gadget.c 90.5 KB
Newer Older
1
/**
2 3
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
15
 */
16 17 18 19 20 21 22 23 24 25 26

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
27
#include <linux/slab.h>
28
#include <linux/clk.h>
29
#include <linux/regulator/consumer.h>
30
#include <linux/of_platform.h>
31
#include <linux/phy/phy.h>
32 33 34

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
35
#include <linux/usb/phy.h>
36
#include <linux/platform_data/s3c-hsotg.h>
37

38
#include "core.h"
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

/* conversion functions */
static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
{
	return container_of(req, struct s3c_hsotg_req, req);
}

static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
{
	return container_of(ep, struct s3c_hsotg_ep, ep);
}

static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
{
	return container_of(gadget, struct s3c_hsotg, gadget);
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) | val, ptr);
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) & ~val, ptr);
}

/* forward decleration of functions */
static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
 * Until this issue is sorted out, we always return 'false'.
 */
static inline bool using_dma(struct s3c_hsotg *hsotg)
{
	return false;	/* support is not complete */
}

/**
 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
{
100
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
101 102 103 104 105 106
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
107
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
108 109 110 111 112 113 114 115 116 117
	}
}

/**
 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
{
118
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
119 120 121 122 123
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
124
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
}

/**
 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
149
	daint = readl(hsotg->regs + DAINTMSK);
150 151 152 153
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
154
	writel(daint, hsotg->regs + DAINTMSK);
155 156 157 158 159 160 161 162 163
	local_irq_restore(flags);
}

/**
 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
 * @hsotg: The device instance.
 */
static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
{
164 165 166
	unsigned int ep;
	unsigned int addr;
	unsigned int size;
167
	int timeout;
168 169
	u32 val;

170
	/* set FIFO sizes to 2048/1024 */
171

172
	writel(2048, hsotg->regs + GRXFSIZ);
173 174
	writel((2048 << FIFOSIZE_STARTADDR_SHIFT) |
		(1024 << FIFOSIZE_DEPTH_SHIFT), hsotg->regs + GNPTXFSIZ);
175

176 177
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
178 179
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
180 181
	 * known values.
	 */
182 183 184 185 186

	/* start at the end of the GNPTXFSIZ, rounded up */
	addr = 2048 + 1024;
	size = 768;

187 188 189 190
	/*
	 * currently we allocate TX FIFOs for all possible endpoints,
	 * and assume that they are all the same size.
	 */
191

192
	for (ep = 1; ep <= 15; ep++) {
193
		val = addr;
194
		val |= size << FIFOSIZE_DEPTH_SHIFT;
195 196
		addr += size;

197
		writel(val, hsotg->regs + DPTXFSIZN(ep));
198
	}
199

200 201 202 203
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
204

205 206
	writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
207 208 209 210

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
211
		val = readl(hsotg->regs + GRSTCTL);
212

213
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
214 215 216 217 218 219 220 221 222 223 224 225
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
226 227 228 229 230 231 232 233
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
234 235
static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
						      gfp_t flags)
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
{
	struct s3c_hsotg_req *req;

	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
{
	return hs_ep->periodic;
}

/**
 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
 * of a request to ensure the buffer is ready for access by the caller.
268
 */
269 270 271 272 273 274 275 276 277 278
static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

279
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
}

/**
 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
297
 */
298 299 300 301 302
static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	bool periodic = is_ep_periodic(hs_ep);
303
	u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
304 305 306 307 308
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
309
	int max_transfer;
310 311 312 313 314 315 316

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

317
	if (periodic && !hsotg->dedicated_fifos) {
318
		u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
319 320 321
		int size_left;
		int size_done;

322 323 324 325
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
326

327
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
328

329 330
		/*
		 * if shared fifo, we cannot write anything until the
331 332 333
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
334
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
335 336 337
			return -ENOSPC;
		}

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
355
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
356 357
			return -ENOSPC;
		}
358
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
359
		can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
360 361 362

		can_write &= 0xffff;
		can_write *= 4;
363
	} else {
364
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
365 366 367 368
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

369
			s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
370 371 372
			return -ENOSPC;
		}

373
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
374
		can_write *= 4;	/* fifo size is in 32bit quantities. */
375 376
	}

377 378 379 380
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
		 __func__, gnptxsts, can_write, to_write, max_transfer);
381

382 383
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
384 385 386
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
387
	if (can_write > 512 && !periodic)
388 389
		can_write = 512;

390 391
	/*
	 * limit the write to one max-packet size worth of data, but allow
392
	 * the transfer to return that it did not run out of fifo space
393 394
	 * doing it.
	 */
395 396
	if (to_write > max_transfer) {
		to_write = max_transfer;
397

398 399 400
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
401 402
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
403 404
	}

405 406 407 408
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
409
		pkt_round = to_write % max_transfer;
410

411 412
		/*
		 * Round the write down to an
413 414 415 416 417 418 419 420 421
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

422 423 424 425
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
426

427 428 429
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
430 431
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

449
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
468 469
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
470
	} else {
471
		maxsize = 64+64;
472
		if (hs_ep->dir_in)
473
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
474
		else
475 476 477 478 479 480 481
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

482 483 484 485
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

/**
 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req,
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

532 533
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
534 535 536 537 538

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
		__func__, readl(hsotg->regs + epctrl_reg), index,
		hs_ep->dir_in ? "in" : "out");

539 540 541
	/* If endpoint is stalled, we will restart request later */
	ctrl = readl(hsotg->regs + epctrl_reg);

542
	if (ctrl & DXEPCTL_STALL) {
543 544 545 546
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

547
	length = ureq->length - ureq->actual;
548 549
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
550 551
	if (0)
		dev_dbg(hsotg->dev,
552
			"REQ buf %p len %d dma %pad noi=%d zp=%d snok=%d\n",
553
			ureq->buf, length, &ureq->dma,
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
			ureq->no_interrupt, ureq->zero, ureq->short_not_ok);

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

575 576 577 578 579
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

580
	if (dir_in && index != 0)
581
		if (hs_ep->isochronous)
582
			epsize = DXEPTSIZ_MC(packets);
583
		else
584
			epsize = DXEPTSIZ_MC(1);
585 586 587 588
	else
		epsize = 0;

	if (index != 0 && ureq->zero) {
589 590 591 592
		/*
		 * test for the packets being exactly right for the
		 * transfer
		 */
593 594 595 596 597

		if (length == (packets * hs_ep->ep.maxpacket))
			packets++;
	}

598 599
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
600 601 602 603 604 605 606 607 608 609

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
	writel(epsize, hsotg->regs + epsize_reg);

610
	if (using_dma(hsotg) && !continuing) {
611 612
		unsigned int dma_reg;

613 614 615 616
		/*
		 * write DMA address to control register, buffer already
		 * synced by s3c_hsotg_ep_queue().
		 */
617

618
		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
619 620
		writel(ureq->dma, hsotg->regs + dma_reg);

621
		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
622
			__func__, &ureq->dma, dma_reg);
623 624
	}

625 626
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
627 628 629 630 631 632 633

	dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup);

	/* For Setup request do not clear NAK */
	if (hsotg->setup && index == 0)
		hsotg->setup = 0;
	else
634
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
635

636 637 638 639

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

640 641
	/*
	 * set these, it seems that DMA support increments past the end
642
	 * of the packet buffer so we need to calculate the length from
643 644
	 * this information.
	 */
645 646 647 648 649 650 651 652 653 654
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

655 656 657 658
	/*
	 * clear the INTknTXFEmpMsk when we start request, more as a aide
	 * to debugging to see what is going on.
	 */
659
	if (dir_in)
660
		writel(DIEPMSK_INTKNTXFEMPMSK,
661
		       hsotg->regs + DIEPINT(index));
662

663 664 665 666
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
667 668

	/* check ep is enabled */
669
	if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
670
		dev_warn(hsotg->dev,
671
			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
672 673
			 index, readl(hsotg->regs + epctrl_reg));

674
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
675
		__func__, readl(hsotg->regs + epctrl_reg));
676 677 678

	/* enable ep interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
679 680 681 682 683 684 685 686 687 688 689 690 691
}

/**
 * s3c_hsotg_map_dma - map the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
692
 */
693 694 695 696 697
static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
			     struct s3c_hsotg_ep *hs_ep,
			     struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
698
	int ret;
699 700 701 702 703

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

704 705 706
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	bool first;

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
		int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
		if (ret)
			return ret;
	}

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

	if (first)
		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);

	return 0;
}

750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
				      struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);

	kfree(hs_req);
}

/**
 * s3c_hsotg_complete_oursetup - setup completion callback
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
					struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

	s3c_hsotg_ep_free_request(ep, req);
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
799
 */
800 801 802 803 804 805 806 807 808 809
static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
					   u32 windex)
{
	struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

810
	if (idx > hsotg->num_of_eps)
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
		return NULL;

