gadget.c 92.9 KB
Newer Older
1
/**
2 3
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
15
 */
16 17 18 19 20 21 22

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
23
#include <linux/mutex.h>
24 25 26
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
27
#include <linux/slab.h>
28
#include <linux/clk.h>
29
#include <linux/regulator/consumer.h>
30
#include <linux/of_platform.h>
31
#include <linux/phy/phy.h>
32 33 34

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
35
#include <linux/usb/phy.h>
36
#include <linux/platform_data/s3c-hsotg.h>
37

38
#include "core.h"
39
#include "hw.h"
40 41 42 43 44 45 46 47 48 49 50 51

/* conversion functions */
static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
{
	return container_of(req, struct s3c_hsotg_req, req);
}

static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
{
	return container_of(ep, struct s3c_hsotg_ep, ep);
}

52
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
53
{
54
	return container_of(gadget, struct dwc2_hsotg, gadget);
55 56 57 58 59 60 61 62 63 64 65 66
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) | val, ptr);
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) & ~val, ptr);
}

67 68 69 70 71 72 73 74 75
static inline struct s3c_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
						u32 ep_index, u32 dir_in)
{
	if (dir_in)
		return hsotg->eps_in[ep_index];
	else
		return hsotg->eps_out[ep_index];
}

76
/* forward declaration of functions */
77
static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg);
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
96
 * g_using_dma is set depending on dts flag.
97
 */
98
static inline bool using_dma(struct dwc2_hsotg *hsotg)
99
{
100
	return hsotg->g_using_dma;
101 102 103 104 105 106 107
}

/**
 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
108
static void s3c_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
109
{
110
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
111 112 113 114 115 116
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
117
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
118 119 120 121 122 123 124 125
	}
}

/**
 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
126
static void s3c_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
127
{
128
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
129 130 131 132 133
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
134
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
135 136 137 138 139 140 141 142 143 144 145 146
}

/**
 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
147
static void s3c_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
148 149 150 151 152 153 154 155 156 157 158
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
159
	daint = readl(hsotg->regs + DAINTMSK);
160 161 162 163
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
164
	writel(daint, hsotg->regs + DAINTMSK);
165 166 167 168 169 170 171
	local_irq_restore(flags);
}

/**
 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
 * @hsotg: The device instance.
 */
172
static void s3c_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
173
{
174 175
	unsigned int ep;
	unsigned int addr;
176
	int timeout;
177 178
	u32 val;

179 180 181 182
	/* Reset fifo map if not correctly cleared during previous session */
	WARN_ON(hsotg->fifo_map);
	hsotg->fifo_map = 0;

183 184 185 186 187
	/* set RX/NPTX FIFO sizes */
	writel(hsotg->g_rx_fifo_sz, hsotg->regs + GRXFSIZ);
	writel((hsotg->g_rx_fifo_sz << FIFOSIZE_STARTADDR_SHIFT) |
		(hsotg->g_np_g_tx_fifo_sz << FIFOSIZE_DEPTH_SHIFT),
		hsotg->regs + GNPTXFSIZ);
188

189 190
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
191 192
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
193 194
	 * known values.
	 */
195 196

	/* start at the end of the GNPTXFSIZ, rounded up */
197
	addr = hsotg->g_rx_fifo_sz + hsotg->g_np_g_tx_fifo_sz;
198

199
	/*
200
	 * Configure fifos sizes from provided configuration and assign
201 202
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
203
	 */
204 205 206
	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
		if (!hsotg->g_tx_fifo_sz[ep])
			continue;
207
		val = addr;
208 209
		val |= hsotg->g_tx_fifo_sz[ep] << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + hsotg->g_tx_fifo_sz[ep] > hsotg->fifo_mem,
210
			  "insufficient fifo memory");
211
		addr += hsotg->g_tx_fifo_sz[ep];
212

213
		writel(val, hsotg->regs + DPTXFSIZN(ep));
214
	}
215

216 217 218 219
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
220

221 222
	writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
223 224 225 226

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
227
		val = readl(hsotg->regs + GRSTCTL);
228

229
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
230 231 232 233 234 235
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
236
			break;
237 238 239 240 241 242
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
243 244 245 246 247 248 249 250
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
251 252
static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
						      gfp_t flags)
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
{
	struct s3c_hsotg_req *req;

	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
{
	return hs_ep->periodic;
}

/**
 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
 * of a request to ensure the buffer is ready for access by the caller.
285
 */
286
static void s3c_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
287 288 289 290 291 292 293 294 295
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

296
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
}

/**
 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
314
 */
315
static int s3c_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
316 317 318 319
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	bool periodic = is_ep_periodic(hs_ep);
320
	u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
321 322 323 324 325
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
326
	int max_transfer;
327 328 329 330 331 332 333

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

334
	if (periodic && !hsotg->dedicated_fifos) {
335
		u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
336 337 338
		int size_left;
		int size_done;

339 340 341 342
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
343

344
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
345

346 347
		/*
		 * if shared fifo, we cannot write anything until the
348 349 350
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
351
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
352 353 354
			return -ENOSPC;
		}

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
372
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
373 374
			return -ENOSPC;
		}
375
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
376
		can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
377 378 379

		can_write &= 0xffff;
		can_write *= 4;
380
	} else {
381
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
382 383 384 385
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

386
			s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
387 388 389
			return -ENOSPC;
		}

390
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
391
		can_write *= 4;	/* fifo size is in 32bit quantities. */
392 393
	}

394 395 396 397
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
		 __func__, gnptxsts, can_write, to_write, max_transfer);
398

399 400
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
401 402 403
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
404
	if (can_write > 512 && !periodic)
405 406
		can_write = 512;

407 408
	/*
	 * limit the write to one max-packet size worth of data, but allow
409
	 * the transfer to return that it did not run out of fifo space
410 411
	 * doing it.
	 */
412 413
	if (to_write > max_transfer) {
		to_write = max_transfer;
414

415 416 417
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
418 419
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
420 421
	}

422 423 424 425
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
426
		pkt_round = to_write % max_transfer;
427

428 429
		/*
		 * Round the write down to an
430 431 432 433 434 435 436 437 438
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

439 440 441 442
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
443

444 445 446
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
447 448
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

466
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
485 486
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
487
	} else {
488
		maxsize = 64+64;
489
		if (hs_ep->dir_in)
490
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
491
		else
492 493 494 495 496 497 498
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

499 500 501 502
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

/**
 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
520
static void s3c_hsotg_start_req(struct dwc2_hsotg *hsotg,
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req,
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

549 550
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
551 552 553 554 555

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
		__func__, readl(hsotg->regs + epctrl_reg), index,
		hs_ep->dir_in ? "in" : "out");

556 557 558
	/* If endpoint is stalled, we will restart request later */
	ctrl = readl(hsotg->regs + epctrl_reg);

559
	if (ctrl & DXEPCTL_STALL) {
560 561 562 563
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

564
	length = ureq->length - ureq->actual;
565 566
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

587 588 589 590 591
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

592
	if (dir_in && index != 0)
593
		if (hs_ep->isochronous)
594
			epsize = DXEPTSIZ_MC(packets);
595
		else
596
			epsize = DXEPTSIZ_MC(1);
597 598 599
	else
		epsize = 0;

600 601 602 603 604 605 606 607
	/*
	 * zero length packet should be programmed on its own and should not
	 * be counted in DIEPTSIZ.PktCnt with other packets.
	 */
	if (dir_in && ureq->zero && !continuing) {
		/* Test if zlp is actually required. */
		if ((ureq->length >= hs_ep->ep.maxpacket) &&
					!(ureq->length % hs_ep->ep.maxpacket))
608
			hs_ep->send_zlp = 1;
609 610
	}

611 612
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
613 614 615 616 617 618 619 620 621 622

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
	writel(epsize, hsotg->regs + epsize_reg);

623
	if (using_dma(hsotg) && !continuing) {
624 625
		unsigned int dma_reg;

626 627 628 629
		/*
		 * write DMA address to control register, buffer already
		 * synced by s3c_hsotg_ep_queue().
		 */
630

631
		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
632 633
		writel(ureq->dma, hsotg->regs + dma_reg);

634
		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
635
			__func__, &ureq->dma, dma_reg);
636 637
	}

638 639
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
640

641
	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
642 643

	/* For Setup request do not clear NAK */
644
	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
645
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
646

647 648 649
	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

650 651
	/*
	 * set these, it seems that DMA support increments past the end
652
	 * of the packet buffer so we need to calculate the length from
653 654
	 * this information.
	 */
655 656 657 658 659 660 661 662 663 664
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

665 666 667 668
	/*
	 * clear the INTknTXFEmpMsk when we start request, more as a aide
	 * to debugging to see what is going on.
	 */
669
	if (dir_in)
670
		writel(DIEPMSK_INTKNTXFEMPMSK,
671
		       hsotg->regs + DIEPINT(index));
672

673 674 675 676
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
677 678

	/* check ep is enabled */
679
	if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
680
		dev_dbg(hsotg->dev,
681
			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
682 683
			 index, readl(hsotg->regs + epctrl_reg));

684
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
685
		__func__, readl(hsotg->regs + epctrl_reg));
686 687 688

	/* enable ep interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
689 690 691 692 693 694 695 696 697 698 699 700 701
}

/**
 * s3c_hsotg_map_dma - map the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
702
 */
703
static int s3c_hsotg_map_dma(struct dwc2_hsotg *hsotg,
704 705 706 707
			     struct s3c_hsotg_ep *hs_ep,
			     struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
708
	int ret;
709 710 711 712 713

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

714 715 716
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
717 718 719 720 721 722 723 724 725 726

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
static int s3c_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
	struct s3c_hsotg_ep *hs_ep, struct s3c_hsotg_req *hs_req)
{
	void *req_buf = hs_req->req.buf;

