intel_pm.c 203.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2012 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
 *
 */

28
#include <linux/cpufreq.h>
29 30
#include "i915_drv.h"
#include "intel_drv.h"
31 32
#include "../../../platform/x86/intel_ips.h"
#include <linux/module.h>
33

B
Ben Widawsky 已提交
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
/**
 * RC6 is a special power stage which allows the GPU to enter an very
 * low-voltage mode when idle, using down to 0V while at this stage.  This
 * stage is entered automatically when the GPU is idle when RC6 support is
 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
 *
 * There are different RC6 modes available in Intel GPU, which differentiate
 * among each other with the latency required to enter and leave RC6 and
 * voltage consumed by the GPU in different states.
 *
 * The combination of the following flags define which states GPU is allowed
 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
 * RC6pp is deepest RC6. Their support by hardware varies according to the
 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
 * which brings the most power savings; deeper states save more power, but
 * require higher latency to switch to and wake up.
 */
#define INTEL_RC6_ENABLE			(1<<0)
#define INTEL_RC6p_ENABLE			(1<<1)
#define INTEL_RC6pp_ENABLE			(1<<2)

55 56
static void bxt_init_clock_gating(struct drm_device *dev)
{
57 58
	struct drm_i915_private *dev_priv = dev->dev_private;

59 60 61 62
	/* WaDisableSDEUnitClockGating:bxt */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);

63 64
	/*
	 * FIXME:
65
	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
66 67
	 */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
68
		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
69 70
}

71 72
static void i915_pineview_get_mem_freq(struct drm_device *dev)
{
73
	struct drm_i915_private *dev_priv = dev->dev_private;
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
	u32 tmp;

	tmp = I915_READ(CLKCFG);

	switch (tmp & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_533:
		dev_priv->fsb_freq = 533; /* 133*4 */
		break;
	case CLKCFG_FSB_800:
		dev_priv->fsb_freq = 800; /* 200*4 */
		break;
	case CLKCFG_FSB_667:
		dev_priv->fsb_freq =  667; /* 167*4 */
		break;
	case CLKCFG_FSB_400:
		dev_priv->fsb_freq = 400; /* 100*4 */
		break;
	}

	switch (tmp & CLKCFG_MEM_MASK) {
	case CLKCFG_MEM_533:
		dev_priv->mem_freq = 533;
		break;
	case CLKCFG_MEM_667:
		dev_priv->mem_freq = 667;
		break;
	case CLKCFG_MEM_800:
		dev_priv->mem_freq = 800;
		break;
	}

	/* detect pineview DDR3 setting */
	tmp = I915_READ(CSHRDDR3CTL);
	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}

static void i915_ironlake_get_mem_freq(struct drm_device *dev)
{
112
	struct drm_i915_private *dev_priv = dev->dev_private;
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
	u16 ddrpll, csipll;

	ddrpll = I915_READ16(DDRMPLL1);
	csipll = I915_READ16(CSIPLL0);

	switch (ddrpll & 0xff) {
	case 0xc:
		dev_priv->mem_freq = 800;
		break;
	case 0x10:
		dev_priv->mem_freq = 1066;
		break;
	case 0x14:
		dev_priv->mem_freq = 1333;
		break;
	case 0x18:
		dev_priv->mem_freq = 1600;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
				 ddrpll & 0xff);
		dev_priv->mem_freq = 0;
		break;
	}

138
	dev_priv->ips.r_t = dev_priv->mem_freq;
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

	switch (csipll & 0x3ff) {
	case 0x00c:
		dev_priv->fsb_freq = 3200;
		break;
	case 0x00e:
		dev_priv->fsb_freq = 3733;
		break;
	case 0x010:
		dev_priv->fsb_freq = 4266;
		break;
	case 0x012:
		dev_priv->fsb_freq = 4800;
		break;
	case 0x014:
		dev_priv->fsb_freq = 5333;
		break;
	case 0x016:
		dev_priv->fsb_freq = 5866;
		break;
	case 0x018:
		dev_priv->fsb_freq = 6400;
		break;
	default:
		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
				 csipll & 0x3ff);
		dev_priv->fsb_freq = 0;
		break;
	}

	if (dev_priv->fsb_freq == 3200) {
170
		dev_priv->ips.c_m = 0;
171
	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
172
		dev_priv->ips.c_m = 1;
173
	} else {
174
		dev_priv->ips.c_m = 2;
175 176 177
	}
}

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
static const struct cxsr_latency cxsr_latency_table[] = {
	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */

	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */

	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */

	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */

	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */

	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
};

216
static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
							 int is_ddr3,
							 int fsb,
							 int mem)
{
	const struct cxsr_latency *latency;
	int i;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
		    is_ddr3 == latency->is_ddr3 &&
		    fsb == latency->fsb_freq && mem == latency->mem_freq)
			return latency;
	}

	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");

	return NULL;
}

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
	if (enable)
		val &= ~FORCE_DDR_HIGH_FREQ;
	else
		val |= FORCE_DDR_HIGH_FREQ;
	val &= ~FORCE_DDR_LOW_FREQ;
	val |= FORCE_DDR_FREQ_REQ_ACK;
	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");

	mutex_unlock(&dev_priv->rps.hw_lock);
}

262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
	u32 val;

	mutex_lock(&dev_priv->rps.hw_lock);

	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
	if (enable)
		val |= DSP_MAXFIFO_PM5_ENABLE;
	else
		val &= ~DSP_MAXFIFO_PM5_ENABLE;
	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);

	mutex_unlock(&dev_priv->rps.hw_lock);
}

278 279 280
#define FW_WM(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)

281
void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
282
{
283 284
	struct drm_device *dev = dev_priv->dev;
	u32 val;
285

286 287
	if (IS_VALLEYVIEW(dev)) {
		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
288
		POSTING_READ(FW_BLC_SELF_VLV);
289
		dev_priv->wm.vlv.cxsr = enable;
290 291
	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
292
		POSTING_READ(FW_BLC_SELF);
293 294 295 296
	} else if (IS_PINEVIEW(dev)) {
		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
		I915_WRITE(DSPFW3, val);
297
		POSTING_READ(DSPFW3);
298 299 300 301
	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
		I915_WRITE(FW_BLC_SELF, val);
302
		POSTING_READ(FW_BLC_SELF);
303 304 305 306
	} else if (IS_I915GM(dev)) {
		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
		I915_WRITE(INSTPM, val);
307
		POSTING_READ(INSTPM);
308 309 310
	} else {
		return;
	}
311

312 313
	DRM_DEBUG_KMS("memory self-refresh is %s\n",
		      enable ? "enabled" : "disabled");
314 315
}

316

317 318 319 320 321 322 323 324 325 326 327 328 329 330
/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
331
static const int pessimal_latency_ns = 5000;
332

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))

static int vlv_get_fifo_size(struct drm_device *dev,
			      enum pipe pipe, int plane)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int sprite0_start, sprite1_start, size;

	switch (pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);
		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
		break;
	case PIPE_C:
		dsparb2 = I915_READ(DSPARB2);
		dsparb3 = I915_READ(DSPARB3);
		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
		break;
	default:
		return 0;
	}

	switch (plane) {
	case 0:
		size = sprite0_start;
		break;
	case 1:
		size = sprite1_start - sprite0_start;
		break;
	case 2:
		size = 512 - 1 - sprite1_start;
		break;
	default:
		return 0;
	}

	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
		      size);

	return size;
}

388
static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	if (plane)
		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

404
static int i830_get_fifo_size(struct drm_device *dev, int plane)
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x1ff;
	if (plane)
		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
	size >>= 1; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A", size);

	return size;
}

421
static int i845_get_fifo_size(struct drm_device *dev, int plane)
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	size = dsparb & 0x7f;
	size >>= 2; /* Convert to cachelines */

	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
		      plane ? "B" : "A",
		      size);

	return size;
}

/* Pineview has different values for various configs */
static const struct intel_watermark_params pineview_display_wm = {
439 440 441 442 443
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
444 445
};
static const struct intel_watermark_params pineview_display_hplloff_wm = {
446 447 448 449 450
	.fifo_size = PINEVIEW_DISPLAY_FIFO,
	.max_wm = PINEVIEW_MAX_WM,
	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
	.guard_size = PINEVIEW_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
451 452
};
static const struct intel_watermark_params pineview_cursor_wm = {
453 454 455 456 457
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
458 459
};
static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
460 461 462 463 464
	.fifo_size = PINEVIEW_CURSOR_FIFO,
	.max_wm = PINEVIEW_CURSOR_MAX_WM,
	.default_wm = PINEVIEW_CURSOR_DFT_WM,
	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
465 466
};
static const struct intel_watermark_params g4x_wm_info = {
467 468 469 470 471
	.fifo_size = G4X_FIFO_SIZE,
	.max_wm = G4X_MAX_WM,
	.default_wm = G4X_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
472 473
};
static const struct intel_watermark_params g4x_cursor_wm_info = {
474 475 476 477 478
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
479 480
};
static const struct intel_watermark_params valleyview_wm_info = {
481 482 483 484 485
	.fifo_size = VALLEYVIEW_FIFO_SIZE,
	.max_wm = VALLEYVIEW_MAX_WM,
	.default_wm = VALLEYVIEW_MAX_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
486 487
};
static const struct intel_watermark_params valleyview_cursor_wm_info = {
488 489 490 491 492
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = G4X_FIFO_LINE_SIZE,
493 494
};
static const struct intel_watermark_params i965_cursor_wm_info = {
495 496 497 498 499
	.fifo_size = I965_CURSOR_FIFO,
	.max_wm = I965_CURSOR_MAX_WM,
	.default_wm = I965_CURSOR_DFT_WM,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
500 501
};
static const struct intel_watermark_params i945_wm_info = {
502 503 504 505 506
	.fifo_size = I945_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
507 508
};
static const struct intel_watermark_params i915_wm_info = {
509 510 511 512 513
	.fifo_size = I915_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I915_FIFO_LINE_SIZE,
514
};
515
static const struct intel_watermark_params i830_a_wm_info = {
516 517 518 519 520
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
521
};
522 523 524 525 526 527 528
static const struct intel_watermark_params i830_bc_wm_info = {
	.fifo_size = I855GM_FIFO_SIZE,
	.max_wm = I915_MAX_WM/2,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
};
529
static const struct intel_watermark_params i845_wm_info = {
530 531 532 533 534
	.fifo_size = I830_FIFO_SIZE,
	.max_wm = I915_MAX_WM,
	.default_wm = 1,
	.guard_size = 2,
	.cacheline_size = I830_FIFO_LINE_SIZE,
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
 * @pixel_size: display pixel size
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					const struct intel_watermark_params *wm,
					int fifo_size,
					int pixel_size,
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	/*
	 * Note: we need to make sure we don't overflow for various clock &
	 * latency values.
	 * clocks go from a few thousand to several hundred thousand.
	 * latency is usually a few thousand
	 */
	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
		1000;
	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);

	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);

	wm_size = fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
584 585 586 587 588 589 590 591 592 593 594

	/*
	 * Bspec seems to indicate that the value shouldn't be lower than
	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
	 * Lets go for 8 which is the burst size since certain platforms
	 * already use a hardcoded 8 (which is what the spec says should be
	 * done).
	 */
	if (wm_size <= 8)
		wm_size = 8;

595 596 597 598 599 600 601
	return wm_size;
}

static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
{
	struct drm_crtc *crtc, *enabled = NULL;

602
	for_each_crtc(dev, crtc) {
603
		if (intel_crtc_active(crtc)) {
604 605 606 607 608 609 610 611 612
			if (enabled)
				return NULL;
			enabled = crtc;
		}
	}

	return enabled;
}

613
static void pineview_update_wm(struct drm_crtc *unused_crtc)
614
{
615
	struct drm_device *dev = unused_crtc->dev;
616 617 618 619 620 621 622 623 624 625
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	const struct cxsr_latency *latency;
	u32 reg;
	unsigned long wm;

	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
					 dev_priv->fsb_freq, dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
626
		intel_set_memory_cxsr(dev_priv, false);
627 628 629 630 631
		return;
	}

	crtc = single_enabled_crtc(dev);
	if (crtc) {
632
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
633
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
634
		int clock = adjusted_mode->crtc_clock;
635 636 637 638 639 640 641

		/* Display SR */
		wm = intel_calculate_wm(clock, &pineview_display_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->display_sr);
		reg = I915_READ(DSPFW1);
		reg &= ~DSPFW_SR_MASK;
642
		reg |= FW_WM(wm, SR);
643 644 645 646 647 648 649 650 651
		I915_WRITE(DSPFW1, reg);
		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);

		/* cursor SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
					pineview_display_wm.fifo_size,
					pixel_size, latency->cursor_sr);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_CURSOR_SR_MASK;
652
		reg |= FW_WM(wm, CURSOR_SR);
653 654 655 656 657 658 659 660
		I915_WRITE(DSPFW3, reg);

		/* Display HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->display_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_SR_MASK;
661
		reg |= FW_WM(wm, HPLL_SR);
662 663 664 665 666 667 668 669
		I915_WRITE(DSPFW3, reg);

		/* cursor HPLL off SR */
		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
					pineview_display_hplloff_wm.fifo_size,
					pixel_size, latency->cursor_hpll_disable);
		reg = I915_READ(DSPFW3);
		reg &= ~DSPFW_HPLL_CURSOR_MASK;
670
		reg |= FW_WM(wm, HPLL_CURSOR);
671 672 673
		I915_WRITE(DSPFW3, reg);
		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);

674
		intel_set_memory_cxsr(dev_priv, true);
675
	} else {
676
		intel_set_memory_cxsr(dev_priv, false);
677 678 679 680 681 682 683 684 685 686 687 688 689
	}
}

static bool g4x_compute_wm0(struct drm_device *dev,
			    int plane,
			    const struct intel_watermark_params *display,
			    int display_latency_ns,
			    const struct intel_watermark_params *cursor,
			    int cursor_latency_ns,
			    int *plane_wm,
			    int *cursor_wm)
{
	struct drm_crtc *crtc;
690
	const struct drm_display_mode *adjusted_mode;
691 692 693 694 695
	int htotal, hdisplay, clock, pixel_size;
	int line_time_us, line_count;
	int entries, tlb_miss;

	crtc = intel_get_crtc_for_plane(dev, plane);
696
	if (!intel_crtc_active(crtc)) {
697 698 699 700 701
		*cursor_wm = cursor->guard_size;
		*plane_wm = display->guard_size;
		return false;
	}

702
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
703
	clock = adjusted_mode->crtc_clock;
704
	htotal = adjusted_mode->crtc_htotal;
705
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
706
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
707 708 709 710 711 712 713 714 715 716 717 718

	/* Use the small buffer method to calculate plane watermark */
	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, display->cacheline_size);
	*plane_wm = entries + display->guard_size;
	if (*plane_wm > (int)display->max_wm)
		*plane_wm = display->max_wm;

	/* Use the large buffer method to calculate cursor watermark */
719
	line_time_us = max(htotal * 1000 / clock, 1);
720
	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
721
	entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
	if (tlb_miss > 0)
		entries += tlb_miss;
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;
	if (*cursor_wm > (int)cursor->max_wm)
		*cursor_wm = (int)cursor->max_wm;

	return true;
}

/*
 * Check the wm result.
 *
 * If any calculated watermark values is larger than the maximum value that
 * can be programmed into the associated watermark register, that watermark
 * must be disabled.
 */
static bool g4x_check_srwm(struct drm_device *dev,
			   int display_wm, int cursor_wm,
			   const struct intel_watermark_params *display,
			   const struct intel_watermark_params *cursor)
{
	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
		      display_wm, cursor_wm);

	if (display_wm > display->max_wm) {
		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
			      display_wm, display->max_wm);
		return false;
	}

	if (cursor_wm > cursor->max_wm) {
		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
			      cursor_wm, cursor->max_wm);
		return false;
	}

	if (!(display_wm || cursor_wm)) {
		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
		return false;
	}

	return true;
}

static bool g4x_compute_srwm(struct drm_device *dev,
			     int plane,
			     int latency_ns,
			     const struct intel_watermark_params *display,
			     const struct intel_watermark_params *cursor,
			     int *display_wm, int *cursor_wm)
{
	struct drm_crtc *crtc;
776
	const struct drm_display_mode *adjusted_mode;
777 778 779 780 781 782 783 784 785 786 787 788
	int hdisplay, htotal, pixel_size, clock;
	unsigned long line_time_us;
	int line_count, line_size;
	int small, large;
	int entries;

	if (!latency_ns) {
		*display_wm = *cursor_wm = 0;
		return false;
	}

	crtc = intel_get_crtc_for_plane(dev, plane);
789
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
790
	clock = adjusted_mode->crtc_clock;
791
	htotal = adjusted_mode->crtc_htotal;
792
	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
793
	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
794

795
	line_time_us = max(htotal * 1000 / clock, 1);
796 797 798 799 800 801 802 803 804 805 806
	line_count = (latency_ns / line_time_us + 1000) / 1000;
	line_size = hdisplay * pixel_size;

	/* Use the minimum of the small and large buffer method for primary */
	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
	large = line_count * line_size;

	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
	*display_wm = entries + display->guard_size;

	/* calculate the self-refresh watermark for display cursor */
807
	entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
808 809 810 811 812 813 814 815
	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
	*cursor_wm = entries + cursor->guard_size;

	return g4x_check_srwm(dev,
			      *display_wm, *cursor_wm,
			      display, cursor);
}

816 817 818
#define FW_WM_VLV(value, plane) \
	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)

819 820 821 822 823 824 825 826 827 828 829 830
static void vlv_write_wm_values(struct intel_crtc *crtc,
				const struct vlv_wm_values *wm)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
	enum pipe pipe = crtc->pipe;

	I915_WRITE(VLV_DDL(pipe),
		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));

831
	I915_WRITE(DSPFW1,
832 833 834 835
		   FW_WM(wm->sr.plane, SR) |
		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
836
	I915_WRITE(DSPFW2,
837 838 839
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
840
	I915_WRITE(DSPFW3,
841
		   FW_WM(wm->sr.cursor, CURSOR_SR));
842 843 844

	if (IS_CHERRYVIEW(dev_priv)) {
		I915_WRITE(DSPFW7_CHV,
845 846
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
847
		I915_WRITE(DSPFW8_CHV,
848 849
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
850
		I915_WRITE(DSPFW9_CHV,
851 852
			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
853
		I915_WRITE(DSPHOWM,
854 855 856 857 858 859 860 861 862 863
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
864 865
	} else {
		I915_WRITE(DSPFW7,
866 867
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
868
		I915_WRITE(DSPHOWM,
869 870 871 872 873 874 875
			   FW_WM(wm->sr.plane >> 9, SR_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
876 877
	}

878 879 880 881 882 883
	/* zero (unused) WM1 watermarks */
	I915_WRITE(DSPFW4, 0);
	I915_WRITE(DSPFW5, 0);
	I915_WRITE(DSPFW6, 0);
	I915_WRITE(DSPHOWM1, 0);

884
	POSTING_READ(DSPFW1);
885 886
}

887 888
#undef FW_WM_VLV

889 890 891 892 893 894
enum vlv_wm_level {
	VLV_WM_LEVEL_PM2,
	VLV_WM_LEVEL_PM5,
	VLV_WM_LEVEL_DDR_DVFS,
};

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
				   unsigned int pipe_htotal,
				   unsigned int horiz_pixels,
				   unsigned int bytes_per_pixel,
				   unsigned int latency)
{
	unsigned int ret;

	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64);

	return ret;
}

static void vlv_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/* all latencies in usec */
	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;

918 919
	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;

920 921 922
	if (IS_CHERRYVIEW(dev_priv)) {
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
923 924

		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
	}
}

static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
				     struct intel_crtc *crtc,
				     const struct intel_plane_state *state,
				     int level)
{
	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
	int clock, htotal, pixel_size, width, wm;

	if (dev_priv->wm.pri_latency[level] == 0)
		return USHRT_MAX;

	if (!state->visible)
		return 0;

	pixel_size = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
	clock = crtc->config->base.adjusted_mode.crtc_clock;
	htotal = crtc->config->base.adjusted_mode.crtc_htotal;
	width = crtc->config->pipe_src_w;
	if (WARN_ON(htotal == 0))
		htotal = 1;

	if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
		/*
		 * FIXME the formula gives values that are
		 * too big for the cursor FIFO, and hence we
		 * would never be able to use cursors. For
		 * now just hardcode the watermark.
		 */
		wm = 63;
	} else {
		wm = vlv_wm_method2(clock, htotal, width, pixel_size,
				    dev_priv->wm.pri_latency[level] * 10);
	}

	return min_t(int, wm, USHRT_MAX);
}

965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
static void vlv_compute_fifo(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	unsigned int total_rate = 0;
	const int fifo_size = 512 - 1;
	int fifo_extra, fifo_left = fifo_size;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		if (state->visible) {
			wm_state->num_active_planes++;
			total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);
		unsigned int rate;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			plane->wm.fifo_size = 63;
			continue;
		}

		if (!state->visible) {
			plane->wm.fifo_size = 0;
			continue;
		}

		rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
		plane->wm.fifo_size = fifo_size * rate / total_rate;
		fifo_left -= plane->wm.fifo_size;
	}

	fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);

	/* spread the remainder evenly */
	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		int plane_extra;

		if (fifo_left == 0)
			break;

		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* give it all to the first plane if none are active */
		if (plane->wm.fifo_size == 0 &&
		    wm_state->num_active_planes)
			continue;

		plane_extra = min(fifo_extra, fifo_left);
		plane->wm.fifo_size += plane_extra;
		fifo_left -= plane_extra;
	}

	WARN_ON(fifo_left != 0);
}

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
static void vlv_invert_wms(struct intel_crtc *crtc)
{
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	int level;

	for (level = 0; level < wm_state->num_levels; level++) {
		struct drm_device *dev = crtc->base.dev;
		const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
		struct intel_plane *plane;

		wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
		wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;

		for_each_intel_plane_on_crtc(dev, crtc, plane) {
			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = plane->wm.fifo_size -
					wm_state->wm[level].cursor;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = plane->wm.fifo_size -
					wm_state->wm[level].primary;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
					wm_state->wm[level].sprite[sprite];
				break;
			}
		}
	}
}

1066
static void vlv_compute_wm(struct intel_crtc *crtc)
1067 1068 1069 1070 1071 1072 1073 1074 1075
{
	struct drm_device *dev = crtc->base.dev;
	struct vlv_wm_state *wm_state = &crtc->wm_state;
	struct intel_plane *plane;
	int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
	int level;

	memset(wm_state, 0, sizeof(*wm_state));

1076
	wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1077
	wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1078 1079 1080

	wm_state->num_active_planes = 0;

1081
	vlv_compute_fifo(crtc);
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156

	if (wm_state->num_active_planes != 1)
		wm_state->cxsr = false;

	if (wm_state->cxsr) {
		for (level = 0; level < wm_state->num_levels; level++) {
			wm_state->sr[level].plane = sr_fifo_size;
			wm_state->sr[level].cursor = 63;
		}
	}

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		struct intel_plane_state *state =
			to_intel_plane_state(plane->base.state);

		if (!state->visible)
			continue;

		/* normal watermarks */
		for (level = 0; level < wm_state->num_levels; level++) {
			int wm = vlv_compute_wm_level(plane, crtc, state, level);
			int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;

			/* hack */
			if (WARN_ON(level == 0 && wm > max_wm))
				wm = max_wm;

			if (wm > plane->wm.fifo_size)
				break;

			switch (plane->base.type) {
				int sprite;
			case DRM_PLANE_TYPE_CURSOR:
				wm_state->wm[level].cursor = wm;
				break;
			case DRM_PLANE_TYPE_PRIMARY:
				wm_state->wm[level].primary = wm;
				break;
			case DRM_PLANE_TYPE_OVERLAY:
				sprite = plane->plane;
				wm_state->wm[level].sprite[sprite] = wm;
				break;
			}
		}

		wm_state->num_levels = level;

		if (!wm_state->cxsr)
			continue;

