交
413

414
/* 5) cache creation/removal */
P
Pekka Enberg 已提交
415 416
	const char *name;
	struct list_head next;
L
Linus Torvalds 已提交
417

418
/* 6) statistics */
L
Linus Torvalds 已提交
419
#if STATS
P
Pekka Enberg 已提交
420 421 422 423 424 425 426 427 428
	unsigned long num_active;
	unsigned long num_allocations;
	unsigned long high_mark;
	unsigned long grown;
	unsigned long reaped;
	unsigned long errors;
	unsigned long max_freeable;
	unsigned long node_allocs;
	unsigned long node_frees;
429
	unsigned long node_overflow;
P
Pekka Enberg 已提交
430 431 432 433
	atomic_t allochit;
	atomic_t allocmiss;
	atomic_t freehit;
	atomic_t freemiss;
L
Linus Torvalds 已提交
434 435
#endif
#if DEBUG
436 437 438 439 440 441 442 443
	/*
	 * If debugging is enabled, then the allocator can add additional
	 * fields and/or padding to every object. buffer_size contains the total
	 * object size including these internal fields, the following two
	 * variables contain the offset to the user object and its size.
	 */
	int obj_offset;
	int obj_size;
L
Linus Torvalds 已提交
444 445 446 447 448 449 450
#endif
};

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
451 452 453
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
454
 *
A
Adrian Bunk 已提交
455
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
456 457 458 459 460 461 462 463 464 465
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
466
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
467 468 469 470 471
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
472 473
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
474
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
475
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
476 477 478 479 480
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
481 482 483 484 485 486 487 488 489
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
490
#define	STATS_ADD_REAPED(x,y)	do { } while (0)
L
Linus Torvalds 已提交
491 492 493
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
494
#define	STATS_INC_NODEFREES(x)	do { } while (0)
495
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
496
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
497 498 499 500 501 502 503 504
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
505 506
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
507
 * 0		: objp
508
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
509 510
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
511
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
512
 * 		redzone word.
513 514
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
515 516
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
517
 */
518
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
519
{
520
	return cachep->obj_offset;
L
Linus Torvalds 已提交
521 522
}

523
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
524
{
525
	return cachep->obj_size;
L
Linus Torvalds 已提交
526 527
}

528
static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
529 530
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
531
	return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
L
Linus Torvalds 已提交
532 533
}

534
static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
535 536 537
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
538
		return (unsigned long *)(objp + cachep->buffer_size -
P
Pekka Enberg 已提交
539
					 2 * BYTES_PER_WORD);
540
	return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
541 542
}

543
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
544 545
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
546
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
547 548 549 550
}

#else

551 552
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
L
Linus Torvalds 已提交
553 554 555 556 557 558 559
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long *)NULL;})
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

/*
A
Andrew Morton 已提交
560 561
 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
 * order.
L
Linus Torvalds 已提交
562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
 */
#if defined(CONFIG_LARGE_ALLOCS)
#define	MAX_OBJ_ORDER	13	/* up to 32Mb */
#define	MAX_GFP_ORDER	13	/* up to 32Mb */
#elif defined(CONFIG_MMU)
#define	MAX_OBJ_ORDER	5	/* 32 pages */
#define	MAX_GFP_ORDER	5	/* 32 pages */
#else
#define	MAX_OBJ_ORDER	8	/* up to 1Mb */
#define	MAX_GFP_ORDER	8	/* up to 1Mb */
#endif

/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
581 582 583 584
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
585
 */
586 587 588 589 590 591 592
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
593 594
	if (unlikely(PageCompound(page)))
		page = (struct page *)page_private(page);
595
	BUG_ON(!PageSlab(page));
596 597 598 599 600 601 602 603 604 605
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
606 607
	if (unlikely(PageCompound(page)))
		page = (struct page *)page_private(page);
608
	BUG_ON(!PageSlab(page));
609 610
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
611

612 613 614 615 616 617 618 619 620 621 622 623
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
	struct page *page = virt_to_page(obj);
	return page_get_slab(page);
}

624 625 626 627 628 629 630 631 632 633 634 635
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

static inline unsigned int obj_to_index(struct kmem_cache *cache,
					struct slab *slab, void *obj)
{
	return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
}

A
Andrew Morton 已提交
636 637 638
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
656
	{NULL,}
L
Linus Torvalds 已提交
657 658 659 660
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
661
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
662
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
663
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
664 665

/* internal cache of cache description objs */
666
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
667 668 669
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
670
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
671
	.name = "kmem_cache",
L
Linus Torvalds 已提交
672
#if DEBUG
673
	.obj_size = sizeof(struct kmem_cache),
L
Linus Torvalds 已提交
674 675 676
#endif
};

677 678
#define BAD_ALIEN_MAGIC 0x01020304ul

679 680 681 682 683 684 685 686
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
687 688 689 690
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
691
 */
692 693 694 695
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

static inline void init_lock_keys(void)
696 697 698

{
	int q;
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
	struct cache_sizes *s = malloc_sizes;

	while (s->cs_size != ULONG_MAX) {
		for_each_node(q) {
			struct array_cache **alc;
			int r;
			struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
			if (!l3 || OFF_SLAB(s->cs_cachep))
				continue;
			lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
			alc = l3->alien;
			/*
			 * FIXME: This check for BAD_ALIEN_MAGIC
			 * should go away when common slab code is taught to
			 * work even without alien caches.
			 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
			 * for alloc_alien_cache,
			 */
			if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
				continue;
			for_each_node(r) {
				if (alc[r])
					lockdep_set_class(&alc[r]->lock,
					     &on_slab_alc_key);
			}
		}
		s++;
726 727 728
	}
}
#else
729
static inline void init_lock_keys(void)
730 731 732 733
{
}
#endif

L
Linus Torvalds 已提交
734
/* Guard access to the cache-chain. */
I
Ingo Molnar 已提交
735
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
736 737 738
static struct list_head cache_chain;

/*
A
Andrew Morton 已提交
739 740
 * vm_enough_memory() looks at this to determine how many slab-allocated pages
 * are possibly freeable under pressure
L
Linus Torvalds 已提交
741 742 743 744 745 746 747 748 749 750 751
 *
 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
 */
atomic_t slab_reclaim_pages;

/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
752 753
	PARTIAL_AC,
	PARTIAL_L3,
L
Linus Torvalds 已提交
754 755 756
	FULL
} g_cpucache_up;

757 758 759 760 761 762 763 764
/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up == FULL;
}

L
Linus Torvalds 已提交
765 766
static DEFINE_PER_CPU(struct work_struct, reap_work);

767
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
768 769 770 771
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
772 773
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
774 775 776 777 778
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
779 780 781
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
782
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
783 784 785 786 787
#endif
	while (size > csizep->cs_size)
		csizep++;

	/*
788
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
789 790 791 792 793 794 795 796
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
797
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
798 799 800 801
{
	return __find_general_cachep(size, gfpflags);
}

802
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
803
{
804 805
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
806

A
Andrew Morton 已提交
807 808 809
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
810 811 812 813 814 815 816
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
817

818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
866 867 868 869
}

#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)

A
Andrew Morton 已提交
870 871
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
872 873
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
874
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
875 876 877
	dump_stack();
}

878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
static DEFINE_PER_CPU(unsigned long, reap_node);

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
893
		node = first_node(node_online_map);
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918

	__get_cpu_var(reap_node) = node;
}

static void next_reap_node(void)
{
	int node = __get_cpu_var(reap_node);

	/*
	 * Also drain per cpu pages on remote zones
	 */
	if (node != numa_node_id())
		drain_node_pages(node);

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
	__get_cpu_var(reap_node) = node;
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
static void __devinit start_cpu_timer(int cpu)
{
	struct work_struct *reap_work = &per_cpu(reap_work, cpu);

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
	if (keventd_up() && reap_work->func == NULL) {
936
		init_reap_node(cpu);
L
Linus Torvalds 已提交
937 938 939 940 941
		INIT_WORK(reap_work, cache_reap, NULL);
		schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
	}
}

942
static struct array_cache *alloc_arraycache(int node, int entries,
P
Pekka Enberg 已提交
943
					    int batchcount)
L
Linus Torvalds 已提交
944
{
P
Pekka Enberg 已提交
945
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
946 947
	struct array_cache *nc = NULL;

948
	nc = kmalloc_node(memsize, GFP_KERNEL, node);
L
Linus Torvalds 已提交
949 950 951 952 953
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
954
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
955 956 957 958
	}
	return nc;
}

959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	to->touched = 1;
	return nr;
}

983
#ifdef CONFIG_NUMA
984
static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
985
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
986

P
Pekka Enberg 已提交
987
static struct array_cache **alloc_alien_cache(int node, int limit)
988 989
{
	struct array_cache **ac_ptr;
P
Pekka Enberg 已提交
990
	int memsize = sizeof(void *) * MAX_NUMNODES;
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
	int i;

	if (limit > 1)
		limit = 12;
	ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
	if (ac_ptr) {
		for_each_node(i) {
			if (i == node || !node_online(i)) {
				ac_ptr[i] = NULL;
				continue;
			}
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
			if (!ac_ptr[i]) {
P
Pekka Enberg 已提交
1004
				for (i--; i <= 0; i--)
1005 1006 1007 1008 1009 1010 1011 1012 1013
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
1014
static void free_alien_cache(struct array_cache **ac_ptr)
1015 1016 1017 1018 1019 1020
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
1021
	    kfree(ac_ptr[i]);
1022 1023 1024
	kfree(ac_ptr);
}

