gadget.c 96.6 KB
Newer Older
1 2
/**
 * linux/drivers/usb/gadget/s3c-hsotg.c
3 4 5
 *
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
6 7 8 9 10 11 12 13 14 15 16
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
17
 */
18 19 20 21 22 23 24 25 26 27 28

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
29
#include <linux/slab.h>
30
#include <linux/clk.h>
31
#include <linux/regulator/consumer.h>
32
#include <linux/of_platform.h>
33
#include <linux/phy/phy.h>
34 35 36

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
37
#include <linux/usb/phy.h>
38
#include <linux/platform_data/s3c-hsotg.h>
39

40
#include "hw.h"
41

42 43 44 45 46
static const char * const s3c_hsotg_supply_names[] = {
	"vusb_d",		/* digital USB supply, 1.2V */
	"vusb_a",		/* analog USB supply, 1.1V */
};

47 48
/*
 * EP0_MPS_LIMIT
49 50
 *
 * Unfortunately there seems to be a limit of the amount of data that can
L
Lucas De Marchi 已提交
51 52
 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
 * packets (which practically means 1 packet and 63 bytes of data) when the
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
 * MPS is set to 64.
 *
 * This means if we are wanting to move >127 bytes of data, we need to
 * split the transactions up, but just doing one packet at a time does
 * not work (this may be an implicit DATA0 PID on first packet of the
 * transaction) and doing 2 packets is outside the controller's limits.
 *
 * If we try to lower the MPS size for EP0, then no transfers work properly
 * for EP0, and the system will fail basic enumeration. As no cause for this
 * has currently been found, we cannot support any large IN transfers for
 * EP0.
 */
#define EP0_MPS_LIMIT	64

struct s3c_hsotg;
struct s3c_hsotg_req;

/**
 * struct s3c_hsotg_ep - driver endpoint definition.
 * @ep: The gadget layer representation of the endpoint.
 * @name: The driver generated name for the endpoint.
 * @queue: Queue of requests for this endpoint.
 * @parent: Reference back to the parent device structure.
 * @req: The current request that the endpoint is processing. This is
 *       used to indicate an request has been loaded onto the endpoint
 *       and has yet to be completed (maybe due to data move, or simply
 *	 awaiting an ack from the core all the data has been completed).
 * @debugfs: File entry for debugfs file for this endpoint.
 * @lock: State lock to protect contents of endpoint.
 * @dir_in: Set to true if this endpoint is of the IN direction, which
 *	    means that it is sending data to the Host.
 * @index: The index for the endpoint registers.
85
 * @mc: Multi Count - number of transactions per microframe
86
 * @interval - Interval for periodic endpoints
87 88 89
 * @name: The name array passed to the USB core.
 * @halted: Set if the endpoint has been halted.
 * @periodic: Set if this is a periodic ep, such as Interrupt
90
 * @isochronous: Set if this is a isochronous ep
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
 * @sent_zlp: Set if we've sent a zero-length packet.
 * @total_data: The total number of data bytes done.
 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
 * @last_load: The offset of data for the last start of request.
 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
 *
 * This is the driver's state for each registered enpoint, allowing it
 * to keep track of transactions that need doing. Each endpoint has a
 * lock to protect the state, to try and avoid using an overall lock
 * for the host controller as much as possible.
 *
 * For periodic IN endpoints, we have fifo_size and fifo_load to try
 * and keep track of the amount of data in the periodic FIFO for each
 * of these as we don't have a status register that tells us how much
106 107 108
 * is in each of them. (note, this may actually be useless information
 * as in shared-fifo mode periodic in acts like a single-frame packet
 * buffer than a fifo)
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
 */
struct s3c_hsotg_ep {
	struct usb_ep		ep;
	struct list_head	queue;
	struct s3c_hsotg	*parent;
	struct s3c_hsotg_req	*req;
	struct dentry		*debugfs;


	unsigned long		total_data;
	unsigned int		size_loaded;
	unsigned int		last_load;
	unsigned int		fifo_load;
	unsigned short		fifo_size;

	unsigned char		dir_in;
	unsigned char		index;
126
	unsigned char		mc;
127
	unsigned char		interval;
128 129 130

	unsigned int		halted:1;
	unsigned int		periodic:1;
131
	unsigned int		isochronous:1;
132 133 134 135 136 137 138 139 140
	unsigned int		sent_zlp:1;

	char			name[10];
};