	/* If dma is not being used or buffer is aligned */
	if (!using_dma(hsotg) || !((long)req_buf & 3))
		return 0;

	WARN_ON(hs_req->saved_req_buf);

	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
			hs_ep->ep.name, req_buf, hs_req->req.length);

	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
	if (!hs_req->req.buf) {
		hs_req->req.buf = req_buf;
		dev_err(hsotg->dev,
			"%s: unable to allocate memory for bounce buffer\n",
			__func__);
		return -ENOMEM;
	}

	/* Save actual buffer */
	hs_req->saved_req_buf = req_buf;

	if (hs_ep->dir_in)
		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
	return 0;
}

static void s3c_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
	struct s3c_hsotg_ep *hs_ep, struct s3c_hsotg_req *hs_req)
{
	/* If dma is not being used or buffer was aligned */
	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
		return;

	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);

	/* Copy data from bounce buffer on successful out transfer */
	if (!hs_ep->dir_in && !hs_req->req.status)
		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
							hs_req->req.actual);

	/* Free bounce buffer */
	kfree(hs_req->req.buf);

	hs_req->req.buf = hs_req->saved_req_buf;
	hs_req->saved_req_buf = NULL;
}

780 781 782 783 784
static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
785
	struct dwc2_hsotg *hs = hs_ep->parent;
786
	bool first;
787
	int ret;
788 789 790 791 792 793 794 795 796 797

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

798 799 800 801
	ret = s3c_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
	if (ret)
		return ret;

802 803
	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
804
		ret = s3c_hsotg_map_dma(hs, hs_ep, req);
805 806 807 808 809 810 811 812 813 814 815 816 817
		if (ret)
			return ret;
	}

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

	if (first)
		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);

	return 0;
}

818 819 820 821
static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
822
	struct dwc2_hsotg *hs = hs_ep->parent;
823 824 825 826 827 828 829 830 831 832
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
				      struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);

	kfree(hs_req);
}

/**
 * s3c_hsotg_complete_oursetup - setup completion callback
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
					struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
853
	struct dwc2_hsotg *hsotg = hs_ep->parent;
854 855 856 857 858 859 860 861 862 863 864 865 866

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

	s3c_hsotg_ep_free_request(ep, req);
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
867
 */
868
static struct s3c_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
869 870
					   u32 windex)
{
871
	struct s3c_hsotg_ep *ep;
872 873 874 875 876 877
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

878
	if (idx > hsotg->num_of_eps)
879 880
		return NULL;

881 882
	ep = index_to_ep(hsotg, idx, dir);

883 884 885 886 887 888
	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

889 890 891 892 893 894
/**
 * s3c_hsotg_set_test_mode - Enable usb Test Modes
 * @hsotg: The driver state.
 * @testmode: requested usb test mode
 * Enable usb Test Mode requested by the Host.
 */
895
int s3c_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
{
	int dctl = readl(hsotg->regs + DCTL);

	dctl &= ~DCTL_TSTCTL_MASK;
	switch (testmode) {
	case TEST_J:
	case TEST_K:
	case TEST_SE0_NAK:
	case TEST_PACKET:
	case TEST_FORCE_EN:
		dctl |= testmode << DCTL_TSTCTL_SHIFT;
		break;
	default:
		return -EINVAL;
	}
	writel(dctl, hsotg->regs + DCTL);
	return 0;
}

915 916 917 918 919 920 921 922 923 924
/**
 * s3c_hsotg_send_reply - send reply to control request
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
925
static int s3c_hsotg_send_reply(struct dwc2_hsotg *hsotg,
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
				struct s3c_hsotg_ep *ep,
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
944 945 946 947 948
	/*
	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
	 * STATUS stage.
	 */
	req->zero = 0;
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
	req->complete = s3c_hsotg_complete_oursetup;

	if (length)
		memcpy(req->buf, buff, length);

	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
 * s3c_hsotg_process_req_status - process request GET_STATUS
 * @hsotg: The device state
 * @ctrl: USB control request
 */
968
static int s3c_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
969 970
					struct usb_ctrlrequest *ctrl)
{
971
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
	struct s3c_hsotg_ep *ep;
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
{
	if (list_empty(&hs_ep->queue))
		return NULL;

	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
}

1034
/**
1035
 * s3c_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1036 1037 1038
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1039
static int s3c_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1040 1041
					 struct usb_ctrlrequest *ctrl)
{
1042
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
1043 1044
	struct s3c_hsotg_req *hs_req;
	bool restart;
1045 1046
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
	struct s3c_hsotg_ep *ep;
1047
	int ret;
1048
	bool halted;
1049 1050 1051
	u32 recip;
	u32 wValue;
	u32 wIndex;
1052 1053 1054 1055

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
	wValue = le16_to_cpu(ctrl->wValue);
	wIndex = le16_to_cpu(ctrl->wIndex);
	recip = ctrl->bRequestType & USB_RECIP_MASK;

	switch (recip) {
	case USB_RECIP_DEVICE:
		switch (wValue) {
		case USB_DEVICE_TEST_MODE:
			if ((wIndex & 0xff) != 0)
				return -EINVAL;
			if (!set)
				return -EINVAL;

			hsotg->test_mode = wIndex >> 8;
			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
			break;
		default:
			return -ENOENT;
		}
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, wIndex);
1084 1085
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1086
				__func__, wIndex);
1087 1088 1089
			return -ENOENT;
		}

1090
		switch (wValue) {
1091
		case USB_ENDPOINT_HALT:
1092 1093
			halted = ep->halted;

1094
			s3c_hsotg_ep_sethalt(&ep->ep, set);
1095 1096 1097 1098 1099 1100 1101

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1102

1103 1104 1105 1106 1107 1108
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1109 1110 1111 1112 1113 1114 1115 1116
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1117 1118 1119 1120 1121 1122
					if (hs_req->req.complete) {
						spin_unlock(&hsotg->lock);
						usb_gadget_giveback_request(
							&ep->ep, &hs_req->req);
						spin_lock(&hsotg->lock);
					}
1123 1124 1125
				}

				/* If we have pending request, then start it */
1126 1127 1128 1129 1130 1131 1132
				if (!ep->req) {
					restart = !list_empty(&ep->queue);
					if (restart) {
						hs_req = get_ep_head(ep);
						s3c_hsotg_start_req(hsotg, ep,
								hs_req, false);
					}
1133 1134 1135
				}
			}

1136 1137 1138 1139 1140
			break;

		default:
			return -ENOENT;
		}
1141 1142 1143 1144
		break;
	default:
		return -ENOENT;
	}
1145 1146 1147
	return 1;
}

1148
static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1149

1150 1151 1152 1153 1154 1155
/**
 * s3c_hsotg_stall_ep0 - stall ep0
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1156
static void s3c_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1157
{
1158
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

	ctrl = readl(hsotg->regs + reg);
1171 1172
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1173 1174 1175
	writel(ctrl, hsotg->regs + reg);

	dev_dbg(hsotg->dev,
1176
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1177 1178 1179 1180 1181 1182 1183 1184 1185
		ctrl, reg, readl(hsotg->regs + reg));

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
	 s3c_hsotg_enqueue_setup(hsotg);
}

1186 1187 1188 1189 1190 1191 1192 1193 1194
/**
 * s3c_hsotg_process_control - process a control request
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1195
static void s3c_hsotg_process_control(struct dwc2_hsotg *hsotg,
1196 1197
				      struct usb_ctrlrequest *ctrl)
{
1198
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
1199 1200 1201 1202 1203 1204 1205
	int ret = 0;
	u32 dcfg;

	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
		 ctrl->bRequest, ctrl->bRequestType,
		 ctrl->wValue, ctrl->wLength);

1206 1207 1208 1209
	if (ctrl->wLength == 0) {
		ep0->dir_in = 1;
		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
	} else if (ctrl->bRequestType & USB_DIR_IN) {
1210
		ep0->dir_in = 1;
1211 1212 1213 1214 1215
		hsotg->ep0_state = DWC2_EP0_DATA_IN;
	} else {
		ep0->dir_in = 0;
		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
	}
1216 1217 1218 1219

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1220
			hsotg->connected = 1;
1221
			dcfg = readl(hsotg->regs + DCFG);
1222
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1223 1224
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1225
			writel(dcfg, hsotg->regs + DCFG);
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			return;

		case USB_REQ_GET_STATUS:
			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1246
		spin_unlock(&hsotg->lock);
1247
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1248
		spin_lock(&hsotg->lock);
1249 1250 1251 1252
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1253 1254
	/*
	 * the request is either unhandlable, or is not formatted correctly
1255 1256 1257
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1258 1259
	if (ret < 0)
		s3c_hsotg_stall_ep0(hsotg);
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
}

/**
 * s3c_hsotg_complete_setup - completion of a setup transfer
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
static void s3c_hsotg_complete_setup(struct usb_ep *ep,
				     struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1274
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1275 1276 1277 1278 1279 1280

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1281
	spin_lock(&hsotg->lock);
1282 1283 1284 1285
	if (req->actual == 0)
		s3c_hsotg_enqueue_setup(hsotg);
	else
		s3c_hsotg_process_control(hsotg, req->buf);
1286
	spin_unlock(&hsotg->lock);
1287 1288 1289 1290 1291 1292 1293 1294 1295
}

/**
 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1296
static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
{
	struct usb_request *req = hsotg->ctrl_req;
	struct s3c_hsotg_req *hs_req = our_req(req);
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
	req->complete = s3c_hsotg_complete_setup;

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

1314
	hsotg->eps_out[0]->dir_in = 0;
1315
	hsotg->eps_out[0]->send_zlp = 0;
1316
	hsotg->ep0_state = DWC2_EP0_SETUP;
1317

1318
	ret = s3c_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1319 1320
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1321 1322 1323 1324
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1325 1326 1327
	}
}