1025
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
1026
				struct array_cache *ac, int node)
1027 1028 1029 1030 1031
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
1032 1033 1034 1035 1036
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1037 1038
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1039

1040
		free_block(cachep, ac->entry, ac->avail, node);
1041 1042 1043 1044 1045
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1046 1047 1048 1049 1050 1051 1052 1053 1054
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
	int node = __get_cpu_var(reap_node);

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1055 1056

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1057 1058 1059 1060 1061 1062
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1063 1064
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1065
{
P
Pekka Enberg 已提交
1066
	int i = 0;
1067 1068 1069 1070
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1071
		ac = alien[i];
1072 1073 1074 1075 1076 1077 1078
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1079

1080
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
	if (likely(slabp->nodeid == numa_node_id()))
		return 0;

	l3 = cachep->nodelists[numa_node_id()];
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1098
		spin_lock(&alien->lock);
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}

1113
#else
1114

1115
#define drain_alien_cache(cachep, alien) do { } while (0)
1116
#define reap_alien(cachep, l3) do { } while (0)
1117

1118 1119
static inline struct array_cache **alloc_alien_cache(int node, int limit)
{
1120
	return (struct array_cache **)BAD_ALIEN_MAGIC;
1121 1122
}

1123 1124 1125
static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}
1126

1127
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1128 1129 1130 1131
{
	return 0;
}

1132 1133
#endif

1134
static int __cpuinit cpuup_callback(struct notifier_block *nfb,
P
Pekka Enberg 已提交
1135
				    unsigned long action, void *hcpu)
L
Linus Torvalds 已提交
1136 1137
{
	long cpu = (long)hcpu;
1138
	struct kmem_cache *cachep;
1139 1140 1141
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
	int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
1142 1143 1144

	switch (action) {
	case CPU_UP_PREPARE:
I
Ingo Molnar 已提交
1145
		mutex_lock(&cache_chain_mutex);
A
Andrew Morton 已提交
1146 1147
		/*
		 * We need to do this right in the beginning since
1148 1149 1150 1151 1152
		 * alloc_arraycache's are going to use this list.
		 * kmalloc_node allows us to add the slab to the right
		 * kmem_list3 and not this cpu's kmem_list3
		 */

L
Linus Torvalds 已提交
1153
		list_for_each_entry(cachep, &cache_chain, next) {
A
Andrew Morton 已提交
1154 1155
			/*
			 * Set up the size64 kmemlist for cpu before we can
1156 1157 1158 1159
			 * begin anything. Make sure some other cpu on this
			 * node has not already allocated this
			 */
			if (!cachep->nodelists[node]) {
A
Andrew Morton 已提交
1160 1161
				l3 = kmalloc_node(memsize, GFP_KERNEL, node);
				if (!l3)
1162 1163 1164
					goto bad;
				kmem_list3_init(l3);
				l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
P
Pekka Enberg 已提交
1165
				    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1166

1167 1168 1169 1170 1171
				/*
				 * The l3s don't come and go as CPUs come and
				 * go.  cache_chain_mutex is sufficient
				 * protection here.
				 */
1172 1173
				cachep->nodelists[node] = l3;
			}
L
Linus Torvalds 已提交
1174

1175 1176
			spin_lock_irq(&cachep->nodelists[node]->list_lock);
			cachep->nodelists[node]->free_limit =
A
Andrew Morton 已提交
1177 1178
				(1 + nr_cpus_node(node)) *
				cachep->batchcount + cachep->num;
1179 1180 1181
			spin_unlock_irq(&cachep->nodelists[node]->list_lock);
		}

A
Andrew Morton 已提交
1182 1183 1184 1185
		/*
		 * Now we can go ahead with allocating the shared arrays and
		 * array caches
		 */
1186
		list_for_each_entry(cachep, &cache_chain, next) {
1187
			struct array_cache *nc;
1188 1189
			struct array_cache *shared;
			struct array_cache **alien;
1190

1191
			nc = alloc_arraycache(node, cachep->limit,
1192
						cachep->batchcount);
L
Linus Torvalds 已提交
1193 1194
			if (!nc)
				goto bad;
1195 1196 1197 1198 1199
			shared = alloc_arraycache(node,
					cachep->shared * cachep->batchcount,
					0xbaadf00d);
			if (!shared)
				goto bad;
1200

1201 1202 1203
			alien = alloc_alien_cache(node, cachep->limit);
			if (!alien)
				goto bad;
L
Linus Torvalds 已提交
1204
			cachep->array[cpu] = nc;
1205 1206 1207
			l3 = cachep->nodelists[node];
			BUG_ON(!l3);

1208 1209 1210 1211 1212 1213 1214 1215
			spin_lock_irq(&l3->list_lock);
			if (!l3->shared) {
				/*
				 * We are serialised from CPU_DEAD or
				 * CPU_UP_CANCELLED by the cpucontrol lock
				 */
				l3->shared = shared;
				shared = NULL;
1216
			}
1217 1218 1219 1220 1221 1222 1223 1224 1225
#ifdef CONFIG_NUMA
			if (!l3->alien) {
				l3->alien = alien;
				alien = NULL;
			}
#endif
			spin_unlock_irq(&l3->list_lock);
			kfree(shared);
			free_alien_cache(alien);
L
Linus Torvalds 已提交
1226
		}
I
Ingo Molnar 已提交
1227
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1228 1229 1230 1231 1232 1233
		break;
	case CPU_ONLINE:
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
1234 1235 1236 1237 1238 1239 1240 1241
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
L
Linus Torvalds 已提交
1242 1243
		/* fall thru */
	case CPU_UP_CANCELED:
I
Ingo Molnar 已提交
1244
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1245 1246
		list_for_each_entry(cachep, &cache_chain, next) {
			struct array_cache *nc;
1247 1248
			struct array_cache *shared;
			struct array_cache **alien;
1249
			cpumask_t mask;
L
Linus Torvalds 已提交
1250

1251
			mask = node_to_cpumask(node);
L
Linus Torvalds 已提交
1252 1253 1254
			/* cpu is dead; no one can alloc from it. */
			nc = cachep->array[cpu];
			cachep->array[cpu] = NULL;
1255 1256 1257
			l3 = cachep->nodelists[node];

			if (!l3)
1258
				goto free_array_cache;
1259

1260
			spin_lock_irq(&l3->list_lock);
1261 1262 1263 1264

			/* Free limit for this kmem_list3 */
			l3->free_limit -= cachep->batchcount;
			if (nc)
1265
				free_block(cachep, nc->entry, nc->avail, node);
1266 1267

			if (!cpus_empty(mask)) {
1268
				spin_unlock_irq(&l3->list_lock);
1269
				goto free_array_cache;
P
Pekka Enberg 已提交
1270
			}
1271

1272 1273
			shared = l3->shared;
			if (shared) {
1274
				free_block(cachep, l3->shared->entry,
P
Pekka Enberg 已提交
1275
					   l3->shared->avail, node);
1276 1277 1278
				l3->shared = NULL;
			}

1279 1280 1281 1282 1283 1284 1285 1286 1287
			alien = l3->alien;
			l3->alien = NULL;

			spin_unlock_irq(&l3->list_lock);

			kfree(shared);
			if (alien) {
				drain_alien_cache(cachep, alien);
				free_alien_cache(alien);
1288
			}
1289
free_array_cache:
L
Linus Torvalds 已提交
1290 1291
			kfree(nc);
		}
1292 1293 1294 1295 1296 1297 1298 1299 1300
		/*
		 * In the previous loop, all the objects were freed to
		 * the respective cache's slabs,  now we can go ahead and
		 * shrink each nodelist to its limit.
		 */
		list_for_each_entry(cachep, &cache_chain, next) {
			l3 = cachep->nodelists[node];
			if (!l3)
				continue;
1301
			drain_freelist(cachep, l3, l3->free_objects);
1302
		}
I
Ingo Molnar 已提交
1303
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1304 1305 1306 1307
		break;
#endif
	}
	return NOTIFY_OK;
A
Andrew Morton 已提交
1308
bad:
I
Ingo Molnar 已提交
1309
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1310 1311 1312
	return NOTIFY_BAD;
}

1313 1314 1315
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1316

1317 1318 1319
/*
 * swap the static kmem_list3 with kmalloced memory
 */
A
Andrew Morton 已提交
1320 1321
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
			int nodeid)
1322 1323 1324 1325 1326 1327 1328 1329 1330
{
	struct kmem_list3 *ptr;

	BUG_ON(cachep->nodelists[nodeid] != list);
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
	BUG_ON(!ptr);

	local_irq_disable();
	memcpy(ptr, list, sizeof(struct kmem_list3));
1331 1332 1333 1334 1335
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1336 1337 1338 1339 1340
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
	local_irq_enable();
}

A
Andrew Morton 已提交
1341 1342 1343
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1344 1345 1346 1347 1348 1349
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1350
	int i;
1351
	int order;
1352 1353 1354 1355 1356 1357

	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
L
Linus Torvalds 已提交
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
	if (num_physpages > (32 << 20) >> PAGE_SHIFT)
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1368 1369 1370
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1371 1372 1373
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1374
	 * 2) Create the first kmalloc cache.
1375
	 *    The struct kmem_cache for the new cache is allocated normally.
1376 1377 1378
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1379 1380
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1381 1382 1383
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1384 1385 1386 1387 1388 1389 1390
	 */

	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1391
	cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
L
Linus Torvalds 已提交
1392

A
Andrew Morton 已提交
1393 1394
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
L
Linus Torvalds 已提交
1395