/**
 * struct s3c_hsotg - driver state.
 * @dev: The parent device supplied to the probe function
 * @driver: USB gadget driver
141
 * @phy: The otg phy transceiver structure for phy control.
142
 * @uphy: The otg phy transceiver structure for old USB phy control.
143 144
 * @plat: The platform specific configuration data. This can be removed once
 * all SoCs support usb transceiver.
145 146
 * @regs: The memory area mapped for accessing registers.
 * @irq: The IRQ number we are using
147
 * @supplies: Definition of USB power supplies
148
 * @phyif: PHY interface width
149
 * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
150
 * @num_of_eps: Number of available EPs (excluding EP0)
151 152 153 154 155 156 157
 * @debug_root: root directrory for debugfs.
 * @debug_file: main status file for debugfs.
 * @debug_fifo: FIFO status file for debugfs.
 * @ep0_reply: Request used for ep0 reply.
 * @ep0_buff: Buffer for EP0 reply data, if needed.
 * @ctrl_buff: Buffer for EP0 control requests.
 * @ctrl_req: Request for EP0 control packets.
158
 * @setup: NAK management for EP0 SETUP
159
 * @last_rst: Time of last reset
160 161 162 163 164
 * @eps: The endpoints being supplied to the gadget framework
 */
struct s3c_hsotg {
	struct device		 *dev;
	struct usb_gadget_driver *driver;
165 166
	struct phy		 *phy;
	struct usb_phy		 *uphy;
167 168
	struct s3c_hsotg_plat	 *plat;

169 170
	spinlock_t              lock;

171 172
	void __iomem		*regs;
	int			irq;
173
	struct clk		*clk;
174

175 176
	struct regulator_bulk_data supplies[ARRAY_SIZE(s3c_hsotg_supply_names)];

177
	u32			phyif;
178
	unsigned int		dedicated_fifos:1;
179
	unsigned char           num_of_eps;
180

181 182 183 184 185 186 187 188 189 190
	struct dentry		*debug_root;
	struct dentry		*debug_file;
	struct dentry		*debug_fifo;

	struct usb_request	*ep0_reply;
	struct usb_request	*ctrl_req;
	u8			ep0_buff[8];
	u8			ctrl_buff[8];

	struct usb_gadget	gadget;
191
	unsigned int		setup;
192
	unsigned long           last_rst;
193
	struct s3c_hsotg_ep	*eps;
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
};

/**
 * struct s3c_hsotg_req - data transfer request
 * @req: The USB gadget request
 * @queue: The list of requests for the endpoint this is queued for.
 * @in_progress: Has already had size/packets written to core
 * @mapped: DMA buffer for this request has been mapped via dma_map_single().
 */
struct s3c_hsotg_req {
	struct usb_request	req;
	struct list_head	queue;
	unsigned char		in_progress;
	unsigned char		mapped;
};

/* conversion functions */
static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
{
	return container_of(req, struct s3c_hsotg_req, req);
}

static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
{
	return container_of(ep, struct s3c_hsotg_ep, ep);
}

static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
{
	return container_of(gadget, struct s3c_hsotg, gadget);
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) | val, ptr);
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) & ~val, ptr);
}

/* forward decleration of functions */
static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
 * Until this issue is sorted out, we always return 'false'.
 */
static inline bool using_dma(struct s3c_hsotg *hsotg)
{
	return false;	/* support is not complete */
}

/**
 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
{
270
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
271 272 273 274 275 276
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
277
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
278 279 280 281 282 283 284 285 286 287
	}
}

/**
 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
{
288
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
289 290 291 292 293
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
294
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
}

/**
 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
319
	daint = readl(hsotg->regs + DAINTMSK);
320 321 322 323
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
324
	writel(daint, hsotg->regs + DAINTMSK);
325 326 327 328 329 330 331 332 333
	local_irq_restore(flags);
}