	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

/**
 * s3c_hsotg_send_reply - send reply to control request
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *ep,
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
	req->zero = 1; /* always do zero-length final transfer */
	req->complete = s3c_hsotg_complete_oursetup;

	if (length)
		memcpy(req->buf, buff, length);
	else
		ep->sent_zlp = 1;

	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
 * s3c_hsotg_process_req_status - process request GET_STATUS
 * @hsotg: The device state
 * @ctrl: USB control request
 */
static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
					struct usb_ctrlrequest *ctrl)
{
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	struct s3c_hsotg_ep *ep;
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);

922 923 924 925 926 927 928 929 930 931 932 933 934 935
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
{
	if (list_empty(&hs_ep->queue))
		return NULL;

	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
}

936 937 938 939 940 941 942 943
/**
 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
 * @hsotg: The device state
 * @ctrl: USB control request
 */
static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
					 struct usb_ctrlrequest *ctrl)
{
944
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
945 946
	struct s3c_hsotg_req *hs_req;
	bool restart;
947 948
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
	struct s3c_hsotg_ep *ep;
949
	int ret;
950
	bool halted;
951 952 953 954 955 956 957 958 959 960 961 962 963 964

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
				__func__, le16_to_cpu(ctrl->wIndex));
			return -ENOENT;
		}

		switch (le16_to_cpu(ctrl->wValue)) {
		case USB_ENDPOINT_HALT:
965 966
			halted = ep->halted;

967
			s3c_hsotg_ep_sethalt(&ep->ep, set);
968 969 970 971 972 973 974

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
975

976 977 978 979 980 981
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
					hs_req->req.complete(&ep->ep,
							     &hs_req->req);
				}

				/* If we have pending request, then start it */
				restart = !list_empty(&ep->queue);
				if (restart) {
					hs_req = get_ep_head(ep);
					s3c_hsotg_start_req(hsotg, ep,
							    hs_req, false);
				}
			}

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
			break;

		default:
			return -ENOENT;
		}
	} else
		return -ENOENT;  /* currently only deal with endpoint */

	return 1;
}

1014
static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
1015
static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg);
1016

1017 1018 1019 1020 1021 1022
/**
 * s3c_hsotg_stall_ep0 - stall ep0
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1023 1024
static void s3c_hsotg_stall_ep0(struct s3c_hsotg *hsotg)
{
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

	ctrl = readl(hsotg->regs + reg);
1038 1039
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1040 1041 1042
	writel(ctrl, hsotg->regs + reg);

	dev_dbg(hsotg->dev,
1043
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1044 1045 1046 1047 1048 1049 1050 1051 1052
		ctrl, reg, readl(hsotg->regs + reg));

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
	 s3c_hsotg_enqueue_setup(hsotg);
}

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
/**
 * s3c_hsotg_process_control - process a control request
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
				      struct usb_ctrlrequest *ctrl)
{
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	int ret = 0;
	u32 dcfg;

	ep0->sent_zlp = 0;

	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
		 ctrl->bRequest, ctrl->bRequestType,
		 ctrl->wValue, ctrl->wLength);

1075 1076 1077 1078
	/*
	 * record the direction of the request, for later use when enquing
	 * packets onto EP0.
	 */
1079 1080 1081 1082

	ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
	dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);

1083 1084 1085 1086
	/*
	 * if we've no data with this request, then the last part of the
	 * transaction is going to implicitly be IN.
	 */
1087 1088 1089 1090 1091 1092
	if (ctrl->wLength == 0)
		ep0->dir_in = 1;

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1093
			s3c_hsotg_disconnect(hsotg);
1094
			dcfg = readl(hsotg->regs + DCFG);
1095
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1096 1097
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1098
			writel(dcfg, hsotg->regs + DCFG);
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			return;

		case USB_REQ_GET_STATUS:
			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1119
		spin_unlock(&hsotg->lock);
1120
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1121
		spin_lock(&hsotg->lock);
1122 1123 1124 1125
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1126 1127
	/*
	 * the request is either unhandlable, or is not formatted correctly
1128 1129 1130
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1131 1132
	if (ret < 0)
		s3c_hsotg_stall_ep0(hsotg);
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
}

/**
 * s3c_hsotg_complete_setup - completion of a setup transfer
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
static void s3c_hsotg_complete_setup(struct usb_ep *ep,
				     struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1154
	spin_lock(&hsotg->lock);
1155 1156 1157 1158
	if (req->actual == 0)
		s3c_hsotg_enqueue_setup(hsotg);
	else
		s3c_hsotg_process_control(hsotg, req->buf);
1159
	spin_unlock(&hsotg->lock);
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
}

/**
 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
{
	struct usb_request *req = hsotg->ctrl_req;
	struct s3c_hsotg_req *hs_req = our_req(req);
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
	req->complete = s3c_hsotg_complete_setup;

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

	hsotg->eps[0].dir_in = 0;

	ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1192 1193 1194 1195
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	}
}

/**
 * s3c_hsotg_complete_request - complete a request given to us
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1211
 */
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
				       struct s3c_hsotg_ep *hs_ep,
				       struct s3c_hsotg_req *hs_req,
				       int result)
{
	bool restart;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1227 1228 1229 1230
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

	if (using_dma(hsotg))
		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1241 1242 1243 1244
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1245 1246

	if (hs_req->req.complete) {
1247
		spin_unlock(&hsotg->lock);
1248
		hs_req->req.complete(&hs_ep->ep, &hs_req->req);
1249
		spin_lock(&hsotg->lock);
1250 1251
	}

1252 1253
	/*
	 * Look to see if there is anything else to do. Note, the completion
1254
	 * of the previous request may have caused a new request to be started
1255 1256
	 * so be careful when doing this.
	 */
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280

	if (!hs_ep->req && result >= 0) {
		restart = !list_empty(&hs_ep->queue);
		if (restart) {
			hs_req = get_ep_head(hs_ep);
			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		}
	}
}

/**
 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1281
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1282 1283 1284 1285
	int to_read;
	int max_req;
	int read_ptr;

1286

1287
	if (!hs_req) {
1288
		u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1289 1290 1291
		int ptr;

		dev_warn(hsotg->dev,
1292
			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
			(void)readl(fifo);

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1306 1307 1308
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1309
	if (to_read > max_req) {
1310 1311
		/*
		 * more data appeared than we where willing
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1323 1324 1325 1326
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1327
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
}

/**
 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
 * @hsotg: The device instance
 * @req: The request currently on this endpoint
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1339
 * currently believed that we do not need to wait for any space in
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
 * the TxFIFO.
 */
static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
			       struct s3c_hsotg_req *req)
{
	u32 ctrl;

	if (!req) {
		dev_warn(hsotg->dev, "%s: no request?\n", __func__);
		return;
	}

	if (req->req.length == 0) {
		hsotg->eps[0].sent_zlp = 1;
		s3c_hsotg_enqueue_setup(hsotg);
		return;
	}

	hsotg->eps[0].dir_in = 1;
	hsotg->eps[0].sent_zlp = 1;

	dev_dbg(hsotg->dev, "sending zero-length packet\n");

	/* issue a zero-sized packet to terminate this */
1364 1365
	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
	       DXEPTSIZ_XFERSIZE(0), hsotg->regs + DIEPTSIZ(0));
1366

1367
	ctrl = readl(hsotg->regs + DIEPCTL0);
1368 1369 1370
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
1371
	writel(ctrl, hsotg->regs + DIEPCTL0);
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
}

/**
 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 * @was_setup: Set if processing a SetupDone event.
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1383
 */
1384 1385 1386
static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
				     int epnum, bool was_setup)
{
1387
	u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1388 1389 1390
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
	struct s3c_hsotg_req *hs_req = hs_ep->req;
	struct usb_request *req = &hs_req->req;
1391
	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

	if (using_dma(hsotg)) {
		unsigned size_done;

1402 1403
		/*
		 * Calculate the size of the transfer by checking how much
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1417 1418 1419 1420
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
		return;
1421 1422 1423 1424 1425 1426
	} else if (epnum == 0) {
		/*
		 * After was_setup = 1 =>
		 * set CNAK for non Setup requests
		 */
		hsotg->setup = was_setup ? 0 : 1;
1427 1428
	}

1429 1430 1431 1432
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1433 1434 1435 1436
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1437 1438 1439
	}

	if (epnum == 0) {
1440 1441 1442 1443
		/*
		 * Condition req->complete != s3c_hsotg_complete_setup says:
		 * send ZLP when we have an asynchronous request from gadget
		 */
1444 1445 1446 1447
		if (!was_setup && req->complete != s3c_hsotg_complete_setup)
			s3c_hsotg_send_zlp(hsotg, hs_req);
	}

1448
	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1449 1450 1451 1452 1453 1454 1455
}

/**
 * s3c_hsotg_read_frameno - read current frame number
 * @hsotg: The device instance
 *
 * Return the current frame number
1456
 */
1457 1458 1459 1460
static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
{
	u32 dsts;

1461 1462 1463
	dsts = readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475

	return dsts;
}

/**
 * s3c_hsotg_handle_rx - RX FIFO has data
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1476
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1477 1478 1479 1480 1481 1482 1483
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1484
static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
1485
{
1486
	u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1487 1488 1489 1490
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