1396 1397 1398 1399 1400 1401
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1402
	BUG_ON(!cache_cache.num);
1403
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1404 1405 1406
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1407 1408 1409 1410 1411

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1412 1413 1414 1415
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1416 1417 1418
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1419 1420 1421 1422
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
1423

A
Andrew Morton 已提交
1424
	if (INDEX_AC != INDEX_L3) {
1425
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1426 1427 1428 1429 1430 1431
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
				NULL, NULL);
	}
1432

1433 1434
	slab_early_init = 0;

L
Linus Torvalds 已提交
1435
	while (sizes->cs_size != ULONG_MAX) {
1436 1437
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1438 1439 1440
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1441 1442
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1443
		if (!sizes->cs_cachep) {
1444
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1445 1446 1447 1448 1449
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
					NULL, NULL);
		}
L
Linus Torvalds 已提交
1450 1451

		sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
A
Andrew Morton 已提交
1452 1453 1454 1455 1456
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
					NULL, NULL);
L
Linus Torvalds 已提交
1457 1458 1459 1460 1461
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1462
		struct array_cache *ptr;
1463

L
Linus Torvalds 已提交
1464
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1465

L
Linus Torvalds 已提交
1466
		local_irq_disable();
1467 1468
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1469
		       sizeof(struct arraycache_init));
1470 1471 1472 1473 1474
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1475 1476
		cache_cache.array[smp_processor_id()] = ptr;
		local_irq_enable();
1477

L
Linus Torvalds 已提交
1478
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1479

L
Linus Torvalds 已提交
1480
		local_irq_disable();
1481
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1482
		       != &initarray_generic.cache);
1483
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1484
		       sizeof(struct arraycache_init));
1485 1486 1487 1488 1489
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1490
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1491
		    ptr;
L
Linus Torvalds 已提交
1492 1493
		local_irq_enable();
	}
1494 1495 1496 1497 1498
	/* 5) Replace the bootstrap kmem_list3's */
	{
		int node;
		/* Replace the static kmem_list3 structures for the boot cpu */
		init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
P
Pekka Enberg 已提交
1499
			  numa_node_id());
1500 1501 1502

		for_each_online_node(node) {
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1503
				  &initkmem_list3[SIZE_AC + node], node);
1504 1505 1506

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1507 1508
					  &initkmem_list3[SIZE_L3 + node],
					  node);
1509 1510 1511
			}
		}
	}
L
Linus Torvalds 已提交
1512

1513
	/* 6) resize the head arrays to their final sizes */
L
Linus Torvalds 已提交
1514
	{
1515
		struct kmem_cache *cachep;
I
Ingo Molnar 已提交
1516
		mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1517
		list_for_each_entry(cachep, &cache_chain, next)
1518 1519
			if (enable_cpucache(cachep))
				BUG();
I
Ingo Molnar 已提交
1520
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1521 1522
	}

1523 1524 1525 1526
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();


L
Linus Torvalds 已提交
1527 1528 1529
	/* Done! */
	g_cpucache_up = FULL;

A
Andrew Morton 已提交
1530 1531 1532
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1533 1534 1535
	 */
	register_cpu_notifier(&cpucache_notifier);

A
Andrew Morton 已提交
1536 1537 1538
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1539 1540 1541 1542 1543 1544 1545
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1546 1547
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1548
	 */
1549
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1550
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1562
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1563 1564
{
	struct page *page;
1565
	int nr_pages;
L
Linus Torvalds 已提交
1566 1567
	int i;

1568
#ifndef CONFIG_MMU
1569 1570 1571
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1572
	 */
1573
	flags |= __GFP_COMP;
1574
#endif
1575 1576 1577
	flags |= cachep->gfpflags;

	page = alloc_pages_node(nodeid, flags, cachep->gfporder);
L
Linus Torvalds 已提交
1578 1579 1580
	if (!page)
		return NULL;

1581
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1582
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1583
		atomic_add(nr_pages, &slab_reclaim_pages);
1584
	add_zone_page_state(page_zone(page), NR_SLAB, nr_pages);
1585 1586 1587
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
	return page_address(page);
L
Linus Torvalds 已提交
1588 1589 1590 1591 1592
}

/*
 * Interface to system's page release.
 */
1593
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1594
{
P
Pekka Enberg 已提交
1595
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1596 1597 1598
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1599
	sub_zone_page_state(page_zone(page), NR_SLAB, nr_freed);
L
Linus Torvalds 已提交
1600
	while (i--) {
N
Nick Piggin 已提交
1601 1602
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1603 1604 1605 1606 1607
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
P
Pekka Enberg 已提交
1608 1609
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
L
Linus Torvalds 已提交
1610 1611 1612 1613
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1614
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1615
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1616 1617 1618 1619 1620 1621 1622 1623 1624

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1625
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1626
			    unsigned long caller)
L
Linus Torvalds 已提交
1627
{
1628
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1629

1630
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1631

P
Pekka Enberg 已提交
1632
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1633 1634
		return;

P
Pekka Enberg 已提交
1635 1636 1637 1638
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1639 1640 1641 1642 1643 1644 1645
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1646
				*addr++ = svalue;
L
Linus Torvalds 已提交
1647 1648 1649 1650 1651 1652 1653
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1654
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1655 1656 1657
}
#endif

1658
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1659
{
1660 1661
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1662 1663

	memset(addr, val, size);
P
Pekka Enberg 已提交
1664
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1665 1666 1667 1668 1669 1670
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
	printk(KERN_ERR "%03x:", offset);
A
Andrew Morton 已提交
1671
	for (i = 0; i < limit; i++)
P
Pekka Enberg 已提交
1672
		printk(" %02x", (unsigned char)data[offset + i]);
L
Linus Torvalds 已提交
1673 1674 1675 1676 1677 1678
	printk("\n");
}
#endif

#if DEBUG

1679
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1680 1681 1682 1683 1684 1685
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
		printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
A
Andrew Morton 已提交
1686 1687
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1688 1689 1690 1691
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1692
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1693
		print_symbol("(%s)",
A
Andrew Morton 已提交
1694
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1695 1696
		printk("\n");
	}
1697 1698
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1699
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1700 1701
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1702 1703
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1704 1705 1706 1707
		dump_line(realobj, i, limit);
	}
}

1708
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1709 1710 1711 1712 1713
{
	char *realobj;
	int size, i;
	int lines = 0;

1714 1715
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1716

P
Pekka Enberg 已提交
1717
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1718
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1719
		if (i == size - 1)
L
Linus Torvalds 已提交
1720 1721 1722 1723 1724 1725
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1726
				printk(KERN_ERR
A
Andrew Morton 已提交
1727 1728
					"Slab corruption: start=%p, len=%d\n",
					realobj, size);
L
Linus Torvalds 已提交
1729 1730 1731
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1732
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1733
			limit = 16;
P
Pekka Enberg 已提交
1734 1735
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1748
		struct slab *slabp = virt_to_slab(objp);
1749
		unsigned int objnr;
L
Linus Torvalds 已提交
1750

1751
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1752
		if (objnr) {
1753
			objp = index_to_obj(cachep, slabp, objnr - 1);
1754
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1755
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1756
			       realobj, size);
L
Linus Torvalds 已提交
1757 1758
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1759
		if (objnr + 1 < cachep->num) {
1760
			objp = index_to_obj(cachep, slabp, objnr + 1);
1761
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1762
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1763
			       realobj, size);
L
Linus Torvalds 已提交
1764 1765 1766 1767 1768 1769
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1770 1771
#if DEBUG
/**
1772 1773 1774 1775 1776 1777
 * slab_destroy_objs - destroy a slab and its objects
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
 * Call the registered destructor for each object in a slab that is being
 * destroyed.
L
Linus Torvalds 已提交
1778
 */
1779
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1780 1781 1782
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1783
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1784 1785 1786

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1787 1788
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1789
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1790
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1791 1792 1793 1794 1795 1796 1797 1798 1799
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1800
					   "was overwritten");
L
Linus Torvalds 已提交
1801 1802
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1803
					   "was overwritten");
L
Linus Torvalds 已提交
1804 1805
		}
		if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1806
			(cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
1807
	}
1808
}
L
Linus Torvalds 已提交
1809
#else
1810
static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1811
{
L
Linus Torvalds 已提交
1812 1813 1814
	if (cachep->dtor) {
		int i;
		for (i = 0; i < cachep->num; i++) {
1815
			void *objp = index_to_obj(cachep, slabp, i);
P
Pekka Enberg 已提交
1816
			(cachep->dtor) (objp, cachep, 0);
L
Linus Torvalds 已提交
1817 1818
		}
	}
1819
}
L
Linus Torvalds 已提交
1820 1821
#endif

1822 1823 1824 1825 1826
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1827
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1828 1829
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1830
 */
1831
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1832 1833 1834 1835
{
	void *addr = slabp->s_mem - slabp->colouroff;

	slab_destroy_objs(cachep, slabp);
L
Linus Torvalds 已提交
1836 1837 1838
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1839
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1840 1841 1842 1843 1844
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
1845 1846
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
1847 1848 1849
	}
}

A
Andrew Morton 已提交
1850 1851 1852 1853
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
1854
static void set_up_list3s(struct kmem_cache *cachep, int index)
1855 1856 1857 1858
{
	int node;

	for_each_online_node(node) {
P
Pekka Enberg 已提交
1859
		cachep->nodelists[node] = &initkmem_list3[index + node];
1860
		cachep->nodelists[node]->next_reap = jiffies +
P
Pekka Enberg 已提交
1861 1862
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1863 1864 1865
	}
}