/**
 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
 * @hsotg: The device instance.
 */
static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
{
334 335 336
	unsigned int ep;
	unsigned int addr;
	unsigned int size;
337
	int timeout;
338 339
	u32 val;

340
	/* set FIFO sizes to 2048/1024 */
341

342
	writel(2048, hsotg->regs + GRXFSIZ);
343 344
	writel((2048 << FIFOSIZE_STARTADDR_SHIFT) |
		(1024 << FIFOSIZE_DEPTH_SHIFT), hsotg->regs + GNPTXFSIZ);
345

346 347
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
348 349
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
350 351
	 * known values.
	 */
352 353 354 355 356

	/* start at the end of the GNPTXFSIZ, rounded up */
	addr = 2048 + 1024;
	size = 768;

357 358 359 360
	/*
	 * currently we allocate TX FIFOs for all possible endpoints,
	 * and assume that they are all the same size.
	 */
361

362
	for (ep = 1; ep <= 15; ep++) {
363
		val = addr;
364
		val |= size << FIFOSIZE_DEPTH_SHIFT;
365 366
		addr += size;

367
		writel(val, hsotg->regs + DPTXFSIZN(ep));
368
	}
369

370 371 372 373
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
374

375 376
	writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
377 378 379 380

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
381
		val = readl(hsotg->regs + GRSTCTL);
382

383
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
384 385 386 387 388 389 390 391 392 393 394 395
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
396 397 398 399 400 401 402 403
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
404 405
static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
						      gfp_t flags)
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
{
	struct s3c_hsotg_req *req;

	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
{
	return hs_ep->periodic;
}

/**
 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
 * of a request to ensure the buffer is ready for access by the caller.
438
 */
439 440 441 442 443 444 445 446 447 448
static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

449
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
}

/**
 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
467
 */
468 469 470 471 472
static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	bool periodic = is_ep_periodic(hs_ep);
473
	u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
474 475 476 477 478
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
479
	int max_transfer;
480 481 482 483 484 485 486

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

487
	if (periodic && !hsotg->dedicated_fifos) {
488
		u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
489 490 491
		int size_left;
		int size_done;

492 493 494 495
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
496

497
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
498

499 500
		/*
		 * if shared fifo, we cannot write anything until the
501 502 503
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
504
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
505 506 507
			return -ENOSPC;
		}

508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
525
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
526 527
			return -ENOSPC;
		}
528
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
529
		can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
530 531 532

		can_write &= 0xffff;
		can_write *= 4;
533
	} else {
534
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
535 536 537 538
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

539
			s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
540 541 542
			return -ENOSPC;
		}

543
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
544
		can_write *= 4;	/* fifo size is in 32bit quantities. */
545 546
	}

547 548 549 550
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
		 __func__, gnptxsts, can_write, to_write, max_transfer);
551

552 553
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
554 555 556
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
557
	if (can_write > 512 && !periodic)
558 559
		can_write = 512;

560 561
	/*
	 * limit the write to one max-packet size worth of data, but allow
562
	 * the transfer to return that it did not run out of fifo space
563 564
	 * doing it.
	 */
565 566
	if (to_write > max_transfer) {
		to_write = max_transfer;
567

568 569 570
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
571 572
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
573 574
	}

575 576 577 578
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
579
		pkt_round = to_write % max_transfer;
580

581 582
		/*
		 * Round the write down to an
583 584 585 586 587 588 589 590 591
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

592 593 594 595
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
596

597 598 599
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
600 601
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

619
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
638 639
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
640
	} else {
641
		maxsize = 64+64;
642
		if (hs_ep->dir_in)
643
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
644
		else
645 646 647 648 649 650 651
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

652 653 654 655
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

/**
 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req,
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

702 703
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
704 705 706 707 708

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
		__func__, readl(hsotg->regs + epctrl_reg), index,
		hs_ep->dir_in ? "in" : "out");

709 710 711
	/* If endpoint is stalled, we will restart request later */
	ctrl = readl(hsotg->regs + epctrl_reg);

712
	if (ctrl & DXEPCTL_STALL) {
713 714 715 716
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