1491 1492
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
1493

1494 1495
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
1496 1497 1498 1499 1500

	if (1)
		dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
			__func__, grxstsr, size, epnum);

1501 1502 1503
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1504 1505
		break;

1506
	case GRXSTS_PKTSTS_OUTDONE:
1507 1508 1509 1510 1511 1512 1513
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg));

		if (!using_dma(hsotg))
			s3c_hsotg_handle_outdone(hsotg, epnum, false);
		break;

1514
	case GRXSTS_PKTSTS_SETUPDONE:
1515 1516 1517
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1518
			readl(hsotg->regs + DOEPCTL(0)));
1519 1520 1521 1522

		s3c_hsotg_handle_outdone(hsotg, epnum, true);
		break;

1523
	case GRXSTS_PKTSTS_OUTRX:
1524 1525 1526
		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

1527
	case GRXSTS_PKTSTS_SETUPRX:
1528 1529 1530
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1531
			readl(hsotg->regs + DOEPCTL(0)));
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547

		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

		s3c_hsotg_dump(hsotg);
		break;
	}
}

/**
 * s3c_hsotg_ep0_mps - turn max packet size into register setting
 * @mps: The maximum packet size in bytes.
1548
 */
1549 1550 1551 1552
static u32 s3c_hsotg_ep0_mps(unsigned int mps)
{
	switch (mps) {
	case 64:
1553
		return D0EPCTL_MPS_64;
1554
	case 32:
1555
		return D0EPCTL_MPS_32;
1556
	case 16:
1557
		return D0EPCTL_MPS_16;
1558
	case 8:
1559
		return D0EPCTL_MPS_8;
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
				       unsigned int ep, unsigned int mps)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
	void __iomem *regs = hsotg->regs;
	u32 mpsval;
1582
	u32 mcval;
1583 1584 1585 1586 1587 1588 1589
	u32 reg;

	if (ep == 0) {
		/* EP0 is a special case */
		mpsval = s3c_hsotg_ep0_mps(mps);
		if (mpsval > 3)
			goto bad_mps;
1590
		hs_ep->ep.maxpacket = mps;
1591
		hs_ep->mc = 1;
1592
	} else {
1593
		mpsval = mps & DXEPCTL_MPS_MASK;
1594
		if (mpsval > 1024)
1595
			goto bad_mps;
1596 1597 1598 1599
		mcval = ((mps >> 11) & 0x3) + 1;
		hs_ep->mc = mcval;
		if (mcval > 3)
			goto bad_mps;
1600
		hs_ep->ep.maxpacket = mpsval;
1601 1602
	}

1603 1604 1605 1606
	/*
	 * update both the in and out endpoint controldir_ registers, even
	 * if one of the directions may not be in use.
	 */
1607

1608
	reg = readl(regs + DIEPCTL(ep));
1609
	reg &= ~DXEPCTL_MPS_MASK;
1610
	reg |= mpsval;
1611
	writel(reg, regs + DIEPCTL(ep));
1612

1613
	if (ep) {
1614
		reg = readl(regs + DOEPCTL(ep));
1615
		reg &= ~DXEPCTL_MPS_MASK;
1616
		reg |= mpsval;
1617
		writel(reg, regs + DOEPCTL(ep));
1618
	}
1619 1620 1621 1622 1623 1624 1625

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
/**
 * s3c_hsotg_txfifo_flush - flush Tx FIFO
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
static void s3c_hsotg_txfifo_flush(struct s3c_hsotg *hsotg, unsigned int idx)
{
	int timeout;
	int val;

1636
	writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1637
		hsotg->regs + GRSTCTL);
1638 1639 1640 1641 1642

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
1643
		val = readl(hsotg->regs + GRSTCTL);
1644

1645
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1646 1647 1648 1649 1650 1651
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
1652
			break;
1653 1654 1655 1656 1657
		}

		udelay(1);
	}
}
1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671

/**
 * s3c_hsotg_trytx - check to see if anything needs transmitting
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
			   struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;

1672 1673 1674 1675 1676 1677 1678 1679
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
			s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
					     hs_ep->dir_in, 0);
1680
		return 0;
1681
	}
1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

	return 0;
}

/**
 * s3c_hsotg_complete_in - complete IN transfer
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
				  struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1704
	u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1705 1706 1707 1708 1709 1710 1711
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

1712 1713 1714
	/* Finish ZLP handling for IN EP0 transactions */
	if (hsotg->eps[0].sent_zlp) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
1715
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1716 1717 1718
		return;
	}

1719 1720
	/*
	 * Calculate the size of the transfer by checking how much is left
1721 1722 1723 1724 1725 1726 1727 1728
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

1729
	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1730 1731 1732 1733 1734 1735 1736 1737 1738

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

	/*
	 * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0
	 * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B
	 * ,256B ... ), after last MPS sized packet send IN ZLP packet to
	 * inform the host that no more data is available.
	 * The state of req.zero member is checked to be sure that the value to
	 * send is smaller than wValue expected from host.
	 * Check req.length to NOT send another ZLP when the current one is
	 * under completion (the one for which this completion has been called).
	 */
	if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero &&
	    hs_req->req.length == hs_req->req.actual &&
	    !(hs_req->req.length % hs_ep->ep.maxpacket)) {

		dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n");
		s3c_hsotg_send_zlp(hsotg, hs_req);
1758

1759 1760
		return;
	}
1761 1762 1763 1764 1765

	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
	} else
1766
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1767 1768 1769 1770 1771 1772 1773 1774 1775
}

/**
 * s3c_hsotg_epint - handle an in/out endpoint interrupt
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
1776
 */
1777 1778 1779 1780
static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
			    int dir_in)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1781 1782 1783
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1784
	u32 ints;
1785
	u32 ctrl;
1786 1787

	ints = readl(hsotg->regs + epint_reg);
1788
	ctrl = readl(hsotg->regs + epctl_reg);
1789

1790 1791 1792
	/* Clear endpoint interrupts */
	writel(ints, hsotg->regs + epint_reg);

1793 1794 1795
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

1796
	if (ints & DXEPINT_XFERCOMPL) {
1797
		if (hs_ep->isochronous && hs_ep->interval == 1) {
1798 1799
			if (ctrl & DXEPCTL_EOFRNUM)
				ctrl |= DXEPCTL_SETEVENFR;
1800
			else
1801
				ctrl |= DXEPCTL_SETODDFR;
1802 1803 1804
			writel(ctrl, hsotg->regs + epctl_reg);
		}

1805
		dev_dbg(hsotg->dev,
1806
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1807 1808 1809
			__func__, readl(hsotg->regs + epctl_reg),
			readl(hsotg->regs + epsiz_reg));

1810 1811 1812 1813
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
1814 1815 1816
		if (dir_in) {
			s3c_hsotg_complete_in(hsotg, hs_ep);

1817
			if (idx == 0 && !hs_ep->req)
1818 1819
				s3c_hsotg_enqueue_setup(hsotg);
		} else if (using_dma(hsotg)) {
1820 1821 1822 1823
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
1824 1825 1826 1827 1828

			s3c_hsotg_handle_outdone(hsotg, idx, false);
		}
	}

1829
	if (ints & DXEPINT_EPDISBLD) {
1830 1831
		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

1832 1833 1834 1835 1836
		if (dir_in) {
			int epctl = readl(hsotg->regs + epctl_reg);

			s3c_hsotg_txfifo_flush(hsotg, idx);

1837 1838
			if ((epctl & DXEPCTL_STALL) &&
				(epctl & DXEPCTL_EPTYPE_BULK)) {
1839
				int dctl = readl(hsotg->regs + DCTL);
1840

1841
				dctl |= DCTL_CGNPINNAK;
1842
				writel(dctl, hsotg->regs + DCTL);
1843 1844 1845 1846
			}
		}
	}

1847
	if (ints & DXEPINT_AHBERR)
1848 1849
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

1850
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
1851 1852 1853
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
1854 1855
			/*
			 * this is the notification we've received a
1856 1857
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
1858 1859
			 * the setup here.
			 */
1860 1861 1862 1863 1864 1865 1866 1867

			if (dir_in)
				WARN_ON_ONCE(1);
			else
				s3c_hsotg_handle_outdone(hsotg, 0, true);
		}
	}

1868
	if (ints & DXEPINT_BACK2BACKSETUP)
1869 1870
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

1871
	if (dir_in && !hs_ep->isochronous) {
1872
		/* not sure if this is important, but we'll clear it anyway */
1873
		if (ints & DIEPMSK_INTKNTXFEMPMSK) {
1874 1875 1876 1877 1878
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
1879
		if (ints & DIEPMSK_INTKNEPMISMSK) {
1880 1881 1882
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
1883 1884 1885

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
1886
		    ints & DIEPMSK_TXFIFOEMPTY) {
1887 1888
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
1889 1890
			if (!using_dma(hsotg))
				s3c_hsotg_trytx(hsotg, hs_ep);
1891
		}
1892 1893 1894 1895 1896 1897 1898 1899 1900
	}
}