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


1887
/**
1888 1889 1890 1891 1892 1893 1894
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1895 1896 1897 1898 1899
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1900
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
1901
			size_t size, size_t align, unsigned long flags)
1902
{
1903
	unsigned long offslab_limit;
1904
	size_t left_over = 0;
1905
	int gfporder;
1906

A
Andrew Morton 已提交
1907
	for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1908 1909 1910
		unsigned int num;
		size_t remainder;

1911
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1912 1913
		if (!num)
			continue;
1914

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
1927

1928
		/* Found something acceptable - save it away */
1929
		cachep->num = num;
1930
		cachep->gfporder = gfporder;
1931 1932
		left_over = remainder;

1933 1934 1935 1936 1937 1938 1939 1940
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1941 1942 1943 1944
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1945
		if (gfporder >= slab_break_gfp_order)
1946 1947
			break;

1948 1949 1950
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
1951
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1952 1953 1954 1955 1956
			break;
	}
	return left_over;
}

1957
static int setup_cpu_cache(struct kmem_cache *cachep)
1958
{
1959 1960 1961
	if (g_cpucache_up == FULL)
		return enable_cpucache(cachep);

1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
			kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
			for_each_online_node(node) {
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
						GFP_KERNEL, node);
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
	cachep->nodelists[numa_node_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2008
	return 0;
2009 2010
}

L
Linus Torvalds 已提交
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 * @dtor: A destructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
 * The @ctor is run when new pages are allocated by the cache
 * and the @dtor is run before the pages are handed back.
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
2026 2027
 * the module calling this has to destroy the cache before getting unloaded.
 *
L
Linus Torvalds 已提交
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2040
struct kmem_cache *
L
Linus Torvalds 已提交
2041
kmem_cache_create (const char *name, size_t size, size_t align,
A
Andrew Morton 已提交
2042 2043
	unsigned long flags,
	void (*ctor)(void*, struct kmem_cache *, unsigned long),
2044
	void (*dtor)(void*, struct kmem_cache *, unsigned long))
L
Linus Torvalds 已提交
2045 2046
{
	size_t left_over, slab_size, ralign;
2047
	struct kmem_cache *cachep = NULL, *pc;
L
Linus Torvalds 已提交
2048 2049 2050 2051

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
2052
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
P
Pekka Enberg 已提交
2053
	    (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
A
Andrew Morton 已提交
2054 2055
		printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
				name);
P
Pekka Enberg 已提交
2056 2057
		BUG();
	}
L
Linus Torvalds 已提交
2058

2059 2060 2061 2062 2063 2064
	/*
	 * Prevent CPUs from coming and going.
	 * lock_cpu_hotplug() nests outside cache_chain_mutex
	 */
	lock_cpu_hotplug();

I
Ingo Molnar 已提交
2065
	mutex_lock(&cache_chain_mutex);
2066

2067
	list_for_each_entry(pc, &cache_chain, next) {
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
		mm_segment_t old_fs = get_fs();
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
		set_fs(KERNEL_DS);
		res = __get_user(tmp, pc->name);
		set_fs(old_fs);
		if (res) {
			printk("SLAB: cache with size %d has lost its name\n",
2082
			       pc->buffer_size);
2083 2084 2085
			continue;
		}

P
Pekka Enberg 已提交
2086
		if (!strcmp(pc->name, name)) {
2087 2088 2089 2090 2091 2092
			printk("kmem_cache_create: duplicate cache %s\n", name);
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
2093 2094 2095 2096 2097
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
	if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
		/* No constructor, but inital state check requested */
		printk(KERN_ERR "%s: No con, but init state check "
P
Pekka Enberg 已提交
2098
		       "requested - %s\n", __FUNCTION__, name);
L
Linus Torvalds 已提交
2099 2100 2101 2102 2103 2104 2105 2106 2107
		flags &= ~SLAB_DEBUG_INITIAL;
	}
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
A
Andrew Morton 已提交
2108
	if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
P
Pekka Enberg 已提交
2109
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(dtor);

	/*
A
Andrew Morton 已提交
2120 2121
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2122
	 */
2123
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2124

A
Andrew Morton 已提交
2125 2126
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2127 2128 2129
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2130 2131 2132
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2133 2134
	}

A
Andrew Morton 已提交
2135 2136
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2137 2138
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2139 2140 2141 2142
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2143 2144
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2145
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2146 2147 2148 2149
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2150 2151 2152 2153 2154 2155 2156 2157 2158

	/*
	 * Redzoning and user store require word alignment. Note this will be
	 * overridden by architecture or caller mandated alignment if either
	 * is greater than BYTES_PER_WORD.
	 */
	if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

L
Linus Torvalds 已提交
2159 2160 2161 2162
	/* 2) arch mandated alignment: disables debug if necessary */
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
		if (ralign > BYTES_PER_WORD)
P
Pekka Enberg 已提交
2163
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
L
Linus Torvalds 已提交
2164 2165 2166 2167 2168
	}
	/* 3) caller mandated alignment: disables debug if necessary */
	if (ralign < align) {
		ralign = align;
		if (ralign > BYTES_PER_WORD)
P
Pekka Enberg 已提交
2169
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
L
Linus Torvalds 已提交
2170
	}
A
Andrew Morton 已提交
2171
	/*
2172
	 * 4) Store it.
L
Linus Torvalds 已提交
2173 2174 2175 2176
	 */
	align = ralign;

	/* Get cache's description obj. */
P
Pekka Enberg 已提交
2177
	cachep = kmem_cache_zalloc(&cache_cache, SLAB_KERNEL);
L
Linus Torvalds 已提交
2178
	if (!cachep)
2179
		goto oops;
L
Linus Torvalds 已提交
2180 2181

#if DEBUG
2182
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2183

2184 2185 2186 2187
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2188 2189
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2190
		cachep->obj_offset += BYTES_PER_WORD;
P
Pekka Enberg 已提交
2191
		size += 2 * BYTES_PER_WORD;
L
Linus Torvalds 已提交
2192 2193
	}
	if (flags & SLAB_STORE_USER) {
2194 2195
		/* user store requires one word storage behind the end of
		 * the real object.
L
Linus Torvalds 已提交
2196 2197 2198 2199
		 */
		size += BYTES_PER_WORD;
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2200
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2201 2202
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
2203 2204 2205 2206 2207
		size = PAGE_SIZE;
	}
#endif
#endif

2208 2209 2210 2211 2212 2213
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
	 * it too early on.)
	 */
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
L
Linus Torvalds 已提交
2214 2215 2216 2217 2218 2219 2220 2221
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2222
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2223 2224 2225 2226 2227

	if (!cachep->num) {
		printk("kmem_cache_create: couldn't create cache %s.\n", name);
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2228
		goto oops;
L
Linus Torvalds 已提交
2229
	}
P
Pekka Enberg 已提交
2230 2231
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2244 2245
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
L
Linus Torvalds 已提交
2246 2247 2248 2249 2250 2251
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2252
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2253 2254 2255 2256 2257
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
	if (flags & SLAB_CACHE_DMA)
		cachep->gfpflags |= GFP_DMA;
2258
	cachep->buffer_size = size;
L
Linus Torvalds 已提交
2259

2260
	if (flags & CFLGS_OFF_SLAB) {
2261
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2262 2263 2264 2265 2266 2267 2268 2269 2270
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
		BUG_ON(!cachep->slabp_cache);
	}
L
Linus Torvalds 已提交
2271 2272 2273 2274
	cachep->ctor = ctor;
	cachep->dtor = dtor;
	cachep->name = name;

2275 2276 2277 2278 2279
	if (setup_cpu_cache(cachep)) {
		__kmem_cache_destroy(cachep);
		cachep = NULL;
		goto oops;
	}
L
Linus Torvalds 已提交
2280 2281 2282

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2283
oops:
L
Linus Torvalds 已提交
2284 2285
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2286
		      name);
I
Ingo Molnar 已提交
2287
	mutex_unlock(&cache_chain_mutex);
2288
	unlock_cpu_hotplug();
L
Linus Torvalds 已提交
2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2304
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2305 2306 2307
{
#ifdef CONFIG_SMP
	check_irq_off();
2308
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2309 2310
#endif
}
2311

2312
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2313 2314 2315 2316 2317 2318 2319
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2320 2321 2322 2323
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2324
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2325 2326
#endif

2327 2328 2329 2330
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2331 2332
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2333
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2334
	struct array_cache *ac;
2335
	int node = numa_node_id();
L
Linus Torvalds 已提交
2336 2337

	check_irq_off();
2338
	ac = cpu_cache_get(cachep);
2339 2340 2341
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2342 2343 2344
	ac->avail = 0;
}

2345
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2346
{
2347 2348 2349
	struct kmem_list3 *l3;
	int node;

A
Andrew Morton 已提交
2350
	on_each_cpu(do_drain, cachep, 1, 1);
L
Linus Torvalds 已提交
2351
	check_irq_on();
P
Pekka Enberg 已提交
2352
	for_each_online_node(node) {
2353
		l3 = cachep->nodelists[node];
2354 2355 2356 2357 2358 2359 2360
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2361
			drain_array(cachep, l3, l3->shared, 1, node);
2362
	}
L
Linus Torvalds 已提交
2363 2364
}

2365 2366 2367 2368 2369 2370 2371 2372
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2373
{
2374 2375
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2376 2377
	struct slab *slabp;

2378 2379
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2380

2381
		spin_lock_irq(&l3->list_lock);
2382
		p = l3->slabs_free.prev;
2383 2384 2385 2386
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2387