717
	length = ureq->length - ureq->actual;
718 719
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
720 721
	if (0)
		dev_dbg(hsotg->dev,
722 723
			"REQ buf %p len %d dma 0x%pad noi=%d zp=%d snok=%d\n",
			ureq->buf, length, &ureq->dma,
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
			ureq->no_interrupt, ureq->zero, ureq->short_not_ok);

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

745 746 747 748 749
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

750
	if (dir_in && index != 0)
751
		if (hs_ep->isochronous)
752
			epsize = DXEPTSIZ_MC(packets);
753
		else
754
			epsize = DXEPTSIZ_MC(1);
755 756 757 758
	else
		epsize = 0;

	if (index != 0 && ureq->zero) {
759 760 761 762
		/*
		 * test for the packets being exactly right for the
		 * transfer
		 */
763 764 765 766 767

		if (length == (packets * hs_ep->ep.maxpacket))
			packets++;
	}

768 769
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
770 771 772 773 774 775 776 777 778 779

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
	writel(epsize, hsotg->regs + epsize_reg);

780
	if (using_dma(hsotg) && !continuing) {
781 782
		unsigned int dma_reg;

783 784 785 786
		/*
		 * write DMA address to control register, buffer already
		 * synced by s3c_hsotg_ep_queue().
		 */
787

788
		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
789 790
		writel(ureq->dma, hsotg->regs + dma_reg);

791 792
		dev_dbg(hsotg->dev, "%s: 0x%pad => 0x%08x\n",
			__func__, &ureq->dma, dma_reg);
793 794
	}

795 796
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
797 798 799 800 801 802 803

	dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup);

	/* For Setup request do not clear NAK */
	if (hsotg->setup && index == 0)
		hsotg->setup = 0;
	else
804
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
805

806 807 808 809

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

810 811
	/*
	 * set these, it seems that DMA support increments past the end
812
	 * of the packet buffer so we need to calculate the length from
813 814
	 * this information.
	 */
815 816 817 818 819 820 821 822 823 824
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

825 826 827 828
	/*
	 * clear the INTknTXFEmpMsk when we start request, more as a aide
	 * to debugging to see what is going on.
	 */
829
	if (dir_in)
830
		writel(DIEPMSK_INTKNTXFEMPMSK,
831
		       hsotg->regs + DIEPINT(index));
832

833 834 835 836
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
837 838

	/* check ep is enabled */
839
	if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
840
		dev_warn(hsotg->dev,
841
			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
842 843
			 index, readl(hsotg->regs + epctrl_reg));

844
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
845
		__func__, readl(hsotg->regs + epctrl_reg));
846 847 848

	/* enable ep interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
849 850 851 852 853 854 855 856 857 858 859 860 861
}

/**
 * s3c_hsotg_map_dma - map the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
862
 */
863 864 865 866 867
static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
			     struct s3c_hsotg_ep *hs_ep,
			     struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
868
	int ret;
869 870 871 872 873

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

874 875 876
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	bool first;

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
		int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
		if (ret)
			return ret;
	}

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

	if (first)
		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);

	return 0;
}

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968
static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
				      struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);

	kfree(hs_req);
}

/**
 * s3c_hsotg_complete_oursetup - setup completion callback
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
					struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

	s3c_hsotg_ep_free_request(ep, req);
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
969
 */
970 971 972 973 974 975 976 977 978 979
static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
					   u32 windex)
{
	struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

980
	if (idx > hsotg->num_of_eps)
981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
		return NULL;

	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

/**
 * s3c_hsotg_send_reply - send reply to control request
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *ep,
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
	req->zero = 1; /* always do zero-length final transfer */
	req->complete = s3c_hsotg_complete_oursetup;

	if (length)
		memcpy(req->buf, buff, length);
	else
		ep->sent_zlp = 1;

	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
 * s3c_hsotg_process_req_status - process request GET_STATUS
 * @hsotg: The device state
 * @ctrl: USB control request
 */
static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
					struct usb_ctrlrequest *ctrl)
{
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	struct s3c_hsotg_ep *ep;
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
{
	if (list_empty(&hs_ep->queue))
		return NULL;