1328 1329 1330 1331 1332 1333 1334 1335
static void s3c_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
					struct s3c_hsotg_ep *hs_ep)
{
	u32 ctrl;
	u8 index = hs_ep->index;
	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);

1336 1337 1338 1339 1340 1341
	if (hs_ep->dir_in)
		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
									index);
	else
		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
									index);
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353

	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
			DXEPTSIZ_XFERSIZE(0), hsotg->regs +
			epsiz_reg);

	ctrl = readl(hsotg->regs + epctl_reg);
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
	writel(ctrl, hsotg->regs + epctl_reg);
}

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
/**
 * s3c_hsotg_complete_request - complete a request given to us
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1366
 */
1367
static void s3c_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
				       struct s3c_hsotg_ep *hs_ep,
				       struct s3c_hsotg_req *hs_req,
				       int result)
{
	bool restart;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1382 1383 1384 1385
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1386 1387 1388 1389

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

1390 1391
	s3c_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);

1392 1393 1394 1395 1396 1397
	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

	if (using_dma(hsotg))
		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1398 1399 1400 1401
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1402 1403

	if (hs_req->req.complete) {
1404
		spin_unlock(&hsotg->lock);
1405
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1406
		spin_lock(&hsotg->lock);
1407 1408
	}

1409 1410
	/*
	 * Look to see if there is anything else to do. Note, the completion
1411
	 * of the previous request may have caused a new request to be started
1412 1413
	 * so be careful when doing this.
	 */
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433

	if (!hs_ep->req && result >= 0) {
		restart = !list_empty(&hs_ep->queue);
		if (restart) {
			hs_req = get_ep_head(hs_ep);
			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		}
	}
}

/**
 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
1434
static void s3c_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1435
{
1436
	struct s3c_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
1437
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1438
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1439 1440 1441 1442
	int to_read;
	int max_req;
	int read_ptr;

1443

1444
	if (!hs_req) {
1445
		u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1446 1447
		int ptr;

1448
		dev_dbg(hsotg->dev,
1449
			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
			(void)readl(fifo);

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1463 1464 1465
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1466
	if (to_read > max_req) {
1467 1468
		/*
		 * more data appeared than we where willing
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1480 1481 1482 1483
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1484
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1485 1486 1487
}

/**
1488
 * s3c_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
1489
 * @hsotg: The device instance
1490
 * @dir_in: If IN zlp
1491 1492 1493 1494 1495
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1496
 * currently believed that we do not need to wait for any space in
1497 1498
 * the TxFIFO.
 */
1499
static void s3c_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
1500
{
1501
	/* eps_out[0] is used in both directions */
1502 1503
	hsotg->eps_out[0]->dir_in = dir_in;
	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
1504

1505
	s3c_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
}

/**
 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1516
 */
1517
static void s3c_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
1518
{
1519
	u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1520
	struct s3c_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
1521 1522
	struct s3c_hsotg_req *hs_req = hs_ep->req;
	struct usb_request *req = &hs_req->req;
1523
	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1524 1525 1526 1527 1528 1529 1530
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

1531 1532 1533 1534 1535 1536 1537
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
		s3c_hsotg_enqueue_setup(hsotg);
		return;
	}

1538 1539 1540
	if (using_dma(hsotg)) {
		unsigned size_done;

1541 1542
		/*
		 * Calculate the size of the transfer by checking how much
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1556 1557 1558 1559 1560 1561
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
		return;
	}

1562 1563 1564 1565
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1566 1567 1568 1569
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1570 1571
	}

1572 1573 1574 1575
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
		/* Move to STATUS IN */
		s3c_hsotg_ep0_zlp(hsotg, true);
		return;
1576 1577
	}

1578
	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1579 1580 1581 1582 1583 1584 1585
}

/**
 * s3c_hsotg_read_frameno - read current frame number
 * @hsotg: The device instance
 *
 * Return the current frame number
1586
 */
1587
static u32 s3c_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1588 1589 1590
{
	u32 dsts;

1591 1592 1593
	dsts = readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605

	return dsts;
}

/**
 * s3c_hsotg_handle_rx - RX FIFO has data
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1606
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1607 1608 1609 1610 1611 1612 1613
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1614
static void s3c_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1615
{
1616
	u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1617 1618 1619 1620
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

1621 1622
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
1623

1624 1625
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
1626

1627
	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1628 1629
			__func__, grxstsr, size, epnum);

1630 1631 1632
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1633 1634
		break;

1635
	case GRXSTS_PKTSTS_OUTDONE:
1636 1637 1638 1639
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg));

		if (!using_dma(hsotg))
1640
			s3c_hsotg_handle_outdone(hsotg, epnum);
1641 1642
		break;

1643
	case GRXSTS_PKTSTS_SETUPDONE:
1644 1645 1646
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1647
			readl(hsotg->regs + DOEPCTL(0)));
1648 1649 1650 1651 1652 1653 1654
		/*
		 * Call s3c_hsotg_handle_outdone here if it was not called from
		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
		 */
		if (hsotg->ep0_state == DWC2_EP0_SETUP)
			s3c_hsotg_handle_outdone(hsotg, epnum);
1655 1656
		break;

1657
	case GRXSTS_PKTSTS_OUTRX:
1658 1659 1660
		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

1661
	case GRXSTS_PKTSTS_SETUPRX:
1662 1663 1664
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1665
			readl(hsotg->regs + DOEPCTL(0)));
1666

1667 1668
		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);

1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

		s3c_hsotg_dump(hsotg);
		break;
	}
}

/**
 * s3c_hsotg_ep0_mps - turn max packet size into register setting
 * @mps: The maximum packet size in bytes.
1684
 */
1685 1686 1687 1688
static u32 s3c_hsotg_ep0_mps(unsigned int mps)
{
	switch (mps) {
	case 64:
1689
		return D0EPCTL_MPS_64;
1690
	case 32:
1691
		return D0EPCTL_MPS_32;
1692
	case 16:
1693
		return D0EPCTL_MPS_16;
1694
	case 8:
1695
		return D0EPCTL_MPS_8;
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
1712
static void s3c_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1713
			unsigned int ep, unsigned int mps, unsigned int dir_in)
1714
{
1715
	struct s3c_hsotg_ep *hs_ep;
1716 1717
	void __iomem *regs = hsotg->regs;
	u32 mpsval;
1718
	u32 mcval;
1719 1720
	u32 reg;

1721 1722 1723 1724
	hs_ep = index_to_ep(hsotg, ep, dir_in);
	if (!hs_ep)
		return;

1725 1726 1727 1728 1729
	if (ep == 0) {
		/* EP0 is a special case */
		mpsval = s3c_hsotg_ep0_mps(mps);
		if (mpsval > 3)
			goto bad_mps;
1730
		hs_ep->ep.maxpacket = mps;
1731
		hs_ep->mc = 1;
1732
	} else {
1733
		mpsval = mps & DXEPCTL_MPS_MASK;
1734
		if (mpsval > 1024)
1735
			goto bad_mps;
1736 1737 1738 1739
		mcval = ((mps >> 11) & 0x3) + 1;
		hs_ep->mc = mcval;
		if (mcval > 3)
			goto bad_mps;
1740
		hs_ep->ep.maxpacket = mpsval;
1741 1742
	}

1743 1744 1745 1746 1747 1748
	if (dir_in) {
		reg = readl(regs + DIEPCTL(ep));
		reg &= ~DXEPCTL_MPS_MASK;
		reg |= mpsval;
		writel(reg, regs + DIEPCTL(ep));
	} else {
1749
		reg = readl(regs + DOEPCTL(ep));
1750
		reg &= ~DXEPCTL_MPS_MASK;
1751
		reg |= mpsval;
1752
		writel(reg, regs + DOEPCTL(ep));
1753
	}
1754 1755 1756 1757 1758 1759 1760

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1761 1762 1763 1764 1765
/**
 * s3c_hsotg_txfifo_flush - flush Tx FIFO
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
1766
static void s3c_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1767 1768 1769 1770
{
	int timeout;
	int val;

1771
	writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1772
		hsotg->regs + GRSTCTL);
1773 1774 1775 1776 1777

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
1778
		val = readl(hsotg->regs + GRSTCTL);
1779

1780
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1781 1782 1783 1784 1785 1786
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
1787
			break;
1788 1789 1790 1791 1792
		}

		udelay(1);
	}
}
1793 1794 1795 1796 1797 1798 1799 1800 1801

/**
 * s3c_hsotg_trytx - check to see if anything needs transmitting
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
1802
static int s3c_hsotg_trytx(struct dwc2_hsotg *hsotg,
1803 1804 1805 1806
			   struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;

1807 1808 1809 1810 1811 1812 1813 1814
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
			s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
					     hs_ep->dir_in, 0);
1815
		return 0;
1816
	}
1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

	return 0;
}

/**
 * s3c_hsotg_complete_in - complete IN transfer
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
1835
static void s3c_hsotg_complete_in(struct dwc2_hsotg *hsotg,
1836 1837 1838
				  struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1839
	u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1840 1841 1842 1843 1844 1845 1846
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

1847
	/* Finish ZLP handling for IN EP0 transactions */
1848 1849
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
		dev_dbg(hsotg->dev, "zlp packet sent\n");
1850
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
		if (hsotg->test_mode) {
			int ret;

			ret = s3c_hsotg_set_test_mode(hsotg, hsotg->test_mode);
			if (ret < 0) {
				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
						hsotg->test_mode);
				s3c_hsotg_stall_ep0(hsotg);
				return;
			}
		}
1862
		s3c_hsotg_enqueue_setup(hsotg);
1863 1864 1865
		return;
	}

1866 1867
	/*
	 * Calculate the size of the transfer by checking how much is left
1868 1869 1870 1871 1872 1873 1874 1875
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

1876
	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1877 1878 1879 1880 1881 1882 1883 1884 1885