		/* maxfifo watermarks */
		switch (plane->base.type) {
			int sprite, level;
		case DRM_PLANE_TYPE_CURSOR:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].cursor =
					wm_state->sr[level].cursor;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].primary);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			for (level = 0; level < wm_state->num_levels; level++)
				wm_state->sr[level].plane =
					min(wm_state->sr[level].plane,
					    wm_state->wm[level].sprite[sprite]);
			break;
		}
	}

	/* clear any (partially) filled invalid levels */
1157
	for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1158 1159 1160 1161 1162 1163 1164
		memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
		memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
	}

	vlv_invert_wms(crtc);
}

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
#define VLV_FIFO(plane, value) \
	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)

static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_plane *plane;
	int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;

	for_each_intel_plane_on_crtc(dev, crtc, plane) {
		if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
			WARN_ON(plane->wm.fifo_size != 63);
			continue;
		}

		if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			sprite0_start = plane->wm.fifo_size;
		else if (plane->plane == 0)
			sprite1_start = sprite0_start + plane->wm.fifo_size;
		else
			fifo_size = sprite1_start + plane->wm.fifo_size;
	}

	WARN_ON(fifo_size != 512 - 1);

	DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
		      pipe_name(crtc->pipe), sprite0_start,
		      sprite1_start, fifo_size);

	switch (crtc->pipe) {
		uint32_t dsparb, dsparb2, dsparb3;
	case PIPE_A:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
			    VLV_FIFO(SPRITEB, 0xff));
		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
			   VLV_FIFO(SPRITEB, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
			     VLV_FIFO(SPRITEB_HI, 0x1));
		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_B:
		dsparb = I915_READ(DSPARB);
		dsparb2 = I915_READ(DSPARB2);

		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
			    VLV_FIFO(SPRITED, 0xff));
		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
			   VLV_FIFO(SPRITED, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
			     VLV_FIFO(SPRITED_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB, dsparb);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	case PIPE_C:
		dsparb3 = I915_READ(DSPARB3);
		dsparb2 = I915_READ(DSPARB2);

		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
			     VLV_FIFO(SPRITEF, 0xff));
		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
			    VLV_FIFO(SPRITEF, sprite1_start));

		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
			     VLV_FIFO(SPRITEF_HI, 0xff));
		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));

		I915_WRITE(DSPARB3, dsparb3);
		I915_WRITE(DSPARB2, dsparb2);
		break;
	default:
		break;
	}
}

#undef VLV_FIFO

1255 1256 1257 1258 1259 1260
static void vlv_merge_wm(struct drm_device *dev,
			 struct vlv_wm_values *wm)
{
	struct intel_crtc *crtc;
	int num_active_crtcs = 0;

1261
	wm->level = to_i915(dev)->wm.max_level;
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
	wm->cxsr = true;

	for_each_intel_crtc(dev, crtc) {
		const struct vlv_wm_state *wm_state = &crtc->wm_state;

		if (!crtc->active)
			continue;

		if (!wm_state->cxsr)
			wm->cxsr = false;

		num_active_crtcs++;
		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
	}

	if (num_active_crtcs != 1)
		wm->cxsr = false;

1280 1281 1282
	if (num_active_crtcs > 1)
		wm->level = VLV_WM_LEVEL_PM2;

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
	for_each_intel_crtc(dev, crtc) {
		struct vlv_wm_state *wm_state = &crtc->wm_state;
		enum pipe pipe = crtc->pipe;

		if (!crtc->active)
			continue;

		wm->pipe[pipe] = wm_state->wm[wm->level];
		if (wm->cxsr)
			wm->sr = wm_state->sr[wm->level];

		wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
		wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
	}
}

static void vlv_update_wm(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	enum pipe pipe = intel_crtc->pipe;
	struct vlv_wm_values wm = {};

1309
	vlv_compute_wm(intel_crtc);
1310 1311
	vlv_merge_wm(dev, &wm);

1312 1313 1314
	if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
		/* FIXME should be part of crtc atomic commit */
		vlv_pipe_set_fifo_size(intel_crtc);
1315
		return;
1316
	}
1317 1318 1319 1320 1321 1322 1323 1324 1325

	if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, false);

	if (wm.level < VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, false);

1326
	if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1327 1328
		intel_set_memory_cxsr(dev_priv, false);

1329 1330 1331
	/* FIXME should be part of crtc atomic commit */
	vlv_pipe_set_fifo_size(intel_crtc);

1332 1333 1334 1335 1336 1337 1338 1339
	vlv_write_wm_values(intel_crtc, &wm);

	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
		      "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
		      pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
		      wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
		      wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);

1340
	if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
		intel_set_memory_cxsr(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_PM5 &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
		chv_set_memory_pm5(dev_priv, true);

	if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
	    dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
		chv_set_memory_dvfs(dev_priv, true);

	dev_priv->wm.vlv = wm;
1352 1353
}

1354 1355
#define single_plane_enabled(mask) is_power_of_2(mask)

1356
static void g4x_update_wm(struct drm_crtc *crtc)
1357
{
1358
	struct drm_device *dev = crtc->dev;
1359 1360 1361 1362 1363
	static const int sr_latency_ns = 12000;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
	int plane_sr, cursor_sr;
	unsigned int enabled = 0;
1364
	bool cxsr_enabled;
1365

1366
	if (g4x_compute_wm0(dev, PIPE_A,
1367 1368
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1369
			    &planea_wm, &cursora_wm))
1370
		enabled |= 1 << PIPE_A;
1371

1372
	if (g4x_compute_wm0(dev, PIPE_B,
1373 1374
			    &g4x_wm_info, pessimal_latency_ns,
			    &g4x_cursor_wm_info, pessimal_latency_ns,
1375
			    &planeb_wm, &cursorb_wm))
1376
		enabled |= 1 << PIPE_B;
1377 1378 1379 1380 1381 1382

	if (single_plane_enabled(enabled) &&
	    g4x_compute_srwm(dev, ffs(enabled) - 1,
			     sr_latency_ns,
			     &g4x_wm_info,
			     &g4x_cursor_wm_info,
1383
			     &plane_sr, &cursor_sr)) {
1384
		cxsr_enabled = true;
1385
	} else {
1386
		cxsr_enabled = false;
1387
		intel_set_memory_cxsr(dev_priv, false);
1388 1389
		plane_sr = cursor_sr = 0;
	}
1390

1391 1392
	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1393 1394 1395 1396 1397
		      planea_wm, cursora_wm,
		      planeb_wm, cursorb_wm,
		      plane_sr, cursor_sr);

	I915_WRITE(DSPFW1,
1398 1399 1400 1401
		   FW_WM(plane_sr, SR) |
		   FW_WM(cursorb_wm, CURSORB) |
		   FW_WM(planeb_wm, PLANEB) |
		   FW_WM(planea_wm, PLANEA));
1402
	I915_WRITE(DSPFW2,
1403
		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1404
		   FW_WM(cursora_wm, CURSORA));
1405 1406
	/* HPLL off in SR has some issues on G4x... disable it */
	I915_WRITE(DSPFW3,
1407
		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1408
		   FW_WM(cursor_sr, CURSOR_SR));
1409 1410 1411

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1412 1413
}

1414
static void i965_update_wm(struct drm_crtc *unused_crtc)
1415
{
1416
	struct drm_device *dev = unused_crtc->dev;
1417 1418 1419 1420
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
	int srwm = 1;
	int cursor_sr = 16;
1421
	bool cxsr_enabled;
1422 1423 1424 1425 1426 1427

	/* Calc sr entries for one plane configs */
	crtc = single_enabled_crtc(dev);
	if (crtc) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 12000;
1428
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1429
		int clock = adjusted_mode->crtc_clock;
1430
		int htotal = adjusted_mode->crtc_htotal;
1431
		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1432
		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1433 1434 1435
		unsigned long line_time_us;
		int entries;

1436
		line_time_us = max(htotal * 1000 / clock, 1);
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
		srwm = I965_FIFO_SIZE - entries;
		if (srwm < 0)
			srwm = 1;
		srwm &= 0x1ff;
		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
			      entries, srwm);

		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1450
			pixel_size * crtc->cursor->state->crtc_w;
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
		entries = DIV_ROUND_UP(entries,
					  i965_cursor_wm_info.cacheline_size);
		cursor_sr = i965_cursor_wm_info.fifo_size -
			(entries + i965_cursor_wm_info.guard_size);

		if (cursor_sr > i965_cursor_wm_info.max_wm)
			cursor_sr = i965_cursor_wm_info.max_wm;

		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
			      "cursor %d\n", srwm, cursor_sr);

1462
		cxsr_enabled = true;
1463
	} else {
1464
		cxsr_enabled = false;
1465
		/* Turn off self refresh if both pipes are enabled */
1466
		intel_set_memory_cxsr(dev_priv, false);
1467 1468 1469 1470 1471 1472
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
		      srwm);

	/* 965 has limitations... */
1473 1474 1475 1476 1477 1478
	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
		   FW_WM(8, CURSORB) |
		   FW_WM(8, PLANEB) |
		   FW_WM(8, PLANEA));
	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
		   FW_WM(8, PLANEC_OLD));
1479
	/* update cursor SR watermark */
1480
	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1481 1482 1483

	if (cxsr_enabled)
		intel_set_memory_cxsr(dev_priv, true);
1484 1485
}

1486 1487
#undef FW_WM

1488
static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1489
{
1490
	struct drm_device *dev = unused_crtc->dev;
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct intel_watermark_params *wm_info;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int cwm, srwm = 1;
	int fifo_size;
	int planea_wm, planeb_wm;
	struct drm_crtc *crtc, *enabled = NULL;

	if (IS_I945GM(dev))
		wm_info = &i945_wm_info;
	else if (!IS_GEN2(dev))
		wm_info = &i915_wm_info;
	else
1505
		wm_info = &i830_a_wm_info;
1506 1507 1508

	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
	crtc = intel_get_crtc_for_plane(dev, 0);
1509
	if (intel_crtc_active(crtc)) {
1510
		const struct drm_display_mode *adjusted_mode;
1511
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1512 1513 1514
		if (IS_GEN2(dev))
			cpp = 4;

1515
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1516
		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1517
					       wm_info, fifo_size, cpp,
1518
					       pessimal_latency_ns);
1519
		enabled = crtc;
1520
	} else {
1521
		planea_wm = fifo_size - wm_info->guard_size;
1522 1523 1524 1525 1526 1527
		if (planea_wm > (long)wm_info->max_wm)
			planea_wm = wm_info->max_wm;
	}

	if (IS_GEN2(dev))
		wm_info = &i830_bc_wm_info;
1528 1529 1530

	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
	crtc = intel_get_crtc_for_plane(dev, 1);
1531
	if (intel_crtc_active(crtc)) {
1532
		const struct drm_display_mode *adjusted_mode;
1533
		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1534 1535 1536
		if (IS_GEN2(dev))
			cpp = 4;

1537
		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1538
		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1539
					       wm_info, fifo_size, cpp,
1540
					       pessimal_latency_ns);
1541 1542 1543 1544
		if (enabled == NULL)
			enabled = crtc;
		else
			enabled = NULL;
1545
	} else {
1546
		planeb_wm = fifo_size - wm_info->guard_size;
1547 1548 1549
		if (planeb_wm > (long)wm_info->max_wm)
			planeb_wm = wm_info->max_wm;
	}
1550 1551 1552

	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

1553
	if (IS_I915GM(dev) && enabled) {
1554
		struct drm_i915_gem_object *obj;
1555

1556
		obj = intel_fb_obj(enabled->primary->state->fb);
1557 1558

		/* self-refresh seems busted with untiled */
1559
		if (obj->tiling_mode == I915_TILING_NONE)
1560 1561 1562
			enabled = NULL;
	}

1563 1564 1565 1566 1567 1568
	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Play safe and disable self-refresh before adjusting watermarks. */
1569
	intel_set_memory_cxsr(dev_priv, false);
1570 1571 1572 1573 1574

	/* Calc sr entries for one plane configs */
	if (HAS_FW_BLC(dev) && enabled) {
		/* self-refresh has much higher latency */
		static const int sr_latency_ns = 6000;
1575
		const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1576
		int clock = adjusted_mode->crtc_clock;
1577
		int htotal = adjusted_mode->crtc_htotal;
1578
		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1579
		int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1580 1581 1582
		unsigned long line_time_us;
		int entries;

1583
		line_time_us = max(htotal * 1000 / clock, 1);
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613

		/* Use ns/us then divide to preserve precision */
		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
			pixel_size * hdisplay;
		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
		srwm = wm_info->fifo_size - entries;
		if (srwm < 0)
			srwm = 1;

		if (IS_I945G(dev) || IS_I945GM(dev))
			I915_WRITE(FW_BLC_SELF,
				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
		else if (IS_I915GM(dev))
			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
	}

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		      planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);

1614 1615
	if (enabled)
		intel_set_memory_cxsr(dev_priv, true);
1616 1617
}

1618
static void i845_update_wm(struct drm_crtc *unused_crtc)
1619
{
1620
	struct drm_device *dev = unused_crtc->dev;
1621 1622
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc;
1623
	const struct drm_display_mode *adjusted_mode;
1624 1625 1626 1627 1628 1629 1630
	uint32_t fwater_lo;
	int planea_wm;

	crtc = single_enabled_crtc(dev);
	if (crtc == NULL)
		return;

1631
	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1632
	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1633
				       &i845_wm_info,
1634
				       dev_priv->display.get_fifo_size(dev, 0),
1635
				       4, pessimal_latency_ns);
1636 1637 1638 1639 1640 1641 1642 1643
	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

1644
uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1645
{
1646
	uint32_t pixel_rate;
1647

1648
	pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1649 1650 1651 1652

	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
	 * adjust the pixel_rate here. */

1653
	if (pipe_config->pch_pfit.enabled) {
1654
		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1655 1656 1657 1658
		uint32_t pfit_size = pipe_config->pch_pfit.size;

		pipe_w = pipe_config->pipe_src_w;
		pipe_h = pipe_config->pipe_src_h;
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673

		pfit_w = (pfit_size >> 16) & 0xFFFF;
		pfit_h = pfit_size & 0xFFFF;
		if (pipe_w < pfit_w)
			pipe_w = pfit_w;
		if (pipe_h < pfit_h)
			pipe_h = pfit_h;

		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
				     pfit_w * pfit_h);
	}

	return pixel_rate;
}

1674
/* latency must be in 0.1us units. */
1675
static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1676 1677 1678 1679
			       uint32_t latency)
{
	uint64_t ret;

1680 1681 1682
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1683 1684 1685 1686 1687 1688
	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;

	return ret;
}

1689
/* latency must be in 0.1us units. */
1690
static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1691 1692 1693 1694 1695
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t ret;

1696 1697 1698
	if (WARN(latency == 0, "Latency value missing\n"))
		return UINT_MAX;

1699 1700 1701 1702 1703 1704
	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
	ret = DIV_ROUND_UP(ret, 64) + 2;
	return ret;
}

1705
static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1706 1707 1708 1709 1710
			   uint8_t bytes_per_pixel)
{
	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
}

1711
struct ilk_wm_maximums {
1712 1713 1714 1715 1716 1717
	uint16_t pri;
	uint16_t spr;
	uint16_t cur;
	uint16_t fbc;
};

1718 1719 1720 1721 1722 1723 1724
/* used in computing the new watermarks state */
struct intel_wm_config {
	unsigned int num_pipes_active;
	bool sprites_enabled;
	bool sprites_scaled;
};

1725 1726 1727 1728
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1729
static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1730
				   const struct intel_plane_state *pstate,
1731 1732
				   uint32_t mem_value,
				   bool is_lp)
1733
{
1734
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1735 1736
	uint32_t method1, method2;

1737
	if (!cstate->base.active || !pstate->visible)
1738 1739
		return 0;

1740
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
1741 1742 1743 1744

	if (!is_lp)
		return method1;

1745 1746
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1747 1748
				 drm_rect_width(&pstate->dst),
				 bpp,
1749 1750 1751
				 mem_value);

	return min(method1, method2);
1752 1753
}

1754 1755 1756 1757
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1758
static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1759
				   const struct intel_plane_state *pstate,
1760 1761
				   uint32_t mem_value)
{
1762
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;
1763 1764
	uint32_t method1, method2;

1765
	if (!cstate->base.active || !pstate->visible)
1766 1767
		return 0;

1768 1769 1770
	method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), bpp, mem_value);
	method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
1771 1772
				 drm_rect_width(&pstate->dst),
				 bpp,
1773 1774 1775 1776
				 mem_value);
	return min(method1, method2);
}

1777 1778 1779 1780
/*
 * For both WM_PIPE and WM_LP.
 * mem_value must be in 0.1us units.
 */
1781
static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1782
				   const struct intel_plane_state *pstate,
1783 1784
				   uint32_t mem_value)
{
1785 1786
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;

1787
	if (!cstate->base.active || !pstate->visible)
1788 1789
		return 0;

1790 1791
	return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
			      cstate->base.adjusted_mode.crtc_htotal,
1792 1793
			      drm_rect_width(&pstate->dst),
			      bpp,
1794 1795 1796
			      mem_value);
}

1797
/* Only for WM_LP. */
1798
static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1799
				   const struct intel_plane_state *pstate,
1800
				   uint32_t pri_val)
1801
{
1802 1803
	int bpp = pstate->base.fb ? pstate->base.fb->bits_per_pixel / 8 : 0;

1804
	if (!cstate->base.active || !pstate->visible)
1805 1806
		return 0;

1807
	return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->dst), bpp);
1808 1809
}

1810 1811
static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
{
1812 1813 1814
	if (INTEL_INFO(dev)->gen >= 8)
		return 3072;
	else if (INTEL_INFO(dev)->gen >= 7)
1815 1816 1817 1818 1819
		return 768;
	else
		return 512;
}

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853
static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
					 int level, bool is_sprite)
{
	if (INTEL_INFO(dev)->gen >= 8)
		/* BDW primary/sprite plane watermarks */
		return level == 0 ? 255 : 2047;
	else if (INTEL_INFO(dev)->gen >= 7)
		/* IVB/HSW primary/sprite plane watermarks */
		return level == 0 ? 127 : 1023;
	else if (!is_sprite)
		/* ILK/SNB primary plane watermarks */
		return level == 0 ? 127 : 511;
	else
		/* ILK/SNB sprite plane watermarks */
		return level == 0 ? 63 : 255;
}

static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
					  int level)
{
	if (INTEL_INFO(dev)->gen >= 7)
		return level == 0 ? 63 : 255;
	else
		return level == 0 ? 31 : 63;
}

static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
{
	if (INTEL_INFO(dev)->gen >= 8)
		return 31;
	else
		return 15;
}

1854 1855 1856
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
				     int level,
1857
				     const struct intel_wm_config *config,
1858 1859 1860 1861 1862 1863
				     enum intel_ddb_partitioning ddb_partitioning,
				     bool is_sprite)
{
	unsigned int fifo_size = ilk_display_fifo_size(dev);

	/* if sprites aren't enabled, sprites get nothing */
1864
	if (is_sprite && !config->sprites_enabled)
1865 1866 1867
		return 0;

	/* HSW allows LP1+ watermarks even with multiple pipes */
1868
	if (level == 0 || config->num_pipes_active > 1) {
1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
		fifo_size /= INTEL_INFO(dev)->num_pipes;

		/*
		 * For some reason the non self refresh
		 * FIFO size is only half of the self
		 * refresh FIFO size on ILK/SNB.
		 */
		if (INTEL_INFO(dev)->gen <= 6)
			fifo_size /= 2;
	}

1880
	if (config->sprites_enabled) {
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
		/* level 0 is always calculated with 1:1 split */
		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
			if (is_sprite)
				fifo_size *= 5;
			fifo_size /= 6;
		} else {
			fifo_size /= 2;
		}
	}

	/* clamp to max that the registers can hold */
1892
	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1893 1894 1895 1896
}

/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1897 1898
				      int level,
				      const struct intel_wm_config *config)
1899 1900
{
	/* HSW LP1+ watermarks w/ multiple pipes */
1901
	if (level > 0 && config->num_pipes_active > 1)
1902 1903 1904
		return 64;

	/* otherwise just report max that registers can hold */
1905
	return ilk_cursor_wm_reg_max(dev, level);
1906 1907
}

1908
static void ilk_compute_wm_maximums(const struct drm_device *dev,
1909 1910 1911
				    int level,
				    const struct intel_wm_config *config,
				    enum intel_ddb_partitioning ddb_partitioning,
1912
				    struct ilk_wm_maximums *max)
1913
{
1914 1915 1916
	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
	max->cur = ilk_cursor_wm_max(dev, level, config);
1917
	max->fbc = ilk_fbc_wm_reg_max(dev);
1918 1919
}

1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
					int level,
					struct ilk_wm_maximums *max)
{
	max->pri = ilk_plane_wm_reg_max(dev, level, false);
	max->spr = ilk_plane_wm_reg_max(dev, level, true);
	max->cur = ilk_cursor_wm_reg_max(dev, level);
	max->fbc = ilk_fbc_wm_reg_max(dev);
}

1930
static bool ilk_validate_wm_level(int level,
1931
				  const struct ilk_wm_maximums *max,
1932
				  struct intel_wm_level *result)
1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
{
	bool ret;

	/* already determined to be invalid? */
	if (!result->enable)
		return false;

	result->enable = result->pri_val <= max->pri &&
			 result->spr_val <= max->spr &&
			 result->cur_val <= max->cur;

	ret = result->enable;

	/*
	 * HACK until we can pre-compute everything,
	 * and thus fail gracefully if LP0 watermarks
	 * are exceeded...
	 */
	if (level == 0 && !result->enable) {
		if (result->pri_val > max->pri)
			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
				      level, result->pri_val, max->pri);
		if (result->spr_val > max->spr)
			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
				      level, result->spr_val, max->spr);
		if (result->cur_val > max->cur)
			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
				      level, result->cur_val, max->cur);

		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
		result->enable = true;
	}

	return ret;
}

1971
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1972
				 const struct intel_crtc *intel_crtc,
1973
				 int level,
1974
				 struct intel_crtc_state *cstate,
1975 1976 1977
				 struct intel_plane_state *pristate,
				 struct intel_plane_state *sprstate,
				 struct intel_plane_state *curstate,
1978
				 struct intel_wm_level *result)
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
{
	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
	uint16_t cur_latency = dev_priv->wm.cur_latency[level];

	/* WM1+ latency values stored in 0.5us units */
	if (level > 0) {
		pri_latency *= 5;
		spr_latency *= 5;
		cur_latency *= 5;
	}

1991 1992 1993 1994 1995
	result->pri_val = ilk_compute_pri_wm(cstate, pristate,
					     pri_latency, level);
	result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
	result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
	result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
1996 1997 1998
	result->enable = true;
}

1999 2000
static uint32_t
hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
2001 2002
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2003
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2004
	const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
2005
	u32 linetime, ips_linetime;
2006

2007
	if (!intel_crtc->active)
2008
		return 0;
2009

2010 2011 2012
	/* The WM are computed with base on how long it takes to fill a single
	 * row at the given clock rate, multiplied by 8.
	 * */
2013 2014 2015
	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
				     adjusted_mode->crtc_clock);
	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2016
					 dev_priv->cdclk_freq);
2017

2018 2019
	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
	       PIPE_WM_LINETIME_TIME(linetime);
2020 2021
}

2022
static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2023 2024 2025
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2026 2027
	if (IS_GEN9(dev)) {
		uint32_t val;
2028
		int ret, i;
2029
		int level, max_level = ilk_wm_max_level(dev);
2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071

		/* read the first set of memory latencies[0:3] */
		val = 0; /* data0 to be programmed to 0 for first set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);

		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

		/* read the second set of memory latencies[4:7] */
		val = 1; /* data0 to be programmed to 1 for second set */
		mutex_lock(&dev_priv->rps.hw_lock);
		ret = sandybridge_pcode_read(dev_priv,
					     GEN9_PCODE_READ_MEM_LATENCY,
					     &val);
		mutex_unlock(&dev_priv->rps.hw_lock);
		if (ret) {
			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
			return;
		}

		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;
		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
				GEN9_MEM_LATENCY_LEVEL_MASK;