	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
}

1106 1107 1108 1109 1110 1111 1112 1113
/**
 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
 * @hsotg: The device state
 * @ctrl: USB control request
 */
static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
					 struct usb_ctrlrequest *ctrl)
{
1114
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
1115 1116
	struct s3c_hsotg_req *hs_req;
	bool restart;
1117 1118
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
	struct s3c_hsotg_ep *ep;
1119
	int ret;
1120
	bool halted;
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
				__func__, le16_to_cpu(ctrl->wIndex));
			return -ENOENT;
		}

		switch (le16_to_cpu(ctrl->wValue)) {
		case USB_ENDPOINT_HALT:
1135 1136
			halted = ep->halted;

1137
			s3c_hsotg_ep_sethalt(&ep->ep, set);
1138 1139 1140 1141 1142 1143 1144

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1145

1146 1147 1148 1149 1150 1151
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
					hs_req->req.complete(&ep->ep,
							     &hs_req->req);
				}

				/* If we have pending request, then start it */
				restart = !list_empty(&ep->queue);
				if (restart) {
					hs_req = get_ep_head(ep);
					s3c_hsotg_start_req(hsotg, ep,
							    hs_req, false);
				}
			}

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
			break;

		default:
			return -ENOENT;
		}
	} else
		return -ENOENT;  /* currently only deal with endpoint */

	return 1;
}

1184
static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
1185
static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg);
1186

1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
/**
 * s3c_hsotg_stall_ep0 - stall ep0
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
static void s3c_hsotg_stall_ep0(struct s3c_hsotg *hsotg) {
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

	ctrl = readl(hsotg->regs + reg);
1207 1208
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1209 1210 1211
	writel(ctrl, hsotg->regs + reg);

	dev_dbg(hsotg->dev,
1212
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1213 1214 1215 1216 1217 1218 1219 1220 1221
		ctrl, reg, readl(hsotg->regs + reg));

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
	 s3c_hsotg_enqueue_setup(hsotg);
}

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
/**
 * s3c_hsotg_process_control - process a control request
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
				      struct usb_ctrlrequest *ctrl)
{
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	int ret = 0;
	u32 dcfg;

	ep0->sent_zlp = 0;

	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
		 ctrl->bRequest, ctrl->bRequestType,
		 ctrl->wValue, ctrl->wLength);

1244 1245 1246 1247
	/*
	 * record the direction of the request, for later use when enquing
	 * packets onto EP0.
	 */
1248 1249 1250 1251

	ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
	dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);

1252 1253 1254 1255
	/*
	 * if we've no data with this request, then the last part of the
	 * transaction is going to implicitly be IN.
	 */
1256 1257 1258 1259 1260 1261
	if (ctrl->wLength == 0)
		ep0->dir_in = 1;

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1262
			s3c_hsotg_disconnect(hsotg);
1263
			dcfg = readl(hsotg->regs + DCFG);
1264 1265
			dcfg &= ~DCFG_DEVADDR_MASK;
			dcfg |= ctrl->wValue << DCFG_DEVADDR_SHIFT;
1266
			writel(dcfg, hsotg->regs + DCFG);
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			return;

		case USB_REQ_GET_STATUS:
			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1287
		spin_unlock(&hsotg->lock);
1288
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1289
		spin_lock(&hsotg->lock);
1290 1291 1292 1293
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1294 1295
	/*
	 * the request is either unhandlable, or is not formatted correctly
1296 1297 1298
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1299 1300
	if (ret < 0)
		s3c_hsotg_stall_ep0(hsotg);
1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
}

/**
 * s3c_hsotg_complete_setup - completion of a setup transfer
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
static void s3c_hsotg_complete_setup(struct usb_ep *ep,
				     struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1322
	spin_lock(&hsotg->lock);
1323 1324 1325 1326
	if (req->actual == 0)
		s3c_hsotg_enqueue_setup(hsotg);
	else
		s3c_hsotg_process_control(hsotg, req->buf);
1327
	spin_unlock(&hsotg->lock);
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
}

/**
 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
{
	struct usb_request *req = hsotg->ctrl_req;
	struct s3c_hsotg_req *hs_req = our_req(req);
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
	req->complete = s3c_hsotg_complete_setup;

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

	hsotg->eps[0].dir_in = 0;

	ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1360 1361 1362 1363
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378
	}
}