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
1886 1887 1888
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

1889 1890 1891
	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1892 1893 1894
		return;
	}

1895
	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
1896
	if (hs_ep->send_zlp) {
1897
		s3c_hsotg_program_zlp(hsotg, hs_ep);
1898
		hs_ep->send_zlp = 0;
1899 1900 1901 1902
		/* transfer will be completed on next complete interrupt */
		return;
	}

1903 1904 1905 1906 1907 1908 1909
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
		/* Move to STATUS OUT */
		s3c_hsotg_ep0_zlp(hsotg, false);
		return;
	}

	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1910 1911 1912 1913 1914 1915 1916 1917 1918
}

/**
 * s3c_hsotg_epint - handle an in/out endpoint interrupt
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
1919
 */
1920
static void s3c_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
1921 1922
			    int dir_in)
{
1923
	struct s3c_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
1924 1925 1926
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1927
	u32 ints;
1928
	u32 ctrl;
1929 1930

	ints = readl(hsotg->regs + epint_reg);
1931
	ctrl = readl(hsotg->regs + epctl_reg);
1932

1933 1934 1935
	/* Clear endpoint interrupts */
	writel(ints, hsotg->regs + epint_reg);

1936 1937 1938 1939 1940 1941
	if (!hs_ep) {
		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
					__func__, idx, dir_in ? "in" : "out");
		return;
	}

1942 1943 1944
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

1945 1946 1947 1948
	/* Don't process XferCompl interrupt if it is a setup packet */
	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
		ints &= ~DXEPINT_XFERCOMPL;

1949
	if (ints & DXEPINT_XFERCOMPL) {
1950
		if (hs_ep->isochronous && hs_ep->interval == 1) {
1951 1952
			if (ctrl & DXEPCTL_EOFRNUM)
				ctrl |= DXEPCTL_SETEVENFR;
1953
			else
1954
				ctrl |= DXEPCTL_SETODDFR;
1955 1956 1957
			writel(ctrl, hsotg->regs + epctl_reg);
		}

1958
		dev_dbg(hsotg->dev,
1959
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1960 1961 1962
			__func__, readl(hsotg->regs + epctl_reg),
			readl(hsotg->regs + epsiz_reg));

1963 1964 1965 1966
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
1967 1968 1969
		if (dir_in) {
			s3c_hsotg_complete_in(hsotg, hs_ep);

1970
			if (idx == 0 && !hs_ep->req)
1971 1972
				s3c_hsotg_enqueue_setup(hsotg);
		} else if (using_dma(hsotg)) {
1973 1974 1975 1976
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
1977

1978
			s3c_hsotg_handle_outdone(hsotg, idx);
1979 1980 1981
		}
	}

1982
	if (ints & DXEPINT_EPDISBLD) {
1983 1984
		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

1985 1986 1987
		if (dir_in) {
			int epctl = readl(hsotg->regs + epctl_reg);

1988
			s3c_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
1989

1990 1991
			if ((epctl & DXEPCTL_STALL) &&
				(epctl & DXEPCTL_EPTYPE_BULK)) {
1992
				int dctl = readl(hsotg->regs + DCTL);
1993

1994
				dctl |= DCTL_CGNPINNAK;
1995
				writel(dctl, hsotg->regs + DCTL);
1996 1997 1998 1999
			}
		}
	}

2000
	if (ints & DXEPINT_AHBERR)
2001 2002
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

2003
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2004 2005 2006
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
2007 2008
			/*
			 * this is the notification we've received a
2009 2010
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
2011 2012
			 * the setup here.
			 */
2013 2014 2015 2016

			if (dir_in)
				WARN_ON_ONCE(1);
			else
2017
				s3c_hsotg_handle_outdone(hsotg, 0);
2018 2019 2020
		}
	}

2021
	if (ints & DXEPINT_BACK2BACKSETUP)
2022 2023
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

2024
	if (dir_in && !hs_ep->isochronous) {
2025
		/* not sure if this is important, but we'll clear it anyway */
2026
		if (ints & DIEPMSK_INTKNTXFEMPMSK) {
2027 2028 2029 2030 2031
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
2032
		if (ints & DIEPMSK_INTKNEPMISMSK) {
2033 2034 2035
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
2036 2037 2038

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
2039
		    ints & DIEPMSK_TXFIFOEMPTY) {
2040 2041
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
2042 2043
			if (!using_dma(hsotg))
				s3c_hsotg_trytx(hsotg, hs_ep);
2044
		}
2045 2046 2047 2048 2049 2050 2051 2052 2053
	}
}

/**
 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
2054
 */
2055
static void s3c_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2056
{
2057
	u32 dsts = readl(hsotg->regs + DSTS);
2058
	int ep0_mps = 0, ep_mps = 8;
2059

2060 2061
	/*
	 * This should signal the finish of the enumeration phase
2062
	 * of the USB handshaking, so we should now know what rate
2063 2064
	 * we connected at.
	 */
2065 2066 2067

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

2068 2069
	/*
	 * note, since we're limited by the size of transfer on EP0, and
2070
	 * it seems IN transfers must be a even number of packets we do
2071 2072
	 * not advertise a 64byte MPS on EP0.
	 */
2073 2074

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2075 2076 2077
	switch (dsts & DSTS_ENUMSPD_MASK) {
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
2078 2079
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
2080
		ep_mps = 1023;
2081 2082
		break;

2083
	case DSTS_ENUMSPD_HS:
2084 2085
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
2086
		ep_mps = 1024;
2087 2088
		break;

2089
	case DSTS_ENUMSPD_LS:
2090
		hsotg->gadget.speed = USB_SPEED_LOW;
2091 2092
		/*
		 * note, we don't actually support LS in this driver at the
2093 2094 2095 2096 2097
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
2098 2099
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
2100

2101 2102 2103 2104
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
2105 2106 2107

	if (ep0_mps) {
		int i;
2108 2109 2110 2111 2112 2113 2114 2115 2116
		/* Initialize ep0 for both in and out directions */
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 1);
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0);
		for (i = 1; i < hsotg->num_of_eps; i++) {
			if (hsotg->eps_in[i])
				s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 1);
			if (hsotg->eps_out[i])
				s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0);
		}
2117 2118 2119 2120 2121 2122 2123
	}

	/* ensure after enumeration our EP0 is active */

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2124 2125
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
2137
static void kill_all_requests(struct dwc2_hsotg *hsotg,
2138
			      struct s3c_hsotg_ep *ep,
2139
			      int result)
2140 2141
{
	struct s3c_hsotg_req *req, *treq;
2142
	unsigned size;
2143

2144
	ep->req = NULL;
2145

2146
	list_for_each_entry_safe(req, treq, &ep->queue, queue)
2147 2148
		s3c_hsotg_complete_request(hsotg, ep, req,
					   result);
2149

2150 2151 2152 2153 2154
	if (!hsotg->dedicated_fifos)
		return;
	size = (readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
	if (size < ep->fifo_size)
		s3c_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2155 2156 2157
}

/**
2158
 * s3c_hsotg_disconnect - disconnect service
2159 2160
 * @hsotg: The device state.
 *
2161 2162 2163
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2164
 */
2165
void s3c_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2166 2167 2168
{
	unsigned ep;

2169 2170 2171 2172
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
2173
	hsotg->test_mode = 0;
2174 2175 2176 2177 2178 2179 2180 2181 2182

	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			kill_all_requests(hsotg, hsotg->eps_in[ep],
								-ESHUTDOWN);
		if (hsotg->eps_out[ep])
			kill_all_requests(hsotg, hsotg->eps_out[ep],
								-ESHUTDOWN);
	}
2183 2184 2185

	call_gadget(hsotg, disconnect);
}
2186
EXPORT_SYMBOL_GPL(s3c_hsotg_disconnect);
2187 2188 2189 2190 2191 2192

/**
 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
2193
static void s3c_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2194 2195 2196 2197 2198
{
	struct s3c_hsotg_ep *ep;
	int epno, ret;

	/* look through for any more data to transmit */
2199
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2200 2201 2202 2203
		ep = index_to_ep(hsotg, epno, 1);

		if (!ep)
			continue;
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

		ret = s3c_hsotg_trytx(hsotg, ep);
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2219 2220 2221
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
2222

2223 2224 2225 2226 2227
/**
 * s3c_hsotg_corereset - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
2228
 */
2229
static int s3c_hsotg_corereset(struct dwc2_hsotg *hsotg)
2230 2231 2232 2233 2234 2235 2236
{
	int timeout;
	u32 grstctl;

	dev_dbg(hsotg->dev, "resetting core\n");

	/* issue soft reset */
2237
	writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2238

2239
	timeout = 10000;
2240
	do {
2241
		grstctl = readl(hsotg->regs + GRSTCTL);
2242
	} while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2243

2244
	if (grstctl & GRSTCTL_CSFTRST) {
2245 2246 2247 2248
		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
		return -EINVAL;
	}

2249
	timeout = 10000;
2250 2251

	while (1) {
2252
		u32 grstctl = readl(hsotg->regs + GRSTCTL);
2253 2254 2255 2256 2257 2258 2259 2260

		if (timeout-- < 0) {
			dev_info(hsotg->dev,
				 "%s: reset failed, GRSTCTL=%08x\n",
				 __func__, grstctl);
			return -ETIMEDOUT;
		}

2261
		if (!(grstctl & GRSTCTL_AHBIDLE))
2262 2263 2264 2265 2266 2267 2268 2269 2270
			continue;

		break;		/* reset done */
	}

	dev_dbg(hsotg->dev, "reset successful\n");
	return 0;
}

2271 2272 2273 2274 2275 2276
/**
 * s3c_hsotg_core_init - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2277 2278
void s3c_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
						bool is_usb_reset)
2279
{
2280 2281 2282 2283
	u32 val;

	if (!is_usb_reset)
		s3c_hsotg_corereset(hsotg);
2284 2285 2286 2287 2288 2289 2290