2388
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2389
#if DEBUG
2390
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2391 2392
#endif
		list_del(&slabp->list);
2393 2394 2395 2396 2397
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2398
		spin_unlock_irq(&l3->list_lock);
2399 2400
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2401
	}
2402 2403
out:
	return nr_freed;
L
Linus Torvalds 已提交
2404 2405
}

2406
static int __cache_shrink(struct kmem_cache *cachep)
2407 2408 2409 2410 2411 2412 2413 2414 2415
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2416 2417 2418 2419 2420 2421 2422
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2423 2424 2425 2426
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2427 2428 2429 2430 2431 2432 2433
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2434
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2435
{
2436
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2437 2438 2439 2440 2441 2442 2443 2444 2445

	return __cache_shrink(cachep);
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2446
 * Remove a struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458
 * Returns 0 on success.
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2459
int kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2460
{
2461
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2462 2463 2464 2465 2466

	/* Don't let CPUs to come and go */
	lock_cpu_hotplug();

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
2467
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2468 2469 2470 2471
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
I
Ingo Molnar 已提交
2472
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2473 2474 2475

	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
I
Ingo Molnar 已提交
2476
		mutex_lock(&cache_chain_mutex);
P
Pekka Enberg 已提交
2477
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2478
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2479 2480 2481 2482 2483
		unlock_cpu_hotplug();
		return 1;
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2484
		synchronize_rcu();
L
Linus Torvalds 已提交
2485

2486
	__kmem_cache_destroy(cachep);
L
Linus Torvalds 已提交
2487 2488 2489 2490 2491
	unlock_cpu_hotplug();
	return 0;
}
EXPORT_SYMBOL(kmem_cache_destroy);

2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2503
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2504 2505
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2506 2507
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2508

L
Linus Torvalds 已提交
2509 2510
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2511 2512
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
					      local_flags, nodeid);
L
Linus Torvalds 已提交
2513 2514 2515
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2516
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2517 2518 2519 2520
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2521
	slabp->s_mem = objp + colour_off;
2522
	slabp->nodeid = nodeid;
L
Linus Torvalds 已提交
2523 2524 2525 2526 2527
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2528
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2529 2530
}

2531
static void cache_init_objs(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
2532
			    struct slab *slabp, unsigned long ctor_flags)
L
Linus Torvalds 已提交
2533 2534 2535 2536
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2537
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2550 2551 2552
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2553 2554
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2555
			cachep->ctor(objp + obj_offset(cachep), cachep,
P
Pekka Enberg 已提交
2556
				     ctor_flags);
L
Linus Torvalds 已提交
2557 2558 2559 2560

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2561
					   " end of an object");
L
Linus Torvalds 已提交
2562 2563
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2564
					   " start of an object");
L
Linus Torvalds 已提交
2565
		}
A
Andrew Morton 已提交
2566 2567
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2568
			kernel_map_pages(virt_to_page(objp),
2569
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2570 2571 2572 2573
#else
		if (cachep->ctor)
			cachep->ctor(objp, cachep, ctor_flags);
#endif
P
Pekka Enberg 已提交
2574
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2575
	}
P
Pekka Enberg 已提交
2576
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2577 2578 2579
	slabp->free = 0;
}

2580
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2581
{
A
Andrew Morton 已提交
2582 2583 2584 2585
	if (flags & SLAB_DMA)
		BUG_ON(!(cachep->gfpflags & GFP_DMA));
	else
		BUG_ON(cachep->gfpflags & GFP_DMA);
L
Linus Torvalds 已提交
2586 2587
}

A
Andrew Morton 已提交
2588 2589
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2590
{
2591
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2605 2606
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2607
{
2608
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2609 2610 2611 2612 2613

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2614
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2615
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2616
				"'%s', objp %p\n", cachep->name, objp);
2617 2618 2619 2620 2621 2622 2623 2624
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2625 2626 2627 2628 2629 2630 2631
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2632
{
2633
	int nr_pages;
L
Linus Torvalds 已提交
2634 2635
	struct page *page;

2636
	page = virt_to_page(addr);
2637

2638
	nr_pages = 1;
2639
	if (likely(!PageCompound(page)))
2640 2641
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2642
	do {
2643 2644
		page_set_cache(page, cache);
		page_set_slab(page, slab);
L
Linus Torvalds 已提交
2645
		page++;
2646
	} while (--nr_pages);
L
Linus Torvalds 已提交
2647 2648 2649 2650 2651 2652
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2653
static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
2654
{
P
Pekka Enberg 已提交
2655 2656 2657 2658 2659
	struct slab *slabp;
	void *objp;
	size_t offset;
	gfp_t local_flags;
	unsigned long ctor_flags;
2660
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2661

A
Andrew Morton 已提交
2662 2663 2664
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2665
	 */
2666
	BUG_ON(flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW));
L
Linus Torvalds 已提交
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
	if (flags & SLAB_NO_GROW)
		return 0;

	ctor_flags = SLAB_CTOR_CONSTRUCTOR;
	local_flags = (flags & SLAB_LEVEL_MASK);
	if (!(local_flags & __GFP_WAIT))
		/*
		 * Not allowed to sleep.  Need to tell a constructor about
		 * this - it might need to know...
		 */
		ctor_flags |= SLAB_CTOR_ATOMIC;

2679
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2680
	check_irq_off();
2681 2682
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2683 2684

	/* Get colour for the slab, and cal the next value. */
2685 2686 2687 2688 2689
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2690

2691
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2704 2705 2706
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2707
	 */
A
Andrew Morton 已提交
2708 2709
	objp = kmem_getpages(cachep, flags, nodeid);
	if (!objp)
L
Linus Torvalds 已提交
2710 2711 2712
		goto failed;

	/* Get slab management. */
2713
	slabp = alloc_slabmgmt(cachep, objp, offset, local_flags, nodeid);
A
Andrew Morton 已提交
2714
	if (!slabp)
L
Linus Torvalds 已提交
2715 2716
		goto opps1;

2717
	slabp->nodeid = nodeid;
2718
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2719 2720 2721 2722 2723 2724

	cache_init_objs(cachep, slabp, ctor_flags);

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2725
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2726 2727

	/* Make slab active. */
2728
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2729
	STATS_INC_GROWN(cachep);
2730 2731
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2732
	return 1;
A
Andrew Morton 已提交
2733
opps1:
L
Linus Torvalds 已提交
2734
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2735
failed:
L
Linus Torvalds 已提交
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 * - destructor calls, for caches with POISON+dtor
 */
static void kfree_debugcheck(const void *objp)
{
	struct page *page;

	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2755 2756
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2757 2758 2759
	}
	page = virt_to_page(objp);
	if (!PageSlab(page)) {
P
Pekka Enberg 已提交
2760 2761
		printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
		       (unsigned long)objp);
L
Linus Torvalds 已提交
2762 2763 2764 2765
		BUG();
	}
}

2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
	unsigned long redzone1, redzone2;

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

	printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
			obj, redzone1, redzone2);
}

2788
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2789
				   void *caller)
L
Linus Torvalds 已提交
2790 2791 2792 2793 2794
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2795
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2796 2797 2798
	kfree_debugcheck(objp);
	page = virt_to_page(objp);

2799
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2800 2801

	if (cachep->flags & SLAB_RED_ZONE) {
2802
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2803 2804 2805 2806 2807 2808
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2809
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2810 2811

	BUG_ON(objnr >= cachep->num);
2812
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2813 2814

	if (cachep->flags & SLAB_DEBUG_INITIAL) {
A
Andrew Morton 已提交
2815 2816 2817 2818
		/*
		 * Need to call the slab's constructor so the caller can
		 * perform a verify of its state (debugging).  Called without
		 * the cache-lock held.
L
Linus Torvalds 已提交
2819
		 */
2820
		cachep->ctor(objp + obj_offset(cachep),
P
Pekka Enberg 已提交
2821
			     cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
L
Linus Torvalds 已提交
2822 2823 2824 2825 2826
	}
	if (cachep->flags & SLAB_POISON && cachep->dtor) {
		/* we want to cache poison the object,
		 * call the destruction callback
		 */
2827
		cachep->dtor(objp + obj_offset(cachep), cachep, 0);
L
Linus Torvalds 已提交
2828
	}
2829 2830 2831
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2832 2833
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
2834
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2835
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2836
			kernel_map_pages(virt_to_page(objp),
2837
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2848
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2849 2850 2851
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2852

L
Linus Torvalds 已提交
2853 2854 2855 2856 2857 2858 2859
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2860 2861 2862 2863
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
2864
		for (i = 0;
2865
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2866
		     i++) {
A
Andrew Morton 已提交
2867
			if (i % 16 == 0)
L
Linus Torvalds 已提交
2868
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2869
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2881
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2882 2883 2884 2885 2886 2887
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;

	check_irq_off();
2888
	ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
2889
retry:
L
Linus Torvalds 已提交
2890 2891
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2892 2893 2894 2895
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2896 2897 2898
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
2899 2900 2901 2902
	l3 = cachep->nodelists[numa_node_id()];

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2903

2904 2905 2906 2907
	/* See if we can refill from the shared array */
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
		goto alloc_done;

L
Linus Torvalds 已提交
2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2928 2929
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
							    numa_node_id());
L
Linus Torvalds 已提交
2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
2941
must_grow:
L
Linus Torvalds 已提交
2942
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
2943
alloc_done:
2944
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2945 2946 2947

	if (unlikely(!ac->avail)) {
		int x;
2948 2949
		x = cache_grow(cachep, flags, numa_node_id());

A
Andrew Morton 已提交
2950
		/* cache_grow can reenable interrupts, then ac could change. */
2951
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
2952
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
2953 2954
			return NULL;