2072
		/*
2073 2074
		 * WaWmMemoryReadLatency:skl
		 *
2075 2076 2077 2078 2079 2080 2081 2082
		 * punit doesn't take into account the read latency so we need
		 * to add 2us to the various latency levels we retrieve from
		 * the punit.
		 *   - W0 is a bit special in that it's the only level that
		 *   can't be disabled if we want to have display working, so
		 *   we always add 2us there.
		 *   - For levels >=1, punit returns 0us latency when they are
		 *   disabled, so we respect that and don't add 2us then
2083 2084 2085 2086 2087
		 *
		 * Additionally, if a level n (n > 1) has a 0us latency, all
		 * levels m (m >= n) need to be disabled. We make sure to
		 * sanitize the values out of the punit to satisfy this
		 * requirement.
2088 2089 2090 2091 2092
		 */
		wm[0] += 2;
		for (level = 1; level <= max_level; level++)
			if (wm[level] != 0)
				wm[level] += 2;
2093 2094 2095
			else {
				for (i = level + 1; i <= max_level; i++)
					wm[i] = 0;
2096

2097 2098
				break;
			}
2099
	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2100 2101 2102 2103 2104
		uint64_t sskpd = I915_READ64(MCH_SSKPD);

		wm[0] = (sskpd >> 56) & 0xFF;
		if (wm[0] == 0)
			wm[0] = sskpd & 0xF;
2105 2106 2107 2108
		wm[1] = (sskpd >> 4) & 0xFF;
		wm[2] = (sskpd >> 12) & 0xFF;
		wm[3] = (sskpd >> 20) & 0x1FF;
		wm[4] = (sskpd >> 32) & 0x1FF;
2109 2110 2111 2112 2113 2114 2115
	} else if (INTEL_INFO(dev)->gen >= 6) {
		uint32_t sskpd = I915_READ(MCH_SSKPD);

		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2116 2117 2118 2119 2120 2121 2122
	} else if (INTEL_INFO(dev)->gen >= 5) {
		uint32_t mltr = I915_READ(MLTR_ILK);

		/* ILK primary LP0 latency is 700 ns */
		wm[0] = 7;
		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2123 2124 2125
	}
}

2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK sprite LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;
}

static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
{
	/* ILK cursor LP0 latency is 1300 ns */
	if (INTEL_INFO(dev)->gen == 5)
		wm[0] = 13;

	/* WaDoubleCursorLP3Latency:ivb */
	if (IS_IVYBRIDGE(dev))
		wm[3] *= 2;
}

2144
int ilk_wm_max_level(const struct drm_device *dev)
2145 2146
{
	/* how many WM levels are we expecting */
2147
	if (INTEL_INFO(dev)->gen >= 9)
2148 2149
		return 7;
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2150
		return 4;
2151
	else if (INTEL_INFO(dev)->gen >= 6)
2152
		return 3;
2153
	else
2154 2155
		return 2;
}
2156

2157 2158
static void intel_print_wm_latency(struct drm_device *dev,
				   const char *name,
2159
				   const uint16_t wm[8])
2160 2161
{
	int level, max_level = ilk_wm_max_level(dev);
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171

	for (level = 0; level <= max_level; level++) {
		unsigned int latency = wm[level];

		if (latency == 0) {
			DRM_ERROR("%s WM%d latency not provided\n",
				  name, level);
			continue;
		}

2172 2173 2174 2175 2176 2177 2178
		/*
		 * - latencies are in us on gen9.
		 * - before then, WM1+ latency values are in 0.5us units
		 */
		if (IS_GEN9(dev))
			latency *= 10;
		else if (level > 0)
2179 2180 2181 2182 2183 2184 2185 2186
			latency *= 5;

		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
			      name, level, wm[level],
			      latency / 10, latency % 10);
	}
}

2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
				    uint16_t wm[5], uint16_t min)
{
	int level, max_level = ilk_wm_max_level(dev_priv->dev);

	if (wm[0] >= min)
		return false;

	wm[0] = max(wm[0], min);
	for (level = 1; level <= max_level; level++)
		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));

	return true;
}

static void snb_wm_latency_quirk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	bool changed;

	/*
	 * The BIOS provided WM memory latency values are often
	 * inadequate for high resolution displays. Adjust them.
	 */
	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);

	if (!changed)
		return;

	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
}

2224
static void ilk_setup_wm_latency(struct drm_device *dev)
2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);

	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));
	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
	       sizeof(dev_priv->wm.pri_latency));

	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2237 2238 2239 2240

	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2241 2242 2243

	if (IS_GEN6(dev))
		snb_wm_latency_quirk(dev);
2244 2245
}

2246 2247 2248 2249 2250 2251 2252 2253
static void skl_setup_wm_latency(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
}

2254 2255 2256 2257 2258 2259 2260
static void ilk_compute_wm_config(struct drm_device *dev,
				  struct intel_wm_config *config)
{
	struct intel_crtc *intel_crtc;

	/* Compute the currently _active_ config */
	for_each_intel_crtc(dev, intel_crtc) {
2261
		const struct intel_pipe_wm *wm = &intel_crtc->wm.active.ilk;
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271

		if (!wm->pipe_enabled)
			continue;

		config->sprites_enabled |= wm->sprites_enabled;
		config->sprites_scaled |= wm->sprites_scaled;
		config->num_pipes_active++;
	}
}

2272
/* Compute new watermarks for the pipe */
2273 2274
static int ilk_compute_pipe_wm(struct intel_crtc *intel_crtc,
			       struct drm_atomic_state *state)
2275
{
2276 2277
	struct intel_pipe_wm *pipe_wm;
	struct drm_device *dev = intel_crtc->base.dev;
2278
	const struct drm_i915_private *dev_priv = dev->dev_private;
2279
	struct intel_crtc_state *cstate = NULL;
2280
	struct intel_plane *intel_plane;
2281 2282
	struct drm_plane_state *ps;
	struct intel_plane_state *pristate = NULL;
2283
	struct intel_plane_state *sprstate = NULL;
2284
	struct intel_plane_state *curstate = NULL;
2285 2286 2287 2288 2289
	int level, max_level = ilk_wm_max_level(dev);
	/* LP0 watermark maximums depend on this pipe alone */
	struct intel_wm_config config = {
		.num_pipes_active = 1,
	};
2290
	struct ilk_wm_maximums max;
2291

2292 2293 2294 2295 2296 2297
	cstate = intel_atomic_get_crtc_state(state, intel_crtc);
	if (IS_ERR(cstate))
		return PTR_ERR(cstate);

	pipe_wm = &cstate->wm.optimal.ilk;

2298
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
		ps = drm_atomic_get_plane_state(state,
						&intel_plane->base);
		if (IS_ERR(ps))
			return PTR_ERR(ps);

		if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
			pristate = to_intel_plane_state(ps);
		else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
			sprstate = to_intel_plane_state(ps);
		else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
			curstate = to_intel_plane_state(ps);
2310 2311 2312 2313 2314 2315 2316
	}

	config.sprites_enabled = sprstate->visible;
	config.sprites_scaled = sprstate->visible &&
		(drm_rect_width(&sprstate->dst) != drm_rect_width(&sprstate->src) >> 16 ||
		drm_rect_height(&sprstate->dst) != drm_rect_height(&sprstate->src) >> 16);

2317
	pipe_wm->pipe_enabled = cstate->base.active;
2318
	pipe_wm->sprites_enabled = config.sprites_enabled;
2319
	pipe_wm->sprites_scaled = config.sprites_scaled;
2320

2321
	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2322
	if (INTEL_INFO(dev)->gen <= 6 && sprstate->visible)
2323 2324 2325
		max_level = 1;

	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2326
	if (config.sprites_scaled)
2327 2328
		max_level = 0;

2329 2330
	ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
2331

2332
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2333 2334
		pipe_wm->linetime = hsw_compute_linetime_wm(dev,
							    &intel_crtc->base);
2335

2336 2337 2338
	/* LP0 watermarks always use 1/2 DDB partitioning */
	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);

2339
	/* At least LP0 must be valid */
2340
	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2341
		return -EINVAL;
2342 2343 2344 2345 2346 2347

	ilk_compute_wm_reg_maximums(dev, 1, &max);

	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level wm = {};

2348 2349
		ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
				     pristate, sprstate, curstate, &wm);
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361

		/*
		 * Disable any watermark level that exceeds the
		 * register maximums since such watermarks are
		 * always invalid.
		 */
		if (!ilk_validate_wm_level(level, &max, &wm))
			break;

		pipe_wm->wm[level] = wm;
	}

2362
	return 0;
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373
}

/*
 * Merge the watermarks from all active pipes for a specific level.
 */
static void ilk_merge_wm_level(struct drm_device *dev,
			       int level,
			       struct intel_wm_level *ret_wm)
{
	const struct intel_crtc *intel_crtc;

2374 2375
	ret_wm->enable = true;

2376
	for_each_intel_crtc(dev, intel_crtc) {
2377 2378 2379
		const struct intel_crtc_state *cstate =
			to_intel_crtc_state(intel_crtc->base.state);
		const struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
2380 2381 2382 2383
		const struct intel_wm_level *wm = &active->wm[level];

		if (!active->pipe_enabled)
			continue;
2384

2385 2386 2387 2388 2389
		/*
		 * The watermark values may have been used in the past,
		 * so we must maintain them in the registers for some
		 * time even if the level is now disabled.
		 */
2390
		if (!wm->enable)
2391
			ret_wm->enable = false;
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403

		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
	}
}

/*
 * Merge all low power watermarks for all active pipes.
 */
static void ilk_wm_merge(struct drm_device *dev,
2404
			 const struct intel_wm_config *config,
2405
			 const struct ilk_wm_maximums *max,
2406 2407
			 struct intel_pipe_wm *merged)
{
2408
	struct drm_i915_private *dev_priv = dev->dev_private;
2409
	int level, max_level = ilk_wm_max_level(dev);
2410
	int last_enabled_level = max_level;
2411

2412 2413 2414 2415 2416
	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
	    config->num_pipes_active > 1)
		return;

2417 2418
	/* ILK: FBC WM must be disabled always */
	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2419 2420 2421 2422 2423 2424 2425

	/* merge each WM1+ level */
	for (level = 1; level <= max_level; level++) {
		struct intel_wm_level *wm = &merged->wm[level];

		ilk_merge_wm_level(dev, level, wm);

2426 2427 2428 2429 2430
		if (level > last_enabled_level)
			wm->enable = false;
		else if (!ilk_validate_wm_level(level, max, wm))
			/* make sure all following levels get disabled */
			last_enabled_level = level - 1;
2431 2432 2433 2434 2435 2436

		/*
		 * The spec says it is preferred to disable
		 * FBC WMs instead of disabling a WM level.
		 */
		if (wm->fbc_val > max->fbc) {
2437 2438
			if (wm->enable)
				merged->fbc_wm_enabled = false;
2439 2440 2441
			wm->fbc_val = 0;
		}
	}
2442 2443 2444 2445 2446 2447 2448

	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
	/*
	 * FIXME this is racy. FBC might get enabled later.
	 * What we should check here is whether FBC can be
	 * enabled sometime later.
	 */
2449 2450
	if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
	    intel_fbc_enabled(dev_priv)) {
2451 2452 2453 2454 2455 2456
		for (level = 2; level <= max_level; level++) {
			struct intel_wm_level *wm = &merged->wm[level];

			wm->enable = false;
		}
	}
2457 2458
}

2459 2460 2461 2462 2463 2464
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}

2465 2466 2467 2468 2469
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

2470
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2471 2472 2473 2474 2475
		return 2 * level;
	else
		return dev_priv->wm.pri_latency[level];
}

2476
static void ilk_compute_wm_results(struct drm_device *dev,
2477
				   const struct intel_pipe_wm *merged,
2478
				   enum intel_ddb_partitioning partitioning,
2479
				   struct ilk_wm_values *results)
2480
{
2481 2482
	struct intel_crtc *intel_crtc;
	int level, wm_lp;
2483

2484
	results->enable_fbc_wm = merged->fbc_wm_enabled;
2485
	results->partitioning = partitioning;
2486

2487
	/* LP1+ register values */
2488
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2489
		const struct intel_wm_level *r;
2490

2491
		level = ilk_wm_lp_to_level(wm_lp, merged);
2492

2493
		r = &merged->wm[level];
2494

2495 2496 2497 2498 2499
		/*
		 * Maintain the watermark values even if the level is
		 * disabled. Doing otherwise could cause underruns.
		 */
		results->wm_lp[wm_lp - 1] =
2500
			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2501 2502 2503
			(r->pri_val << WM1_LP_SR_SHIFT) |
			r->cur_val;

2504 2505 2506
		if (r->enable)
			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;

2507 2508 2509 2510 2511 2512 2513
		if (INTEL_INFO(dev)->gen >= 8)
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
		else
			results->wm_lp[wm_lp - 1] |=
				r->fbc_val << WM1_LP_FBC_SHIFT;

2514 2515 2516 2517
		/*
		 * Always set WM1S_LP_EN when spr_val != 0, even if the
		 * level is disabled. Doing otherwise could cause underruns.
		 */
2518 2519 2520 2521 2522
		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
			WARN_ON(wm_lp != 1);
			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
		} else
			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2523
	}
2524

2525
	/* LP0 register values */
2526
	for_each_intel_crtc(dev, intel_crtc) {
2527 2528
		const struct intel_crtc_state *cstate =
			to_intel_crtc_state(intel_crtc->base.state);
2529
		enum pipe pipe = intel_crtc->pipe;
2530
		const struct intel_wm_level *r = &cstate->wm.optimal.ilk.wm[0];
2531 2532 2533 2534

		if (WARN_ON(!r->enable))
			continue;

2535
		results->wm_linetime[pipe] = cstate->wm.optimal.ilk.linetime;
2536

2537 2538 2539 2540
		results->wm_pipe[pipe] =
			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
			r->cur_val;
2541 2542 2543
	}
}

2544 2545
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
 * case both are at the same level. Prefer r1 in case they're the same. */
2546
static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2547 2548
						  struct intel_pipe_wm *r1,
						  struct intel_pipe_wm *r2)
2549
{
2550 2551
	int level, max_level = ilk_wm_max_level(dev);
	int level1 = 0, level2 = 0;
2552

2553 2554 2555 2556 2557
	for (level = 1; level <= max_level; level++) {
		if (r1->wm[level].enable)
			level1 = level;
		if (r2->wm[level].enable)
			level2 = level;
2558 2559
	}

2560 2561
	if (level1 == level2) {
		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2562 2563 2564
			return r2;
		else
			return r1;
2565
	} else if (level1 > level2) {
2566 2567 2568 2569 2570 2571
		return r1;
	} else {
		return r2;
	}
}

2572 2573 2574 2575 2576 2577 2578 2579
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)

2580
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2581 2582
					 const struct ilk_wm_values *old,
					 const struct ilk_wm_values *new)
2583 2584 2585 2586 2587
{
	unsigned int dirty = 0;
	enum pipe pipe;
	int wm_lp;

2588
	for_each_pipe(dev_priv, pipe) {
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
			dirty |= WM_DIRTY_LINETIME(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}

		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
			dirty |= WM_DIRTY_PIPE(pipe);
			/* Must disable LP1+ watermarks too */
			dirty |= WM_DIRTY_LP_ALL;
		}
	}

	if (old->enable_fbc_wm != new->enable_fbc_wm) {
		dirty |= WM_DIRTY_FBC;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	if (old->partitioning != new->partitioning) {
		dirty |= WM_DIRTY_DDB;
		/* Must disable LP1+ watermarks too */
		dirty |= WM_DIRTY_LP_ALL;
	}

	/* LP1+ watermarks already deemed dirty, no need to continue */
	if (dirty & WM_DIRTY_LP_ALL)
		return dirty;

	/* Find the lowest numbered LP1+ watermark in need of an update... */
	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
			break;
	}

	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
	for (; wm_lp <= 3; wm_lp++)
		dirty |= WM_DIRTY_LP(wm_lp);

	return dirty;
}

2632 2633
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
			       unsigned int dirty)
2634
{
2635
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2636
	bool changed = false;
2637

2638 2639 2640
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2641
		changed = true;
2642 2643 2644 2645
	}
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2646
		changed = true;
2647 2648 2649 2650
	}
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2651
		changed = true;
2652
	}
2653

2654 2655 2656 2657
	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
2658

2659 2660 2661 2662 2663 2664 2665
	return changed;
}

/*
 * The spec says we shouldn't write when we don't need, because every write
 * causes WMs to be re-evaluated, expending some power.
 */
2666 2667
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
				struct ilk_wm_values *results)
2668 2669
{
	struct drm_device *dev = dev_priv->dev;
2670
	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2671 2672 2673
	unsigned int dirty;
	uint32_t val;

2674
	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2675 2676 2677 2678 2679
	if (!dirty)
		return;

	_ilk_disable_lp_wm(dev_priv, dirty);

2680
	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2681
		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2682
	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2683
		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2684
	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2685 2686
		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);

2687
	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2688
		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2689
	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2690
		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2691
	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2692 2693
		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);

2694
	if (dirty & WM_DIRTY_DDB) {
2695
		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
			val = I915_READ(WM_MISC);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~WM_MISC_DATA_PARTITION_5_6;
			else
				val |= WM_MISC_DATA_PARTITION_5_6;
			I915_WRITE(WM_MISC, val);
		} else {
			val = I915_READ(DISP_ARB_CTL2);
			if (results->partitioning == INTEL_DDB_PART_1_2)
				val &= ~DISP_DATA_PARTITION_5_6;
			else
				val |= DISP_DATA_PARTITION_5_6;
			I915_WRITE(DISP_ARB_CTL2, val);
		}
2710 2711
	}

2712
	if (dirty & WM_DIRTY_FBC) {
2713 2714 2715 2716 2717 2718 2719 2720
		val = I915_READ(DISP_ARB_CTL);
		if (results->enable_fbc_wm)
			val &= ~DISP_FBC_WM_DIS;
		else
			val |= DISP_FBC_WM_DIS;
		I915_WRITE(DISP_ARB_CTL, val);
	}

2721 2722 2723 2724 2725
	if (dirty & WM_DIRTY_LP(1) &&
	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);

	if (INTEL_INFO(dev)->gen >= 7) {
2726 2727 2728 2729 2730
		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
	}
2731

2732
	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2733
		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2734
	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2735
		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2736
	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2737
		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2738 2739

	dev_priv->wm.hw = *results;
2740 2741
}

2742 2743 2744 2745 2746 2747 2748
static bool ilk_disable_lp_wm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}

2749 2750 2751 2752 2753 2754
/*
 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
 * different active planes.
 */

#define SKL_DDB_SIZE		896	/* in blocks */
2755
#define BXT_DDB_SIZE		512
2756

2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
/*
 * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
 * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
 * other universal planes are in indices 1..n.  Note that this may leave unused
 * indices between the top "sprite" plane and the cursor.
 */
static int
skl_wm_plane_id(const struct intel_plane *plane)
{
	switch (plane->base.type) {
	case DRM_PLANE_TYPE_PRIMARY:
		return 0;
	case DRM_PLANE_TYPE_CURSOR:
		return PLANE_CURSOR;
	case DRM_PLANE_TYPE_OVERLAY:
		return plane->plane + 1;
	default:
		MISSING_CASE(plane->base.type);
		return plane->plane;
	}
}

2779 2780
static void
skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2781
				   const struct intel_crtc_state *cstate,
2782 2783 2784
				   const struct intel_wm_config *config,
				   struct skl_ddb_entry *alloc /* out */)
{
2785
	struct drm_crtc *for_crtc = cstate->base.crtc;
2786 2787 2788 2789
	struct drm_crtc *crtc;
	unsigned int pipe_size, ddb_size;
	int nth_active_pipe;

2790
	if (!cstate->base.active) {
2791 2792 2793 2794 2795
		alloc->start = 0;
		alloc->end = 0;
		return;
	}

2796 2797 2798 2799
	if (IS_BROXTON(dev))
		ddb_size = BXT_DDB_SIZE;
	else
		ddb_size = SKL_DDB_SIZE;
2800 2801 2802 2803 2804

	ddb_size -= 4; /* 4 blocks for bypass path allocation */

	nth_active_pipe = 0;
	for_each_crtc(dev, crtc) {
2805
		if (!to_intel_crtc(crtc)->active)
2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
			continue;

		if (crtc == for_crtc)
			break;

		nth_active_pipe++;
	}

	pipe_size = ddb_size / config->num_pipes_active;
	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2816
	alloc->end = alloc->start + pipe_size;
2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
}

static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
{
	if (config->num_pipes_active == 1)
		return 32;

	return 8;
}

2827 2828 2829 2830
static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
{
	entry->start = reg & 0x3ff;
	entry->end = (reg >> 16) & 0x3ff;
2831 2832
	if (entry->end)
		entry->end += 1;
2833 2834
}

2835 2836
void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
			  struct skl_ddb_allocation *ddb /* out */)
2837 2838 2839 2840 2841 2842
{
	enum pipe pipe;
	int plane;
	u32 val;

	for_each_pipe(dev_priv, pipe) {
2843
		for_each_plane(dev_priv, pipe, plane) {
2844 2845 2846 2847 2848 2849
			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
						   val);
		}

		val = I915_READ(CUR_BUF_CFG(pipe));
2850 2851
		skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
					   val);
2852 2853 2854
	}
}

2855
static unsigned int
2856 2857 2858
skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
			     const struct drm_plane_state *pstate,
			     int y)
2859
{
2860 2861
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_framebuffer *fb = pstate->fb;
2862 2863

	/* for planar format */
2864
	if (fb->pixel_format == DRM_FORMAT_NV12) {
2865
		if (y)  /* y-plane data rate */
2866 2867 2868
			return intel_crtc->config->pipe_src_w *
				intel_crtc->config->pipe_src_h *
				drm_format_plane_cpp(fb->pixel_format, 0);
2869
		else    /* uv-plane data rate */
2870 2871 2872
			return (intel_crtc->config->pipe_src_w/2) *
				(intel_crtc->config->pipe_src_h/2) *
				drm_format_plane_cpp(fb->pixel_format, 1);
2873 2874 2875
	}

	/* for packed formats */
2876 2877 2878
	return intel_crtc->config->pipe_src_w *
		intel_crtc->config->pipe_src_h *
		drm_format_plane_cpp(fb->pixel_format, 0);
2879 2880 2881 2882 2883 2884 2885 2886
}

/*
 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
 * a 8192x4096@32bpp framebuffer:
 *   3 * 4096 * 8192  * 4 < 2^32
 */
static unsigned int
2887
skl_get_total_relative_data_rate(const struct intel_crtc_state *cstate)
2888
{
2889 2890 2891
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct drm_device *dev = intel_crtc->base.dev;
	const struct intel_plane *intel_plane;
2892 2893
	unsigned int total_data_rate = 0;

2894 2895
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		const struct drm_plane_state *pstate = intel_plane->base.state;
2896

2897
		if (pstate->fb == NULL)
2898 2899
			continue;

2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
		if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
			continue;

		/* packed/uv */
		total_data_rate += skl_plane_relative_data_rate(cstate,
								pstate,
								0);

		if (pstate->fb->pixel_format == DRM_FORMAT_NV12)
			/* y-plane */
			total_data_rate += skl_plane_relative_data_rate(cstate,
									pstate,
									1);
2913 2914 2915 2916 2917 2918
	}

	return total_data_rate;
}

static void
2919
skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
2920
		      const struct intel_wm_config *config,
2921 2922
		      struct skl_ddb_allocation *ddb /* out */)
{
2923
	struct drm_crtc *crtc = cstate->base.crtc;
2924 2925
	struct drm_device *dev = crtc->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2926
	struct intel_plane *intel_plane;
2927
	enum pipe pipe = intel_crtc->pipe;
2928
	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2929
	uint16_t alloc_size, start, cursor_blocks;
2930
	uint16_t minimum[I915_MAX_PLANES];
2931
	uint16_t y_minimum[I915_MAX_PLANES];
2932 2933
	unsigned int total_data_rate;