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2291
	val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
2292
	writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2293
	       (val << GUSBCFG_USBTRDTIM_SHIFT), hsotg->regs + GUSBCFG);
2294 2295 2296

	s3c_hsotg_init_fifo(hsotg);

2297 2298
	if (!is_usb_reset)
		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2299

2300
	writel(DCFG_EPMISCNT(1) | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2301 2302

	/* Clear any pending OTG interrupts */
2303
	writel(0xffffffff, hsotg->regs + GOTGINT);
2304 2305

	/* Clear any pending interrupts */
2306
	writel(0xffffffff, hsotg->regs + GINTSTS);
2307

2308 2309 2310
	writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
		GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST |
2311 2312 2313
		GINTSTS_RESETDET | GINTSTS_ENUMDONE |
		GINTSTS_OTGINT | GINTSTS_USBSUSP |
		GINTSTS_WKUPINT,
2314
		hsotg->regs + GINTMSK);
2315 2316

	if (using_dma(hsotg))
2317
		writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
2318
		       (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
2319
		       hsotg->regs + GAHBCFG);
2320
	else
2321 2322 2323
		writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL |
						    GAHBCFG_P_TXF_EMP_LVL) : 0) |
		       GAHBCFG_GLBL_INTR_EN,
2324
		       hsotg->regs + GAHBCFG);
2325 2326

	/*
2327 2328 2329
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
2330 2331
	 */

2332 2333
	writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2334 2335 2336 2337
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_INTKNEPMISMSK,
		hsotg->regs + DIEPMSK);
2338 2339 2340 2341 2342

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2343 2344 2345 2346 2347
	writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
				    DIEPMSK_TIMEOUTMSK) : 0) |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_SETUPMSK,
		hsotg->regs + DOEPMSK);
2348

2349
	writel(0, hsotg->regs + DAINTMSK);
2350 2351

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2352 2353
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2354 2355

	/* enable in and out endpoint interrupts */
2356
	s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2357 2358 2359 2360 2361 2362 2363

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2364
		s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2365 2366 2367 2368 2369

	/* Enable interrupts for EP0 in and out */
	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);

2370 2371 2372 2373 2374
	if (!is_usb_reset) {
		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
		udelay(10);  /* see openiboot */
		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
	}
2375

2376
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2377 2378

	/*
2379
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2380 2381 2382 2383
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2384 2385
	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2386

2387
	writel(s3c_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2388 2389
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
2390
	       hsotg->regs + DOEPCTL0);
2391 2392

	/* enable, but don't activate EP0in */
2393
	writel(s3c_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2394
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2395 2396 2397 2398

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2399 2400
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2401 2402

	/* clear global NAKs */
2403 2404 2405 2406
	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
	if (!is_usb_reset)
		val |= DCTL_SFTDISCON;
	__orr32(hsotg->regs + DCTL, val);
2407 2408 2409 2410

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

2411
	hsotg->last_rst = jiffies;
2412 2413
}

2414
static void s3c_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2415 2416 2417 2418
{
	/* set the soft-disconnect bit */
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
2419

2420
void s3c_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2421
{
2422
	/* remove the soft-disconnect and let's go */
2423
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2424 2425
}

2426 2427 2428 2429 2430 2431 2432
/**
 * s3c_hsotg_irq - handle device interrupt
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
{
2433
	struct dwc2_hsotg *hsotg = pw;
2434 2435 2436 2437
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

2438
	spin_lock(&hsotg->lock);
2439
irq_retry:
2440 2441
	gintsts = readl(hsotg->regs + GINTSTS);
	gintmsk = readl(hsotg->regs + GINTMSK);
2442 2443 2444 2445 2446 2447

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

2448 2449
	if (gintsts & GINTSTS_ENUMDONE) {
		writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2450 2451

		s3c_hsotg_irq_enumdone(hsotg);
2452 2453
	}

2454
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2455
		u32 daint = readl(hsotg->regs + DAINT);
2456 2457
		u32 daintmsk = readl(hsotg->regs + DAINTMSK);
		u32 daint_out, daint_in;
2458 2459
		int ep;

2460
		daint &= daintmsk;
2461 2462
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2463

2464 2465
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

2466 2467
		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
						ep++, daint_out >>= 1) {
2468 2469 2470 2471
			if (daint_out & 1)
				s3c_hsotg_epint(hsotg, ep, 0);
		}

2472 2473
		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
						ep++, daint_in >>= 1) {
2474 2475 2476 2477 2478
			if (daint_in & 1)
				s3c_hsotg_epint(hsotg, ep, 1);
		}
	}

2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
	if (gintsts & GINTSTS_RESETDET) {
		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);

		writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);

		/* This event must be used only if controller is suspended */
		if (hsotg->lx_state == DWC2_L2) {
			dwc2_exit_hibernation(hsotg, true);
			hsotg->lx_state = DWC2_L0;
		}
	}

	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
2492

2493
		u32 usb_status = readl(hsotg->regs + GOTGCTL);
2494

2495
		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
2496
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2497
			readl(hsotg->regs + GNPTXSTS));
2498

2499
		writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2500

2501 2502 2503
		/* Report disconnection if it is not already done. */
		s3c_hsotg_disconnect(hsotg);

2504
		if (usb_status & GOTGCTL_BSESVLD) {
2505 2506
			if (time_after(jiffies, hsotg->last_rst +
				       msecs_to_jiffies(200))) {
2507

2508
				kill_all_requests(hsotg, hsotg->eps_out[0],
2509
							  -ECONNRESET);
2510

2511
				s3c_hsotg_core_init_disconnected(hsotg, true);
2512 2513
			}
		}
2514 2515 2516 2517
	}

	/* check both FIFOs */

2518
	if (gintsts & GINTSTS_NPTXFEMP) {
2519 2520
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

2521 2522
		/*
		 * Disable the interrupt to stop it happening again
2523
		 * unless one of these endpoint routines decides that
2524 2525
		 * it needs re-enabling
		 */
2526

2527
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2528 2529 2530
		s3c_hsotg_irq_fifoempty(hsotg, false);
	}

2531
	if (gintsts & GINTSTS_PTXFEMP) {
2532 2533
		dev_dbg(hsotg->dev, "PTxFEmp\n");

2534
		/* See note in GINTSTS_NPTxFEmp */
2535

2536
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2537 2538 2539
		s3c_hsotg_irq_fifoempty(hsotg, true);
	}

2540
	if (gintsts & GINTSTS_RXFLVL) {
2541 2542
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2543
		 * we need to retry s3c_hsotg_handle_rx if this is still
2544 2545
		 * set.
		 */
2546 2547 2548 2549

		s3c_hsotg_handle_rx(hsotg);
	}

2550
	if (gintsts & GINTSTS_ERLYSUSP) {
2551
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2552
		writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2553 2554
	}

2555 2556
	/*
	 * these next two seem to crop-up occasionally causing the core
2557
	 * to shutdown the USB transfer, so try clearing them and logging
2558 2559
	 * the occurrence.
	 */
2560

2561
	if (gintsts & GINTSTS_GOUTNAKEFF) {
2562 2563
		dev_info(hsotg->dev, "GOUTNakEff triggered\n");

2564
		writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2565 2566

		s3c_hsotg_dump(hsotg);
2567 2568
	}

2569
	if (gintsts & GINTSTS_GINNAKEFF) {
2570 2571
		dev_info(hsotg->dev, "GINNakEff triggered\n");

2572
		writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2573 2574

		s3c_hsotg_dump(hsotg);
2575 2576
	}

2577 2578 2579 2580
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
2581 2582 2583 2584

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

2585 2586
	spin_unlock(&hsotg->lock);

2587 2588 2589 2590 2591 2592 2593 2594 2595
	return IRQ_HANDLED;
}

/**
 * s3c_hsotg_ep_enable - enable the given endpoint
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
2596
 */
2597 2598 2599 2600
static int s3c_hsotg_ep_enable(struct usb_ep *ep,
			       const struct usb_endpoint_descriptor *desc)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2601
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2602
	unsigned long flags;
2603
	unsigned int index = hs_ep->index;
2604 2605 2606
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
2607 2608
	unsigned int dir_in;
	unsigned int i, val, size;
2609
	int ret = 0;
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
	WARN_ON(index == 0);

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

2625
	mps = usb_endpoint_maxp(desc);
2626 2627 2628

	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */

2629
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2630 2631 2632 2633 2634
	epctrl = readl(hsotg->regs + epctrl_reg);

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

2635
	spin_lock_irqsave(&hsotg->lock, flags);
2636

2637 2638
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
2639

2640 2641 2642 2643
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
2644
	epctrl |= DXEPCTL_USBACTEP;
2645

2646 2647
	/*
	 * set the NAK status on the endpoint, otherwise we might try and
2648 2649 2650 2651 2652
	 * do something with data that we've yet got a request to process
	 * since the RXFIFO will take data for an endpoint even if the
	 * size register hasn't been set.
	 */

2653
	epctrl |= DXEPCTL_SNAK;
2654 2655

	/* update the endpoint state */
2656
	s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, dir_in);
2657 2658

	/* default, set to non-periodic */
2659
	hs_ep->isochronous = 0;
2660
	hs_ep->periodic = 0;
2661
	hs_ep->halted = 0;
2662
	hs_ep->interval = desc->bInterval;
2663

2664 2665 2666
	if (hs_ep->interval > 1 && hs_ep->mc > 1)
		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");

2667 2668
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
2669 2670
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
2671 2672 2673 2674
		hs_ep->isochronous = 1;
		if (dir_in)
			hs_ep->periodic = 1;
		break;
2675 2676

	case USB_ENDPOINT_XFER_BULK:
2677
		epctrl |= DXEPCTL_EPTYPE_BULK;
2678 2679 2680
		break;

	case USB_ENDPOINT_XFER_INT:
2681
		if (dir_in)
2682 2683
			hs_ep->periodic = 1;