A
Andrew Morton 已提交
2955
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
2956 2957 2958
			goto retry;
	}
	ac->touched = 1;
2959
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
2960 2961
}

A
Andrew Morton 已提交
2962 2963
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
2964 2965 2966 2967 2968 2969 2970 2971
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
2972 2973
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
2974
{
P
Pekka Enberg 已提交
2975
	if (!objp)
L
Linus Torvalds 已提交
2976
		return objp;
P
Pekka Enberg 已提交
2977
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
2978
#ifdef CONFIG_DEBUG_PAGEALLOC
2979
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
2980
			kernel_map_pages(virt_to_page(objp),
2981
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
2993 2994 2995 2996
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
2997
			printk(KERN_ERR
A
Andrew Morton 已提交
2998 2999 3000
				"%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3001 3002 3003 3004
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3005 3006 3007 3008 3009 3010 3011 3012 3013 3014
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

		slabp = page_get_slab(virt_to_page(objp));
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3015
	objp += obj_offset(cachep);
L
Linus Torvalds 已提交
3016
	if (cachep->ctor && cachep->flags & SLAB_POISON) {
P
Pekka Enberg 已提交
3017
		unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
L
Linus Torvalds 已提交
3018 3019 3020 3021 3022

		if (!(flags & __GFP_WAIT))
			ctor_flags |= SLAB_CTOR_ATOMIC;

		cachep->ctor(objp, cachep, ctor_flags);
P
Pekka Enberg 已提交
3023
	}
L
Linus Torvalds 已提交
3024 3025 3026 3027 3028 3029
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

3030
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3031
{
P
Pekka Enberg 已提交
3032
	void *objp;
L
Linus Torvalds 已提交
3033 3034
	struct array_cache *ac;

3035
#ifdef CONFIG_NUMA
3036
	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3037 3038 3039
		objp = alternate_node_alloc(cachep, flags);
		if (objp != NULL)
			return objp;
3040 3041 3042
	}
#endif

3043
	check_irq_off();
3044
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3045 3046 3047
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
3048
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3049 3050 3051 3052
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
	}
3053 3054 3055
	return objp;
}

A
Andrew Morton 已提交
3056 3057
static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
						gfp_t flags, void *caller)
3058 3059
{
	unsigned long save_flags;
P
Pekka Enberg 已提交
3060
	void *objp;
3061 3062 3063 3064 3065

	cache_alloc_debugcheck_before(cachep, flags);

	local_irq_save(save_flags);
	objp = ____cache_alloc(cachep, flags);
L
Linus Torvalds 已提交
3066
	local_irq_restore(save_flags);
3067
	objp = cache_alloc_debugcheck_after(cachep, flags, objp,
3068
					    caller);
3069
	prefetchw(objp);
L
Linus Torvalds 已提交
3070 3071 3072
	return objp;
}

3073
#ifdef CONFIG_NUMA
3074
/*
3075
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

	if (in_interrupt())
		return NULL;
	nid_alloc = nid_here = numa_node_id();
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
		nid_alloc = cpuset_mem_spread_node();
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
	if (nid_alloc != nid_here)
		return __cache_alloc_node(cachep, flags, nid_alloc);
	return NULL;
}

3096 3097
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3098
 */
A
Andrew Morton 已提交
3099 3100
static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
				int nodeid)
3101 3102
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3103 3104 3105 3106 3107 3108 3109 3110
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3111
retry:
3112
	check_irq_off();
P
Pekka Enberg 已提交
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3132
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3133 3134 3135 3136 3137
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3138
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3139
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3140
	else
P
Pekka Enberg 已提交
3141
		list_add(&slabp->list, &l3->slabs_partial);
3142

P
Pekka Enberg 已提交
3143 3144
	spin_unlock(&l3->list_lock);
	goto done;
3145

A
Andrew Morton 已提交
3146
must_grow:
P
Pekka Enberg 已提交
3147 3148
	spin_unlock(&l3->list_lock);
	x = cache_grow(cachep, flags, nodeid);
L
Linus Torvalds 已提交
3149

P
Pekka Enberg 已提交
3150 3151
	if (!x)
		return NULL;
3152

P
Pekka Enberg 已提交
3153
	goto retry;
A
Andrew Morton 已提交
3154
done:
P
Pekka Enberg 已提交
3155
	return obj;
3156 3157 3158 3159 3160 3161
}
#endif

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3162
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3163
		       int node)
L
Linus Torvalds 已提交
3164 3165
{
	int i;
3166
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3167 3168 3169 3170 3171

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3172
		slabp = virt_to_slab(objp);
3173
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3174
		list_del(&slabp->list);
3175
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3176
		check_slabp(cachep, slabp);
3177
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3178
		STATS_DEC_ACTIVE(cachep);
3179
		l3->free_objects++;
L
Linus Torvalds 已提交
3180 3181 3182 3183
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3184 3185
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3186 3187 3188 3189 3190 3191
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3192 3193
				slab_destroy(cachep, slabp);
			} else {
3194
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3195 3196 3197 3198 3199 3200
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3201
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3202 3203 3204 3205
		}
	}
}

3206
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3207 3208
{
	int batchcount;
3209
	struct kmem_list3 *l3;
3210
	int node = numa_node_id();
L
Linus Torvalds 已提交
3211 3212 3213 3214 3215 3216

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3217
	l3 = cachep->nodelists[node];
3218
	spin_lock(&l3->list_lock);
3219 3220
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3221
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3222 3223 3224
		if (max) {
			if (batchcount > max)
				batchcount = max;
3225
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3226
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3227 3228 3229 3230 3231
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3232
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3233
free_done:
L
Linus Torvalds 已提交
3234 3235 3236 3237 3238
#if STATS
	{
		int i = 0;
		struct list_head *p;

3239 3240
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3252
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3253
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3254
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3255 3256 3257
}

/*
A
Andrew Morton 已提交
3258 3259
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3260
 */
3261
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3262
{
3263
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3264 3265 3266 3267

	check_irq_off();
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

3268
	if (cache_free_alien(cachep, objp))
3269 3270
		return;

L
Linus Torvalds 已提交
3271 3272
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3273
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3274 3275 3276 3277
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3278
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3290
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3291
{
3292
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3293 3294 3295
}
EXPORT_SYMBOL(kmem_cache_alloc);

3296
/**
3297
 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
 * @cache: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache and set the allocated memory to zero.
 * The flags are only relevant if the cache has no available objects.
 */
void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
{
	void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
	if (ret)
		memset(ret, 0, obj_size(cache));
	return ret;
}
EXPORT_SYMBOL(kmem_cache_zalloc);

L
Linus Torvalds 已提交
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
/**
 * kmem_ptr_validate - check if an untrusted pointer might
 *	be a slab entry.
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
 * This verifies that the untrusted pointer looks sane:
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3327
int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
L
Linus Torvalds 已提交
3328
{
P
Pekka Enberg 已提交
3329
	unsigned long addr = (unsigned long)ptr;
L
Linus Torvalds 已提交
3330
	unsigned long min_addr = PAGE_OFFSET;
P
Pekka Enberg 已提交
3331
	unsigned long align_mask = BYTES_PER_WORD - 1;
3332
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
	struct page *page;

	if (unlikely(addr < min_addr))
		goto out;
	if (unlikely(addr > (unsigned long)high_memory - size))
		goto out;
	if (unlikely(addr & align_mask))
		goto out;
	if (unlikely(!kern_addr_valid(addr)))
		goto out;
	if (unlikely(!kern_addr_valid(addr + size - 1)))
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3348
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3349 3350
		goto out;
	return 1;
A
Andrew Morton 已提交
3351
out:
L
Linus Torvalds 已提交
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
	return 0;
}

#ifdef CONFIG_NUMA
/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 *
 * Identical to kmem_cache_alloc, except that this function is slow
 * and can sleep. And it will allocate memory on the given node, which
 * can improve the performance for cpu bound structures.
3365 3366
 * New and improved: it will now make sure that the object gets
 * put on the correct node list so that there is no false sharing.
L
Linus Torvalds 已提交
3367
 */
3368
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
3369
{
3370 3371
	unsigned long save_flags;
	void *ptr;
L
Linus Torvalds 已提交
3372

3373 3374
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
3375 3376

	if (nodeid == -1 || nodeid == numa_node_id() ||
A
Andrew Morton 已提交
3377
			!cachep->nodelists[nodeid])
3378 3379 3380
		ptr = ____cache_alloc(cachep, flags);
	else
		ptr = __cache_alloc_node(cachep, flags, nodeid);
3381
	local_irq_restore(save_flags);
3382 3383 3384

	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
					   __builtin_return_address(0));
L
Linus Torvalds 已提交
3385

3386
	return ptr;
L
Linus Torvalds 已提交
3387 3388 3389
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

3390
void *__kmalloc_node(size_t size, gfp_t flags, int node)
3391
{
3392
	struct kmem_cache *cachep;
3393 3394 3395 3396 3397 3398

	cachep = kmem_find_general_cachep(size, flags);
	if (unlikely(cachep == NULL))
		return NULL;
	return kmem_cache_alloc_node(cachep, flags, node);
}
3399
EXPORT_SYMBOL(__kmalloc_node);
L
Linus Torvalds 已提交
3400 3401 3402
#endif

/**
3403
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3404
 * @size: how many bytes of memory are required.
3405
 * @flags: the type of memory to allocate (see kmalloc).
3406
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3407
 */
3408 3409
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3410
{
3411
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3412