/**
 * s3c_hsotg_complete_request - complete a request given to us
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1379
 */
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
				       struct s3c_hsotg_ep *hs_ep,
				       struct s3c_hsotg_req *hs_req,
				       int result)
{
	bool restart;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1395 1396 1397 1398
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1399 1400 1401 1402 1403 1404 1405 1406 1407 1408

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

	if (using_dma(hsotg))
		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1409 1410 1411 1412
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1413 1414

	if (hs_req->req.complete) {
1415
		spin_unlock(&hsotg->lock);
1416
		hs_req->req.complete(&hs_ep->ep, &hs_req->req);
1417
		spin_lock(&hsotg->lock);
1418 1419
	}

1420 1421
	/*
	 * Look to see if there is anything else to do. Note, the completion
1422
	 * of the previous request may have caused a new request to be started
1423 1424
	 * so be careful when doing this.
	 */
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448

	if (!hs_ep->req && result >= 0) {
		restart = !list_empty(&hs_ep->queue);
		if (restart) {
			hs_req = get_ep_head(hs_ep);
			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		}
	}
}

/**
 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1449
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1450 1451 1452 1453
	int to_read;
	int max_req;
	int read_ptr;

1454

1455
	if (!hs_req) {
1456
		u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1457 1458 1459
		int ptr;

		dev_warn(hsotg->dev,
1460
			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
			(void)readl(fifo);

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1474 1475 1476
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1477
	if (to_read > max_req) {
1478 1479
		/*
		 * more data appeared than we where willing
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1491 1492 1493 1494
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1495
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
}

/**
 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
 * @hsotg: The device instance
 * @req: The request currently on this endpoint
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1507
 * currently believed that we do not need to wait for any space in
1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
 * the TxFIFO.
 */
static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
			       struct s3c_hsotg_req *req)
{
	u32 ctrl;

	if (!req) {
		dev_warn(hsotg->dev, "%s: no request?\n", __func__);
		return;
	}

	if (req->req.length == 0) {
		hsotg->eps[0].sent_zlp = 1;
		s3c_hsotg_enqueue_setup(hsotg);
		return;
	}

	hsotg->eps[0].dir_in = 1;
	hsotg->eps[0].sent_zlp = 1;

	dev_dbg(hsotg->dev, "sending zero-length packet\n");

	/* issue a zero-sized packet to terminate this */
1532 1533
	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
	       DXEPTSIZ_XFERSIZE(0), hsotg->regs + DIEPTSIZ(0));
1534

1535
	ctrl = readl(hsotg->regs + DIEPCTL0);
1536 1537 1538
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
1539
	writel(ctrl, hsotg->regs + DIEPCTL0);
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
}

/**
 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 * @was_setup: Set if processing a SetupDone event.
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1551
 */
1552 1553 1554
static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
				     int epnum, bool was_setup)
{
1555
	u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1556 1557 1558
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
	struct s3c_hsotg_req *hs_req = hs_ep->req;
	struct usb_request *req = &hs_req->req;
1559
	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

	if (using_dma(hsotg)) {
		unsigned size_done;

1570 1571
		/*
		 * Calculate the size of the transfer by checking how much
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1585 1586 1587 1588
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
		return;
1589 1590 1591 1592 1593 1594
	} else if (epnum == 0) {
		/*
		 * After was_setup = 1 =>
		 * set CNAK for non Setup requests
		 */
		hsotg->setup = was_setup ? 0 : 1;
1595 1596
	}

1597 1598 1599 1600
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1601 1602 1603 1604
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1605 1606 1607
	}

	if (epnum == 0) {
1608 1609 1610 1611
		/*
		 * Condition req->complete != s3c_hsotg_complete_setup says:
		 * send ZLP when we have an asynchronous request from gadget
		 */
1612 1613 1614 1615
		if (!was_setup && req->complete != s3c_hsotg_complete_setup)
			s3c_hsotg_send_zlp(hsotg, hs_req);
	}

1616
	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1617 1618 1619 1620 1621 1622 1623
}

/**
 * s3c_hsotg_read_frameno - read current frame number
 * @hsotg: The device instance
 *
 * Return the current frame number
1624
 */
1625 1626 1627 1628
static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
{
	u32 dsts;