2684
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2685 2686 2687
		break;

	case USB_ENDPOINT_XFER_CONTROL:
2688
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2689 2690 2691
		break;
	}

2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702
	/* If fifo is already allocated for this ep */
	if (hs_ep->fifo_index) {
		size =  hs_ep->ep.maxpacket * hs_ep->mc;
		/* If bigger fifo is required deallocate current one */
		if (size > hs_ep->fifo_size) {
			hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
			hs_ep->fifo_index = 0;
			hs_ep->fifo_size = 0;
		}
	}

2703 2704
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
2705 2706
	 * a unique tx-fifo even if it is non-periodic.
	 */
2707
	if (dir_in && hsotg->dedicated_fifos && !hs_ep->fifo_index) {
2708 2709
		u32 fifo_index = 0;
		u32 fifo_size = UINT_MAX;
2710
		size = hs_ep->ep.maxpacket*hs_ep->mc;
2711
		for (i = 1; i < hsotg->num_of_eps; ++i) {
2712 2713 2714 2715 2716 2717
			if (hsotg->fifo_map & (1<<i))
				continue;
			val = readl(hsotg->regs + DPTXFSIZN(i));
			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
			if (val < size)
				continue;
2718 2719 2720 2721 2722
			/* Search for smallest acceptable fifo */
			if (val < fifo_size) {
				fifo_size = val;
				fifo_index = i;
			}
2723
		}
2724
		if (!fifo_index) {
2725 2726
			dev_err(hsotg->dev,
				"%s: No suitable fifo found\n", __func__);
2727 2728 2729
			ret = -ENOMEM;
			goto error;
		}
2730 2731 2732 2733
		hsotg->fifo_map |= 1 << fifo_index;
		epctrl |= DXEPCTL_TXFNUM(fifo_index);
		hs_ep->fifo_index = fifo_index;
		hs_ep->fifo_size = fifo_size;
2734
	}
2735

2736 2737
	/* for non control endpoints, set PID to D0 */
	if (index)
2738
		epctrl |= DXEPCTL_SETD0PID;
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

	writel(epctrl, hsotg->regs + epctrl_reg);
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
		__func__, readl(hsotg->regs + epctrl_reg));

	/* enable the endpoint interrupt */
	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);

2750
error:
2751
	spin_unlock_irqrestore(&hsotg->lock, flags);
2752
	return ret;
2753 2754
}

2755 2756 2757 2758
/**
 * s3c_hsotg_ep_disable - disable given endpoint
 * @ep: The endpoint to disable.
 */
2759
static int s3c_hsotg_ep_disable_force(struct usb_ep *ep, bool force)
2760 2761
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2762
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2763 2764 2765 2766 2767 2768
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

2769
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2770

2771
	if (ep == &hsotg->eps_out[0]->ep) {
2772 2773 2774 2775
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

2776
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2777

2778
	spin_lock_irqsave(&hsotg->lock, flags);
2779

2780 2781 2782
	hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;
2783 2784

	ctrl = readl(hsotg->regs + epctrl_reg);
2785 2786 2787
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
2788 2789 2790 2791 2792 2793 2794

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

	/* disable endpoint interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);

2795 2796 2797
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);

2798
	spin_unlock_irqrestore(&hsotg->lock, flags);
2799 2800 2801
	return 0;
}

2802 2803 2804 2805
static int s3c_hsotg_ep_disable(struct usb_ep *ep)
{
	return s3c_hsotg_ep_disable_force(ep, false);
}
2806 2807 2808 2809
/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
2810
 */
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
{
	struct s3c_hsotg_req *req, *treq;

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

2823 2824 2825 2826 2827
/**
 * s3c_hsotg_ep_dequeue - dequeue given endpoint
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
2828 2829 2830 2831
static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2832
	struct dwc2_hsotg *hs = hs_ep->parent;
2833 2834
	unsigned long flags;

2835
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2836

2837
	spin_lock_irqsave(&hs->lock, flags);
2838 2839

	if (!on_list(hs_ep, hs_req)) {
2840
		spin_unlock_irqrestore(&hs->lock, flags);
2841 2842 2843 2844
		return -EINVAL;
	}

	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2845
	spin_unlock_irqrestore(&hs->lock, flags);
2846 2847 2848 2849

	return 0;
}

2850 2851 2852 2853 2854
/**
 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
2855 2856 2857
static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2858
	struct dwc2_hsotg *hs = hs_ep->parent;
2859 2860 2861
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
2862
	u32 xfertype;
2863 2864 2865

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

2866 2867 2868 2869 2870 2871 2872 2873 2874
	if (index == 0) {
		if (value)
			s3c_hsotg_stall_ep0(hs);
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890
	if (hs_ep->dir_in) {
		epreg = DIEPCTL(index);
		epctl = readl(hs->regs + epreg);

		if (value) {
			epctl |= DXEPCTL_STALL + DXEPCTL_SNAK;
			if (epctl & DXEPCTL_EPENA)
				epctl |= DXEPCTL_EPDIS;
		} else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
		writel(epctl, hs->regs + epreg);
2891
	} else {
2892

2893 2894
		epreg = DOEPCTL(index);
		epctl = readl(hs->regs + epreg);
2895

2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
		if (value)
			epctl |= DXEPCTL_STALL;
		else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
		writel(epctl, hs->regs + epreg);
2906
	}
2907

2908 2909
	hs_ep->halted = value;

2910 2911 2912
	return 0;
}

2913 2914 2915 2916 2917 2918 2919 2920
/**
 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2921
	struct dwc2_hsotg *hs = hs_ep->parent;
2922 2923 2924 2925 2926 2927 2928 2929 2930 2931
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_sethalt(ep, value);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

2932 2933 2934 2935 2936
static struct usb_ep_ops s3c_hsotg_ep_ops = {
	.enable		= s3c_hsotg_ep_enable,
	.disable	= s3c_hsotg_ep_disable,
	.alloc_request	= s3c_hsotg_ep_alloc_request,
	.free_request	= s3c_hsotg_ep_free_request,
2937
	.queue		= s3c_hsotg_ep_queue_lock,
2938
	.dequeue	= s3c_hsotg_ep_dequeue,
2939
	.set_halt	= s3c_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
2940
	/* note, don't believe we have any call for the fifo routines */
2941 2942
};

2943 2944
/**
 * s3c_hsotg_phy_enable - enable platform phy dev
2945
 * @hsotg: The driver state
2946 2947 2948 2949
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
2950
static void s3c_hsotg_phy_enable(struct dwc2_hsotg *hsotg)
2951 2952 2953 2954
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

	dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2955

2956
	if (hsotg->uphy)
2957
		usb_phy_init(hsotg->uphy);
2958
	else if (hsotg->plat && hsotg->plat->phy_init)
2959
		hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2960 2961 2962 2963
	else {
		phy_init(hsotg->phy);
		phy_power_on(hsotg->phy);
	}
2964 2965 2966 2967
}

/**
 * s3c_hsotg_phy_disable - disable platform phy dev
2968
 * @hsotg: The driver state
2969 2970 2971 2972
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
2973
static void s3c_hsotg_phy_disable(struct dwc2_hsotg *hsotg)
2974 2975 2976
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

2977
	if (hsotg->uphy)
2978
		usb_phy_shutdown(hsotg->uphy);
2979
	else if (hsotg->plat && hsotg->plat->phy_exit)
2980
		hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2981 2982 2983 2984
	else {
		phy_power_off(hsotg->phy);
		phy_exit(hsotg->phy);
	}
2985 2986
}

2987 2988 2989 2990
/**
 * s3c_hsotg_init - initalize the usb core
 * @hsotg: The driver state
 */
2991
static void s3c_hsotg_init(struct dwc2_hsotg *hsotg)
2992
{
2993
	u32 trdtim;
2994 2995
	/* unmask subset of endpoint interrupts */

2996 2997 2998
	writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		hsotg->regs + DIEPMSK);
2999

3000 3001 3002
	writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		hsotg->regs + DOEPMSK);
3003

3004
	writel(0, hsotg->regs + DAINTMSK);
3005 3006

	/* Be in disconnected state until gadget is registered */
3007
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3008 3009 3010 3011

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3012 3013
		readl(hsotg->regs + GRXFSIZ),
		readl(hsotg->regs + GNPTXFSIZ));
3014 3015 3016 3017

	s3c_hsotg_init_fifo(hsotg);

	/* set the PLL on, remove the HNP/SRP and set the PHY */
3018 3019
	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
	writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3020
		(trdtim << GUSBCFG_USBTRDTIM_SHIFT),
3021
		hsotg->regs + GUSBCFG);
3022

3023 3024
	if (using_dma(hsotg))
		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
3025 3026
}

3027 3028 3029 3030 3031 3032 3033 3034
/**
 * s3c_hsotg_udc_start - prepare the udc for work
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
3035 3036
static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
			   struct usb_gadget_driver *driver)
3037
{
3038
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3039
	unsigned long flags;
3040 3041 3042
	int ret;

	if (!hsotg) {
3043
		pr_err("%s: called with no device\n", __func__);
3044 3045 3046 3047 3048 3049 3050 3051
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

3052
	if (driver->max_speed < USB_SPEED_FULL)
3053 3054
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

3055
	if (!driver->setup) {
3056 3057 3058 3059
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

3060
	mutex_lock(&hsotg->init_mutex);
3061 3062 3063 3064
	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
3065
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
3066 3067
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

3068 3069
	clk_enable(hsotg->clk);

3070 3071
	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
3072
	if (ret) {
3073
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
3074 3075 3076
		goto err;
	}

3077
	s3c_hsotg_phy_enable(hsotg);
3078 3079
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
3080