2934
	skl_ddb_get_pipe_allocation_limits(dev, cstate, config, alloc);
2935
	alloc_size = skl_ddb_entry_size(alloc);
2936 2937
	if (alloc_size == 0) {
		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2938 2939
		memset(&ddb->plane[pipe][PLANE_CURSOR], 0,
		       sizeof(ddb->plane[pipe][PLANE_CURSOR]));
2940 2941 2942 2943
		return;
	}

	cursor_blocks = skl_cursor_allocation(config);
2944 2945
	ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
	ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
2946 2947

	alloc_size -= cursor_blocks;
2948
	alloc->end -= cursor_blocks;
2949

2950
	/* 1. Allocate the mininum required blocks for each active plane */
2951 2952 2953 2954
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		struct drm_plane *plane = &intel_plane->base;
		struct drm_framebuffer *fb = plane->state->fb;
		int id = skl_wm_plane_id(intel_plane);
2955

2956 2957 2958
		if (fb == NULL)
			continue;
		if (plane->type == DRM_PLANE_TYPE_CURSOR)
2959 2960
			continue;

2961 2962 2963 2964
		minimum[id] = 8;
		alloc_size -= minimum[id];
		y_minimum[id] = (fb->pixel_format == DRM_FORMAT_NV12) ? 8 : 0;
		alloc_size -= y_minimum[id];
2965 2966
	}

2967
	/*
2968 2969
	 * 2. Distribute the remaining space in proportion to the amount of
	 * data each plane needs to fetch from memory.
2970 2971 2972
	 *
	 * FIXME: we may not allocate every single block here.
	 */
2973
	total_data_rate = skl_get_total_relative_data_rate(cstate);
2974

2975
	start = alloc->start;
2976 2977 2978
	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		struct drm_plane *plane = &intel_plane->base;
		struct drm_plane_state *pstate = intel_plane->base.state;
2979 2980
		unsigned int data_rate, y_data_rate;
		uint16_t plane_blocks, y_plane_blocks = 0;
2981
		int id = skl_wm_plane_id(intel_plane);
2982

2983 2984 2985
		if (pstate->fb == NULL)
			continue;
		if (plane->type == DRM_PLANE_TYPE_CURSOR)
2986 2987
			continue;

2988
		data_rate = skl_plane_relative_data_rate(cstate, pstate, 0);
2989 2990

		/*
2991
		 * allocation for (packed formats) or (uv-plane part of planar format):
2992 2993 2994
		 * promote the expression to 64 bits to avoid overflowing, the
		 * result is < available as data_rate / total_data_rate < 1
		 */
2995
		plane_blocks = minimum[id];
2996 2997
		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
					total_data_rate);
2998

2999 3000
		ddb->plane[pipe][id].start = start;
		ddb->plane[pipe][id].end = start + plane_blocks;
3001 3002

		start += plane_blocks;
3003 3004 3005 3006

		/*
		 * allocation for y_plane part of planar format:
		 */
3007 3008 3009 3010 3011
		if (pstate->fb->pixel_format == DRM_FORMAT_NV12) {
			y_data_rate = skl_plane_relative_data_rate(cstate,
								   pstate,
								   1);
			y_plane_blocks = y_minimum[id];
3012 3013 3014
			y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
						total_data_rate);

3015 3016
			ddb->y_plane[pipe][id].start = start;
			ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3017 3018 3019 3020

			start += y_plane_blocks;
		}

3021 3022 3023 3024
	}

}

3025
static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
3026 3027
{
	/* TODO: Take into account the scalers once we support them */
3028
	return config->base.adjusted_mode.crtc_clock;
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
}

/*
 * The max latency should be 257 (max the punit can code is 255 and we add 2us
 * for the read latency) and bytes_per_pixel should always be <= 8, so that
 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
			       uint32_t latency)
{
	uint32_t wm_intermediate_val, ret;

	if (latency == 0)
		return UINT_MAX;

3045
	wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
3046 3047 3048 3049 3050 3051 3052
	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);

	return ret;
}

static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
3053
			       uint64_t tiling, uint32_t latency)
3054
{
3055 3056 3057
	uint32_t ret;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t wm_intermediate_val;
3058 3059 3060 3061 3062

	if (latency == 0)
		return UINT_MAX;

	plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072

	if (tiling == I915_FORMAT_MOD_Y_TILED ||
	    tiling == I915_FORMAT_MOD_Yf_TILED) {
		plane_bytes_per_line *= 4;
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
		plane_blocks_per_line /= 4;
	} else {
		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
	}

3073 3074
	wm_intermediate_val = latency * pixel_rate;
	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3075
				plane_blocks_per_line;
3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091

	return ret;
}

static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
				       const struct intel_crtc *intel_crtc)
{
	struct drm_device *dev = intel_crtc->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
	enum pipe pipe = intel_crtc->pipe;

	if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
		   sizeof(new_ddb->plane[pipe])))
		return true;

3092 3093
	if (memcmp(&new_ddb->plane[pipe][PLANE_CURSOR], &cur_ddb->plane[pipe][PLANE_CURSOR],
		    sizeof(new_ddb->plane[pipe][PLANE_CURSOR])))
3094 3095 3096 3097 3098
		return true;

	return false;
}

3099 3100 3101 3102 3103 3104 3105
static void skl_compute_wm_global_parameters(struct drm_device *dev,
					     struct intel_wm_config *config)
{
	struct drm_crtc *crtc;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		config->num_pipes_active += to_intel_crtc(crtc)->active;
3106 3107
}

3108
static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3109 3110
				 struct intel_crtc_state *cstate,
				 struct intel_plane *intel_plane,
3111
				 uint16_t ddb_allocation,
3112
				 int level,
3113 3114
				 uint16_t *out_blocks, /* out */
				 uint8_t *out_lines /* out */)
3115
{
3116 3117
	struct drm_plane *plane = &intel_plane->base;
	struct drm_framebuffer *fb = plane->state->fb;
3118 3119 3120 3121 3122
	uint32_t latency = dev_priv->wm.skl_latency[level];
	uint32_t method1, method2;
	uint32_t plane_bytes_per_line, plane_blocks_per_line;
	uint32_t res_blocks, res_lines;
	uint32_t selected_result;
3123
	uint8_t bytes_per_pixel;
3124

3125
	if (latency == 0 || !cstate->base.active || !fb)
3126 3127
		return false;

3128 3129
	bytes_per_pixel = drm_format_plane_cpp(fb->pixel_format, 0);
	method1 = skl_wm_method1(skl_pipe_pixel_rate(cstate),
3130
				 bytes_per_pixel,
3131
				 latency);
3132 3133 3134
	method2 = skl_wm_method2(skl_pipe_pixel_rate(cstate),
				 cstate->base.adjusted_mode.crtc_htotal,
				 cstate->pipe_src_w,
3135
				 bytes_per_pixel,
3136
				 fb->modifier[0],
3137
				 latency);
3138

3139
	plane_bytes_per_line = cstate->pipe_src_w * bytes_per_pixel;
3140
	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3141

3142 3143
	if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
	    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3144 3145
		uint32_t min_scanlines = 4;
		uint32_t y_tile_minimum;
3146 3147 3148 3149 3150 3151
		if (intel_rotation_90_or_270(plane->state->rotation)) {
			int bpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
				drm_format_plane_cpp(fb->pixel_format, 1) :
				drm_format_plane_cpp(fb->pixel_format, 0);

			switch (bpp) {
3152 3153 3154 3155 3156 3157 3158 3159
			case 1:
				min_scanlines = 16;
				break;
			case 2:
				min_scanlines = 8;
				break;
			case 8:
				WARN(1, "Unsupported pixel depth for rotation");
3160
			}
3161 3162
		}
		y_tile_minimum = plane_blocks_per_line * min_scanlines;
3163 3164 3165 3166 3167 3168 3169
		selected_result = max(method2, y_tile_minimum);
	} else {
		if ((ddb_allocation / plane_blocks_per_line) >= 1)
			selected_result = min(method1, method2);
		else
			selected_result = method1;
	}
3170

3171 3172
	res_blocks = selected_result + 1;
	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3173

3174
	if (level >= 1 && level <= 7) {
3175 3176
		if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
		    fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED)
3177 3178 3179 3180
			res_lines += 4;
		else
			res_blocks++;
	}
3181

3182
	if (res_blocks >= ddb_allocation || res_lines > 31)
3183 3184 3185 3186
		return false;

	*out_blocks = res_blocks;
	*out_lines = res_lines;
3187 3188 3189 3190 3191 3192

	return true;
}

static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
				 struct skl_ddb_allocation *ddb,
3193
				 struct intel_crtc_state *cstate,
3194 3195 3196
				 int level,
				 struct skl_wm_level *result)
{
3197 3198 3199
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
	struct intel_plane *intel_plane;
3200
	uint16_t ddb_blocks;
3201 3202 3203 3204
	enum pipe pipe = intel_crtc->pipe;

	for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
		int i = skl_wm_plane_id(intel_plane);
3205 3206 3207

		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);

3208
		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
3209 3210
						cstate,
						intel_plane,
3211
						ddb_blocks,
3212
						level,
3213 3214 3215 3216 3217
						&result->plane_res_b[i],
						&result->plane_res_l[i]);
	}
}

3218
static uint32_t
3219
skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3220
{
3221
	if (!cstate->base.active)
3222 3223
		return 0;

3224
	if (WARN_ON(skl_pipe_pixel_rate(cstate) == 0))
3225
		return 0;
3226

3227 3228
	return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
			    skl_pipe_pixel_rate(cstate));
3229 3230
}

3231
static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3232
				      struct skl_wm_level *trans_wm /* out */)
3233
{
3234
	struct drm_crtc *crtc = cstate->base.crtc;
3235
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3236
	struct intel_plane *intel_plane;
3237

3238
	if (!cstate->base.active)
3239
		return;
3240 3241

	/* Until we know more, just disable transition WMs */
3242 3243 3244
	for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
		int i = skl_wm_plane_id(intel_plane);

3245
		trans_wm->plane_en[i] = false;
3246
	}
3247 3248
}

3249
static void skl_compute_pipe_wm(struct intel_crtc_state *cstate,
3250 3251 3252
				struct skl_ddb_allocation *ddb,
				struct skl_pipe_wm *pipe_wm)
{
3253
	struct drm_device *dev = cstate->base.crtc->dev;
3254 3255 3256 3257
	const struct drm_i915_private *dev_priv = dev->dev_private;
	int level, max_level = ilk_wm_max_level(dev);

	for (level = 0; level <= max_level; level++) {
3258 3259
		skl_compute_wm_level(dev_priv, ddb, cstate,
				     level, &pipe_wm->wm[level]);
3260
	}
3261
	pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3262

3263
	skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3264 3265 3266 3267 3268 3269 3270 3271 3272
}

static void skl_compute_wm_results(struct drm_device *dev,
				   struct skl_pipe_wm *p_wm,
				   struct skl_wm_values *r,
				   struct intel_crtc *intel_crtc)
{
	int level, max_level = ilk_wm_max_level(dev);
	enum pipe pipe = intel_crtc->pipe;
3273 3274
	uint32_t temp;
	int i;
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = 0;

			temp |= p_wm->wm[level].plane_res_l[i] <<
					PLANE_WM_LINES_SHIFT;
			temp |= p_wm->wm[level].plane_res_b[i];
			if (p_wm->wm[level].plane_en[i])
				temp |= PLANE_WM_EN;

			r->plane[pipe][i][level] = temp;
		}

		temp = 0;

3291 3292
		temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3293

3294
		if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3295 3296
			temp |= PLANE_WM_EN;

3297
		r->plane[pipe][PLANE_CURSOR][level] = temp;
3298 3299 3300

	}

3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
	/* transition WMs */
	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = 0;
		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
		temp |= p_wm->trans_wm.plane_res_b[i];
		if (p_wm->trans_wm.plane_en[i])
			temp |= PLANE_WM_EN;

		r->plane_trans[pipe][i] = temp;
	}

	temp = 0;
3313 3314 3315
	temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
	temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
	if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3316 3317
		temp |= PLANE_WM_EN;

3318
	r->plane_trans[pipe][PLANE_CURSOR] = temp;
3319

3320 3321 3322
	r->wm_linetime[pipe] = p_wm->linetime;
}

3323 3324 3325 3326 3327 3328 3329 3330 3331
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
				const struct skl_ddb_entry *entry)
{
	if (entry->end)
		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
	else
		I915_WRITE(reg, 0);
}

3332 3333 3334 3335 3336 3337 3338 3339 3340 3341
static void skl_write_wm_values(struct drm_i915_private *dev_priv,
				const struct skl_wm_values *new)
{
	struct drm_device *dev = dev_priv->dev;
	struct intel_crtc *crtc;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
		int i, level, max_level = ilk_wm_max_level(dev);
		enum pipe pipe = crtc->pipe;

3342 3343
		if (!new->dirty[pipe])
			continue;
3344

3345
		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3346

3347 3348 3349 3350 3351
		for (level = 0; level <= max_level; level++) {
			for (i = 0; i < intel_num_planes(crtc); i++)
				I915_WRITE(PLANE_WM(pipe, i, level),
					   new->plane[pipe][i][level]);
			I915_WRITE(CUR_WM(pipe, level),
3352
				   new->plane[pipe][PLANE_CURSOR][level]);
3353
		}
3354 3355 3356
		for (i = 0; i < intel_num_planes(crtc); i++)
			I915_WRITE(PLANE_WM_TRANS(pipe, i),
				   new->plane_trans[pipe][i]);
3357 3358
		I915_WRITE(CUR_WM_TRANS(pipe),
			   new->plane_trans[pipe][PLANE_CURSOR]);
3359

3360
		for (i = 0; i < intel_num_planes(crtc); i++) {
3361 3362 3363
			skl_ddb_entry_write(dev_priv,
					    PLANE_BUF_CFG(pipe, i),
					    &new->ddb.plane[pipe][i]);
3364 3365 3366 3367
			skl_ddb_entry_write(dev_priv,
					    PLANE_NV12_BUF_CFG(pipe, i),
					    &new->ddb.y_plane[pipe][i]);
		}
3368 3369

		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3370
				    &new->ddb.plane[pipe][PLANE_CURSOR]);
3371 3372 3373
	}
}

3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397
/*
 * When setting up a new DDB allocation arrangement, we need to correctly
 * sequence the times at which the new allocations for the pipes are taken into
 * account or we'll have pipes fetching from space previously allocated to
 * another pipe.
 *
 * Roughly the sequence looks like:
 *  1. re-allocate the pipe(s) with the allocation being reduced and not
 *     overlapping with a previous light-up pipe (another way to put it is:
 *     pipes with their new allocation strickly included into their old ones).
 *  2. re-allocate the other pipes that get their allocation reduced
 *  3. allocate the pipes having their allocation increased
 *
 * Steps 1. and 2. are here to take care of the following case:
 * - Initially DDB looks like this:
 *     |   B    |   C    |
 * - enable pipe A.
 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
 *   allocation
 *     |  A  |  B  |  C  |
 *
 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
 */

3398 3399
static void
skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3400 3401 3402
{
	int plane;

3403 3404
	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);

3405
	for_each_plane(dev_priv, pipe, plane) {
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
		I915_WRITE(PLANE_SURF(pipe, plane),
			   I915_READ(PLANE_SURF(pipe, plane)));
	}
	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
}

static bool
skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
			    const struct skl_ddb_allocation *new,
			    enum pipe pipe)
{
	uint16_t old_size, new_size;

	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
	new_size = skl_ddb_entry_size(&new->pipe[pipe]);

	return old_size != new_size &&
	       new->pipe[pipe].start >= old->pipe[pipe].start &&
	       new->pipe[pipe].end <= old->pipe[pipe].end;
}

static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
				struct skl_wm_values *new_values)
{
	struct drm_device *dev = dev_priv->dev;
	struct skl_ddb_allocation *cur_ddb, *new_ddb;
3432
	bool reallocated[I915_MAX_PIPES] = {};
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
	struct intel_crtc *crtc;
	enum pipe pipe;

	new_ddb = &new_values->ddb;
	cur_ddb = &dev_priv->wm.skl_hw.ddb;

	/*
	 * First pass: flush the pipes with the new allocation contained into
	 * the old space.
	 *
	 * We'll wait for the vblank on those pipes to ensure we can safely
	 * re-allocate the freed space without this pipe fetching from it.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
			continue;

3455
		skl_wm_flush_pipe(dev_priv, pipe, 1);
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
		intel_wait_for_vblank(dev, pipe);

		reallocated[pipe] = true;
	}


	/*
	 * Second pass: flush the pipes that are having their allocation
	 * reduced, but overlapping with a previous allocation.
	 *
	 * Here as well we need to wait for the vblank to make sure the freed
	 * space is not used anymore.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		if (reallocated[pipe])
			continue;

		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3480
			skl_wm_flush_pipe(dev_priv, pipe, 2);
3481
			intel_wait_for_vblank(dev, pipe);
3482
			reallocated[pipe] = true;
3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
		}
	}

	/*
	 * Third pass: flush the pipes that got more space allocated.
	 *
	 * We don't need to actively wait for the update here, next vblank
	 * will just get more DDB space with the correct WM values.
	 */
	for_each_intel_crtc(dev, crtc) {
		if (!crtc->active)
			continue;

		pipe = crtc->pipe;

		/*
		 * At this point, only the pipes more space than before are
		 * left to re-allocate.
		 */
		if (reallocated[pipe])
			continue;

3505
		skl_wm_flush_pipe(dev_priv, pipe, 3);
3506 3507 3508
	}
}

3509
static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3510
			       struct intel_wm_config *config,
3511 3512 3513 3514
			       struct skl_ddb_allocation *ddb, /* out */
			       struct skl_pipe_wm *pipe_wm /* out */)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3515
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
3516

3517 3518
	skl_allocate_pipe_ddb(cstate, config, ddb);
	skl_compute_pipe_wm(cstate, ddb, pipe_wm);
3519

3520
	if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3521 3522
		return false;

3523
	intel_crtc->wm.active.skl = *pipe_wm;
3524

3525 3526 3527 3528 3529
	return true;
}

static void skl_update_other_pipe_wm(struct drm_device *dev,
				     struct drm_crtc *crtc,
3530
				     struct intel_wm_config *config,
3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
				     struct skl_wm_values *r)
{
	struct intel_crtc *intel_crtc;
	struct intel_crtc *this_crtc = to_intel_crtc(crtc);

	/*
	 * If the WM update hasn't changed the allocation for this_crtc (the
	 * crtc we are currently computing the new WM values for), other
	 * enabled crtcs will keep the same allocation and we don't need to
	 * recompute anything for them.
	 */
	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
		return;

	/*
	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
	 * other active pipes need new DDB allocation and WM values.
	 */
	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
				base.head) {
		struct skl_pipe_wm pipe_wm = {};
		bool wm_changed;

		if (this_crtc->pipe == intel_crtc->pipe)
			continue;

		if (!intel_crtc->active)
			continue;

3560
		wm_changed = skl_update_pipe_wm(&intel_crtc->base, config,
3561 3562 3563 3564 3565 3566 3567 3568 3569
						&r->ddb, &pipe_wm);

		/*
		 * If we end up re-computing the other pipe WM values, it's
		 * because it was really needed, so we expect the WM values to
		 * be different.
		 */
		WARN_ON(!wm_changed);

3570
		skl_compute_wm_results(dev, &pipe_wm, r, intel_crtc);
3571 3572 3573 3574
		r->dirty[intel_crtc->pipe] = true;
	}
}

3575 3576 3577 3578 3579 3580 3581
static void skl_clear_wm(struct skl_wm_values *watermarks, enum pipe pipe)
{
	watermarks->wm_linetime[pipe] = 0;
	memset(watermarks->plane[pipe], 0,
	       sizeof(uint32_t) * 8 * I915_MAX_PLANES);
	memset(watermarks->plane_trans[pipe],
	       0, sizeof(uint32_t) * I915_MAX_PLANES);
3582
	watermarks->plane_trans[pipe][PLANE_CURSOR] = 0;
3583 3584 3585 3586 3587 3588 3589

	/* Clear ddb entries for pipe */
	memset(&watermarks->ddb.pipe[pipe], 0, sizeof(struct skl_ddb_entry));
	memset(&watermarks->ddb.plane[pipe], 0,
	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
	memset(&watermarks->ddb.y_plane[pipe], 0,
	       sizeof(struct skl_ddb_entry) * I915_MAX_PLANES);
3590 3591
	memset(&watermarks->ddb.plane[pipe][PLANE_CURSOR], 0,
	       sizeof(struct skl_ddb_entry));
3592 3593 3594

}

3595 3596 3597 3598 3599 3600
static void skl_update_wm(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *results = &dev_priv->wm.skl_results;
3601 3602
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
	struct skl_pipe_wm *pipe_wm = &cstate->wm.optimal.skl;
3603
	struct intel_wm_config config = {};
3604

3605 3606 3607 3608 3609

	/* Clear all dirty flags */
	memset(results->dirty, 0, sizeof(bool) * I915_MAX_PIPES);

	skl_clear_wm(results, intel_crtc->pipe);
3610

3611 3612
	skl_compute_wm_global_parameters(dev, &config);

3613
	if (!skl_update_pipe_wm(crtc, &config, &results->ddb, pipe_wm))
3614 3615
		return;

3616
	skl_compute_wm_results(dev, pipe_wm, results, intel_crtc);
3617 3618
	results->dirty[intel_crtc->pipe] = true;

3619
	skl_update_other_pipe_wm(dev, crtc, &config, results);
3620
	skl_write_wm_values(dev_priv, results);
3621
	skl_flush_wm_values(dev_priv, results);
3622 3623 3624

	/* store the new configuration */
	dev_priv->wm.skl_hw = *results;
3625 3626
}

3627
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
3628
{
3629 3630
	struct drm_device *dev = dev_priv->dev;
	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3631
	struct ilk_wm_maximums max;
3632
	struct intel_wm_config config = {};
3633
	struct ilk_wm_values results = {};
3634
	enum intel_ddb_partitioning partitioning;
3635 3636 3637 3638 3639

	ilk_compute_wm_config(dev, &config);

	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3640 3641

	/* 5/6 split only in single pipe config on IVB+ */
3642
	if (INTEL_INFO(dev)->gen >= 7 &&
3643 3644 3645
	    config.num_pipes_active == 1 && config.sprites_enabled) {
		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3646

3647
		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3648
	} else {
3649
		best_lp_wm = &lp_wm_1_2;
3650 3651
	}

3652
	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3653
		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3654

3655
	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3656

3657
	ilk_write_wm_values(dev_priv, &results);
3658 3659
}

3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
static void ilk_update_wm(struct drm_crtc *crtc)
{
	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);

	WARN_ON(cstate->base.active != intel_crtc->active);

	/*
	 * IVB workaround: must disable low power watermarks for at least
	 * one frame before enabling scaling.  LP watermarks can be re-enabled
	 * when scaling is disabled.
	 *
	 * WaCxSRDisabledForSpriteScaling:ivb
	 */
	if (cstate->disable_lp_wm) {
		ilk_disable_lp_wm(crtc->dev);
		intel_wait_for_vblank(crtc->dev, intel_crtc->pipe);
	}

3680
	intel_crtc->wm.active.ilk = cstate->wm.optimal.ilk;
3681 3682 3683 3684

	ilk_program_watermarks(dev_priv);
}

3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702
static void skl_pipe_wm_active_state(uint32_t val,
				     struct skl_pipe_wm *active,
				     bool is_transwm,
				     bool is_cursor,
				     int i,
				     int level)
{
	bool is_enabled = (val & PLANE_WM_EN) != 0;

	if (!is_transwm) {
		if (!is_cursor) {
			active->wm[level].plane_en[i] = is_enabled;
			active->wm[level].plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->wm[level].plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
3703 3704
			active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
			active->wm[level].plane_res_b[PLANE_CURSOR] =
3705
					val & PLANE_WM_BLOCKS_MASK;
3706
			active->wm[level].plane_res_l[PLANE_CURSOR] =
3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	} else {
		if (!is_cursor) {
			active->trans_wm.plane_en[i] = is_enabled;
			active->trans_wm.plane_res_b[i] =
					val & PLANE_WM_BLOCKS_MASK;
			active->trans_wm.plane_res_l[i] =
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		} else {
3719 3720
			active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
			active->trans_wm.plane_res_b[PLANE_CURSOR] =
3721
					val & PLANE_WM_BLOCKS_MASK;
3722
			active->trans_wm.plane_res_l[PLANE_CURSOR] =
3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
					(val >> PLANE_WM_LINES_SHIFT) &
						PLANE_WM_LINES_MASK;
		}
	}
}

static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3735 3736
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
	struct skl_pipe_wm *active = &cstate->wm.optimal.skl;
3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748
	enum pipe pipe = intel_crtc->pipe;
	int level, i, max_level;
	uint32_t temp;

	max_level = ilk_wm_max_level(dev);