1629 1630 1631
	dsts = readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643

	return dsts;
}

/**
 * s3c_hsotg_handle_rx - RX FIFO has data
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1644
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1645 1646 1647 1648 1649 1650 1651
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1652
static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
1653
{
1654
	u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1655 1656 1657 1658
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

1659 1660
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
1661

1662 1663
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
1664 1665 1666 1667 1668

	if (1)
		dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
			__func__, grxstsr, size, epnum);

1669 1670 1671
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1672 1673
		break;

1674
	case GRXSTS_PKTSTS_OUTDONE:
1675 1676 1677 1678 1679 1680 1681
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg));

		if (!using_dma(hsotg))
			s3c_hsotg_handle_outdone(hsotg, epnum, false);
		break;

1682
	case GRXSTS_PKTSTS_SETUPDONE:
1683 1684 1685
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1686
			readl(hsotg->regs + DOEPCTL(0)));
1687 1688 1689 1690

		s3c_hsotg_handle_outdone(hsotg, epnum, true);
		break;

1691
	case GRXSTS_PKTSTS_OUTRX:
1692 1693 1694
		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

1695
	case GRXSTS_PKTSTS_SETUPRX:
1696 1697 1698
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1699
			readl(hsotg->regs + DOEPCTL(0)));
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715

		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

		s3c_hsotg_dump(hsotg);
		break;
	}
}

/**
 * s3c_hsotg_ep0_mps - turn max packet size into register setting
 * @mps: The maximum packet size in bytes.
1716
 */
1717 1718 1719 1720
static u32 s3c_hsotg_ep0_mps(unsigned int mps)
{
	switch (mps) {
	case 64:
1721
		return D0EPCTL_MPS_64;
1722
	case 32:
1723
		return D0EPCTL_MPS_32;
1724
	case 16:
1725
		return D0EPCTL_MPS_16;
1726
	case 8:
1727
		return D0EPCTL_MPS_8;
1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
				       unsigned int ep, unsigned int mps)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
	void __iomem *regs = hsotg->regs;
	u32 mpsval;
1750
	u32 mcval;
1751 1752 1753 1754 1755 1756 1757
	u32 reg;

	if (ep == 0) {
		/* EP0 is a special case */
		mpsval = s3c_hsotg_ep0_mps(mps);
		if (mpsval > 3)
			goto bad_mps;
1758
		hs_ep->ep.maxpacket = mps;
1759
		hs_ep->mc = 1;
1760
	} else {
1761
		mpsval = mps & DXEPCTL_MPS_MASK;
1762
		if (mpsval > 1024)
1763
			goto bad_mps;
1764 1765 1766 1767
		mcval = ((mps >> 11) & 0x3) + 1;
		hs_ep->mc = mcval;
		if (mcval > 3)
			goto bad_mps;
1768
		hs_ep->ep.maxpacket = mpsval;
1769 1770
	}

1771 1772 1773 1774
	/*
	 * update both the in and out endpoint controldir_ registers, even
	 * if one of the directions may not be in use.
	 */
1775

1776
	reg = readl(regs + DIEPCTL(ep));
1777
	reg &= ~DXEPCTL_MPS_MASK;
1778
	reg |= mpsval;
1779
	writel(reg, regs + DIEPCTL(ep));
1780

1781
	if (ep) {
1782
		reg = readl(regs + DOEPCTL(ep));
1783
		reg &= ~DXEPCTL_MPS_MASK;
1784
		reg |= mpsval;
1785
		writel(reg, regs + DOEPCTL(ep));
1786
	}
1787 1788 1789 1790 1791 1792 1793

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
/**
 * s3c_hsotg_txfifo_flush - flush Tx FIFO
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
static void s3c_hsotg_txfifo_flush(struct s3c_hsotg *hsotg, unsigned int idx)
{
	int timeout;
	int val;

1804
	writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1805
		hsotg->regs + GRSTCTL);
1806 1807 1808 1809 1810

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
1811
		val = readl(hsotg->regs + GRSTCTL);
1812