3081 3082
	spin_lock_irqsave(&hsotg->lock, flags);
	s3c_hsotg_init(hsotg);
3083
	s3c_hsotg_core_init_disconnected(hsotg, false);
3084
	hsotg->enabled = 0;
3085 3086
	spin_unlock_irqrestore(&hsotg->lock, flags);

3087
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
3088

3089 3090
	mutex_unlock(&hsotg->init_mutex);

3091 3092 3093
	return 0;

err:
3094
	mutex_unlock(&hsotg->init_mutex);
3095 3096 3097 3098
	hsotg->driver = NULL;
	return ret;
}

3099 3100 3101 3102 3103 3104 3105
/**
 * s3c_hsotg_udc_stop - stop the udc
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
3106
static int s3c_hsotg_udc_stop(struct usb_gadget *gadget)
3107
{
3108
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3109
	unsigned long flags = 0;
3110 3111 3112 3113 3114
	int ep;

	if (!hsotg)
		return -ENODEV;

3115 3116
	mutex_lock(&hsotg->init_mutex);

3117
	/* all endpoints should be shutdown */
3118 3119 3120 3121 3122 3123
	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			s3c_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
		if (hsotg->eps_out[ep])
			s3c_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
	}
3124

3125 3126
	spin_lock_irqsave(&hsotg->lock, flags);

3127
	hsotg->driver = NULL;
3128
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3129
	hsotg->enabled = 0;
3130

3131 3132
	spin_unlock_irqrestore(&hsotg->lock, flags);

3133 3134
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, NULL);
3135 3136
	s3c_hsotg_phy_disable(hsotg);

3137
	regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
3138

3139 3140
	clk_disable(hsotg->clk);

3141 3142
	mutex_unlock(&hsotg->init_mutex);

3143 3144 3145
	return 0;
}

3146 3147 3148 3149 3150 3151
/**
 * s3c_hsotg_gadget_getframe - read the frame number
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
3152 3153 3154 3155 3156
static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
{
	return s3c_hsotg_read_frameno(to_hsotg(gadget));
}

3157 3158 3159 3160 3161 3162 3163 3164 3165
/**
 * s3c_hsotg_pullup - connect/disconnect the USB PHY
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
{
3166
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3167 3168
	unsigned long flags = 0;

3169
	dev_dbg(hsotg->dev, "%s: is_on: %d\n", __func__, is_on);
3170

3171
	mutex_lock(&hsotg->init_mutex);
3172 3173
	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
3174
		clk_enable(hsotg->clk);
3175
		hsotg->enabled = 1;
3176
		s3c_hsotg_core_init_disconnected(hsotg, false);
3177
		s3c_hsotg_core_connect(hsotg);
3178
	} else {
3179
		s3c_hsotg_core_disconnect(hsotg);
3180
		s3c_hsotg_disconnect(hsotg);
3181
		hsotg->enabled = 0;
3182
		clk_disable(hsotg->clk);
3183 3184 3185 3186
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);
3187
	mutex_unlock(&hsotg->init_mutex);
3188 3189 3190 3191

	return 0;
}

3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202
static int s3c_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags;

	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
	spin_lock_irqsave(&hsotg->lock, flags);

	if (is_active) {
		/* Kill any ep0 requests as controller will be reinitialized */
		kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3203
		s3c_hsotg_core_init_disconnected(hsotg, false);
3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
		if (hsotg->enabled)
			s3c_hsotg_core_connect(hsotg);
	} else {
		s3c_hsotg_core_disconnect(hsotg);
		s3c_hsotg_disconnect(hsotg);
	}

	spin_unlock_irqrestore(&hsotg->lock, flags);
	return 0;
}

3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
/**
 * s3c_hsotg_vbus_draw - report bMaxPower field
 * @gadget: The usb gadget state
 * @mA: Amount of current
 *
 * Report how much power the device may consume to the phy.
 */
static int s3c_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);

	if (IS_ERR_OR_NULL(hsotg->uphy))
		return -ENOTSUPP;
	return usb_phy_set_power(hsotg->uphy, mA);
}

3231
static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
3232
	.get_frame	= s3c_hsotg_gadget_getframe,
3233 3234
	.udc_start		= s3c_hsotg_udc_start,
	.udc_stop		= s3c_hsotg_udc_stop,
3235
	.pullup                 = s3c_hsotg_pullup,
3236
	.vbus_session		= s3c_hsotg_vbus_session,
3237
	.vbus_draw		= s3c_hsotg_vbus_draw,
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249
};

/**
 * s3c_hsotg_initep - initialise a single endpoint
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
3250
static void s3c_hsotg_initep(struct dwc2_hsotg *hsotg,
3251
				       struct s3c_hsotg_ep *hs_ep,
3252 3253
				       int epnum,
				       bool dir_in)
3254 3255 3256 3257 3258
{
	char *dir;

	if (epnum == 0)
		dir = "";
3259
	else if (dir_in)
3260
		dir = "in";
3261 3262
	else
		dir = "out";
3263

3264
	hs_ep->dir_in = dir_in;
3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277
	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
3278
	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3279 3280
	hs_ep->ep.ops = &s3c_hsotg_ep_ops;

3281 3282
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
3283 3284 3285 3286
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
3287
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3288 3289 3290 3291
		if (dir_in)
			writel(next, hsotg->regs + DIEPCTL(epnum));
		else
			writel(next, hsotg->regs + DOEPCTL(epnum));
3292 3293 3294
	}
}

3295 3296 3297 3298 3299 3300
/**
 * s3c_hsotg_hw_cfg - read HW configuration registers
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
3301
static int s3c_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3302
{
3303 3304 3305 3306
	u32 cfg;
	u32 ep_type;
	u32 i;

3307
	/* check hardware configuration */
3308

3309
	cfg = readl(hsotg->regs + GHWCFG2);
3310
	hsotg->num_of_eps = (cfg >> GHWCFG2_NUM_DEV_EP_SHIFT) & 0xF;
3311 3312
	/* Add ep0 */
	hsotg->num_of_eps++;
3313

3314 3315 3316 3317 3318 3319 3320 3321
	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct s3c_hsotg_ep),
								GFP_KERNEL);
	if (!hsotg->eps_in[0])
		return -ENOMEM;
	/* Same s3c_hsotg_ep is used in both directions for ep0 */
	hsotg->eps_out[0] = hsotg->eps_in[0];

	cfg = readl(hsotg->regs + GHWCFG1);
3322
	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
		ep_type = cfg & 3;
		/* Direction in or both */
		if (!(ep_type & 2)) {
			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
				sizeof(struct s3c_hsotg_ep), GFP_KERNEL);
			if (!hsotg->eps_in[i])
				return -ENOMEM;
		}
		/* Direction out or both */
		if (!(ep_type & 1)) {
			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
				sizeof(struct s3c_hsotg_ep), GFP_KERNEL);
			if (!hsotg->eps_out[i])
				return -ENOMEM;
		}
	}

	cfg = readl(hsotg->regs + GHWCFG3);
3341
	hsotg->fifo_mem = (cfg >> GHWCFG3_DFIFO_DEPTH_SHIFT);
3342

3343
	cfg = readl(hsotg->regs + GHWCFG4);
3344
	hsotg->dedicated_fifos = (cfg >> GHWCFG4_DED_FIFO_SHIFT) & 1;
3345

3346 3347 3348 3349
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
3350
	return 0;
3351 3352
}

3353 3354 3355 3356
/**
 * s3c_hsotg_dump - dump state of the udc
 * @param: The device state
 */
3357
static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg)
3358
{
M
Mark Brown 已提交
3359
#ifdef DEBUG
3360 3361 3362 3363 3364 3365
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3366 3367
		 readl(regs + DCFG), readl(regs + DCTL),
		 readl(regs + DIEPMSK));
3368

3369 3370
	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
		 readl(regs + GAHBCFG), readl(regs + GHWCFG1));
3371 3372

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3373
		 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3374 3375 3376

	/* show periodic fifo settings */

3377
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3378
		val = readl(regs + DPTXFSIZN(idx));
3379
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3380 3381
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
3382 3383
	}

3384
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3385 3386
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3387 3388 3389
			 readl(regs + DIEPCTL(idx)),
			 readl(regs + DIEPTSIZ(idx)),
			 readl(regs + DIEPDMA(idx)));
3390

3391
		val = readl(regs + DOEPCTL(idx));
3392 3393
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3394 3395 3396
			 idx, readl(regs + DOEPCTL(idx)),
			 readl(regs + DOEPTSIZ(idx)),
			 readl(regs + DOEPDMA(idx)));
3397 3398 3399 3400

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3401
		 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
3402
#endif
3403 3404
}

3405 3406 3407 3408
#ifdef CONFIG_OF
static void s3c_hsotg_of_probe(struct dwc2_hsotg *hsotg)
{
	struct device_node *np = hsotg->dev->of_node;
3409 3410
	u32 len = 0;
	u32 i = 0;
3411 3412 3413

	/* Enable dma if requested in device tree */
	hsotg->g_using_dma = of_property_read_bool(np, "g-use-dma");
3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444

	/*
	* Register TX periodic fifo size per endpoint.
	* EP0 is excluded since it has no fifo configuration.
	*/
	if (!of_find_property(np, "g-tx-fifo-size", &len))
		goto rx_fifo;

	len /= sizeof(u32);

	/* Read tx fifo sizes other than ep0 */
	if (of_property_read_u32_array(np, "g-tx-fifo-size",
						&hsotg->g_tx_fifo_sz[1], len))
		goto rx_fifo;

	/* Add ep0 */
	len++;

	/* Make remaining TX fifos unavailable */
	if (len < MAX_EPS_CHANNELS) {
		for (i = len; i < MAX_EPS_CHANNELS; i++)
			hsotg->g_tx_fifo_sz[i] = 0;
	}

rx_fifo:
	/* Register RX fifo size */
	of_property_read_u32(np, "g-rx-fifo-size", &hsotg->g_rx_fifo_sz);