	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++)
			hw->plane[pipe][i][level] =
					I915_READ(PLANE_WM(pipe, i, level));
3749
		hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
3750 3751 3752 3753
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++)
		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3754
	hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
3755

3756
	if (!intel_crtc->active)
3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
		return;

	hw->dirty[pipe] = true;

	active->linetime = hw->wm_linetime[pipe];

	for (level = 0; level <= max_level; level++) {
		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
			temp = hw->plane[pipe][i][level];
			skl_pipe_wm_active_state(temp, active, false,
						false, i, level);
		}
3769
		temp = hw->plane[pipe][PLANE_CURSOR][level];
3770 3771 3772 3773 3774 3775 3776 3777
		skl_pipe_wm_active_state(temp, active, false, true, i, level);
	}

	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
		temp = hw->plane_trans[pipe][i];
		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
	}

3778
	temp = hw->plane_trans[pipe][PLANE_CURSOR];
3779
	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3780 3781

	intel_crtc->wm.active.skl = *active;
3782 3783 3784 3785
}

void skl_wm_get_hw_state(struct drm_device *dev)
{
3786 3787
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3788 3789
	struct drm_crtc *crtc;

3790
	skl_ddb_get_hw_state(dev_priv, ddb);
3791 3792 3793 3794
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
		skl_pipe_wm_get_hw_state(crtc);
}

3795 3796 3797 3798
static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
3799
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3800
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3801 3802
	struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
	struct intel_pipe_wm *active = &cstate->wm.optimal.ilk;
3803 3804 3805 3806 3807 3808 3809 3810
	enum pipe pipe = intel_crtc->pipe;
	static const unsigned int wm0_pipe_reg[] = {
		[PIPE_A] = WM0_PIPEA_ILK,
		[PIPE_B] = WM0_PIPEB_ILK,
		[PIPE_C] = WM0_PIPEC_IVB,
	};

	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3811
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3812
		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3813

3814
	active->pipe_enabled = intel_crtc->active;
3815 3816

	if (active->pipe_enabled) {
3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
		u32 tmp = hw->wm_pipe[pipe];

		/*
		 * For active pipes LP0 watermark is marked as
		 * enabled, and LP1+ watermaks as disabled since
		 * we can't really reverse compute them in case
		 * multiple pipes are active.
		 */
		active->wm[0].enable = true;
		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
		active->linetime = hw->wm_linetime[pipe];
	} else {
		int level, max_level = ilk_wm_max_level(dev);

		/*
		 * For inactive pipes, all watermark levels
		 * should be marked as enabled but zeroed,
		 * which is what we'd compute them to.
		 */
		for (level = 0; level <= max_level; level++)
			active->wm[level].enable = true;
	}
3841 3842

	intel_crtc->wm.active.ilk = *active;
3843 3844
}

3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961
#define _FW_WM(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)

static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
			       struct vlv_wm_values *wm)
{
	enum pipe pipe;
	uint32_t tmp;

	for_each_pipe(dev_priv, pipe) {
		tmp = I915_READ(VLV_DDL(pipe));

		wm->ddl[pipe].primary =
			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].cursor =
			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[0] =
			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
		wm->ddl[pipe].sprite[1] =
			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
	}

	tmp = I915_READ(DSPFW1);
	wm->sr.plane = _FW_WM(tmp, SR);
	wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
	wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
	wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);

	tmp = I915_READ(DSPFW2);
	wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
	wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
	wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);

	tmp = I915_READ(DSPFW3);
	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);

	if (IS_CHERRYVIEW(dev_priv)) {
		tmp = I915_READ(DSPFW7_CHV);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPFW8_CHV);
		wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
		wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);

		tmp = I915_READ(DSPFW9_CHV);
		wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
		wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
		wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
		wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	} else {
		tmp = I915_READ(DSPFW7);
		wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
		wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);

		tmp = I915_READ(DSPHOWM);
		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
		wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
		wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
		wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
		wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
		wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
	}
}

#undef _FW_WM
#undef _FW_WM_VLV

void vlv_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
	struct intel_plane *plane;
	enum pipe pipe;
	u32 val;

	vlv_read_wm_values(dev_priv, wm);

	for_each_intel_plane(dev, plane) {
		switch (plane->base.type) {
			int sprite;
		case DRM_PLANE_TYPE_CURSOR:
			plane->wm.fifo_size = 63;
			break;
		case DRM_PLANE_TYPE_PRIMARY:
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
			break;
		case DRM_PLANE_TYPE_OVERLAY:
			sprite = plane->plane;
			plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
			break;
		}
	}

	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
	wm->level = VLV_WM_LEVEL_PM2;

	if (IS_CHERRYVIEW(dev_priv)) {
		mutex_lock(&dev_priv->rps.hw_lock);

		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
		if (val & DSP_MAXFIFO_PM5_ENABLE)
			wm->level = VLV_WM_LEVEL_PM5;

3962 3963 3964 3965 3966 3967 3968 3969 3970
		/*
		 * If DDR DVFS is disabled in the BIOS, Punit
		 * will never ack the request. So if that happens
		 * assume we don't have to enable/disable DDR DVFS
		 * dynamically. To test that just set the REQ_ACK
		 * bit to poke the Punit, but don't change the
		 * HIGH/LOW bits so that we don't actually change
		 * the current state.
		 */
3971
		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984
		val |= FORCE_DDR_FREQ_REQ_ACK;
		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);

		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
				      "assuming DDR DVFS is disabled\n");
			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
		} else {
			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
				wm->level = VLV_WM_LEVEL_DDR_DVFS;
		}
3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997

		mutex_unlock(&dev_priv->rps.hw_lock);
	}

	for_each_pipe(dev_priv, pipe)
		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
			      pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
			      wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);

	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}

3998 3999 4000
void ilk_wm_get_hw_state(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4001
	struct ilk_wm_values *hw = &dev_priv->wm.hw;
4002 4003
	struct drm_crtc *crtc;

4004
	for_each_crtc(dev, crtc)
4005 4006 4007 4008 4009 4010 4011
		ilk_pipe_wm_get_hw_state(crtc);

	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);

	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4012 4013 4014 4015
	if (INTEL_INFO(dev)->gen >= 7) {
		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
	}
4016

4017
	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4018 4019 4020 4021 4022
		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
	else if (IS_IVYBRIDGE(dev))
		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4023 4024 4025 4026 4027

	hw->enable_fbc_wm =
		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}

4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *     surface width = hdisplay for normal plane and 64 for cursor
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
 */
4060
void intel_update_watermarks(struct drm_crtc *crtc)
4061
{
4062
	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
4063 4064

	if (dev_priv->display.update_wm)
4065
		dev_priv->display.update_wm(crtc);
4066 4067
}

4068 4069 4070 4071 4072 4073 4074 4075 4076
/**
 * Lock protecting IPS related data structures
 */
DEFINE_SPINLOCK(mchdev_lock);

/* Global for IPS driver to get at the current i915 device. Protected by
 * mchdev_lock. */
static struct drm_i915_private *i915_mch_dev;

4077 4078 4079 4080 4081
bool ironlake_set_drps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u16 rgvswctl;

4082 4083
	assert_spin_locked(&mchdev_lock);

4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100
	rgvswctl = I915_READ16(MEMSWCTL);
	if (rgvswctl & MEMCTL_CMD_STS) {
		DRM_DEBUG("gpu busy, RCS change rejected\n");
		return false; /* still busy with another command */
	}

	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
	I915_WRITE16(MEMSWCTL, rgvswctl);
	POSTING_READ16(MEMSWCTL);

	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE16(MEMSWCTL, rgvswctl);

	return true;
}

4101
static void ironlake_enable_drps(struct drm_device *dev)
4102 4103 4104 4105 4106
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 rgvmodectl = I915_READ(MEMMODECTL);
	u8 fmax, fmin, fstart, vstart;

4107 4108
	spin_lock_irq(&mchdev_lock);

4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
	/* Enable temp reporting */
	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);

	/* 100ms RC evaluation intervals */
	I915_WRITE(RCUPEI, 100000);
	I915_WRITE(RCDNEI, 100000);

	/* Set max/min thresholds to 90ms and 80ms respectively */
	I915_WRITE(RCBMAXAVG, 90000);
	I915_WRITE(RCBMINAVG, 80000);

	I915_WRITE(MEMIHYST, 1);

	/* Set up min, max, and cur for interrupt handling */
	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
		MEMMODE_FSTART_SHIFT;

4129
	vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4130 4131
		PXVFREQ_PX_SHIFT;

4132 4133
	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
	dev_priv->ips.fstart = fstart;
4134

4135 4136 4137
	dev_priv->ips.max_delay = fstart;
	dev_priv->ips.min_delay = fmin;
	dev_priv->ips.cur_delay = fstart;
4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153

	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
			 fmax, fmin, fstart);

	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);

	/*
	 * Interrupts will be enabled in ironlake_irq_postinstall
	 */

	I915_WRITE(VIDSTART, vstart);
	POSTING_READ(VIDSTART);

	rgvmodectl |= MEMMODE_SWMODE_EN;
	I915_WRITE(MEMMODECTL, rgvmodectl);

4154
	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4155
		DRM_ERROR("stuck trying to change perf mode\n");
4156
	mdelay(1);
4157 4158 4159

	ironlake_set_drps(dev, fstart);

4160 4161
	dev_priv->ips.last_count1 = I915_READ(DMIEC) +
		I915_READ(DDREC) + I915_READ(CSIEC);
4162
	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4163
	dev_priv->ips.last_count2 = I915_READ(GFXEC);
4164
	dev_priv->ips.last_time2 = ktime_get_raw_ns();
4165 4166

	spin_unlock_irq(&mchdev_lock);
4167 4168
}

4169
static void ironlake_disable_drps(struct drm_device *dev)
4170 4171
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4172 4173 4174 4175 4176
	u16 rgvswctl;

	spin_lock_irq(&mchdev_lock);

	rgvswctl = I915_READ16(MEMSWCTL);
4177 4178 4179 4180 4181 4182 4183 4184 4185

	/* Ack interrupts, disable EFC interrupt */
	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
	I915_WRITE(DEIIR, DE_PCU_EVENT);
	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);

	/* Go back to the starting frequency */
4186
	ironlake_set_drps(dev, dev_priv->ips.fstart);
4187
	mdelay(1);
4188 4189
	rgvswctl |= MEMCTL_CMD_STS;
	I915_WRITE(MEMSWCTL, rgvswctl);
4190
	mdelay(1);
4191

4192
	spin_unlock_irq(&mchdev_lock);
4193 4194
}

4195 4196 4197 4198 4199
/* There's a funny hw issue where the hw returns all 0 when reading from
 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
 * ourselves, instead of doing a rmw cycle (which might result in us clearing
 * all limits and the gpu stuck at whatever frequency it is at atm).
 */
4200
static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4201
{
4202
	u32 limits;
4203

4204 4205 4206 4207 4208 4209
	/* Only set the down limit when we've reached the lowest level to avoid
	 * getting more interrupts, otherwise leave this clear. This prevents a
	 * race in the hw when coming out of rc6: There's a tiny window where
	 * the hw runs at the minimal clock before selecting the desired
	 * frequency, if the down threshold expires in that window we will not
	 * receive a down interrupt. */
4210 4211 4212 4213 4214 4215 4216 4217 4218
	if (IS_GEN9(dev_priv->dev)) {
		limits = (dev_priv->rps.max_freq_softlimit) << 23;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
	} else {
		limits = dev_priv->rps.max_freq_softlimit << 24;
		if (val <= dev_priv->rps.min_freq_softlimit)
			limits |= dev_priv->rps.min_freq_softlimit << 16;
	}
4219 4220 4221 4222

	return limits;
}

4223 4224 4225
static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
{
	int new_power;
4226 4227
	u32 threshold_up = 0, threshold_down = 0; /* in % */
	u32 ei_up = 0, ei_down = 0;
4228 4229 4230 4231

	new_power = dev_priv->rps.power;
	switch (dev_priv->rps.power) {
	case LOW_POWER:
4232
		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
4233 4234 4235 4236
			new_power = BETWEEN;
		break;

	case BETWEEN:
4237
		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
4238
			new_power = LOW_POWER;
4239
		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
4240 4241 4242 4243
			new_power = HIGH_POWER;
		break;

	case HIGH_POWER:
4244
		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
4245 4246 4247 4248
			new_power = BETWEEN;
		break;
	}
	/* Max/min bins are special */
4249
	if (val <= dev_priv->rps.min_freq_softlimit)
4250
		new_power = LOW_POWER;
4251
	if (val >= dev_priv->rps.max_freq_softlimit)
4252 4253 4254 4255 4256 4257 4258 4259
		new_power = HIGH_POWER;
	if (new_power == dev_priv->rps.power)
		return;

	/* Note the units here are not exactly 1us, but 1280ns. */
	switch (new_power) {
	case LOW_POWER:
		/* Upclock if more than 95% busy over 16ms */
4260 4261
		ei_up = 16000;
		threshold_up = 95;
4262 4263

		/* Downclock if less than 85% busy over 32ms */
4264 4265
		ei_down = 32000;
		threshold_down = 85;
4266 4267 4268 4269
		break;

	case BETWEEN:
		/* Upclock if more than 90% busy over 13ms */
4270 4271
		ei_up = 13000;
		threshold_up = 90;
4272 4273

		/* Downclock if less than 75% busy over 32ms */
4274 4275
		ei_down = 32000;
		threshold_down = 75;
4276 4277 4278 4279
		break;

	case HIGH_POWER:
		/* Upclock if more than 85% busy over 10ms */
4280 4281
		ei_up = 10000;
		threshold_up = 85;
4282 4283

		/* Downclock if less than 60% busy over 32ms */
4284 4285
		ei_down = 32000;
		threshold_down = 60;
4286 4287 4288
		break;
	}

4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306
	I915_WRITE(GEN6_RP_UP_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_up));
	I915_WRITE(GEN6_RP_UP_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));

	I915_WRITE(GEN6_RP_DOWN_EI,
		GT_INTERVAL_FROM_US(dev_priv, ei_down));
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));

	 I915_WRITE(GEN6_RP_CONTROL,
		    GEN6_RP_MEDIA_TURBO |
		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
		    GEN6_RP_MEDIA_IS_GFX |
		    GEN6_RP_ENABLE |
		    GEN6_RP_UP_BUSY_AVG |
		    GEN6_RP_DOWN_IDLE_AVG);

4307
	dev_priv->rps.power = new_power;
4308 4309
	dev_priv->rps.up_threshold = threshold_up;
	dev_priv->rps.down_threshold = threshold_down;
4310 4311 4312
	dev_priv->rps.last_adj = 0;
}

4313 4314 4315 4316 4317
static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
{
	u32 mask = 0;

	if (val > dev_priv->rps.min_freq_softlimit)
4318
		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4319
	if (val < dev_priv->rps.max_freq_softlimit)
4320
		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4321

4322 4323
	mask &= dev_priv->pm_rps_events;

4324
	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4325 4326
}

4327 4328 4329
/* gen6_set_rps is called to update the frequency request, but should also be
 * called when the range (min_delay and max_delay) is modified so that we can
 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4330
static void gen6_set_rps(struct drm_device *dev, u8 val)
4331 4332
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4333

4334
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4335
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1))
4336 4337
		return;

4338
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4339 4340
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4341

C
Chris Wilson 已提交
4342 4343 4344 4345 4346
	/* min/max delay may still have been modified so be sure to
	 * write the limits value.
	 */
	if (val != dev_priv->rps.cur_freq) {
		gen6_set_rps_thresholds(dev_priv, val);
4347

4348 4349 4350 4351
		if (IS_GEN9(dev))
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN9_FREQUENCY(val));
		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
C
Chris Wilson 已提交
4352 4353 4354 4355 4356 4357 4358
			I915_WRITE(GEN6_RPNSWREQ,
				   HSW_FREQUENCY(val));
		else
			I915_WRITE(GEN6_RPNSWREQ,
				   GEN6_FREQUENCY(val) |
				   GEN6_OFFSET(0) |
				   GEN6_AGGRESSIVE_TURBO);
4359
	}
4360 4361 4362 4363

	/* Make sure we continue to get interrupts
	 * until we hit the minimum or maximum frequencies.
	 */
4364
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4365
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4366

4367 4368
	POSTING_READ(GEN6_RPNSWREQ);

4369
	dev_priv->rps.cur_freq = val;
4370
	trace_intel_gpu_freq_change(val * 50);
4371 4372
}

4373 4374 4375 4376 4377
static void valleyview_set_rps(struct drm_device *dev, u8 val)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4378 4379
	WARN_ON(val > dev_priv->rps.max_freq);
	WARN_ON(val < dev_priv->rps.min_freq);
4380 4381 4382 4383 4384

	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
		      "Odd GPU freq value\n"))
		val &= ~1;

4385 4386
	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));

4387
	if (val != dev_priv->rps.cur_freq) {
4388
		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4389 4390 4391
		if (!IS_CHERRYVIEW(dev_priv))
			gen6_set_rps_thresholds(dev_priv, val);
	}
4392 4393 4394 4395 4396

	dev_priv->rps.cur_freq = val;
	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
}

4397
/* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
4398 4399
 *
 * * If Gfx is Idle, then
4400 4401 4402
 * 1. Forcewake Media well.
 * 2. Request idle freq.
 * 3. Release Forcewake of Media well.
4403 4404 4405
*/
static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
{
4406
	u32 val = dev_priv->rps.idle_freq;
4407

4408
	if (dev_priv->rps.cur_freq <= val)
4409 4410
		return;

4411 4412 4413 4414 4415
	/* Wake up the media well, as that takes a lot less
	 * power than the Render well. */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
	valleyview_set_rps(dev_priv->dev, val);
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
4416 4417
}

4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429
void gen6_rps_busy(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->rps.hw_lock);
	if (dev_priv->rps.enabled) {
		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
			gen6_rps_reset_ei(dev_priv);
		I915_WRITE(GEN6_PMINTRMSK,
			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
	}
	mutex_unlock(&dev_priv->rps.hw_lock);
}

4430 4431
void gen6_rps_idle(struct drm_i915_private *dev_priv)
{
4432 4433
	struct drm_device *dev = dev_priv->dev;

4434
	mutex_lock(&dev_priv->rps.hw_lock);
4435
	if (dev_priv->rps.enabled) {
4436
		if (IS_VALLEYVIEW(dev))
4437
			vlv_set_rps_idle(dev_priv);
4438
		else
4439
			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4440
		dev_priv->rps.last_adj = 0;
4441
		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4442
	}
4443
	mutex_unlock(&dev_priv->rps.hw_lock);
4444

4445
	spin_lock(&dev_priv->rps.client_lock);
4446 4447
	while (!list_empty(&dev_priv->rps.clients))
		list_del_init(dev_priv->rps.clients.next);
4448
	spin_unlock(&dev_priv->rps.client_lock);
4449 4450
}

4451
void gen6_rps_boost(struct drm_i915_private *dev_priv,
4452 4453
		    struct intel_rps_client *rps,
		    unsigned long submitted)
4454
{
4455 4456 4457 4458 4459 4460 4461
	/* This is intentionally racy! We peek at the state here, then
	 * validate inside the RPS worker.
	 */
	if (!(dev_priv->mm.busy &&
	      dev_priv->rps.enabled &&
	      dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit))
		return;
4462

4463 4464 4465
	/* Force a RPS boost (and don't count it against the client) if
	 * the GPU is severely congested.
	 */
4466
	if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
4467 4468
		rps = NULL;

4469 4470 4471 4472 4473 4474 4475 4476
	spin_lock(&dev_priv->rps.client_lock);
	if (rps == NULL || list_empty(&rps->link)) {
		spin_lock_irq(&dev_priv->irq_lock);
		if (dev_priv->rps.interrupts_enabled) {
			dev_priv->rps.client_boost = true;
			queue_work(dev_priv->wq, &dev_priv->rps.work);
		}
		spin_unlock_irq(&dev_priv->irq_lock);
4477

4478 4479 4480
		if (rps != NULL) {
			list_add(&rps->link, &dev_priv->rps.clients);
			rps->boosts++;
4481 4482
		} else
			dev_priv->rps.boosts++;
4483
	}
4484
	spin_unlock(&dev_priv->rps.client_lock);
4485 4486
}

4487
void intel_set_rps(struct drm_device *dev, u8 val)
4488
{
4489 4490 4491 4492
	if (IS_VALLEYVIEW(dev))
		valleyview_set_rps(dev, val);
	else
		gen6_set_rps(dev, val);
4493 4494
}

Z
Zhe Wang 已提交
4495 4496 4497 4498 4499
static void gen9_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4500
	I915_WRITE(GEN9_PG_ENABLE, 0);
Z
Zhe Wang 已提交
4501 4502
}

4503
static void gen6_disable_rps(struct drm_device *dev)
4504 4505 4506 4507
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
4508 4509 4510
	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
}

4511 4512 4513 4514 4515 4516 4517
static void cherryview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(GEN6_RC_CONTROL, 0);
}

4518 4519 4520 4521
static void valleyview_disable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

4522 4523
	/* we're doing forcewake before Disabling RC6,
	 * This what the BIOS expects when going into suspend */
4524
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4525

4526
	I915_WRITE(GEN6_RC_CONTROL, 0);
4527

4528
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4529 4530
}

B
Ben Widawsky 已提交
4531 4532
static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
{
4533 4534 4535 4536 4537 4538
	if (IS_VALLEYVIEW(dev)) {
		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
			mode = GEN6_RC_CTL_RC6_ENABLE;
		else
			mode = 0;
	}
4539 4540 4541 4542 4543 4544 4545 4546 4547
	if (HAS_RC6p(dev))
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
			      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");

	else
		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
B
Ben Widawsky 已提交
4548 4549
}

I
Imre Deak 已提交
4550
static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4551
{
4552 4553
	/* No RC6 before Ironlake and code is gone for ilk. */
	if (INTEL_INFO(dev)->gen < 6)
I
Imre Deak 已提交
4554 4555
		return 0;

4556
	/* Respect the kernel parameter if it is set */
I
Imre Deak 已提交
4557 4558 4559
	if (enable_rc6 >= 0) {
		int mask;

4560
		if (HAS_RC6p(dev))
I
Imre Deak 已提交
4561 4562 4563 4564 4565 4566
			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
			       INTEL_RC6pp_ENABLE;
		else
			mask = INTEL_RC6_ENABLE;

		if ((enable_rc6 & mask) != enable_rc6)
4567 4568
			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
				      enable_rc6 & mask, enable_rc6, mask);
I
Imre Deak 已提交
4569 4570 4571

		return enable_rc6 & mask;
	}
4572

4573
	if (IS_IVYBRIDGE(dev))
B
Ben Widawsky 已提交
4574
		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4575 4576

	return INTEL_RC6_ENABLE;
4577 4578
}

I
Imre Deak 已提交
4579 4580 4581 4582 4583
int intel_enable_rc6(const struct drm_device *dev)
{
	return i915.enable_rc6;
}

4584
static void gen6_init_rps_frequencies(struct drm_device *dev)
4585
{
4586 4587 4588 4589 4590
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t rp_state_cap;
	u32 ddcc_status = 0;
	int ret;