/**
 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
1901
 */
1902 1903
static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
{
1904
	u32 dsts = readl(hsotg->regs + DSTS);
1905
	int ep0_mps = 0, ep_mps = 8;
1906

1907 1908
	/*
	 * This should signal the finish of the enumeration phase
1909
	 * of the USB handshaking, so we should now know what rate
1910 1911
	 * we connected at.
	 */
1912 1913 1914

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

1915 1916
	/*
	 * note, since we're limited by the size of transfer on EP0, and
1917
	 * it seems IN transfers must be a even number of packets we do
1918 1919
	 * not advertise a 64byte MPS on EP0.
	 */
1920 1921

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
1922 1923 1924
	switch (dsts & DSTS_ENUMSPD_MASK) {
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
1925 1926
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
1927
		ep_mps = 1023;
1928 1929
		break;

1930
	case DSTS_ENUMSPD_HS:
1931 1932
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
1933
		ep_mps = 1024;
1934 1935
		break;

1936
	case DSTS_ENUMSPD_LS:
1937
		hsotg->gadget.speed = USB_SPEED_LOW;
1938 1939
		/*
		 * note, we don't actually support LS in this driver at the
1940 1941 1942 1943 1944
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
1945 1946
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
1947

1948 1949 1950 1951
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
1952 1953 1954 1955

	if (ep0_mps) {
		int i;
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
1956
		for (i = 1; i < hsotg->num_of_eps; i++)
1957 1958 1959 1960 1961 1962 1963 1964
			s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
	}

	/* ensure after enumeration our EP0 is active */

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1965 1966
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 * @force: Force removal of any current requests
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
static void kill_all_requests(struct s3c_hsotg *hsotg,
			      struct s3c_hsotg_ep *ep,
			      int result, bool force)
{
	struct s3c_hsotg_req *req, *treq;

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
1986 1987 1988 1989
		/*
		 * currently, we can't do much about an already
		 * running request on an in endpoint
		 */
1990 1991 1992 1993 1994 1995 1996

		if (ep->req == req && ep->dir_in && !force)
			continue;

		s3c_hsotg_complete_request(hsotg, ep, req,
					   result);
	}
1997
	if (hsotg->dedicated_fifos)
1998 1999
		if ((readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4 < 3072)
			s3c_hsotg_txfifo_flush(hsotg, ep->index);
2000 2001 2002
}

/**
2003
 * s3c_hsotg_disconnect - disconnect service
2004 2005
 * @hsotg: The device state.
 *
2006 2007 2008
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2009
 */
2010
static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg)
2011 2012 2013
{
	unsigned ep;

2014
	for (ep = 0; ep < hsotg->num_of_eps; ep++)
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
		kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);

	call_gadget(hsotg, disconnect);
}

/**
 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
{
	struct s3c_hsotg_ep *ep;
	int epno, ret;

	/* look through for any more data to transmit */

2032
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
		ep = &hsotg->eps[epno];

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

		ret = s3c_hsotg_trytx(hsotg, ep);
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2049 2050 2051
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
2052

2053 2054 2055 2056 2057
/**
 * s3c_hsotg_corereset - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
2058
 */
2059 2060 2061 2062 2063 2064 2065 2066
static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
{
	int timeout;
	u32 grstctl;

	dev_dbg(hsotg->dev, "resetting core\n");

	/* issue soft reset */
2067
	writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2068

2069
	timeout = 10000;
2070
	do {
2071
		grstctl = readl(hsotg->regs + GRSTCTL);
2072
	} while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2073

2074
	if (grstctl & GRSTCTL_CSFTRST) {
2075 2076 2077 2078
		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
		return -EINVAL;
	}

2079
	timeout = 10000;
2080 2081

	while (1) {
2082
		u32 grstctl = readl(hsotg->regs + GRSTCTL);
2083 2084 2085 2086 2087 2088 2089 2090

		if (timeout-- < 0) {
			dev_info(hsotg->dev,
				 "%s: reset failed, GRSTCTL=%08x\n",
				 __func__, grstctl);
			return -ETIMEDOUT;
		}

2091
		if (!(grstctl & GRSTCTL_AHBIDLE))
2092 2093 2094 2095 2096 2097 2098 2099 2100
			continue;

		break;		/* reset done */
	}

	dev_dbg(hsotg->dev, "reset successful\n");
	return 0;
}

2101 2102 2103 2104 2105 2106
/**
 * s3c_hsotg_core_init - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
static void s3c_hsotg_core_init(struct s3c_hsotg *hsotg)
{
	s3c_hsotg_corereset(hsotg);

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2117
	writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2118
	       (0x5 << 10), hsotg->regs + GUSBCFG);
2119 2120 2121

	s3c_hsotg_init_fifo(hsotg);

2122
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2123

2124
	writel(1 << 18 | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2125 2126

	/* Clear any pending OTG interrupts */
2127
	writel(0xffffffff, hsotg->regs + GOTGINT);
2128 2129

	/* Clear any pending interrupts */
2130
	writel(0xffffffff, hsotg->regs + GINTSTS);
2131

2132 2133 2134 2135 2136 2137
	writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
		GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
		GINTSTS_USBSUSP | GINTSTS_WKUPINT,
		hsotg->regs + GINTMSK);
2138 2139

	if (using_dma(hsotg))
2140 2141
		writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
		       GAHBCFG_HBSTLEN_INCR4,
2142
		       hsotg->regs + GAHBCFG);
2143
	else
2144 2145 2146
		writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL |
						    GAHBCFG_P_TXF_EMP_LVL) : 0) |
		       GAHBCFG_GLBL_INTR_EN,
2147
		       hsotg->regs + GAHBCFG);
2148 2149

	/*
2150 2151 2152
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
2153 2154
	 */

2155 2156 2157 2158 2159 2160
	writel(((hsotg->dedicated_fifos) ? DIEPMSK_TXFIFOEMPTY |
		DIEPMSK_INTKNTXFEMPMSK : 0) |
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_INTKNEPMISMSK,
		hsotg->regs + DIEPMSK);
2161 2162 2163 2164 2165

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2166 2167 2168 2169 2170
	writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
				    DIEPMSK_TIMEOUTMSK) : 0) |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_SETUPMSK,
		hsotg->regs + DOEPMSK);
2171

2172
	writel(0, hsotg->regs + DAINTMSK);
2173 2174

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2175 2176
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2177 2178

	/* enable in and out endpoint interrupts */
2179
	s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2180 2181 2182 2183 2184 2185 2186

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2187
		s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2188 2189 2190 2191 2192

	/* Enable interrupts for EP0 in and out */
	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);

2193
	__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2194
	udelay(10);  /* see openiboot */
2195
	__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2196

2197
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2198 2199

	/*
2200
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2201 2202 2203 2204
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2205 2206
	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2207 2208

	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2209 2210
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
2211
	       hsotg->regs + DOEPCTL0);
2212 2213 2214

	/* enable, but don't activate EP0in */
	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2215
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2216 2217 2218 2219

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2220 2221
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2222 2223

	/* clear global NAKs */
2224
	writel(DCTL_CGOUTNAK | DCTL_CGNPINNAK,
2225
	       hsotg->regs + DCTL);
2226 2227 2228 2229 2230

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

	/* remove the soft-disconnect and let's go */
2231
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2232 2233
}

2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
/**
 * s3c_hsotg_irq - handle device interrupt
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
{
	struct s3c_hsotg *hsotg = pw;
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

2246
	spin_lock(&hsotg->lock);
2247
irq_retry:
2248 2249
	gintsts = readl(hsotg->regs + GINTSTS);
	gintmsk = readl(hsotg->regs + GINTMSK);
2250 2251 2252 2253 2254 2255

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

2256
	if (gintsts & GINTSTS_OTGINT) {
2257
		u32 otgint = readl(hsotg->regs + GOTGINT);
2258 2259 2260

		dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);

2261
		writel(otgint, hsotg->regs + GOTGINT);
2262 2263
	}

2264
	if (gintsts & GINTSTS_SESSREQINT) {
2265
		dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
2266
		writel(GINTSTS_SESSREQINT, hsotg->regs + GINTSTS);
2267 2268
	}

2269 2270
	if (gintsts & GINTSTS_ENUMDONE) {
		writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2271 2272

		s3c_hsotg_irq_enumdone(hsotg);
2273 2274
	}

2275
	if (gintsts & GINTSTS_CONIDSTSCHNG) {
2276
		dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2277 2278
			readl(hsotg->regs + DSTS),
			readl(hsotg->regs + GOTGCTL));
2279

2280
		writel(GINTSTS_CONIDSTSCHNG, hsotg->regs + GINTSTS);
2281 2282
	}

2283
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2284
		u32 daint = readl(hsotg->regs + DAINT);
2285 2286
		u32 daintmsk = readl(hsotg->regs + DAINTMSK);
		u32 daint_out, daint_in;
2287 2288
		int ep;