	/* Register NPTX fifo size */
	of_property_read_u32(np, "g-np-tx-fifo-size",
						&hsotg->g_np_g_tx_fifo_sz);
3445 3446 3447 3448 3449
}
#else
static inline void s3c_hsotg_of_probe(struct dwc2_hsotg *hsotg) { }
#endif

3450
/**
3451 3452 3453
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
 * @irq: The IRQ number for the controller.
3454
 */
3455
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3456
{
3457 3458
	struct device *dev = hsotg->dev;
	struct s3c_hsotg_plat *plat = dev->platform_data;
3459 3460
	int epnum;
	int ret;
3461
	int i;
3462
	u32 p_tx_fifo[] = DWC2_G_P_LEGACY_TX_FIFO_SIZE;
3463

3464 3465 3466
	/* Set default UTMI width */
	hsotg->phyif = GUSBCFG_PHYIF16;

3467 3468
	s3c_hsotg_of_probe(hsotg);

3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481
	/* Initialize to legacy fifo configuration values */
	hsotg->g_rx_fifo_sz = 2048;
	hsotg->g_np_g_tx_fifo_sz = 1024;
	memcpy(&hsotg->g_tx_fifo_sz[1], p_tx_fifo, sizeof(p_tx_fifo));
	/* Device tree specific probe */
	s3c_hsotg_of_probe(hsotg);
	/* Dump fifo information */
	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
						hsotg->g_np_g_tx_fifo_sz);
	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->g_rx_fifo_sz);
	for (i = 0; i < MAX_EPS_CHANNELS; i++)
		dev_dbg(dev, "Periodic TXFIFO%2d size: %d\n", i,
						hsotg->g_tx_fifo_sz[i]);
3482
	/*
3483 3484
	 * If platform probe couldn't find a generic PHY or an old style
	 * USB PHY, fall back to pdata
3485
	 */
3486 3487 3488 3489 3490 3491 3492 3493 3494
	if (IS_ERR_OR_NULL(hsotg->phy) && IS_ERR_OR_NULL(hsotg->uphy)) {
		plat = dev_get_platdata(dev);
		if (!plat) {
			dev_err(dev,
			"no platform data or transceiver defined\n");
			return -EPROBE_DEFER;
		}
		hsotg->plat = plat;
	} else if (hsotg->phy) {
3495 3496 3497 3498
		/*
		 * If using the generic PHY framework, check if the PHY bus
		 * width is 8-bit and set the phyif appropriately.
		 */
3499
		if (phy_get_bus_width(hsotg->phy) == 8)
3500 3501
			hsotg->phyif = GUSBCFG_PHYIF8;
	}
3502

3503
	hsotg->clk = devm_clk_get(dev, "otg");
3504
	if (IS_ERR(hsotg->clk)) {
3505
		hsotg->clk = NULL;
3506
		dev_dbg(dev, "cannot get otg clock\n");
3507 3508
	}

3509
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3510 3511 3512 3513 3514
	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
	hsotg->gadget.name = dev_name(dev);

	/* reset the system */

3515 3516 3517 3518 3519 3520
	ret = clk_prepare_enable(hsotg->clk);
	if (ret) {
		dev_err(dev, "failed to enable otg clk\n");
		goto err_clk;
	}

3521

3522 3523 3524 3525 3526
	/* regulators */

	for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
		hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];

3527
	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3528 3529 3530
				 hsotg->supplies);
	if (ret) {
		dev_err(dev, "failed to request supplies: %d\n", ret);
3531
		goto err_clk;
3532 3533 3534 3535 3536 3537
	}

	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);

	if (ret) {
3538
		dev_err(dev, "failed to enable supplies: %d\n", ret);
3539
		goto err_clk;
3540 3541
	}

3542 3543
	/* usb phy enable */
	s3c_hsotg_phy_enable(hsotg);
3544

3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
	/*
	 * Force Device mode before initialization.
	 * This allows correctly configuring fifo for device mode.
	 */
	__bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEHOSTMODE);
	__orr32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);

	/*
	 * According to Synopsys databook, this sleep is needed for the force
	 * device mode to take effect.
	 */
	msleep(25);

3558
	s3c_hsotg_corereset(hsotg);
3559 3560 3561 3562 3563 3564
	ret = s3c_hsotg_hw_cfg(hsotg);
	if (ret) {
		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
		goto err_clk;
	}

3565
	s3c_hsotg_init(hsotg);
3566

3567 3568 3569
	/* Switch back to default configuration */
	__bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);

3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
	if (!hsotg->ctrl_buff) {
		dev_err(dev, "failed to allocate ctrl request buff\n");
		ret = -ENOMEM;
		goto err_supplies;
	}

	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
	if (!hsotg->ep0_buff) {
		dev_err(dev, "failed to allocate ctrl reply buff\n");
		ret = -ENOMEM;
		goto err_supplies;
	}

3586 3587
	ret = devm_request_irq(hsotg->dev, irq, s3c_hsotg_irq, IRQF_SHARED,
				dev_name(hsotg->dev), hsotg);
3588 3589 3590 3591 3592
	if (ret < 0) {
		s3c_hsotg_phy_disable(hsotg);
		clk_disable_unprepare(hsotg->clk);
		regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				       hsotg->supplies);
3593
		dev_err(dev, "cannot claim IRQ for gadget\n");
3594
		goto err_supplies;
3595 3596
	}

3597 3598 3599 3600
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
3601
		ret = -EINVAL;
3602 3603 3604 3605 3606 3607
		goto err_supplies;
	}

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3608
	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
3609 3610 3611

	/* allocate EP0 request */

3612
	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
3613 3614 3615
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
3616
		ret = -ENOMEM;
3617
		goto err_supplies;
3618
	}
3619 3620

	/* initialise the endpoints now the core has been initialised */
3621 3622 3623 3624 3625 3626 3627 3628
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
		if (hsotg->eps_in[epnum])
			s3c_hsotg_initep(hsotg, hsotg->eps_in[epnum],
								epnum, 1);
		if (hsotg->eps_out[epnum])
			s3c_hsotg_initep(hsotg, hsotg->eps_out[epnum],
								epnum, 0);
	}
3629

3630
	/* disable power and clock */
3631
	s3c_hsotg_phy_disable(hsotg);
3632 3633 3634 3635

	ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
	if (ret) {
3636
		dev_err(dev, "failed to disable supplies: %d\n", ret);
3637
		goto err_supplies;
3638 3639
	}

3640
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3641
	if (ret)
3642
		goto err_supplies;
3643

3644 3645 3646 3647
	s3c_hsotg_dump(hsotg);

	return 0;

3648
err_supplies:
3649
	s3c_hsotg_phy_disable(hsotg);
3650
err_clk:
3651
	clk_disable_unprepare(hsotg->clk);
3652

3653 3654
	return ret;
}
3655
EXPORT_SYMBOL_GPL(dwc2_gadget_init);
3656

3657 3658 3659 3660
/**
 * s3c_hsotg_remove - remove function for hsotg driver
 * @pdev: The platform information for the driver
 */
3661
int s3c_hsotg_remove(struct dwc2_hsotg *hsotg)
3662
{
3663
	usb_del_gadget_udc(&hsotg->gadget);
3664
	clk_disable_unprepare(hsotg->clk);
3665

3666 3667
	return 0;
}
3668
EXPORT_SYMBOL_GPL(s3c_hsotg_remove);
3669

3670
int s3c_hsotg_suspend(struct dwc2_hsotg *hsotg)
3671 3672 3673 3674
{
	unsigned long flags;
	int ret = 0;

3675 3676 3677
	if (hsotg->lx_state != DWC2_L0)
		return ret;

3678 3679
	mutex_lock(&hsotg->init_mutex);

3680 3681 3682
	if (hsotg->driver) {
		int ep;

3683 3684 3685
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

3686 3687 3688 3689 3690 3691
		spin_lock_irqsave(&hsotg->lock, flags);
		if (hsotg->enabled)
			s3c_hsotg_core_disconnect(hsotg);
		s3c_hsotg_disconnect(hsotg);
		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
		spin_unlock_irqrestore(&hsotg->lock, flags);
3692

3693
		s3c_hsotg_phy_disable(hsotg);
3694

3695 3696 3697 3698 3699 3700
		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
			if (hsotg->eps_in[ep])
				s3c_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
			if (hsotg->eps_out[ep])
				s3c_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
		}
3701 3702 3703

		ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
					     hsotg->supplies);
3704
		clk_disable(hsotg->clk);
3705 3706
	}

3707 3708
	mutex_unlock(&hsotg->init_mutex);

3709 3710
	return ret;
}
3711
EXPORT_SYMBOL_GPL(s3c_hsotg_suspend);
3712

3713
int s3c_hsotg_resume(struct dwc2_hsotg *hsotg)
3714 3715 3716 3717
{
	unsigned long flags;
	int ret = 0;

3718 3719 3720
	if (hsotg->lx_state == DWC2_L2)
		return ret;

3721 3722
	mutex_lock(&hsotg->init_mutex);

3723 3724 3725
	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
3726 3727

		clk_enable(hsotg->clk);
3728
		ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3729
					    hsotg->supplies);
3730

3731
		s3c_hsotg_phy_enable(hsotg);
3732

3733
		spin_lock_irqsave(&hsotg->lock, flags);
3734
		s3c_hsotg_core_init_disconnected(hsotg, false);
3735 3736 3737 3738
		if (hsotg->enabled)
			s3c_hsotg_core_connect(hsotg);
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
3739
	mutex_unlock(&hsotg->init_mutex);
3740 3741 3742

	return ret;
}
3743
EXPORT_SYMBOL_GPL(s3c_hsotg_resume);