4591 4592
	/* All of these values are in units of 50MHz */
	dev_priv->rps.cur_freq		= 0;
4593
	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605
	if (IS_BROXTON(dev)) {
		rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
	} else {
		rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
		dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
		dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
		dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
	}

4606 4607 4608
	/* hw_max = RP0 until we check for overclocking */
	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;

4609
	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4610
	if (IS_HASWELL(dev) || IS_BROADWELL(dev) || IS_SKYLAKE(dev)) {
4611 4612 4613 4614 4615
		ret = sandybridge_pcode_read(dev_priv,
					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
					&ddcc_status);
		if (0 == ret)
			dev_priv->rps.efficient_freq =
4616 4617 4618 4619
				clamp_t(u8,
					((ddcc_status >> 8) & 0xff),
					dev_priv->rps.min_freq,
					dev_priv->rps.max_freq);
4620 4621
	}

4622 4623 4624 4625 4626 4627 4628 4629 4630 4631
	if (IS_SKYLAKE(dev)) {
		/* Store the frequency values in 16.66 MHZ units, which is
		   the natural hardware unit for SKL */
		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
		dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
	}

4632 4633
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

4634 4635 4636 4637
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

4638 4639 4640
	if (dev_priv->rps.min_freq_softlimit == 0) {
		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
			dev_priv->rps.min_freq_softlimit =
4641 4642
				max_t(int, dev_priv->rps.efficient_freq,
				      intel_freq_opcode(dev_priv, 450));
4643 4644 4645 4646
		else
			dev_priv->rps.min_freq_softlimit =
				dev_priv->rps.min_freq;
	}
4647 4648
}

J
Jesse Barnes 已提交
4649
/* See the Gen9_GT_PM_Programming_Guide doc for the below */
Z
Zhe Wang 已提交
4650
static void gen9_enable_rps(struct drm_device *dev)
J
Jesse Barnes 已提交
4651 4652 4653 4654 4655
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4656 4657
	gen6_init_rps_frequencies(dev);

4658
	/* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4659
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
4660 4661 4662 4663
		intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
		return;
	}

4664 4665 4666 4667 4668 4669 4670 4671
	/* Program defaults and thresholds for RPS*/
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));

	/* 1 second timeout*/
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
		GT_INTERVAL_FROM_US(dev_priv, 1000000));

J
Jesse Barnes 已提交
4672 4673
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);

4674 4675 4676 4677 4678
	/* Leaning on the below call to gen6_set_rps to program/setup the
	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
J
Jesse Barnes 已提交
4679 4680 4681 4682 4683

	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
}

static void gen9_enable_rc6(struct drm_device *dev)
Z
Zhe Wang 已提交
4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
	uint32_t rc6_mask = 0;
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4695
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4696 4697 4698 4699 4700

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	/* 2b: Program RC6 thresholds.*/
4701 4702 4703

	/* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
	if (IS_SKYLAKE(dev) && !((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) &&
4704
				 IS_SKL_REVID(dev, 0, SKL_REVID_E0)))
4705 4706 4707
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
	else
		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
Z
Zhe Wang 已提交
4708 4709 4710 4711
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4712 4713 4714 4715

	if (HAS_GUC_UCODE(dev))
		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);

Z
Zhe Wang 已提交
4716 4717
	I915_WRITE(GEN6_RC_SLEEP, 0);

4718 4719 4720 4721
	/* 2c: Program Coarse Power Gating Policies. */
	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);

Z
Zhe Wang 已提交
4722 4723 4724 4725 4726
	/* 3a: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
	DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
			"on" : "off");
4727
	/* WaRsUseTimeoutMode */
4728 4729
	if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
	    IS_BXT_REVID(dev, 0, BXT_REVID_A0)) {
4730
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
S
Sagar Arun Kamble 已提交
4731 4732 4733
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN7_RC_CTL_TO_MODE |
			   rc6_mask);
4734 4735
	} else {
		I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
S
Sagar Arun Kamble 已提交
4736 4737 4738
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
			   GEN6_RC_CTL_EI_MODE(1) |
			   rc6_mask);
4739
	}
Z
Zhe Wang 已提交
4740

4741 4742
	/*
	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
4743
	 * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
4744
	 */
4745 4746 4747
	if (IS_BXT_REVID(dev, 0, BXT_REVID_A1) ||
	    ((IS_SKL_GT3(dev) || IS_SKL_GT4(dev)) &&
	     IS_SKL_REVID(dev, 0, SKL_REVID_E0)))
4748 4749 4750 4751
		I915_WRITE(GEN9_PG_ENABLE, 0);
	else
		I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
				(GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
4752

4753
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
Z
Zhe Wang 已提交
4754 4755 4756

}

4757 4758 4759
static void gen8_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4760
	struct intel_engine_cs *ring;
4761
	uint32_t rc6_mask = 0;
4762 4763 4764 4765 4766 4767 4768
	int unused;

	/* 1a: Software RC state - RC0 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* 1c & 1d: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4769
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4770 4771 4772 4773

	/* 2a: Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

4774 4775
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
4776 4777 4778 4779 4780 4781 4782 4783

	/* 2b: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
	for_each_ring(ring, dev_priv, unused)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);
4784 4785 4786 4787
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4788 4789 4790 4791

	/* 3: Enable RC6 */
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4792
	intel_print_rc6_info(dev, rc6_mask);
4793 4794 4795 4796 4797 4798 4799 4800
	if (IS_BROADWELL(dev))
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN7_RC_CTL_TO_MODE |
				rc6_mask);
	else
		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
				GEN6_RC_CTL_EI_MODE(1) |
				rc6_mask);
4801 4802

	/* 4 Program defaults and thresholds for RPS*/
4803 4804 4805 4806
	I915_WRITE(GEN6_RPNSWREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
	I915_WRITE(GEN6_RC_VIDEO_FREQ,
		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820
	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */

	/* Docs recommend 900MHz, and 300 MHz respectively */
	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
		   dev_priv->rps.max_freq_softlimit << 24 |
		   dev_priv->rps.min_freq_softlimit << 16);

	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4821 4822

	/* 5: Enable RPS */
4823 4824 4825 4826 4827 4828 4829 4830 4831 4832
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

	/* 6: Ring frequency + overclocking (our driver does this later */

4833
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4834
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4835

4836
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4837 4838
}

4839
static void gen6_enable_rps(struct drm_device *dev)
4840
{
4841
	struct drm_i915_private *dev_priv = dev->dev_private;
4842
	struct intel_engine_cs *ring;
4843
	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4844 4845
	u32 gtfifodbg;
	int rc6_mode;
B
Ben Widawsky 已提交
4846
	int i, ret;
4847

4848
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4849

4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863
	/* Here begins a magic sequence of register writes to enable
	 * auto-downclocking.
	 *
	 * Perhaps there might be some value in exposing these to
	 * userspace...
	 */
	I915_WRITE(GEN6_RC_STATE, 0);

	/* Clear the DBG now so we don't confuse earlier errors */
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

4864
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4865

4866 4867
	/* Initialize rps frequencies */
	gen6_init_rps_frequencies(dev);
J
Jeff McGee 已提交
4868

4869 4870 4871 4872 4873 4874 4875 4876 4877
	/* disable the counters and set deterministic thresholds */
	I915_WRITE(GEN6_RC_CONTROL, 0);

	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

4878 4879
	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4880 4881 4882

	I915_WRITE(GEN6_RC_SLEEP, 0);
	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4883
	if (IS_IVYBRIDGE(dev))
4884 4885 4886
		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
	else
		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4887
	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4888 4889
	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */

4890
	/* Check if we are enabling RC6 */
4891 4892 4893 4894
	rc6_mode = intel_enable_rc6(dev_priv->dev);
	if (rc6_mode & INTEL_RC6_ENABLE)
		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;

4895 4896 4897 4898
	/* We don't use those on Haswell */
	if (!IS_HASWELL(dev)) {
		if (rc6_mode & INTEL_RC6p_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4899

4900 4901 4902
		if (rc6_mode & INTEL_RC6pp_ENABLE)
			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
	}
4903

B
Ben Widawsky 已提交
4904
	intel_print_rc6_info(dev, rc6_mask);
4905 4906 4907 4908 4909 4910

	I915_WRITE(GEN6_RC_CONTROL,
		   rc6_mask |
		   GEN6_RC_CTL_EI_MODE(1) |
		   GEN6_RC_CTL_HW_ENABLE);

4911 4912
	/* Power down if completely idle for over 50ms */
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4913 4914
	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

B
Ben Widawsky 已提交
4915
	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4916
	if (ret)
B
Ben Widawsky 已提交
4917
		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4918 4919 4920 4921

	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4922
				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4923
				 (pcu_mbox & 0xff) * 50);
4924
		dev_priv->rps.max_freq = pcu_mbox & 0xff;
4925 4926
	}

4927
	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4928
	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4929

4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943
	rc6vids = 0;
	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
	if (IS_GEN6(dev) && ret) {
		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
		rc6vids &= 0xffff00;
		rc6vids |= GEN6_ENCODE_RC6_VID(450);
		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
		if (ret)
			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
	}

4944
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4945 4946
}

4947
static void __gen6_update_ring_freq(struct drm_device *dev)
4948
{
4949
	struct drm_i915_private *dev_priv = dev->dev_private;
4950
	int min_freq = 15;
4951 4952
	unsigned int gpu_freq;
	unsigned int max_ia_freq, min_ring_freq;
4953
	unsigned int max_gpu_freq, min_gpu_freq;
4954
	int scaling_factor = 180;
4955
	struct cpufreq_policy *policy;
4956

4957
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4958

4959 4960 4961 4962 4963 4964 4965 4966 4967
	policy = cpufreq_cpu_get(0);
	if (policy) {
		max_ia_freq = policy->cpuinfo.max_freq;
		cpufreq_cpu_put(policy);
	} else {
		/*
		 * Default to measured freq if none found, PCU will ensure we
		 * don't go over
		 */
4968
		max_ia_freq = tsc_khz;
4969
	}
4970 4971 4972 4973

	/* Convert from kHz to MHz */
	max_ia_freq /= 1000;

4974
	min_ring_freq = I915_READ(DCLK) & 0xf;
4975 4976
	/* convert DDR frequency from units of 266.6MHz to bandwidth */
	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4977

4978 4979 4980 4981 4982 4983 4984 4985 4986
	if (IS_SKYLAKE(dev)) {
		/* Convert GT frequency to 50 HZ units */
		min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
		max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
	} else {
		min_gpu_freq = dev_priv->rps.min_freq;
		max_gpu_freq = dev_priv->rps.max_freq;
	}

4987 4988 4989 4990 4991
	/*
	 * For each potential GPU frequency, load a ring frequency we'd like
	 * to use for memory access.  We do this by specifying the IA frequency
	 * the PCU should use as a reference to determine the ring frequency.
	 */
4992 4993
	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
		int diff = max_gpu_freq - gpu_freq;
4994 4995
		unsigned int ia_freq = 0, ring_freq = 0;

4996 4997 4998 4999 5000 5001 5002
		if (IS_SKYLAKE(dev)) {
			/*
			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
			 * No floor required for ring frequency on SKL.
			 */
			ring_freq = gpu_freq;
		} else if (INTEL_INFO(dev)->gen >= 8) {
5003 5004 5005
			/* max(2 * GT, DDR). NB: GT is 50MHz units */
			ring_freq = max(min_ring_freq, gpu_freq);
		} else if (IS_HASWELL(dev)) {
5006
			ring_freq = mult_frac(gpu_freq, 5, 4);
5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022
			ring_freq = max(min_ring_freq, ring_freq);
			/* leave ia_freq as the default, chosen by cpufreq */
		} else {
			/* On older processors, there is no separate ring
			 * clock domain, so in order to boost the bandwidth
			 * of the ring, we need to upclock the CPU (ia_freq).
			 *
			 * For GPU frequencies less than 750MHz,
			 * just use the lowest ring freq.
			 */
			if (gpu_freq < min_freq)
				ia_freq = 800;
			else
				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
		}
5023

B
Ben Widawsky 已提交
5024 5025
		sandybridge_pcode_write(dev_priv,
					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5026 5027 5028
					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
					gpu_freq);
5029 5030 5031
	}
}

5032 5033 5034 5035
void gen6_update_ring_freq(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

5036
	if (!HAS_CORE_RING_FREQ(dev))
5037 5038 5039 5040 5041 5042 5043
		return;

	mutex_lock(&dev_priv->rps.hw_lock);
	__gen6_update_ring_freq(dev);
	mutex_unlock(&dev_priv->rps.hw_lock);
}

5044
static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5045
{
5046
	struct drm_device *dev = dev_priv->dev;
5047 5048
	u32 val, rp0;

5049
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5050

5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065
	switch (INTEL_INFO(dev)->eu_total) {
	case 8:
		/* (2 * 4) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
		break;
	case 12:
		/* (2 * 6) config */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
		break;
	case 16:
		/* (2 * 8) config */
	default:
		/* Setting (2 * 8) Min RP0 for any other combination */
		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
		break;
5066
	}
5067 5068 5069

	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);

5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082
	return rp0;
}

static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;

	return rpe;
}

5083 5084 5085 5086
static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

5087 5088 5089
	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);

5090 5091 5092
	return rp1;
}

5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103
static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rp1;

	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);

	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;

	return rp1;
}

5104
static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5105 5106 5107
{
	u32 val, rp0;

5108
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120

	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
	/* Clamp to max */
	rp0 = min_t(u32, rp0, 0xea);

	return rp0;
}

static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
{
	u32 val, rpe;

5121
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5122
	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5123
	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5124 5125 5126 5127 5128
	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;

	return rpe;
}

5129
static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5130
{
5131
	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5132 5133
}

5134 5135 5136 5137 5138 5139 5140 5141 5142
/* Check that the pctx buffer wasn't move under us. */
static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
			     dev_priv->vlv_pctx->stolen->start);
}

5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163

/* Check that the pcbr address is not empty. */
static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
{
	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;

	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
}

static void cherryview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	unsigned long pctx_paddr, paddr;
	struct i915_gtt *gtt = &dev_priv->gtt;
	u32 pcbr;
	int pctx_size = 32*1024;

	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

	pcbr = I915_READ(VLV_PCBR);
	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5164
		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5165 5166 5167 5168 5169 5170
		paddr = (dev_priv->mm.stolen_base +
			 (gtt->stolen_size - pctx_size));

		pctx_paddr = (paddr & (~4095));
		I915_WRITE(VLV_PCBR, pctx_paddr);
	}
5171 5172

	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5173 5174
}

5175 5176 5177 5178 5179 5180 5181 5182
static void valleyview_setup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *pctx;
	unsigned long pctx_paddr;
	u32 pcbr;
	int pctx_size = 24*1024;

5183 5184
	WARN_ON(!mutex_is_locked(&dev->struct_mutex));

5185 5186 5187 5188 5189 5190 5191 5192
	pcbr = I915_READ(VLV_PCBR);
	if (pcbr) {
		/* BIOS set it up already, grab the pre-alloc'd space */
		int pcbr_offset;

		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
								      pcbr_offset,
5193
								      I915_GTT_OFFSET_NONE,
5194 5195 5196 5197
								      pctx_size);
		goto out;
	}

5198 5199
	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");

5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217
	/*
	 * From the Gunit register HAS:
	 * The Gfx driver is expected to program this register and ensure
	 * proper allocation within Gfx stolen memory.  For example, this
	 * register should be programmed such than the PCBR range does not
	 * overlap with other ranges, such as the frame buffer, protected
	 * memory, or any other relevant ranges.
	 */
	pctx = i915_gem_object_create_stolen(dev, pctx_size);
	if (!pctx) {
		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
		return;
	}

	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
	I915_WRITE(VLV_PCBR, pctx_paddr);

out:
5218
	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5219 5220 5221
	dev_priv->vlv_pctx = pctx;
}

5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232
static void valleyview_cleanup_pctx(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (WARN_ON(!dev_priv->vlv_pctx))
		return;

	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
	dev_priv->vlv_pctx = NULL;
}

5233 5234 5235
static void valleyview_init_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5236
	u32 val;
5237 5238 5239 5240 5241

	valleyview_setup_pctx(dev);

	mutex_lock(&dev_priv->rps.hw_lock);

5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
	switch ((val >> 6) & 3) {
	case 0:
	case 1:
		dev_priv->mem_freq = 800;
		break;
	case 2:
		dev_priv->mem_freq = 1066;
		break;
	case 3:
		dev_priv->mem_freq = 1333;
		break;
	}
5255
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5256

5257 5258 5259
	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5260
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5261 5262 5263 5264
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5265
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5266 5267
			 dev_priv->rps.efficient_freq);

5268 5269
	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5270
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5271 5272
			 dev_priv->rps.rp1_freq);

5273 5274
	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5275
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5276 5277
			 dev_priv->rps.min_freq);

5278 5279
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5280 5281 5282 5283 5284 5285 5286 5287 5288 5289
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
}

5290 5291
static void cherryview_init_gt_powersave(struct drm_device *dev)
{
5292
	struct drm_i915_private *dev_priv = dev->dev_private;
5293
	u32 val;
5294

5295
	cherryview_setup_pctx(dev);
5296 5297 5298

	mutex_lock(&dev_priv->rps.hw_lock);

V
Ville Syrjälä 已提交
5299
	mutex_lock(&dev_priv->sb_lock);
5300
	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
V
Ville Syrjälä 已提交
5301
	mutex_unlock(&dev_priv->sb_lock);
5302

5303 5304 5305 5306
	switch ((val >> 2) & 0x7) {
	case 3:
		dev_priv->mem_freq = 2000;
		break;
5307
	default:
5308 5309 5310
		dev_priv->mem_freq = 1600;
		break;
	}
5311
	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5312

5313 5314 5315
	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5316
			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5317 5318 5319 5320
			 dev_priv->rps.max_freq);

	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5321
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5322 5323
			 dev_priv->rps.efficient_freq);

5324 5325
	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5326
			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5327 5328
			 dev_priv->rps.rp1_freq);

5329 5330
	/* PUnit validated range is only [RPe, RP0] */
	dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
5331
	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5332
			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5333 5334
			 dev_priv->rps.min_freq);

5335 5336 5337 5338 5339 5340
	WARN_ONCE((dev_priv->rps.max_freq |
		   dev_priv->rps.efficient_freq |
		   dev_priv->rps.rp1_freq |
		   dev_priv->rps.min_freq) & 1,
		  "Odd GPU freq values\n");

5341 5342
	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;

5343 5344 5345 5346 5347 5348 5349 5350
	/* Preserve min/max settings in case of re-init */
	if (dev_priv->rps.max_freq_softlimit == 0)
		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;

	if (dev_priv->rps.min_freq_softlimit == 0)
		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;

	mutex_unlock(&dev_priv->rps.hw_lock);
5351 5352
}

5353 5354 5355 5356 5357
static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
{
	valleyview_cleanup_pctx(dev);
}

5358 5359 5360 5361
static void cherryview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_engine_cs *ring;
5362
	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

	gtfifodbg = I915_READ(GTFIFODBG);
	if (gtfifodbg) {
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

	cherryview_check_pctx(dev_priv);

	/* 1a & 1b: Get forcewake during program sequence. Although the driver
	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5378
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5379

5380 5381 5382
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5383 5384 5385 5386 5387 5388 5389 5390 5391
	/* 2a: Program RC6 thresholds.*/
	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
	I915_WRITE(GEN6_RC_SLEEP, 0);

5392 5393
	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406

	/* allows RC6 residency counter to work */
	I915_WRITE(VLV_COUNTER_CONTROL,
		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));

	/* For now we assume BIOS is allocating and populating the PCBR  */
	pcbr = I915_READ(VLV_PCBR);

	/* 3: Enable RC6 */
	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
						(pcbr >> VLV_PCBR_ADDR_SHIFT))
5407
		rc6_mode = GEN7_RC_CTL_TO_MODE;
5408 5409 5410

	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);

5411
	/* 4 Program defaults and thresholds for RPS*/
5412
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5413 5414 5415 5416 5417 5418 5419 5420 5421 5422
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	/* 5: Enable RPS */
	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5423
		   GEN6_RP_MEDIA_IS_GFX |
5424 5425 5426 5427
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_AVG);

D
Deepak S 已提交
5428 5429 5430 5431 5432 5433
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  CHV_BIAS_CPU_50_SOC_50;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5434 5435
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);

5436 5437 5438
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5439
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5440 5441 5442 5443
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5444
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5445 5446 5447
			 dev_priv->rps.cur_freq);

	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5448
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5449 5450 5451 5452
			 dev_priv->rps.efficient_freq);

	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);

5453
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5454 5455
}

5456 5457 5458
static void valleyview_enable_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
5459
	struct intel_engine_cs *ring;
5460
	u32 gtfifodbg, val, rc6_mode = 0;
5461 5462 5463 5464
	int i;

	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));

5465 5466
	valleyview_check_pctx(dev_priv);

5467
	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5468 5469
		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
				 gtfifodbg);
5470 5471 5472
		I915_WRITE(GTFIFODBG, gtfifodbg);
	}

5473
	/* If VLV, Forcewake all wells, else re-direct to regular path */
5474
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5475

5476 5477 5478
	/*  Disable RC states. */
	I915_WRITE(GEN6_RC_CONTROL, 0);

5479
	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501
	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
	I915_WRITE(GEN6_RP_UP_EI, 66000);
	I915_WRITE(GEN6_RP_DOWN_EI, 350000);

	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);

	I915_WRITE(GEN6_RP_CONTROL,
		   GEN6_RP_MEDIA_TURBO |
		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
		   GEN6_RP_MEDIA_IS_GFX |
		   GEN6_RP_ENABLE |
		   GEN6_RP_UP_BUSY_AVG |
		   GEN6_RP_DOWN_IDLE_CONT);

	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);

	for_each_ring(ring, dev_priv, i)
		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);

5502
	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5503 5504

	/* allows RC6 residency counter to work */
5505
	I915_WRITE(VLV_COUNTER_CONTROL,
5506 5507
		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
				      VLV_RENDER_RC0_COUNT_EN |
5508 5509
				      VLV_MEDIA_RC6_COUNT_EN |
				      VLV_RENDER_RC6_COUNT_EN));
5510

5511
	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5512
		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
B
Ben Widawsky 已提交
5513 5514 5515

	intel_print_rc6_info(dev, rc6_mode);

5516
	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5517

D
Deepak S 已提交
5518 5519 5520 5521 5522 5523
	/* Setting Fixed Bias */
	val = VLV_OVERRIDE_EN |
		  VLV_SOC_TDP_EN |
		  VLV_BIAS_CPU_125_SOC_875;
	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);

5524
	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5525

5526 5527 5528
	/* RPS code assumes GPLL is used */
	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");

5529
	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
5530 5531
	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);

5532
	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5533
	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5534
			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5535
			 dev_priv->rps.cur_freq);
5536

5537
	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5538
			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5539
			 dev_priv->rps.efficient_freq);
5540

5541
	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5542

5543
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5544 5545
}

5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560
static unsigned long intel_pxfreq(u32 vidfreq)
{
	unsigned long freq;
	int div = (vidfreq & 0x3f0000) >> 16;
	int post = (vidfreq & 0x3000) >> 12;
	int pre = (vidfreq & 0x7);

	if (!pre)
		return 0;

	freq = ((div * 133333) / ((1<<post) * pre));

	return freq;
}

5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574
static const struct cparams {
	u16 i;
	u16 t;
	u16 m;
	u16 c;
} cparams[] = {
	{ 1, 1333, 301, 28664 },
	{ 1, 1066, 294, 24460 },
	{ 1, 800, 294, 25192 },
	{ 0, 1333, 276, 27605 },
	{ 0, 1066, 276, 27605 },
	{ 0, 800, 231, 23784 },
};

5575
static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5576 5577 5578 5579 5580 5581
{
	u64 total_count, diff, ret;
	u32 count1, count2, count3, m = 0, c = 0;
	unsigned long now = jiffies_to_msecs(jiffies), diff1;
	int i;

5582 5583
	assert_spin_locked(&mchdev_lock);