2289
		daint &= daintmsk;
2290 2291
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2292

2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

		for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
			if (daint_out & 1)
				s3c_hsotg_epint(hsotg, ep, 0);
		}

		for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
			if (daint_in & 1)
				s3c_hsotg_epint(hsotg, ep, 1);
		}
	}

2306
	if (gintsts & GINTSTS_USBRST) {
2307

2308
		u32 usb_status = readl(hsotg->regs + GOTGCTL);
2309

2310 2311
		dev_info(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2312
			readl(hsotg->regs + GNPTXSTS));
2313

2314
		writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2315

2316
		if (usb_status & GOTGCTL_BSESVLD) {
2317 2318
			if (time_after(jiffies, hsotg->last_rst +
				       msecs_to_jiffies(200))) {
2319

2320 2321
				kill_all_requests(hsotg, &hsotg->eps[0],
							  -ECONNRESET, true);
2322

2323 2324 2325 2326
				s3c_hsotg_core_init(hsotg);
				hsotg->last_rst = jiffies;
			}
		}
2327 2328 2329 2330
	}

	/* check both FIFOs */

2331
	if (gintsts & GINTSTS_NPTXFEMP) {
2332 2333
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

2334 2335
		/*
		 * Disable the interrupt to stop it happening again
2336
		 * unless one of these endpoint routines decides that
2337 2338
		 * it needs re-enabling
		 */
2339

2340
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2341 2342 2343
		s3c_hsotg_irq_fifoempty(hsotg, false);
	}

2344
	if (gintsts & GINTSTS_PTXFEMP) {
2345 2346
		dev_dbg(hsotg->dev, "PTxFEmp\n");

2347
		/* See note in GINTSTS_NPTxFEmp */
2348

2349
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2350 2351 2352
		s3c_hsotg_irq_fifoempty(hsotg, true);
	}

2353
	if (gintsts & GINTSTS_RXFLVL) {
2354 2355
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2356
		 * we need to retry s3c_hsotg_handle_rx if this is still
2357 2358
		 * set.
		 */
2359 2360 2361 2362

		s3c_hsotg_handle_rx(hsotg);
	}

2363
	if (gintsts & GINTSTS_MODEMIS) {
2364
		dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2365
		writel(GINTSTS_MODEMIS, hsotg->regs + GINTSTS);
2366 2367
	}

2368
	if (gintsts & GINTSTS_USBSUSP) {
2369
		dev_info(hsotg->dev, "GINTSTS_USBSusp\n");
2370
		writel(GINTSTS_USBSUSP, hsotg->regs + GINTSTS);
2371 2372 2373 2374

		call_gadget(hsotg, suspend);
	}

2375
	if (gintsts & GINTSTS_WKUPINT) {
2376
		dev_info(hsotg->dev, "GINTSTS_WkUpIn\n");
2377
		writel(GINTSTS_WKUPINT, hsotg->regs + GINTSTS);
2378 2379 2380 2381

		call_gadget(hsotg, resume);
	}

2382
	if (gintsts & GINTSTS_ERLYSUSP) {
2383
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2384
		writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2385 2386
	}

2387 2388
	/*
	 * these next two seem to crop-up occasionally causing the core
2389
	 * to shutdown the USB transfer, so try clearing them and logging
2390 2391
	 * the occurrence.
	 */
2392

2393
	if (gintsts & GINTSTS_GOUTNAKEFF) {
2394 2395
		dev_info(hsotg->dev, "GOUTNakEff triggered\n");

2396
		writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2397 2398

		s3c_hsotg_dump(hsotg);
2399 2400
	}

2401
	if (gintsts & GINTSTS_GINNAKEFF) {
2402 2403
		dev_info(hsotg->dev, "GINNakEff triggered\n");

2404
		writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2405 2406

		s3c_hsotg_dump(hsotg);
2407 2408
	}

2409 2410 2411 2412
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
2413 2414 2415 2416

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

2417 2418
	spin_unlock(&hsotg->lock);

2419 2420 2421 2422 2423 2424 2425 2426 2427
	return IRQ_HANDLED;
}

/**
 * s3c_hsotg_ep_enable - enable the given endpoint
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
2428
 */
2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439
static int s3c_hsotg_ep_enable(struct usb_ep *ep,
			       const struct usb_endpoint_descriptor *desc)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;
	unsigned long flags;
	int index = hs_ep->index;
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
	int dir_in;
2440
	int ret = 0;
2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
	WARN_ON(index == 0);

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

2456
	mps = usb_endpoint_maxp(desc);
2457 2458 2459

	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */

2460
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2461 2462 2463 2464 2465
	epctrl = readl(hsotg->regs + epctrl_reg);

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

2466
	spin_lock_irqsave(&hsotg->lock, flags);
2467

2468 2469
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
2470

2471 2472 2473 2474
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
2475
	epctrl |= DXEPCTL_USBACTEP;
2476

2477 2478
	/*
	 * set the NAK status on the endpoint, otherwise we might try and
2479 2480 2481 2482 2483
	 * do something with data that we've yet got a request to process
	 * since the RXFIFO will take data for an endpoint even if the
	 * size register hasn't been set.
	 */

2484
	epctrl |= DXEPCTL_SNAK;
2485 2486

	/* update the endpoint state */
2487
	s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps);
2488 2489

	/* default, set to non-periodic */
2490
	hs_ep->isochronous = 0;
2491
	hs_ep->periodic = 0;
2492
	hs_ep->halted = 0;
2493
	hs_ep->interval = desc->bInterval;
2494

2495 2496 2497
	if (hs_ep->interval > 1 && hs_ep->mc > 1)
		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");

2498 2499
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
2500 2501
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
2502 2503 2504 2505
		hs_ep->isochronous = 1;
		if (dir_in)
			hs_ep->periodic = 1;
		break;
2506 2507

	case USB_ENDPOINT_XFER_BULK:
2508
		epctrl |= DXEPCTL_EPTYPE_BULK;
2509 2510 2511 2512
		break;

	case USB_ENDPOINT_XFER_INT:
		if (dir_in) {
2513 2514
			/*
			 * Allocate our TxFNum by simply using the index
2515 2516
			 * of the endpoint for the moment. We could do
			 * something better if the host indicates how
2517 2518
			 * many FIFOs we are expecting to use.
			 */
2519 2520

			hs_ep->periodic = 1;
2521
			epctrl |= DXEPCTL_TXFNUM(index);
2522 2523
		}

2524
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2525 2526 2527
		break;

	case USB_ENDPOINT_XFER_CONTROL:
2528
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2529 2530 2531
		break;
	}

2532 2533
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
2534 2535 2536
	 * a unique tx-fifo even if it is non-periodic.
	 */
	if (dir_in && hsotg->dedicated_fifos)
2537
		epctrl |= DXEPCTL_TXFNUM(index);
2538

2539 2540
	/* for non control endpoints, set PID to D0 */
	if (index)
2541
		epctrl |= DXEPCTL_SETD0PID;
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

	writel(epctrl, hsotg->regs + epctrl_reg);
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
		__func__, readl(hsotg->regs + epctrl_reg));

	/* enable the endpoint interrupt */
	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);

2553
	spin_unlock_irqrestore(&hsotg->lock, flags);
2554
	return ret;
2555 2556
}

2557 2558 2559 2560
/**
 * s3c_hsotg_ep_disable - disable given endpoint
 * @ep: The endpoint to disable.
 */
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577
static int s3c_hsotg_ep_disable(struct usb_ep *ep)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

	dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);

	if (ep == &hsotg->eps[0].ep) {
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

2578
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2579

2580
	spin_lock_irqsave(&hsotg->lock, flags);
2581 2582 2583 2584 2585
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);


	ctrl = readl(hsotg->regs + epctrl_reg);
2586 2587 2588
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
2589 2590 2591 2592 2593 2594 2595

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

	/* disable endpoint interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);

2596
	spin_unlock_irqrestore(&hsotg->lock, flags);
2597 2598 2599 2600 2601 2602 2603
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
2604
 */
2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
{
	struct s3c_hsotg_req *req, *treq;

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

2617 2618 2619 2620 2621
/**
 * s3c_hsotg_ep_dequeue - dequeue given endpoint
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
2622 2623 2624 2625 2626 2627 2628 2629 2630
static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	unsigned long flags;

	dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);

2631
	spin_lock_irqsave(&hs->lock, flags);
2632 2633

	if (!on_list(hs_ep, hs_req)) {
2634
		spin_unlock_irqrestore(&hs->lock, flags);
2635 2636 2637 2638
		return -EINVAL;
	}

	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2639
	spin_unlock_irqrestore(&hs->lock, flags);
2640 2641 2642 2643

	return 0;
}

2644 2645 2646 2647 2648
/**
 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
2649 2650 2651 2652 2653 2654 2655
static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
2656
	u32 xfertype;
2657 2658 2659

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

2660 2661 2662 2663 2664 2665 2666 2667 2668
	if (index == 0) {
		if (value)
			s3c_hsotg_stall_ep0(hs);
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