3413 3414 3415 3416 3417 3418
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3419 3420
	if (unlikely(cachep == NULL))
		return NULL;
3421 3422 3423 3424 3425 3426
	return __cache_alloc(cachep, flags, caller);
}


void *__kmalloc(size_t size, gfp_t flags)
{
3427
#ifndef CONFIG_DEBUG_SLAB
3428
	return __do_kmalloc(size, flags, NULL);
3429 3430 3431
#else
	return __do_kmalloc(size, flags, __builtin_return_address(0));
#endif
L
Linus Torvalds 已提交
3432 3433 3434
}
EXPORT_SYMBOL(__kmalloc);

3435
#ifdef CONFIG_DEBUG_SLAB
3436 3437 3438 3439 3440 3441 3442
void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
{
	return __do_kmalloc(size, flags, caller);
}
EXPORT_SYMBOL(__kmalloc_track_caller);
#endif

L
Linus Torvalds 已提交
3443 3444
#ifdef CONFIG_SMP
/**
3445 3446 3447
 * percpu_depopulate - depopulate per-cpu data for given cpu
 * @__pdata: per-cpu data to depopulate
 * @cpu: depopulate per-cpu data for this cpu
L
Linus Torvalds 已提交
3448
 *
3449 3450
 * Depopulating per-cpu data for a cpu going offline would be a typical
 * use case. You need to register a cpu hotplug handler for that purpose.
L
Linus Torvalds 已提交
3451
 */
3452
void percpu_depopulate(void *__pdata, int cpu)
L
Linus Torvalds 已提交
3453
{
3454 3455 3456 3457 3458 3459 3460
	struct percpu_data *pdata = __percpu_disguise(__pdata);
	if (pdata->ptrs[cpu]) {
		kfree(pdata->ptrs[cpu]);
		pdata->ptrs[cpu] = NULL;
	}
}
EXPORT_SYMBOL_GPL(percpu_depopulate);
L
Linus Torvalds 已提交
3461

3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
/**
 * percpu_depopulate_mask - depopulate per-cpu data for some cpu's
 * @__pdata: per-cpu data to depopulate
 * @mask: depopulate per-cpu data for cpu's selected through mask bits
 */
void __percpu_depopulate_mask(void *__pdata, cpumask_t *mask)
{
	int cpu;
	for_each_cpu_mask(cpu, *mask)
		percpu_depopulate(__pdata, cpu);
}
EXPORT_SYMBOL_GPL(__percpu_depopulate_mask);
L
Linus Torvalds 已提交
3474

3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
/**
 * percpu_populate - populate per-cpu data for given cpu
 * @__pdata: per-cpu data to populate further
 * @size: size of per-cpu object
 * @gfp: may sleep or not etc.
 * @cpu: populate per-data for this cpu
 *
 * Populating per-cpu data for a cpu coming online would be a typical
 * use case. You need to register a cpu hotplug handler for that purpose.
 * Per-cpu object is populated with zeroed buffer.
 */
void *percpu_populate(void *__pdata, size_t size, gfp_t gfp, int cpu)
{
	struct percpu_data *pdata = __percpu_disguise(__pdata);
	int node = cpu_to_node(cpu);
3490

3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
	BUG_ON(pdata->ptrs[cpu]);
	if (node_online(node)) {
		/* FIXME: kzalloc_node(size, gfp, node) */
		pdata->ptrs[cpu] = kmalloc_node(size, gfp, node);
		if (pdata->ptrs[cpu])
			memset(pdata->ptrs[cpu], 0, size);
	} else
		pdata->ptrs[cpu] = kzalloc(size, gfp);
	return pdata->ptrs[cpu];
}
EXPORT_SYMBOL_GPL(percpu_populate);
L
Linus Torvalds 已提交
3502

3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
/**
 * percpu_populate_mask - populate per-cpu data for more cpu's
 * @__pdata: per-cpu data to populate further
 * @size: size of per-cpu object
 * @gfp: may sleep or not etc.
 * @mask: populate per-cpu data for cpu's selected through mask bits
 *
 * Per-cpu objects are populated with zeroed buffers.
 */
int __percpu_populate_mask(void *__pdata, size_t size, gfp_t gfp,
			   cpumask_t *mask)
{
	cpumask_t populated = CPU_MASK_NONE;
	int cpu;
L
Linus Torvalds 已提交
3517

3518 3519 3520 3521 3522 3523 3524 3525 3526
	for_each_cpu_mask(cpu, *mask)
		if (unlikely(!percpu_populate(__pdata, size, gfp, cpu))) {
			__percpu_depopulate_mask(__pdata, &populated);
			return -ENOMEM;
		} else
			cpu_set(cpu, populated);
	return 0;
}
EXPORT_SYMBOL_GPL(__percpu_populate_mask);
L
Linus Torvalds 已提交
3527

3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
/**
 * percpu_alloc_mask - initial setup of per-cpu data
 * @size: size of per-cpu object
 * @gfp: may sleep or not etc.
 * @mask: populate per-data for cpu's selected through mask bits
 *
 * Populating per-cpu data for all online cpu's would be a typical use case,
 * which is simplified by the percpu_alloc() wrapper.
 * Per-cpu objects are populated with zeroed buffers.
 */
void *__percpu_alloc_mask(size_t size, gfp_t gfp, cpumask_t *mask)
{
	void *pdata = kzalloc(sizeof(struct percpu_data), gfp);
	void *__pdata = __percpu_disguise(pdata);

	if (unlikely(!pdata))
		return NULL;
	if (likely(!__percpu_populate_mask(__pdata, size, gfp, mask)))
		return __pdata;
L
Linus Torvalds 已提交
3547 3548 3549
	kfree(pdata);
	return NULL;
}
3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
EXPORT_SYMBOL_GPL(__percpu_alloc_mask);

/**
 * percpu_free - final cleanup of per-cpu data
 * @__pdata: object to clean up
 *
 * We simply clean up any per-cpu object left. No need for the client to
 * track and specify through a bis mask which per-cpu objects are to free.
 */
void percpu_free(void *__pdata)
{
	__percpu_depopulate_mask(__pdata, &cpu_possible_map);
	kfree(__percpu_disguise(__pdata));
}
EXPORT_SYMBOL_GPL(percpu_free);
#endif	/* CONFIG_SMP */
L
Linus Torvalds 已提交
3566 3567 3568 3569 3570 3571 3572 3573 3574

/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3575
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3576 3577 3578
{
	unsigned long flags;

3579 3580
	BUG_ON(virt_to_cache(objp) != cachep);

L
Linus Torvalds 已提交
3581
	local_irq_save(flags);
3582
	__cache_free(cachep, objp);
L
Linus Torvalds 已提交
3583 3584 3585 3586 3587 3588 3589 3590
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3591 3592
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3593 3594 3595 3596 3597
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3598
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3599 3600 3601 3602 3603 3604
	unsigned long flags;

	if (unlikely(!objp))
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3605
	c = virt_to_cache(objp);
3606
	debug_check_no_locks_freed(objp, obj_size(c));
3607
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3608 3609 3610 3611
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3612
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3613
{
3614
	return obj_size(cachep);
L
Linus Torvalds 已提交
3615 3616 3617
}
EXPORT_SYMBOL(kmem_cache_size);

3618
const char *kmem_cache_name(struct kmem_cache *cachep)
3619 3620 3621 3622 3623
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3624
/*
3625
 * This initializes kmem_list3 or resizes varioius caches for all nodes.
3626
 */
3627
static int alloc_kmemlist(struct kmem_cache *cachep)
3628 3629 3630
{
	int node;
	struct kmem_list3 *l3;
3631 3632
	struct array_cache *new_shared;
	struct array_cache **new_alien;
3633 3634

	for_each_online_node(node) {
3635

A
Andrew Morton 已提交
3636 3637
		new_alien = alloc_alien_cache(node, cachep->limit);
		if (!new_alien)
3638
			goto fail;
3639

3640 3641
		new_shared = alloc_arraycache(node,
				cachep->shared*cachep->batchcount,
A
Andrew Morton 已提交
3642
					0xbaadf00d);
3643 3644
		if (!new_shared) {
			free_alien_cache(new_alien);
3645
			goto fail;
3646
		}
3647

A
Andrew Morton 已提交
3648 3649
		l3 = cachep->nodelists[node];
		if (l3) {
3650 3651
			struct array_cache *shared = l3->shared;

3652 3653
			spin_lock_irq(&l3->list_lock);

3654
			if (shared)
3655 3656
				free_block(cachep, shared->entry,
						shared->avail, node);
3657

3658 3659
			l3->shared = new_shared;
			if (!l3->alien) {
3660 3661 3662
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3663
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3664
					cachep->batchcount + cachep->num;
3665
			spin_unlock_irq(&l3->list_lock);
3666
			kfree(shared);
3667 3668 3669
			free_alien_cache(new_alien);
			continue;
		}
A
Andrew Morton 已提交
3670
		l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3671 3672 3673
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3674
			goto fail;
3675
		}
3676 3677 3678

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3679
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3680
		l3->shared = new_shared;
3681
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3682
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3683
					cachep->batchcount + cachep->num;
3684 3685
		cachep->nodelists[node] = l3;
	}
3686
	return 0;
3687

A
Andrew Morton 已提交
3688
fail:
3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3704
	return -ENOMEM;
3705 3706
}

L
Linus Torvalds 已提交
3707
struct ccupdate_struct {
3708
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3709 3710 3711 3712 3713
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3714
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3715 3716 3717
	struct array_cache *old;

	check_irq_off();
3718
	old = cpu_cache_get(new->cachep);
3719

L
Linus Torvalds 已提交
3720 3721 3722 3723
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3724
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
3725 3726
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
				int batchcount, int shared)
L
Linus Torvalds 已提交
3727 3728
{
	struct ccupdate_struct new;
3729
	int i;
L
Linus Torvalds 已提交
3730