5584
	diff1 = now - dev_priv->ips.last_time1;
5585 5586 5587 5588 5589 5590 5591

	/* Prevent division-by-zero if we are asking too fast.
	 * Also, we don't get interesting results if we are polling
	 * faster than once in 10ms, so just return the saved value
	 * in such cases.
	 */
	if (diff1 <= 10)
5592
		return dev_priv->ips.chipset_power;
5593 5594 5595 5596 5597 5598 5599 5600

	count1 = I915_READ(DMIEC);
	count2 = I915_READ(DDREC);
	count3 = I915_READ(CSIEC);

	total_count = count1 + count2 + count3;

	/* FIXME: handle per-counter overflow */
5601 5602
	if (total_count < dev_priv->ips.last_count1) {
		diff = ~0UL - dev_priv->ips.last_count1;
5603 5604
		diff += total_count;
	} else {
5605
		diff = total_count - dev_priv->ips.last_count1;
5606 5607 5608
	}

	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5609 5610
		if (cparams[i].i == dev_priv->ips.c_m &&
		    cparams[i].t == dev_priv->ips.r_t) {
5611 5612 5613 5614 5615 5616 5617 5618 5619 5620
			m = cparams[i].m;
			c = cparams[i].c;
			break;
		}
	}

	diff = div_u64(diff, diff1);
	ret = ((m * diff) + c);
	ret = div_u64(ret, 10);

5621 5622
	dev_priv->ips.last_count1 = total_count;
	dev_priv->ips.last_time1 = now;
5623

5624
	dev_priv->ips.chipset_power = ret;
5625 5626 5627 5628

	return ret;
}

5629 5630
unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
{
5631
	struct drm_device *dev = dev_priv->dev;
5632 5633
	unsigned long val;

5634
	if (INTEL_INFO(dev)->gen != 5)
5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_chipset_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660
unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
{
	unsigned long m, x, b;
	u32 tsfs;

	tsfs = I915_READ(TSFS);

	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
	x = I915_READ8(TR1);

	b = tsfs & TSFS_INTR_MASK;

	return ((m * x) / 127) - b;
}

5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672
static int _pxvid_to_vd(u8 pxvid)
{
	if (pxvid == 0)
		return 0;

	if (pxvid >= 8 && pxvid < 31)
		pxvid = 31;

	return (pxvid + 2) * 125;
}

static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5673
{
5674
	struct drm_device *dev = dev_priv->dev;
5675 5676 5677
	const int vd = _pxvid_to_vd(pxvid);
	const int vm = vd - 1125;

5678
	if (INTEL_INFO(dev)->is_mobile)
5679 5680 5681
		return vm > 0 ? vm : 0;

	return vd;
5682 5683
}

5684
static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5685
{
5686
	u64 now, diff, diffms;
5687 5688
	u32 count;

5689
	assert_spin_locked(&mchdev_lock);
5690

5691 5692 5693
	now = ktime_get_raw_ns();
	diffms = now - dev_priv->ips.last_time2;
	do_div(diffms, NSEC_PER_MSEC);
5694 5695 5696 5697 5698 5699 5700

	/* Don't divide by 0 */
	if (!diffms)
		return;

	count = I915_READ(GFXEC);

5701 5702
	if (count < dev_priv->ips.last_count2) {
		diff = ~0UL - dev_priv->ips.last_count2;
5703 5704
		diff += count;
	} else {
5705
		diff = count - dev_priv->ips.last_count2;
5706 5707
	}

5708 5709
	dev_priv->ips.last_count2 = count;
	dev_priv->ips.last_time2 = now;
5710 5711 5712 5713

	/* More magic constants... */
	diff = diff * 1181;
	diff = div_u64(diff, diffms * 10);
5714
	dev_priv->ips.gfx_power = diff;
5715 5716
}

5717 5718
void i915_update_gfx_val(struct drm_i915_private *dev_priv)
{
5719 5720 5721
	struct drm_device *dev = dev_priv->dev;

	if (INTEL_INFO(dev)->gen != 5)
5722 5723
		return;

5724
	spin_lock_irq(&mchdev_lock);
5725 5726 5727

	__i915_update_gfx_val(dev_priv);

5728
	spin_unlock_irq(&mchdev_lock);
5729 5730
}

5731
static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5732 5733 5734 5735
{
	unsigned long t, corr, state1, corr2, state2;
	u32 pxvid, ext_v;

5736 5737
	assert_spin_locked(&mchdev_lock);

5738
	pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757
	pxvid = (pxvid >> 24) & 0x7f;
	ext_v = pvid_to_extvid(dev_priv, pxvid);

	state1 = ext_v;

	t = i915_mch_val(dev_priv);

	/* Revel in the empirically derived constants */

	/* Correction factor in 1/100000 units */
	if (t > 80)
		corr = ((t * 2349) + 135940);
	else if (t >= 50)
		corr = ((t * 964) + 29317);
	else /* < 50 */
		corr = ((t * 301) + 1004);

	corr = corr * ((150142 * state1) / 10000 - 78642);
	corr /= 100000;
5758
	corr2 = (corr * dev_priv->ips.corr);
5759 5760 5761 5762

	state2 = (corr2 * state1) / 10000;
	state2 /= 100; /* convert to mW */

5763
	__i915_update_gfx_val(dev_priv);
5764

5765
	return dev_priv->ips.gfx_power + state2;
5766 5767
}

5768 5769
unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
{
5770
	struct drm_device *dev = dev_priv->dev;
5771 5772
	unsigned long val;

5773
	if (INTEL_INFO(dev)->gen != 5)
5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784
		return 0;

	spin_lock_irq(&mchdev_lock);

	val = __i915_gfx_val(dev_priv);

	spin_unlock_irq(&mchdev_lock);

	return val;
}

5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795
/**
 * i915_read_mch_val - return value for IPS use
 *
 * Calculate and return a value for the IPS driver to use when deciding whether
 * we have thermal and power headroom to increase CPU or GPU power budget.
 */
unsigned long i915_read_mch_val(void)
{
	struct drm_i915_private *dev_priv;
	unsigned long chipset_val, graphics_val, ret = 0;

5796
	spin_lock_irq(&mchdev_lock);
5797 5798 5799 5800
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5801 5802
	chipset_val = __i915_chipset_val(dev_priv);
	graphics_val = __i915_gfx_val(dev_priv);
5803 5804 5805 5806

	ret = chipset_val + graphics_val;

out_unlock:
5807
	spin_unlock_irq(&mchdev_lock);
5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822

	return ret;
}
EXPORT_SYMBOL_GPL(i915_read_mch_val);

/**
 * i915_gpu_raise - raise GPU frequency limit
 *
 * Raise the limit; IPS indicates we have thermal headroom.
 */
bool i915_gpu_raise(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5823
	spin_lock_irq(&mchdev_lock);
5824 5825 5826 5827 5828 5829
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5830 5831
	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
		dev_priv->ips.max_delay--;
5832 5833

out_unlock:
5834
	spin_unlock_irq(&mchdev_lock);
5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_raise);

/**
 * i915_gpu_lower - lower GPU frequency limit
 *
 * IPS indicates we're close to a thermal limit, so throttle back the GPU
 * frequency maximum.
 */
bool i915_gpu_lower(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5851
	spin_lock_irq(&mchdev_lock);
5852 5853 5854 5855 5856 5857
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5858 5859
	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
		dev_priv->ips.max_delay++;
5860 5861

out_unlock:
5862
	spin_unlock_irq(&mchdev_lock);
5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_lower);

/**
 * i915_gpu_busy - indicate GPU business to IPS
 *
 * Tell the IPS driver whether or not the GPU is busy.
 */
bool i915_gpu_busy(void)
{
	struct drm_i915_private *dev_priv;
5876
	struct intel_engine_cs *ring;
5877
	bool ret = false;
5878
	int i;
5879

5880
	spin_lock_irq(&mchdev_lock);
5881 5882 5883 5884
	if (!i915_mch_dev)
		goto out_unlock;
	dev_priv = i915_mch_dev;

5885 5886
	for_each_ring(ring, dev_priv, i)
		ret |= !list_empty(&ring->request_list);
5887 5888

out_unlock:
5889
	spin_unlock_irq(&mchdev_lock);
5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_busy);

/**
 * i915_gpu_turbo_disable - disable graphics turbo
 *
 * Disable graphics turbo by resetting the max frequency and setting the
 * current frequency to the default.
 */
bool i915_gpu_turbo_disable(void)
{
	struct drm_i915_private *dev_priv;
	bool ret = true;

5906
	spin_lock_irq(&mchdev_lock);
5907 5908 5909 5910 5911 5912
	if (!i915_mch_dev) {
		ret = false;
		goto out_unlock;
	}
	dev_priv = i915_mch_dev;

5913
	dev_priv->ips.max_delay = dev_priv->ips.fstart;
5914

5915
	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5916 5917 5918
		ret = false;

out_unlock:
5919
	spin_unlock_irq(&mchdev_lock);
5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946

	return ret;
}
EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);

/**
 * Tells the intel_ips driver that the i915 driver is now loaded, if
 * IPS got loaded first.
 *
 * This awkward dance is so that neither module has to depend on the
 * other in order for IPS to do the appropriate communication of
 * GPU turbo limits to i915.
 */
static void
ips_ping_for_i915_load(void)
{
	void (*link)(void);

	link = symbol_get(ips_link_to_i915_driver);
	if (link) {
		link();
		symbol_put(ips_link_to_i915_driver);
	}
}

void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
{
5947 5948
	/* We only register the i915 ips part with intel-ips once everything is
	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
5949
	spin_lock_irq(&mchdev_lock);
5950
	i915_mch_dev = dev_priv;
5951
	spin_unlock_irq(&mchdev_lock);
5952 5953 5954 5955 5956 5957

	ips_ping_for_i915_load();
}

void intel_gpu_ips_teardown(void)
{
5958
	spin_lock_irq(&mchdev_lock);
5959
	i915_mch_dev = NULL;
5960
	spin_unlock_irq(&mchdev_lock);
5961
}
5962

5963
static void intel_init_emon(struct drm_device *dev)
5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 lcfuse;
	u8 pxw[16];
	int i;

	/* Disable to program */
	I915_WRITE(ECR, 0);
	POSTING_READ(ECR);

	/* Program energy weights for various events */
	I915_WRITE(SDEW, 0x15040d00);
	I915_WRITE(CSIEW0, 0x007f0000);
	I915_WRITE(CSIEW1, 0x1e220004);
	I915_WRITE(CSIEW2, 0x04000004);

	for (i = 0; i < 5; i++)
5981
		I915_WRITE(PEW(i), 0);
5982
	for (i = 0; i < 3; i++)
5983
		I915_WRITE(DEW(i), 0);
5984 5985 5986

	/* Program P-state weights to account for frequency power adjustment */
	for (i = 0; i < 16; i++) {
5987
		u32 pxvidfreq = I915_READ(PXVFREQ(i));
5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007
		unsigned long freq = intel_pxfreq(pxvidfreq);
		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
			PXVFREQ_PX_SHIFT;
		unsigned long val;

		val = vid * vid;
		val *= (freq / 1000);
		val *= 255;
		val /= (127*127*900);
		if (val > 0xff)
			DRM_ERROR("bad pxval: %ld\n", val);
		pxw[i] = val;
	}
	/* Render standby states get 0 weight */
	pxw[14] = 0;
	pxw[15] = 0;

	for (i = 0; i < 4; i++) {
		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6008
		I915_WRITE(PXW(i), val);
6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023
	}

	/* Adjust magic regs to magic values (more experimental results) */
	I915_WRITE(OGW0, 0);
	I915_WRITE(OGW1, 0);
	I915_WRITE(EG0, 0x00007f00);
	I915_WRITE(EG1, 0x0000000e);
	I915_WRITE(EG2, 0x000e0000);
	I915_WRITE(EG3, 0x68000300);
	I915_WRITE(EG4, 0x42000000);
	I915_WRITE(EG5, 0x00140031);
	I915_WRITE(EG6, 0);
	I915_WRITE(EG7, 0);

	for (i = 0; i < 8; i++)
6024
		I915_WRITE(PXWL(i), 0);
6025 6026 6027 6028 6029 6030

	/* Enable PMON + select events */
	I915_WRITE(ECR, 0x80000019);

	lcfuse = I915_READ(LCFUSE02);

6031
	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6032 6033
}

6034 6035
void intel_init_gt_powersave(struct drm_device *dev)
{
I
Imre Deak 已提交
6036 6037
	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);

6038 6039 6040
	if (IS_CHERRYVIEW(dev))
		cherryview_init_gt_powersave(dev);
	else if (IS_VALLEYVIEW(dev))
6041
		valleyview_init_gt_powersave(dev);
6042 6043 6044 6045
}

void intel_cleanup_gt_powersave(struct drm_device *dev)
{
6046 6047 6048
	if (IS_CHERRYVIEW(dev))
		return;
	else if (IS_VALLEYVIEW(dev))
6049
		valleyview_cleanup_gt_powersave(dev);
6050 6051
}

6052 6053 6054 6055 6056 6057
static void gen6_suspend_rps(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	flush_delayed_work(&dev_priv->rps.delayed_resume_work);

6058
	gen6_disable_rps_interrupts(dev);
6059 6060
}

6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072
/**
 * intel_suspend_gt_powersave - suspend PM work and helper threads
 * @dev: drm device
 *
 * We don't want to disable RC6 or other features here, we just want
 * to make sure any work we've queued has finished and won't bother
 * us while we're suspended.
 */
void intel_suspend_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

I
Imre Deak 已提交
6073 6074 6075
	if (INTEL_INFO(dev)->gen < 6)
		return;

6076
	gen6_suspend_rps(dev);
6077 6078 6079

	/* Force GPU to min freq during suspend */
	gen6_rps_idle(dev_priv);
6080 6081
}

6082 6083
void intel_disable_gt_powersave(struct drm_device *dev)
{
6084 6085
	struct drm_i915_private *dev_priv = dev->dev_private;

6086
	if (IS_IRONLAKE_M(dev)) {
6087
		ironlake_disable_drps(dev);
6088
	} else if (INTEL_INFO(dev)->gen >= 6) {
6089
		intel_suspend_gt_powersave(dev);
6090

6091
		mutex_lock(&dev_priv->rps.hw_lock);
Z
Zhe Wang 已提交
6092 6093 6094
		if (INTEL_INFO(dev)->gen >= 9)
			gen9_disable_rps(dev);
		else if (IS_CHERRYVIEW(dev))
6095 6096
			cherryview_disable_rps(dev);
		else if (IS_VALLEYVIEW(dev))
6097 6098 6099
			valleyview_disable_rps(dev);
		else
			gen6_disable_rps(dev);
6100

6101
		dev_priv->rps.enabled = false;
6102
		mutex_unlock(&dev_priv->rps.hw_lock);
6103
	}
6104 6105
}

6106 6107 6108 6109 6110 6111 6112
static void intel_gen6_powersave_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, struct drm_i915_private,
			     rps.delayed_resume_work.work);
	struct drm_device *dev = dev_priv->dev;

6113
	mutex_lock(&dev_priv->rps.hw_lock);
6114

6115
	gen6_reset_rps_interrupts(dev);
I
Imre Deak 已提交
6116

6117 6118 6119
	if (IS_CHERRYVIEW(dev)) {
		cherryview_enable_rps(dev);
	} else if (IS_VALLEYVIEW(dev)) {
6120
		valleyview_enable_rps(dev);
Z
Zhe Wang 已提交
6121
	} else if (INTEL_INFO(dev)->gen >= 9) {
J
Jesse Barnes 已提交
6122
		gen9_enable_rc6(dev);
Z
Zhe Wang 已提交
6123
		gen9_enable_rps(dev);
6124 6125
		if (IS_SKYLAKE(dev))
			__gen6_update_ring_freq(dev);
6126 6127
	} else if (IS_BROADWELL(dev)) {
		gen8_enable_rps(dev);
6128
		__gen6_update_ring_freq(dev);
6129 6130
	} else {
		gen6_enable_rps(dev);
6131
		__gen6_update_ring_freq(dev);
6132
	}
6133 6134 6135 6136 6137 6138 6139

	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);

	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);

6140
	dev_priv->rps.enabled = true;
I
Imre Deak 已提交
6141

6142
	gen6_enable_rps_interrupts(dev);
I
Imre Deak 已提交
6143

6144
	mutex_unlock(&dev_priv->rps.hw_lock);
6145 6146

	intel_runtime_pm_put(dev_priv);
6147 6148
}

6149 6150
void intel_enable_gt_powersave(struct drm_device *dev)
{
6151 6152
	struct drm_i915_private *dev_priv = dev->dev_private;

6153 6154 6155 6156
	/* Powersaving is controlled by the host when inside a VM */
	if (intel_vgpu_active(dev))
		return;

6157
	if (IS_IRONLAKE_M(dev)) {
6158
		mutex_lock(&dev->struct_mutex);
6159 6160
		ironlake_enable_drps(dev);
		intel_init_emon(dev);
6161
		mutex_unlock(&dev->struct_mutex);
6162
	} else if (INTEL_INFO(dev)->gen >= 6) {
6163 6164 6165 6166
		/*
		 * PCU communication is slow and this doesn't need to be
		 * done at any specific time, so do this out of our fast path
		 * to make resume and init faster.
6167 6168 6169 6170 6171 6172 6173
		 *
		 * We depend on the HW RC6 power context save/restore
		 * mechanism when entering D3 through runtime PM suspend. So
		 * disable RPM until RPS/RC6 is properly setup. We can only
		 * get here via the driver load/system resume/runtime resume
		 * paths, so the _noresume version is enough (and in case of
		 * runtime resume it's necessary).
6174
		 */
6175 6176 6177
		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
					   round_jiffies_up_relative(HZ)))
			intel_runtime_pm_get_noresume(dev_priv);
6178 6179 6180
	}
}

6181 6182 6183 6184
void intel_reset_gt_powersave(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6185 6186 6187 6188
	if (INTEL_INFO(dev)->gen < 6)
		return;

	gen6_suspend_rps(dev);
6189 6190 6191
	dev_priv->rps.enabled = false;
}

6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203
static void ibx_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}

6204 6205 6206
static void g4x_disable_trickle_feed(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6207
	enum pipe pipe;
6208

6209
	for_each_pipe(dev_priv, pipe) {
6210 6211 6212
		I915_WRITE(DSPCNTR(pipe),
			   I915_READ(DSPCNTR(pipe)) |
			   DISPPLANE_TRICKLE_FEED_DISABLE);
6213 6214 6215

		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
		POSTING_READ(DSPSURF(pipe));
6216 6217 6218
	}
}

6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232
static void ilk_init_lp_watermarks(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);

	/*
	 * Don't touch WM1S_LP_EN here.
	 * Doing so could cause underruns.
	 */
}

6233
static void ironlake_init_clock_gating(struct drm_device *dev)
6234 6235
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6236
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6237

6238 6239 6240 6241
	/*
	 * Required for FBC
	 * WaFbcDisableDpfcClockGating:ilk
	 */
6242 6243 6244
	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261

	I915_WRITE(PCH_3DCGDIS0,
		   MARIUNIT_CLOCK_GATE_DISABLE |
		   SVSMUNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(PCH_3DCGDIS1,
		   VFMUNIT_CLOCK_GATE_DISABLE);

	/*
	 * According to the spec the following bits should be set in
	 * order to enable memory self-refresh
	 * The bit 22/21 of 0x42004
	 * The bit 5 of 0x42020
	 * The bit 15 of 0x45000
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6262
	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6263 6264 6265
	I915_WRITE(DISP_ARB_CTL,
		   (I915_READ(DISP_ARB_CTL) |
		    DISP_FBC_WM_DIS));
6266 6267

	ilk_init_lp_watermarks(dev);
6268 6269 6270 6271 6272 6273 6274 6275 6276

	/*
	 * Based on the document from hardware guys the following bits
	 * should be set unconditionally in order to enable FBC.
	 * The bit 22 of 0x42000
	 * The bit 22 of 0x42004
	 * The bit 7,8,9 of 0x42020.
	 */
	if (IS_IRONLAKE_M(dev)) {
6277
		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
6278 6279 6280 6281 6282 6283 6284 6285
		I915_WRITE(ILK_DISPLAY_CHICKEN1,
			   I915_READ(ILK_DISPLAY_CHICKEN1) |
			   ILK_FBCQ_DIS);
		I915_WRITE(ILK_DISPLAY_CHICKEN2,
			   I915_READ(ILK_DISPLAY_CHICKEN2) |
			   ILK_DPARB_GATE);
	}

6286 6287
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);

6288 6289 6290 6291 6292 6293
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);
	I915_WRITE(_3D_CHICKEN2,
		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
		   _3D_CHICKEN2_WM_READ_PIPELINED);
6294

6295
	/* WaDisableRenderCachePipelinedFlush:ilk */
6296 6297
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6298

6299 6300 6301
	/* WaDisable_RenderCache_OperationalFlush:ilk */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6302
	g4x_disable_trickle_feed(dev);
6303

6304 6305 6306 6307 6308 6309 6310
	ibx_init_clock_gating(dev);
}

static void cpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int pipe;
6311
	uint32_t val;
6312 6313 6314 6315 6316 6317

	/*
	 * On Ibex Peak and Cougar Point, we need to disable clock
	 * gating for the panel power sequencer or it will fail to
	 * start up when no ports are active.
	 */
6318 6319 6320
	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
6321 6322
	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
		   DPLS_EDP_PPS_FIX_DIS);
6323 6324 6325
	/* The below fixes the weird display corruption, a few pixels shifted
	 * downward, on (only) LVDS of some HP laptops with IVY.
	 */
6326
	for_each_pipe(dev_priv, pipe) {
6327 6328 6329
		val = I915_READ(TRANS_CHICKEN2(pipe));
		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6330
		if (dev_priv->vbt.fdi_rx_polarity_inverted)
6331
			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
6332 6333 6334
		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
6335 6336
		I915_WRITE(TRANS_CHICKEN2(pipe), val);
	}
6337
	/* WADP0ClockGatingDisable */
6338
	for_each_pipe(dev_priv, pipe) {
6339 6340 6341
		I915_WRITE(TRANS_CHICKEN1(pipe),
			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
	}
6342 6343
}

6344 6345 6346 6347 6348 6349
static void gen6_check_mch_setup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t tmp;

	tmp = I915_READ(MCH_SSKPD);
6350 6351 6352
	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
			      tmp);
6353 6354
}

6355
static void gen6_init_clock_gating(struct drm_device *dev)
6356 6357
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6358
	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6359

6360
	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6361 6362 6363 6364 6365

	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_ELPIN_409_SELECT);

6366
	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
6367 6368 6369
	I915_WRITE(_3D_CHICKEN,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));

6370 6371 6372
	/* WaDisable_RenderCache_OperationalFlush:snb */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6373 6374 6375
	/*
	 * BSpec recoomends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6376 6377 6378 6379
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6380 6381
	 */
	I915_WRITE(GEN6_GT_MODE,
6382
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6383

6384
	ilk_init_lp_watermarks(dev);
6385 6386

	I915_WRITE(CACHE_MODE_0,
6387
		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402

	I915_WRITE(GEN6_UCGCTL1,
		   I915_READ(GEN6_UCGCTL1) |
		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);

	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
	 * gating disable must be set.  Failure to set it results in
	 * flickering pixels due to Z write ordering failures after
	 * some amount of runtime in the Mesa "fire" demo, and Unigine
	 * Sanctuary and Tropics, and apparently anything else with
	 * alpha test or pixel discard.
	 *
	 * According to the spec, bit 11 (RCCUNIT) must also be set,
	 * but we didn't debug actual testcases to find it out.
6403
	 *
6404 6405
	 * WaDisableRCCUnitClockGating:snb
	 * WaDisableRCPBUnitClockGating:snb
6406 6407 6408 6409 6410
	 */
	I915_WRITE(GEN6_UCGCTL2,
		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);

6411
	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6412 6413
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6414

6415 6416 6417 6418 6419 6420 6421 6422
	/*
	 * Bspec says:
	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
	 * 3DSTATE_SF number of SF output attributes is more than 16."
	 */
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));