2669 2670
	/* write both IN and OUT control registers */

2671
	epreg = DIEPCTL(index);
2672 2673
	epctl = readl(hs->regs + epreg);

2674
	if (value) {
2675 2676 2677
		epctl |= DXEPCTL_STALL + DXEPCTL_SNAK;
		if (epctl & DXEPCTL_EPENA)
			epctl |= DXEPCTL_EPDIS;
2678
	} else {
2679 2680 2681 2682 2683
		epctl &= ~DXEPCTL_STALL;
		xfertype = epctl & DXEPCTL_EPTYPE_MASK;
		if (xfertype == DXEPCTL_EPTYPE_BULK ||
			xfertype == DXEPCTL_EPTYPE_INTERRUPT)
				epctl |= DXEPCTL_SETD0PID;
2684
	}
2685 2686 2687

	writel(epctl, hs->regs + epreg);

2688
	epreg = DOEPCTL(index);
2689 2690 2691
	epctl = readl(hs->regs + epreg);

	if (value)
2692
		epctl |= DXEPCTL_STALL;
2693
	else {
2694 2695 2696 2697 2698
		epctl &= ~DXEPCTL_STALL;
		xfertype = epctl & DXEPCTL_EPTYPE_MASK;
		if (xfertype == DXEPCTL_EPTYPE_BULK ||
			xfertype == DXEPCTL_EPTYPE_INTERRUPT)
				epctl |= DXEPCTL_SETD0PID;
2699
	}
2700 2701 2702

	writel(epctl, hs->regs + epreg);

2703 2704
	hs_ep->halted = value;

2705 2706 2707
	return 0;
}

2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726
/**
 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_sethalt(ep, value);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

2727 2728 2729 2730 2731
static struct usb_ep_ops s3c_hsotg_ep_ops = {
	.enable		= s3c_hsotg_ep_enable,
	.disable	= s3c_hsotg_ep_disable,
	.alloc_request	= s3c_hsotg_ep_alloc_request,
	.free_request	= s3c_hsotg_ep_free_request,
2732
	.queue		= s3c_hsotg_ep_queue_lock,
2733
	.dequeue	= s3c_hsotg_ep_dequeue,
2734
	.set_halt	= s3c_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
2735
	/* note, don't believe we have any call for the fifo routines */
2736 2737
};

2738 2739
/**
 * s3c_hsotg_phy_enable - enable platform phy dev
2740
 * @hsotg: The driver state
2741 2742 2743 2744 2745 2746 2747 2748 2749
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
static void s3c_hsotg_phy_enable(struct s3c_hsotg *hsotg)
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

	dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2750

2751
	if (hsotg->uphy)
2752
		usb_phy_init(hsotg->uphy);
2753
	else if (hsotg->plat && hsotg->plat->phy_init)
2754
		hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2755 2756 2757 2758
	else {
		phy_init(hsotg->phy);
		phy_power_on(hsotg->phy);
	}
2759 2760 2761 2762
}

/**
 * s3c_hsotg_phy_disable - disable platform phy dev
2763
 * @hsotg: The driver state
2764 2765 2766 2767 2768 2769 2770 2771
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
static void s3c_hsotg_phy_disable(struct s3c_hsotg *hsotg)
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

2772
	if (hsotg->uphy)
2773
		usb_phy_shutdown(hsotg->uphy);
2774
	else if (hsotg->plat && hsotg->plat->phy_exit)
2775
		hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2776 2777 2778 2779
	else {
		phy_power_off(hsotg->phy);
		phy_exit(hsotg->phy);
	}
2780 2781
}

2782 2783 2784 2785
/**
 * s3c_hsotg_init - initalize the usb core
 * @hsotg: The driver state
 */
2786 2787 2788 2789
static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
{
	/* unmask subset of endpoint interrupts */

2790 2791 2792
	writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		hsotg->regs + DIEPMSK);
2793

2794 2795 2796
	writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		hsotg->regs + DOEPMSK);
2797

2798
	writel(0, hsotg->regs + DAINTMSK);
2799 2800

	/* Be in disconnected state until gadget is registered */
2801
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2802 2803 2804

	if (0) {
		/* post global nak until we're ready */
2805
		writel(DCTL_SGNPINNAK | DCTL_SGOUTNAK,
2806
		       hsotg->regs + DCTL);
2807 2808 2809 2810 2811
	}

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2812 2813
		readl(hsotg->regs + GRXFSIZ),
		readl(hsotg->regs + GNPTXFSIZ));
2814 2815 2816 2817

	s3c_hsotg_init_fifo(hsotg);

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2818
	writel(GUSBCFG_PHYIF16 | GUSBCFG_TOUTCAL(7) | (0x5 << 10),
2819
	       hsotg->regs + GUSBCFG);
2820

2821
	writel(using_dma(hsotg) ? GAHBCFG_DMA_EN : 0x0,
2822
	       hsotg->regs + GAHBCFG);
2823 2824
}

2825 2826 2827 2828 2829 2830 2831 2832
/**
 * s3c_hsotg_udc_start - prepare the udc for work
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
2833 2834
static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
			   struct usb_gadget_driver *driver)
2835
{
2836
	struct s3c_hsotg *hsotg = to_hsotg(gadget);
2837 2838 2839
	int ret;

	if (!hsotg) {
2840
		pr_err("%s: called with no device\n", __func__);
2841 2842 2843 2844 2845 2846 2847 2848
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

2849
	if (driver->max_speed < USB_SPEED_FULL)
2850 2851
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

2852
	if (!driver->setup) {
2853 2854 2855 2856 2857 2858 2859 2860
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
2861
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
2862 2863
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

2864 2865
	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
2866
	if (ret) {
2867
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
2868 2869 2870
		goto err;
	}

2871
	hsotg->last_rst = jiffies;
2872 2873 2874 2875 2876 2877 2878 2879
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
	return 0;

err:
	hsotg->driver = NULL;
	return ret;
}

2880 2881 2882 2883 2884 2885 2886
/**
 * s3c_hsotg_udc_stop - stop the udc
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
2887 2888
static int s3c_hsotg_udc_stop(struct usb_gadget *gadget,
			  struct usb_gadget_driver *driver)
2889
{
2890
	struct s3c_hsotg *hsotg = to_hsotg(gadget);
2891
	unsigned long flags = 0;
2892 2893 2894 2895 2896 2897
	int ep;

	if (!hsotg)
		return -ENODEV;

	/* all endpoints should be shutdown */
2898
	for (ep = 1; ep < hsotg->num_of_eps; ep++)
2899 2900
		s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);

2901 2902
	spin_lock_irqsave(&hsotg->lock, flags);

2903 2904 2905
	if (!driver)
		hsotg->driver = NULL;

2906 2907
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

2908 2909
	spin_unlock_irqrestore(&hsotg->lock, flags);

2910
	regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
2911 2912 2913 2914

	return 0;
}

2915 2916 2917 2918 2919 2920
/**
 * s3c_hsotg_gadget_getframe - read the frame number
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
2921 2922 2923 2924 2925
static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
{
	return s3c_hsotg_read_frameno(to_hsotg(gadget));
}

2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937
/**
 * s3c_hsotg_pullup - connect/disconnect the USB PHY
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
{
	struct s3c_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags = 0;

2938
	dev_dbg(hsotg->dev, "%s: is_on: %d\n", __func__, is_on);
2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953

	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
		s3c_hsotg_phy_enable(hsotg);
		s3c_hsotg_core_init(hsotg);
	} else {
		s3c_hsotg_phy_disable(hsotg);
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return 0;
}

2954
static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
2955
	.get_frame	= s3c_hsotg_gadget_getframe,
2956 2957
	.udc_start		= s3c_hsotg_udc_start,
	.udc_stop		= s3c_hsotg_udc_stop,
2958
	.pullup                 = s3c_hsotg_pullup,
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
};

/**
 * s3c_hsotg_initep - initialise a single endpoint
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
B
Bill Pemberton 已提交
2971
static void s3c_hsotg_initep(struct s3c_hsotg *hsotg,
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
				       struct s3c_hsotg_ep *hs_ep,
				       int epnum)
{
	u32 ptxfifo;
	char *dir;

	if (epnum == 0)
		dir = "";
	else if ((epnum % 2) == 0) {
		dir = "out";
	} else {
		dir = "in";
		hs_ep->dir_in = 1;
	}

	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
3000
	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3001 3002
	hs_ep->ep.ops = &s3c_hsotg_ep_ops;

3003 3004
	/*
	 * Read the FIFO size for the Periodic TX FIFO, even if we're
3005 3006 3007 3008
	 * an OUT endpoint, we may as well do this if in future the
	 * code is changed to make each endpoint's direction changeable.
	 */

3009 3010
	ptxfifo = readl(hsotg->regs + DPTXFSIZN(epnum));
	hs_ep->fifo_size = FIFOSIZE_DEPTH_GET(ptxfifo) * 4;
3011