P
Pekka Enberg 已提交
3731
	memset(&new.new, 0, sizeof(new.new));
3732
	for_each_online_cpu(i) {
A
Andrew Morton 已提交
3733 3734
		new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
						batchcount);
3735
		if (!new.new[i]) {
P
Pekka Enberg 已提交
3736 3737
			for (i--; i >= 0; i--)
				kfree(new.new[i]);
3738
			return -ENOMEM;
L
Linus Torvalds 已提交
3739 3740 3741 3742
		}
	}
	new.cachep = cachep;

A
Andrew Morton 已提交
3743
	on_each_cpu(do_ccupdate_local, (void *)&new, 1, 1);
3744

L
Linus Torvalds 已提交
3745 3746 3747
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3748
	cachep->shared = shared;
L
Linus Torvalds 已提交
3749

3750
	for_each_online_cpu(i) {
L
Linus Torvalds 已提交
3751 3752 3753
		struct array_cache *ccold = new.new[i];
		if (!ccold)
			continue;
3754
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3755
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3756
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
3757 3758 3759
		kfree(ccold);
	}

3760
	return alloc_kmemlist(cachep);
L
Linus Torvalds 已提交
3761 3762
}

3763
/* Called with cache_chain_mutex held always */
3764
static int enable_cpucache(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3765 3766 3767 3768
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
3769 3770
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3771 3772
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3773
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3774 3775 3776 3777
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3778
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
3779
		limit = 1;
3780
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
3781
		limit = 8;
3782
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
3783
		limit = 24;
3784
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
3785 3786 3787 3788
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3789 3790
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3791 3792 3793 3794 3795 3796 3797 3798 3799
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
#ifdef CONFIG_SMP
3800
	if (cachep->buffer_size <= PAGE_SIZE)
L
Linus Torvalds 已提交
3801 3802 3803 3804
		shared = 8;
#endif

#if DEBUG
A
Andrew Morton 已提交
3805 3806 3807
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3808 3809 3810 3811
	 */
	if (limit > 32)
		limit = 32;
#endif
P
Pekka Enberg 已提交
3812
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
L
Linus Torvalds 已提交
3813 3814
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3815
		       cachep->name, -err);
3816
	return err;
L
Linus Torvalds 已提交
3817 3818
}

3819 3820
/*
 * Drain an array if it contains any elements taking the l3 lock only if
3821 3822
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
3823 3824 3825
 */
void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
3826 3827 3828
{
	int tofree;

3829 3830
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
3831 3832
	if (ac->touched && !force) {
		ac->touched = 0;
3833
	} else {
3834
		spin_lock_irq(&l3->list_lock);
3835 3836 3837 3838 3839 3840 3841 3842 3843
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
3844
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
3845 3846 3847 3848 3849
	}
}

/**
 * cache_reap - Reclaim memory from caches.
3850
 * @unused: unused parameter
L
Linus Torvalds 已提交
3851 3852 3853 3854 3855 3856
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
3857 3858
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
3859 3860 3861
 */
static void cache_reap(void *unused)
{
3862
	struct kmem_cache *searchp;
3863
	struct kmem_list3 *l3;
3864
	int node = numa_node_id();
L
Linus Torvalds 已提交
3865

I
Ingo Molnar 已提交
3866
	if (!mutex_trylock(&cache_chain_mutex)) {
L
Linus Torvalds 已提交
3867
		/* Give up. Setup the next iteration. */
P
Pekka Enberg 已提交
3868 3869
		schedule_delayed_work(&__get_cpu_var(reap_work),
				      REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3870 3871 3872
		return;
	}

3873
	list_for_each_entry(searchp, &cache_chain, next) {
L
Linus Torvalds 已提交
3874 3875
		check_irq_on();

3876 3877 3878 3879 3880
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
3881
		l3 = searchp->nodelists[node];
3882

3883
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
3884

3885
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
3886

3887 3888 3889 3890
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
3891
		if (time_after(l3->next_reap, jiffies))
3892
			goto next;
L
Linus Torvalds 已提交
3893

3894
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
3895

3896
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
3897

3898
		if (l3->free_touched)
3899
			l3->free_touched = 0;
3900 3901
		else {
			int freed;
L
Linus Torvalds 已提交
3902

3903 3904 3905 3906
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
3907
next:
L
Linus Torvalds 已提交
3908 3909 3910
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
3911
	mutex_unlock(&cache_chain_mutex);
3912
	next_reap_node();
3913
	refresh_cpu_vm_stats(smp_processor_id());
A
Andrew Morton 已提交
3914
	/* Set up the next iteration */
3915
	schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
L
Linus Torvalds 已提交
3916 3917 3918 3919
}

#ifdef CONFIG_PROC_FS

3920
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
3921
{
3922 3923 3924 3925
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
3926
#if STATS
3927
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
3928
#else
3929
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
3930
#endif
3931 3932 3933 3934
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
3935
#if STATS
3936
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3937
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
3938
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
3939
#endif
3940 3941 3942 3943 3944 3945 3946 3947
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

I
Ingo Molnar 已提交
3948
	mutex_lock(&cache_chain_mutex);
3949 3950
	if (!n)
		print_slabinfo_header(m);
L
Linus Torvalds 已提交
3951 3952 3953 3954 3955 3956
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
3957
	return list_entry(p, struct kmem_cache, next);
L
Linus Torvalds 已提交
3958 3959 3960 3961
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
3962
	struct kmem_cache *cachep = p;
L
Linus Torvalds 已提交
3963
	++*pos;
A
Andrew Morton 已提交
3964 3965
	return cachep->next.next == &cache_chain ?
		NULL : list_entry(cachep->next.next, struct kmem_cache, next);
L
Linus Torvalds 已提交
3966 3967 3968 3969
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
3970
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
3971 3972 3973 3974
}

static int s_show(struct seq_file *m, void *p)
{
3975
	struct kmem_cache *cachep = p;
P
Pekka Enberg 已提交
3976 3977 3978 3979 3980
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3981
	const char *name;
L
Linus Torvalds 已提交
3982
	char *error = NULL;
3983 3984
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3985 3986 3987

	active_objs = 0;
	num_slabs = 0;
3988 3989 3990 3991 3992
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

3993 3994
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
3995

3996
		list_for_each_entry(slabp, &l3->slabs_full, list) {
3997 3998 3999 4000 4001
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4002
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4003 4004 4005 4006 4007 4008 4009
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4010
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4011 4012 4013 4014 4015
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4016 4017
		if (l3->shared)
			shared_avail += l3->shared->avail;
4018

4019
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4020
	}
P
Pekka Enberg 已提交
4021 4022
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4023
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4024 4025
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4026
	name = cachep->name;
L
Linus Torvalds 已提交
4027 4028 4029 4030
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4031
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
4032
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4033
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4034
		   cachep->limit, cachep->batchcount, cachep->shared);
4035
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4036
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4037
#if STATS
P
Pekka Enberg 已提交
4038
	{			/* list3 stats */
L
Linus Torvalds 已提交
4039 4040 4041 4042 4043 4044 4045
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4046
		unsigned long node_frees = cachep->node_frees;
4047
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4048

4049
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4050
				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
A
Andrew Morton 已提交
4051
				reaped, errors, max_freeable, node_allocs,
4052
				node_frees, overflows);
L
Linus Torvalds 已提交
4053 4054 4055 4056 4057 4058 4059 4060 4061
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4062
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4084 4085 4086 4087
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4088 4089 4090 4091 4092 4093 4094 4095 4096 4097
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
4098 4099
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4100
{
P
Pekka Enberg 已提交
4101
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4102
	int limit, batchcount, shared, res;
4103
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4104

L
Linus Torvalds 已提交
4105 4106 4107 4108
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4109
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
4120
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4121
	res = -EINVAL;
4122
	list_for_each_entry(cachep, &cache_chain, next) {
L
Linus Torvalds 已提交
4123
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4124 4125
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4126
				res = 0;
L
Linus Torvalds 已提交
4127
			} else {
4128
				res = do_tune_cpucache(cachep, limit,
P
Pekka Enberg 已提交
4129
						       batchcount, shared);
L
Linus Torvalds 已提交
4130 4131 4132 4133
			}
			break;
		}
	}
I
Ingo Molnar 已提交
4134
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4135 4136 4137 4138
	if (res >= 0)
		res = count;
	return res;
}
4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247

#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;
	struct list_head *p;

	mutex_lock(&cache_chain_mutex);
	p = cache_chain.next;
	while (n--) {
		p = p->next;
		if (p == &cache_chain)
			return NULL;
	}
	return list_entry(p, struct kmem_cache, next);
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	char *modname;
	const char *name;
	unsigned long offset, size;
	char namebuf[KSYM_NAME_LEN+1];

	name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);

	if (name) {
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
		if (modname)
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
	struct kmem_cache *cachep = p;
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4248
		list_for_each_entry(slabp, &l3->slabs_full, list)
4249
			handle_slab(n, cachep, slabp);
4250
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
	return 0;
}

struct seq_operations slabstats_op = {
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
#endif
L
Linus Torvalds 已提交
4287 4288
#endif

4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
L
Linus Torvalds 已提交
4301 4302
unsigned int ksize(const void *objp)
{
4303 4304
	if (unlikely(objp == NULL))
		return 0;
L
Linus Torvalds 已提交
4305

4306
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4307
}