6423 6424 6425 6426 6427 6428 6429 6430
	/*
	 * According to the spec the following bits should be
	 * set in order to enable memory self-refresh and fbc:
	 * The bit21 and bit22 of 0x42000
	 * The bit21 and bit22 of 0x42004
	 * The bit5 and bit7 of 0x42020
	 * The bit14 of 0x70180
	 * The bit14 of 0x71180
6431 6432
	 *
	 * WaFbcAsynchFlipDisableFbcQueue:snb
6433 6434 6435 6436 6437 6438 6439
	 */
	I915_WRITE(ILK_DISPLAY_CHICKEN1,
		   I915_READ(ILK_DISPLAY_CHICKEN1) |
		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
	I915_WRITE(ILK_DISPLAY_CHICKEN2,
		   I915_READ(ILK_DISPLAY_CHICKEN2) |
		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6440 6441 6442 6443
	I915_WRITE(ILK_DSPCLK_GATE_D,
		   I915_READ(ILK_DSPCLK_GATE_D) |
		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6444

6445
	g4x_disable_trickle_feed(dev);
B
Ben Widawsky 已提交
6446

6447
	cpt_init_clock_gating(dev);
6448 6449

	gen6_check_mch_setup(dev);
6450 6451 6452 6453 6454 6455
}

static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
{
	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);

6456
	/*
6457
	 * WaVSThreadDispatchOverride:ivb,vlv
6458 6459 6460 6461
	 *
	 * This actually overrides the dispatch
	 * mode for all thread types.
	 */
6462 6463 6464 6465 6466 6467 6468 6469
	reg &= ~GEN7_FF_SCHED_MASK;
	reg |= GEN7_FF_TS_SCHED_HW;
	reg |= GEN7_FF_VS_SCHED_HW;
	reg |= GEN7_FF_DS_SCHED_HW;

	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
}

6470 6471 6472 6473 6474 6475 6476 6477
static void lpt_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	/*
	 * TODO: this bit should only be enabled when really needed, then
	 * disabled when not needed anymore in order to save power.
	 */
6478
	if (HAS_PCH_LPT_LP(dev))
6479 6480 6481
		I915_WRITE(SOUTH_DSPCLK_GATE_D,
			   I915_READ(SOUTH_DSPCLK_GATE_D) |
			   PCH_LP_PARTITION_LEVEL_DISABLE);
6482 6483

	/* WADPOClockGatingDisable:hsw */
6484 6485
	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
6486
		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6487 6488
}

6489 6490 6491 6492
static void lpt_suspend_hw(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6493
	if (HAS_PCH_LPT_LP(dev)) {
6494 6495 6496 6497 6498 6499 6500
		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);

		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
	}
}

6501
static void broadwell_init_clock_gating(struct drm_device *dev)
B
Ben Widawsky 已提交
6502 6503
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6504
	enum pipe pipe;
6505
	uint32_t misccpctl;
B
Ben Widawsky 已提交
6506

6507
	ilk_init_lp_watermarks(dev);
6508

6509
	/* WaSwitchSolVfFArbitrationPriority:bdw */
6510
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6511

6512
	/* WaPsrDPAMaskVBlankInSRD:bdw */
6513 6514 6515
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);

6516
	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6517
	for_each_pipe(dev_priv, pipe) {
6518
		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6519
			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6520
			   BDW_DPRS_MASK_VBLANK_SRD);
6521
	}
6522

6523 6524 6525 6526 6527
	/* WaVSRefCountFullforceMissDisable:bdw */
	/* WaDSRefCountFullforceMissDisable:bdw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6528

6529 6530
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6531 6532 6533 6534

	/* WaDisableSDEUnitClockGating:bdw */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6535

6536 6537 6538 6539 6540 6541 6542 6543 6544
	/*
	 * WaProgramL3SqcReg1Default:bdw
	 * WaTempDisableDOPClkGating:bdw
	 */
	misccpctl = I915_READ(GEN7_MISCCPCTL);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
	I915_WRITE(GEN8_L3SQCREG1, BDW_WA_L3SQCREG1_DEFAULT);
	I915_WRITE(GEN7_MISCCPCTL, misccpctl);

6545 6546 6547 6548 6549 6550 6551
	/*
	 * WaGttCachingOffByDefault:bdw
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);

6552
	lpt_init_clock_gating(dev);
B
Ben Widawsky 已提交
6553 6554
}

6555 6556 6557 6558
static void haswell_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6559
	ilk_init_lp_watermarks(dev);
6560

6561 6562 6563 6564 6565
	/* L3 caching of data atomics doesn't work -- disable it. */
	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
	I915_WRITE(HSW_ROW_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));

6566
	/* This is required by WaCatErrorRejectionIssue:hsw */
6567 6568 6569 6570
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6571 6572 6573
	/* WaVSRefCountFullforceMissDisable:hsw */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6574

6575 6576 6577
	/* WaDisable_RenderCache_OperationalFlush:hsw */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6578 6579 6580 6581
	/* enable HiZ Raw Stall Optimization */
	I915_WRITE(CACHE_MODE_0_GEN7,
		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));

6582
	/* WaDisable4x2SubspanOptimization:hsw */
6583 6584
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6585

6586 6587 6588
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6589 6590 6591 6592
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6593 6594
	 */
	I915_WRITE(GEN7_GT_MODE,
6595
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6596

6597 6598 6599 6600
	/* WaSampleCChickenBitEnable:hsw */
	I915_WRITE(HALF_SLICE_CHICKEN3,
		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));

6601
	/* WaSwitchSolVfFArbitrationPriority:hsw */
6602 6603
	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);

6604 6605 6606
	/* WaRsPkgCStateDisplayPMReq:hsw */
	I915_WRITE(CHICKEN_PAR1_1,
		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6607

6608
	lpt_init_clock_gating(dev);
6609 6610
}

6611
static void ivybridge_init_clock_gating(struct drm_device *dev)
6612 6613
{
	struct drm_i915_private *dev_priv = dev->dev_private;
6614
	uint32_t snpcr;
6615

6616
	ilk_init_lp_watermarks(dev);
6617

6618
	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6619

6620
	/* WaDisableEarlyCull:ivb */
6621 6622 6623
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6624
	/* WaDisableBackToBackFlipFix:ivb */
6625 6626 6627 6628
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6629
	/* WaDisablePSDDualDispatchEnable:ivb */
6630 6631 6632 6633
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));

6634 6635 6636
	/* WaDisable_RenderCache_OperationalFlush:ivb */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6637
	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6638 6639 6640
	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);

6641
	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6642 6643 6644
	I915_WRITE(GEN7_L3CNTLREG1,
			GEN7_WA_FOR_GEN7_L3_CONTROL);
	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6645 6646 6647 6648
		   GEN7_WA_L3_CHICKEN_MODE);
	if (IS_IVB_GT1(dev))
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6649 6650 6651 6652
	else {
		/* must write both registers */
		I915_WRITE(GEN7_ROW_CHICKEN2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6653 6654
		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6655
	}
6656

6657
	/* WaForceL3Serialization:ivb */
6658 6659 6660
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6661
	/*
6662
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6663
	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6664 6665
	 */
	I915_WRITE(GEN6_UCGCTL2,
6666
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6667

6668
	/* This is required by WaCatErrorRejectionIssue:ivb */
6669 6670 6671 6672
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6673
	g4x_disable_trickle_feed(dev);
6674 6675

	gen7_setup_fixed_func_scheduler(dev_priv);
6676

6677 6678 6679 6680 6681
	if (0) { /* causes HiZ corruption on ivb:gt1 */
		/* enable HiZ Raw Stall Optimization */
		I915_WRITE(CACHE_MODE_0_GEN7,
			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
	}
6682

6683
	/* WaDisable4x2SubspanOptimization:ivb */
6684 6685
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6686

6687 6688 6689
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
6690 6691 6692 6693
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6694 6695
	 */
	I915_WRITE(GEN7_GT_MODE,
6696
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6697

6698 6699 6700 6701
	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
	snpcr &= ~GEN6_MBC_SNPCR_MASK;
	snpcr |= GEN6_MBC_SNPCR_MED;
	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6702

6703 6704
	if (!HAS_PCH_NOP(dev))
		cpt_init_clock_gating(dev);
6705 6706

	gen6_check_mch_setup(dev);
6707 6708
}

6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719
static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
{
	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);

	/*
	 * Disable trickle feed and enable pnd deadline calculation
	 */
	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
	I915_WRITE(CBR1_VLV, 0);
}

6720
static void valleyview_init_clock_gating(struct drm_device *dev)
6721 6722 6723
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6724
	vlv_init_display_clock_gating(dev_priv);
6725

6726
	/* WaDisableEarlyCull:vlv */
6727 6728 6729
	I915_WRITE(_3D_CHICKEN3,
		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));

6730
	/* WaDisableBackToBackFlipFix:vlv */
6731 6732 6733 6734
	I915_WRITE(IVB_CHICKEN3,
		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
		   CHICKEN3_DGMG_DONE_FIX_DISABLE);

6735
	/* WaPsdDispatchEnable:vlv */
6736
	/* WaDisablePSDDualDispatchEnable:vlv */
6737
	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6738 6739
		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6740

6741 6742 6743
	/* WaDisable_RenderCache_OperationalFlush:vlv */
	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6744
	/* WaForceL3Serialization:vlv */
6745 6746 6747
	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);

6748
	/* WaDisableDopClockGating:vlv */
6749 6750 6751
	I915_WRITE(GEN7_ROW_CHICKEN2,
		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));

6752
	/* This is required by WaCatErrorRejectionIssue:vlv */
6753 6754 6755 6756
	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);

6757 6758
	gen7_setup_fixed_func_scheduler(dev_priv);

6759
	/*
6760
	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6761
	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6762 6763
	 */
	I915_WRITE(GEN6_UCGCTL2,
6764
		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6765

6766 6767 6768 6769 6770
	/* WaDisableL3Bank2xClockGate:vlv
	 * Disabling L3 clock gating- MMIO 940c[25] = 1
	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
	I915_WRITE(GEN7_UCGCTL4,
		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6771

6772 6773 6774 6775
	/*
	 * BSpec says this must be set, even though
	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
	 */
6776 6777
	I915_WRITE(CACHE_MODE_1,
		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6778

6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789
	/*
	 * BSpec recommends 8x4 when MSAA is used,
	 * however in practice 16x4 seems fastest.
	 *
	 * Note that PS/WM thread counts depend on the WIZ hashing
	 * disable bit, which we don't touch here, but it's good
	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
	 */
	I915_WRITE(GEN7_GT_MODE,
		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));

6790 6791 6792 6793 6794 6795
	/*
	 * WaIncreaseL3CreditsForVLVB0:vlv
	 * This is the hardware default actually.
	 */
	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);

6796
	/*
6797
	 * WaDisableVLVClockGating_VBIIssue:vlv
6798 6799 6800
	 * Disable clock gating on th GCFG unit to prevent a delay
	 * in the reporting of vblank events.
	 */
6801
	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6802 6803
}

6804 6805 6806 6807
static void cherryview_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6808
	vlv_init_display_clock_gating(dev_priv);
6809

6810 6811 6812 6813 6814
	/* WaVSRefCountFullforceMissDisable:chv */
	/* WaDSRefCountFullforceMissDisable:chv */
	I915_WRITE(GEN7_FF_THREAD_MODE,
		   I915_READ(GEN7_FF_THREAD_MODE) &
		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6815 6816 6817 6818

	/* WaDisableSemaphoreAndSyncFlipWait:chv */
	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6819 6820 6821 6822

	/* WaDisableCSUnitClockGating:chv */
	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6823 6824 6825 6826

	/* WaDisableSDEUnitClockGating:chv */
	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6827 6828 6829 6830 6831 6832

	/*
	 * GTT cache may not work with big pages, so if those
	 * are ever enabled GTT cache may need to be disabled.
	 */
	I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
6833 6834
}

6835
static void g4x_init_clock_gating(struct drm_device *dev)
6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dspclk_gate;

	I915_WRITE(RENCLK_GATE_D1, 0);
	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
		   GS_UNIT_CLOCK_GATE_DISABLE |
		   CL_UNIT_CLOCK_GATE_DISABLE);
	I915_WRITE(RAMCLK_GATE_D, 0);
	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
		OVRUNIT_CLOCK_GATE_DISABLE |
		OVCUNIT_CLOCK_GATE_DISABLE;
	if (IS_GM45(dev))
		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6851 6852 6853 6854

	/* WaDisableRenderCachePipelinedFlush */
	I915_WRITE(CACHE_MODE_0,
		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6855

6856 6857 6858
	/* WaDisable_RenderCache_OperationalFlush:g4x */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));

6859
	g4x_disable_trickle_feed(dev);
6860 6861
}

6862
static void crestline_init_clock_gating(struct drm_device *dev)
6863 6864 6865 6866 6867 6868 6869 6870
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
	I915_WRITE(DSPCLK_GATE_D, 0);
	I915_WRITE(RAMCLK_GATE_D, 0);
	I915_WRITE16(DEUC, 0);
6871 6872
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6873 6874 6875

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6876 6877
}

6878
static void broadwater_init_clock_gating(struct drm_device *dev)
6879 6880 6881 6882 6883 6884 6885 6886 6887
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
		   I965_RCC_CLOCK_GATE_DISABLE |
		   I965_RCPB_CLOCK_GATE_DISABLE |
		   I965_ISC_CLOCK_GATE_DISABLE |
		   I965_FBC_CLOCK_GATE_DISABLE);
	I915_WRITE(RENCLK_GATE_D2, 0);
6888 6889
	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6890 6891 6892

	/* WaDisable_RenderCache_OperationalFlush:gen4 */
	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6893 6894
}

6895
static void gen3_init_clock_gating(struct drm_device *dev)
6896 6897 6898 6899 6900 6901 6902
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dstate = I915_READ(D_STATE);

	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
		DSTATE_DOT_CLOCK_GATING;
	I915_WRITE(D_STATE, dstate);
6903 6904 6905

	if (IS_PINEVIEW(dev))
		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6906 6907 6908

	/* IIR "flip pending" means done if this bit is set */
	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6909 6910

	/* interrupts should cause a wake up from C3 */
6911
	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6912 6913 6914

	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6915 6916 6917

	I915_WRITE(MI_ARB_STATE,
		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6918 6919
}

6920
static void i85x_init_clock_gating(struct drm_device *dev)
6921 6922 6923 6924
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6925 6926 6927 6928

	/* interrupts should cause a wake up from C3 */
	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6929 6930 6931

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6932 6933
}

6934
static void i830_init_clock_gating(struct drm_device *dev)
6935 6936 6937 6938
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6939 6940 6941 6942

	I915_WRITE(MEM_MODE,
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6943 6944 6945 6946 6947 6948
}

void intel_init_clock_gating(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6949 6950
	if (dev_priv->display.init_clock_gating)
		dev_priv->display.init_clock_gating(dev);
6951 6952
}

6953 6954 6955 6956 6957 6958
void intel_suspend_hw(struct drm_device *dev)
{
	if (HAS_PCH_LPT(dev))
		lpt_suspend_hw(dev);
}

6959 6960 6961 6962 6963
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

6964
	intel_fbc_init(dev_priv);
6965

6966 6967 6968 6969 6970 6971
	/* For cxsr */
	if (IS_PINEVIEW(dev))
		i915_pineview_get_mem_freq(dev);
	else if (IS_GEN5(dev))
		i915_ironlake_get_mem_freq(dev);

6972
	/* For FIFO watermark updates */
6973
	if (INTEL_INFO(dev)->gen >= 9) {
6974 6975
		skl_setup_wm_latency(dev);

6976 6977 6978
		if (IS_BROXTON(dev))
			dev_priv->display.init_clock_gating =
				bxt_init_clock_gating;
6979
		dev_priv->display.update_wm = skl_update_wm;
6980
	} else if (HAS_PCH_SPLIT(dev)) {
6981
		ilk_setup_wm_latency(dev);
6982

6983 6984 6985 6986 6987
		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
			dev_priv->display.update_wm = ilk_update_wm;
6988
			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
6989 6990 6991 6992 6993 6994
		} else {
			DRM_DEBUG_KMS("Failed to read display plane latency. "
				      "Disable CxSR\n");
		}

		if (IS_GEN5(dev))
6995
			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6996
		else if (IS_GEN6(dev))
6997
			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6998
		else if (IS_IVYBRIDGE(dev))
6999
			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7000
		else if (IS_HASWELL(dev))
7001
			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7002
		else if (INTEL_INFO(dev)->gen == 8)
7003
			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7004
	} else if (IS_CHERRYVIEW(dev)) {
7005 7006 7007
		vlv_setup_wm_latency(dev);

		dev_priv->display.update_wm = vlv_update_wm;
7008 7009
		dev_priv->display.init_clock_gating =
			cherryview_init_clock_gating;
7010
	} else if (IS_VALLEYVIEW(dev)) {
7011 7012 7013
		vlv_setup_wm_latency(dev);

		dev_priv->display.update_wm = vlv_update_wm;
7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026
		dev_priv->display.init_clock_gating =
			valleyview_init_clock_gating;
	} else if (IS_PINEVIEW(dev)) {
		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
					    dev_priv->is_ddr3,
					    dev_priv->fsb_freq,
					    dev_priv->mem_freq)) {
			DRM_INFO("failed to find known CxSR latency "
				 "(found ddr%s fsb freq %d, mem freq %d), "
				 "disabling CxSR\n",
				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
				 dev_priv->fsb_freq, dev_priv->mem_freq);
			/* Disable CxSR and never update its watermark again */
7027
			intel_set_memory_cxsr(dev_priv, false);
7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044
			dev_priv->display.update_wm = NULL;
		} else
			dev_priv->display.update_wm = pineview_update_wm;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
	} else if (IS_G4X(dev)) {
		dev_priv->display.update_wm = g4x_update_wm;
		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
	} else if (IS_GEN4(dev)) {
		dev_priv->display.update_wm = i965_update_wm;
		if (IS_CRESTLINE(dev))
			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
		else if (IS_BROADWATER(dev))
			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
	} else if (IS_GEN3(dev)) {
		dev_priv->display.update_wm = i9xx_update_wm;
		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7045 7046 7047
	} else if (IS_GEN2(dev)) {
		if (INTEL_INFO(dev)->num_pipes == 1) {
			dev_priv->display.update_wm = i845_update_wm;
7048
			dev_priv->display.get_fifo_size = i845_get_fifo_size;
7049 7050
		} else {
			dev_priv->display.update_wm = i9xx_update_wm;
7051
			dev_priv->display.get_fifo_size = i830_get_fifo_size;
7052 7053 7054 7055 7056 7057 7058 7059
		}

		if (IS_I85X(dev) || IS_I865G(dev))
			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
		else
			dev_priv->display.init_clock_gating = i830_init_clock_gating;
	} else {
		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7060 7061 7062
	}
}

7063
int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
B
Ben Widawsky 已提交
7064
{
7065
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7066 7067 7068 7069 7070 7071 7072

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, *val);
7073
	I915_WRITE(GEN6_PCODE_DATA1, 0);
B
Ben Widawsky 已提交
7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	*val = I915_READ(GEN6_PCODE_DATA);
	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}

7088
int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
B
Ben Widawsky 已提交
7089
{
7090
	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
B
Ben Widawsky 已提交
7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109

	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
		return -EAGAIN;
	}

	I915_WRITE(GEN6_PCODE_DATA, val);
	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);

	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
		     500)) {
		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
		return -ETIMEDOUT;
	}

	I915_WRITE(GEN6_PCODE_DATA, 0);

	return 0;
}
7110

7111
static int vlv_gpu_freq_div(unsigned int czclk_freq)
7112
{
7113 7114 7115 7116 7117 7118 7119 7120
	switch (czclk_freq) {
	case 200:
		return 10;
	case 267:
		return 12;
	case 320:
	case 333:
		return 16;
7121 7122
	case 400:
		return 20;
7123 7124 7125
	default:
		return -1;
	}
7126
}
7127

7128 7129
static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
{
7130
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7131 7132 7133 7134 7135 7136

	div = vlv_gpu_freq_div(czclk_freq);
	if (div < 0)
		return div;

	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
7137 7138
}

7139
static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
7140
{
7141
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7142

7143 7144 7145
	mul = vlv_gpu_freq_div(czclk_freq);
	if (mul < 0)
		return mul;
7146

7147
	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
7148 7149
}

7150
static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
7151
{
7152
	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7153

7154 7155 7156
	div = vlv_gpu_freq_div(czclk_freq) / 2;
	if (div < 0)
		return div;
7157

7158
	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
7159 7160
}

7161
static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
7162
{
7163
	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->czclk_freq, 1000);
7164

7165 7166 7167
	mul = vlv_gpu_freq_div(czclk_freq) / 2;
	if (mul < 0)
		return mul;
7168

7169
	/* CHV needs even values */
7170
	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
7171 7172
}

7173
int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
7174
{
7175 7176 7177
	if (IS_GEN9(dev_priv->dev))
		return (val * GT_FREQUENCY_MULTIPLIER) / GEN9_FREQ_SCALER;
	else if (IS_CHERRYVIEW(dev_priv->dev))
7178
		return chv_gpu_freq(dev_priv, val);
7179
	else if (IS_VALLEYVIEW(dev_priv->dev))
7180 7181 7182
		return byt_gpu_freq(dev_priv, val);
	else
		return val * GT_FREQUENCY_MULTIPLIER;
7183 7184
}

7185 7186
int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
{
7187 7188 7189
	if (IS_GEN9(dev_priv->dev))
		return (val * GEN9_FREQ_SCALER) / GT_FREQUENCY_MULTIPLIER;
	else if (IS_CHERRYVIEW(dev_priv->dev))
7190
		return chv_freq_opcode(dev_priv, val);
7191
	else if (IS_VALLEYVIEW(dev_priv->dev))
7192 7193 7194 7195
		return byt_freq_opcode(dev_priv, val);
	else
		return val / GT_FREQUENCY_MULTIPLIER;
}
7196

7197 7198
struct request_boost {
	struct work_struct work;
D
Daniel Vetter 已提交
7199
	struct drm_i915_gem_request *req;
7200 7201 7202 7203 7204
};

static void __intel_rps_boost_work(struct work_struct *work)
{
	struct request_boost *boost = container_of(work, struct request_boost, work);
7205
	struct drm_i915_gem_request *req = boost->req;
7206

7207 7208 7209
	if (!i915_gem_request_completed(req, true))
		gen6_rps_boost(to_i915(req->ring->dev), NULL,
			       req->emitted_jiffies);
7210

7211
	i915_gem_request_unreference__unlocked(req);
7212 7213 7214 7215
	kfree(boost);
}

void intel_queue_rps_boost_for_request(struct drm_device *dev,
D
Daniel Vetter 已提交
7216
				       struct drm_i915_gem_request *req)
7217 7218 7219
{
	struct request_boost *boost;

D
Daniel Vetter 已提交
7220
	if (req == NULL || INTEL_INFO(dev)->gen < 6)
7221 7222
		return;

7223 7224 7225
	if (i915_gem_request_completed(req, true))
		return;

7226 7227 7228 7229
	boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
	if (boost == NULL)
		return;

D
Daniel Vetter 已提交
7230 7231
	i915_gem_request_reference(req);
	boost->req = req;
7232 7233 7234 7235 7236

	INIT_WORK(&boost->work, __intel_rps_boost_work);
	queue_work(to_i915(dev)->wq, &boost->work);
}

D
Daniel Vetter 已提交
7237
void intel_pm_setup(struct drm_device *dev)
7238 7239 7240
{
	struct drm_i915_private *dev_priv = dev->dev_private;

D
Daniel Vetter 已提交
7241
	mutex_init(&dev_priv->rps.hw_lock);
7242
	spin_lock_init(&dev_priv->rps.client_lock);
D
Daniel Vetter 已提交
7243

7244 7245
	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
			  intel_gen6_powersave_work);
7246
	INIT_LIST_HEAD(&dev_priv->rps.clients);
7247 7248
	INIT_LIST_HEAD(&dev_priv->rps.semaphores.link);
	INIT_LIST_HEAD(&dev_priv->rps.mmioflips.link);
7249

7250
	dev_priv->pm.suspended = false;
7251
}