3012 3013
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
3014 3015 3016 3017
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
3018
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3019 3020
		writel(next, hsotg->regs + DIEPCTL(epnum));
		writel(next, hsotg->regs + DOEPCTL(epnum));
3021 3022 3023
	}
}

3024 3025 3026 3027 3028 3029 3030
/**
 * s3c_hsotg_hw_cfg - read HW configuration registers
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
static void s3c_hsotg_hw_cfg(struct s3c_hsotg *hsotg)
3031
{
3032 3033
	u32 cfg2, cfg4;
	/* check hardware configuration */
3034

3035 3036
	cfg2 = readl(hsotg->regs + 0x48);
	hsotg->num_of_eps = (cfg2 >> 10) & 0xF;
3037

3038
	dev_info(hsotg->dev, "EPs:%d\n", hsotg->num_of_eps);
3039 3040 3041 3042 3043 3044

	cfg4 = readl(hsotg->regs + 0x50);
	hsotg->dedicated_fifos = (cfg4 >> 25) & 1;

	dev_info(hsotg->dev, "%s fifos\n",
		 hsotg->dedicated_fifos ? "dedicated" : "shared");
3045 3046
}

3047 3048 3049 3050
/**
 * s3c_hsotg_dump - dump state of the udc
 * @param: The device state
 */
3051 3052
static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
{
M
Mark Brown 已提交
3053
#ifdef DEBUG
3054 3055 3056 3057 3058 3059
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3060 3061
		 readl(regs + DCFG), readl(regs + DCTL),
		 readl(regs + DIEPMSK));
3062 3063

	dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3064
		 readl(regs + GAHBCFG), readl(regs + 0x44));
3065 3066

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3067
		 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3068 3069 3070 3071

	/* show periodic fifo settings */

	for (idx = 1; idx <= 15; idx++) {
3072
		val = readl(regs + DPTXFSIZN(idx));
3073
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3074 3075
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
3076 3077 3078 3079 3080
	}

	for (idx = 0; idx < 15; idx++) {
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3081 3082 3083
			 readl(regs + DIEPCTL(idx)),
			 readl(regs + DIEPTSIZ(idx)),
			 readl(regs + DIEPDMA(idx)));
3084

3085
		val = readl(regs + DOEPCTL(idx));
3086 3087
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3088 3089 3090
			 idx, readl(regs + DOEPCTL(idx)),
			 readl(regs + DOEPTSIZ(idx)),
			 readl(regs + DOEPDMA(idx)));
3091 3092 3093 3094

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3095
		 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
3096
#endif
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
}

/**
 * state_show - debugfs: show overall driver and device state.
 * @seq: The seq file to write to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the overall state of the hardware and
 * some general information about each of the endpoints available
 * to the system.
 */
static int state_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg *hsotg = seq->private;
	void __iomem *regs = hsotg->regs;
	int idx;

	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3115 3116 3117
		 readl(regs + DCFG),
		 readl(regs + DCTL),
		 readl(regs + DSTS));
3118 3119

	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3120
		   readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3121 3122

	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3123 3124
		   readl(regs + GINTMSK),
		   readl(regs + GINTSTS));
3125 3126

	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3127 3128
		   readl(regs + DAINTMSK),
		   readl(regs + DAINT));
3129 3130

	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3131 3132
		   readl(regs + GNPTXSTS),
		   readl(regs + GRXSTSR));
3133

3134
	seq_puts(seq, "\nEndpoint status:\n");
3135 3136 3137 3138

	for (idx = 0; idx < 15; idx++) {
		u32 in, out;

3139 3140
		in = readl(regs + DIEPCTL(idx));
		out = readl(regs + DOEPCTL(idx));
3141 3142 3143 3144

		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
			   idx, in, out);

3145 3146
		in = readl(regs + DIEPTSIZ(idx));
		out = readl(regs + DOEPTSIZ(idx));
3147 3148 3149 3150

		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
			   in, out);

3151
		seq_puts(seq, "\n");
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
	}

	return 0;
}

static int state_open(struct inode *inode, struct file *file)
{
	return single_open(file, state_show, inode->i_private);
}

static const struct file_operations state_fops = {
	.owner		= THIS_MODULE,
	.open		= state_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * fifo_show - debugfs: show the fifo information
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * Show the FIFO information for the overall fifo and all the
 * periodic transmission FIFOs.
3177
 */
3178 3179 3180 3181 3182 3183 3184
static int fifo_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg *hsotg = seq->private;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

3185
	seq_puts(seq, "Non-periodic FIFOs:\n");
3186
	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3187

3188
	val = readl(regs + GNPTXFSIZ);
3189
	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3190 3191
		   val >> FIFOSIZE_DEPTH_SHIFT,
		   val & FIFOSIZE_DEPTH_MASK);
3192

3193
	seq_puts(seq, "\nPeriodic TXFIFOs:\n");
3194 3195

	for (idx = 1; idx <= 15; idx++) {
3196
		val = readl(regs + DPTXFSIZN(idx));
3197 3198

		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3199 3200
			   val >> FIFOSIZE_DEPTH_SHIFT,
			   val & FIFOSIZE_STARTADDR_MASK);
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
	}

	return 0;
}

static int fifo_open(struct inode *inode, struct file *file)
{
	return single_open(file, fifo_show, inode->i_private);
}

static const struct file_operations fifo_fops = {
	.owner		= THIS_MODULE,
	.open		= fifo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};


static const char *decode_direction(int is_in)
{
	return is_in ? "in" : "out";
}

/**
 * ep_show - debugfs: show the state of an endpoint.
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the state of the given endpoint (one is
 * registered for each available).
3232
 */
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
static int ep_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg_ep *ep = seq->private;
	struct s3c_hsotg *hsotg = ep->parent;
	struct s3c_hsotg_req *req;
	void __iomem *regs = hsotg->regs;
	int index = ep->index;
	int show_limit = 15;
	unsigned long flags;

	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
		   ep->index, ep->ep.name, decode_direction(ep->dir_in));

	/* first show the register state */

	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3249 3250
		   readl(regs + DIEPCTL(index)),
		   readl(regs + DOEPCTL(index)));
3251 3252

	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3253 3254
		   readl(regs + DIEPDMA(index)),
		   readl(regs + DOEPDMA(index)));
3255 3256

	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3257 3258
		   readl(regs + DIEPINT(index)),
		   readl(regs + DOEPINT(index)));
3259 3260

	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3261 3262
		   readl(regs + DIEPTSIZ(index)),
		   readl(regs + DOEPTSIZ(index)));
3263

3264
	seq_puts(seq, "\n");
3265 3266 3267 3268 3269 3270
	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
	seq_printf(seq, "total_data=%ld\n", ep->total_data);

	seq_printf(seq, "request list (%p,%p):\n",
		   ep->queue.next, ep->queue.prev);

3271
	spin_lock_irqsave(&hsotg->lock, flags);
3272 3273 3274

	list_for_each_entry(req, &ep->queue, queue) {
		if (--show_limit < 0) {
3275
			seq_puts(seq, "not showing more requests...\n");
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
			break;
		}

		seq_printf(seq, "%c req %p: %d bytes @%p, ",
			   req == ep->req ? '*' : ' ',
			   req, req->req.length, req->req.buf);
		seq_printf(seq, "%d done, res %d\n",
			   req->req.actual, req->req.status);
	}

3286
	spin_unlock_irqrestore(&hsotg->lock, flags);
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311

	return 0;
}

static int ep_open(struct inode *inode, struct file *file)
{
	return single_open(file, ep_show, inode->i_private);
}

static const struct file_operations ep_fops = {
	.owner		= THIS_MODULE,
	.open		= ep_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * s3c_hsotg_create_debug - create debugfs directory and files
 * @hsotg: The driver state
 *
 * Create the debugfs files to allow the user to get information
 * about the state of the system. The directory name is created
 * with the same name as the device itself, in case we end up
 * with multiple blocks in future systems.
3312
 */
B
Bill Pemberton 已提交
3313
static void s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
{
	struct dentry *root;
	unsigned epidx;

	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
	hsotg->debug_root = root;
	if (IS_ERR(root)) {
		dev_err(hsotg->dev, "cannot create debug root\n");
		return;
	}

	/* create general state file */

	hsotg->debug_file = debugfs_create_file("state", 0444, root,
						hsotg, &state_fops);

	if (IS_ERR(hsotg->debug_file))
		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);

	hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
						hsotg, &fifo_fops);

	if (IS_ERR(hsotg->debug_fifo))
		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);

	/* create one file for each endpoint */

3341
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];

		ep->debugfs = debugfs_create_file(ep->name, 0444,
						  root, ep, &ep_fops);

		if (IS_ERR(ep->debugfs))
			dev_err(hsotg->dev, "failed to create %s debug file\n",
				ep->name);
	}
}

/**
 * s3c_hsotg_delete_debug - cleanup debugfs entries
 * @hsotg: The driver state
 *
 * Cleanup (remove) the debugfs files for use on module exit.
3358
 */
B
Bill Pemberton 已提交
3359
static void s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
3360 3361 3362
{
	unsigned epidx;

3363
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3364 3365 3366 3367 3368 3369 3370 3371 3372
		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
		debugfs_remove(ep->debugfs);
	}

	debugfs_remove(hsotg->debug_file);
	debugfs_remove(hsotg->debug_fifo);
	debugfs_remove(hsotg->debug_root);
}

3373 3374 3375 3376
/**
 * s3c_hsotg_probe - probe function for hsotg driver
 * @pdev: The platform information for the driver
 */
3377

B
Bill Pemberton 已提交
3378
static int s3c_hsotg_probe(struct platform_device *pdev)
3379
{
J
Jingoo Han 已提交
3380
	struct s3c_hsotg_plat *plat = dev_get_platdata(&pdev->dev);
3381 3382
	struct phy *phy;
	struct usb_phy *uphy;
3383
	struct device *dev = &pdev->dev;
3384
	struct s3c_hsotg_ep *eps;
3385 3386 3387 3388
	struct s3c_hsotg *hsotg;
	struct resource *res;
	int epnum;
	int ret;
3389
	int i;
3390

3391
	hsotg = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsotg), GFP_KERNEL);
3392
	if (!hsotg)
3393 3394
		return -ENOMEM;

3395 3396 3397 3398 3399
	/*
	 * Attempt to find a generic PHY, then look for an old style
	 * USB PHY, finally fall back to pdata
	 */
	phy = devm_phy_get(&pdev->dev, "usb2-phy");
3400
	if (IS_ERR(phy)) {
3401 3402 3403 3404 3405 3406 3407 3408 3409
		uphy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2);
		if (IS_ERR(uphy)) {
			/* Fallback for pdata */
			plat = dev_get_platdata(&pdev->dev);
			if (!plat) {
				dev_err(&pdev->dev,
				"no platform data or transceiver defined\n");
				return -EPROBE_DEFER;
			}
3410
			hsotg->plat = plat;
3411 3412 3413
		} else
			hsotg->uphy = uphy;
	} else
3414 3415
		hsotg->phy = phy;

3416 3417
	hsotg->dev = dev;

3418
	hsotg->clk = devm_clk_get(&pdev->dev, "otg");
3419 3420
	if (IS_ERR(hsotg->clk)) {
		dev_err(dev, "cannot get otg clock\n");
3421
		return PTR_ERR(hsotg->clk);
3422 3423
	}

3424 3425 3426 3427
	platform_set_drvdata(pdev, hsotg);

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

3428 3429 3430
	hsotg->regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(hsotg->regs)) {
		ret = PTR_ERR(hsotg->regs);
3431
		goto err_clk;
3432 3433 3434 3435 3436
	}

	ret = platform_get_irq(pdev, 0);
	if (ret < 0) {
		dev_err(dev, "cannot find IRQ\n");
3437
		goto err_clk;
3438 3439
	}

3440 3441
	spin_lock_init(&hsotg->lock);

3442 3443 3444 3445
	hsotg->irq = ret;

	dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);

3446
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3447 3448 3449 3450 3451
	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
	hsotg->gadget.name = dev_name(dev);

	/* reset the system */

3452
	clk_prepare_enable(hsotg->clk);
3453

3454 3455 3456 3457 3458
	/* regulators */

	for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
		hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];

3459
	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3460 3461 3462
				 hsotg->supplies);
	if (ret) {
		dev_err(dev, "failed to request supplies: %d\n", ret);
3463
		goto err_clk;
3464 3465 3466 3467 3468 3469 3470 3471 3472 3473
	}

	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);

	if (ret) {
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
		goto err_supplies;
	}

3474
	/* Set default UTMI width */
3475
	hsotg->phyif = GUSBCFG_PHYIF16;
3476 3477 3478 3479 3480 3481

	/*
	 * If using the generic PHY framework, check if the PHY bus
	 * width is 8-bit and set the phyif appropriately.
	 */
	if (hsotg->phy && (phy_get_bus_width(phy) == 8))
3482
		hsotg->phyif = GUSBCFG_PHYIF8;
3483

3484 3485
	/* usb phy enable */
	s3c_hsotg_phy_enable(hsotg);
3486 3487 3488

	s3c_hsotg_corereset(hsotg);
	s3c_hsotg_init(hsotg);
3489 3490
	s3c_hsotg_hw_cfg(hsotg);

3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
	ret = devm_request_irq(&pdev->dev, hsotg->irq, s3c_hsotg_irq, 0,
				dev_name(dev), hsotg);
	if (ret < 0) {
		s3c_hsotg_phy_disable(hsotg);
		clk_disable_unprepare(hsotg->clk);
		regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				       hsotg->supplies);
		dev_err(dev, "cannot claim IRQ\n");
		goto err_clk;
	}

3502 3503 3504 3505
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
3506
		ret = -EINVAL;
3507 3508 3509 3510 3511 3512
		goto err_supplies;
	}

	eps = kcalloc(hsotg->num_of_eps + 1, sizeof(struct s3c_hsotg_ep),
		      GFP_KERNEL);
	if (!eps) {
3513
		ret = -ENOMEM;
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
		goto err_supplies;
	}

	hsotg->eps = eps;

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
	hsotg->gadget.ep0 = &hsotg->eps[0].ep;

	/* allocate EP0 request */

	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
3530
		ret = -ENOMEM;
3531 3532
		goto err_ep_mem;
	}
3533 3534

	/* initialise the endpoints now the core has been initialised */
3535
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++)
3536 3537
		s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);

3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548
	/* disable power and clock */

	ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
	if (ret) {
		dev_err(hsotg->dev, "failed to disable supplies: %d\n", ret);
		goto err_ep_mem;
	}

	s3c_hsotg_phy_disable(hsotg);

3549 3550
	ret = usb_add_gadget_udc(&pdev->dev, &hsotg->gadget);
	if (ret)
3551
		goto err_ep_mem;
3552

3553 3554 3555 3556 3557 3558
	s3c_hsotg_create_debug(hsotg);

	s3c_hsotg_dump(hsotg);

	return 0;

3559
err_ep_mem:
3560
	kfree(eps);
3561
err_supplies:
3562
	s3c_hsotg_phy_disable(hsotg);
3563
err_clk:
3564
	clk_disable_unprepare(hsotg->clk);
3565

3566 3567 3568
	return ret;
}

3569 3570 3571 3572
/**
 * s3c_hsotg_remove - remove function for hsotg driver
 * @pdev: The platform information for the driver
 */
B
Bill Pemberton 已提交
3573
static int s3c_hsotg_remove(struct platform_device *pdev)
3574 3575 3576
{
	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);

3577 3578
	usb_del_gadget_udc(&hsotg->gadget);

3579 3580
	s3c_hsotg_delete_debug(hsotg);

3581 3582 3583 3584
	if (hsotg->driver) {
		/* should have been done already by driver model core */
		usb_gadget_unregister_driver(hsotg->driver);
	}
3585

3586
	clk_disable_unprepare(hsotg->clk);
3587

3588 3589 3590
	return 0;
}

3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
static int s3c_hsotg_suspend(struct platform_device *pdev, pm_message_t state)
{
	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
	unsigned long flags;
	int ret = 0;

	if (hsotg->driver)
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

	spin_lock_irqsave(&hsotg->lock, flags);
	s3c_hsotg_disconnect(hsotg);
	s3c_hsotg_phy_disable(hsotg);
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	if (hsotg->driver) {
		int ep;
		for (ep = 0; ep < hsotg->num_of_eps; ep++)
			s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);

		ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
					     hsotg->supplies);
	}

	return ret;
}

static int s3c_hsotg_resume(struct platform_device *pdev)
{
	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
	unsigned long flags;
	int ret = 0;

	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
		ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				      hsotg->supplies);
	}

	spin_lock_irqsave(&hsotg->lock, flags);
	hsotg->last_rst = jiffies;
	s3c_hsotg_phy_enable(hsotg);
	s3c_hsotg_core_init(hsotg);
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return ret;
}
3640

3641 3642 3643
#ifdef CONFIG_OF
static const struct of_device_id s3c_hsotg_of_ids[] = {
	{ .compatible = "samsung,s3c6400-hsotg", },
3644
	{ .compatible = "snps,dwc2", },
3645 3646 3647 3648 3649
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, s3c_hsotg_of_ids);
#endif

3650 3651 3652 3653
static struct platform_driver s3c_hsotg_driver = {
	.driver		= {
		.name	= "s3c-hsotg",
		.owner	= THIS_MODULE,
3654
		.of_match_table = of_match_ptr(s3c_hsotg_of_ids),
3655 3656
	},
	.probe		= s3c_hsotg_probe,
B
Bill Pemberton 已提交
3657
	.remove		= s3c_hsotg_remove,
3658 3659 3660 3661
	.suspend	= s3c_hsotg_suspend,
	.resume		= s3c_hsotg_resume,
};

3662
module_platform_driver(s3c_hsotg_driver);
3663 3664 3665 3666 3667

MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:s3c-hsotg");