1813
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
		}

		udelay(1);
	}
}
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838

/**
 * s3c_hsotg_trytx - check to see if anything needs transmitting
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
			   struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;

1839 1840 1841 1842 1843 1844 1845 1846
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
			s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
					     hs_ep->dir_in, 0);
1847
		return 0;
1848
	}
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

	return 0;
}

/**
 * s3c_hsotg_complete_in - complete IN transfer
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
				  struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1871
	u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1872 1873 1874 1875 1876 1877 1878
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

1879 1880 1881
	/* Finish ZLP handling for IN EP0 transactions */
	if (hsotg->eps[0].sent_zlp) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
1882
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1883 1884 1885
		return;
	}

1886 1887
	/*
	 * Calculate the size of the transfer by checking how much is left
1888 1889 1890 1891 1892 1893 1894 1895
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

1896
	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1897 1898 1899 1900 1901 1902 1903 1904 1905

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

	/*
	 * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0
	 * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B
	 * ,256B ... ), after last MPS sized packet send IN ZLP packet to
	 * inform the host that no more data is available.
	 * The state of req.zero member is checked to be sure that the value to
	 * send is smaller than wValue expected from host.
	 * Check req.length to NOT send another ZLP when the current one is
	 * under completion (the one for which this completion has been called).
	 */
	if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero &&
	    hs_req->req.length == hs_req->req.actual &&
	    !(hs_req->req.length % hs_ep->ep.maxpacket)) {

		dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n");
		s3c_hsotg_send_zlp(hsotg, hs_req);
1925

1926 1927
		return;
	}
1928 1929 1930 1931 1932

	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
	} else
1933
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1934 1935 1936 1937 1938 1939 1940 1941 1942
}

/**
 * s3c_hsotg_epint - handle an in/out endpoint interrupt
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
1943
 */
1944 1945 1946 1947
static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
			    int dir_in)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1948 1949 1950
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1951
	u32 ints;
1952
	u32 ctrl;
1953 1954

	ints = readl(hsotg->regs + epint_reg);
1955
	ctrl = readl(hsotg->regs + epctl_reg);
1956

1957 1958 1959
	/* Clear endpoint interrupts */
	writel(ints, hsotg->regs + epint_reg);

1960 1961 1962
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

1963
	if (ints & DXEPINT_XFERCOMPL) {
1964
		if (hs_ep->isochronous && hs_ep->interval == 1) {
1965 1966
			if (ctrl & DXEPCTL_EOFRNUM)
				ctrl |= DXEPCTL_SETEVENFR;
1967
			else
1968
				ctrl |= DXEPCTL_SETODDFR;
1969 1970 1971
			writel(ctrl, hsotg->regs + epctl_reg);
		}

1972
		dev_dbg(hsotg->dev,
1973
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1974 1975 1976
			__func__, readl(hsotg->regs + epctl_reg),
			readl(hsotg->regs + epsiz_reg));

1977 1978 1979 1980
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
1981 1982 1983
		if (dir_in) {
			s3c_hsotg_complete_in(hsotg, hs_ep);

1984
			if (idx == 0 && !hs_ep->req)
1985 1986
				s3c_hsotg_enqueue_setup(hsotg);
		} else if (using_dma(hsotg)) {
1987 1988 1989 1990
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
1991 1992 1993 1994 1995

			s3c_hsotg_handle_outdone(hsotg, idx, false);
		}
	}

1996
	if (ints & DXEPINT_EPDISBLD) {
1997 1998
		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

1999 2000 2001 2002 2003
		if (dir_in) {
			int epctl = readl(hsotg->regs + epctl_reg);

			s3c_hsotg_txfifo_flush(hsotg, idx);

2004 2005
			if ((epctl & DXEPCTL_STALL) &&
				(epctl & DXEPCTL_EPTYPE_BULK)) {
2006
				int dctl = readl(hsotg->regs + DCTL);
2007

2008
				dctl |= DCTL_CGNPINNAK;
2009
				writel(dctl, hsotg->regs + DCTL);
2010 2011 2012 2013
			}
		}
	}

2014
	if (ints & DXEPINT_AHBERR)
2015 2016
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

2017
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2018 2019 2020
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
2021 2022
			/*
			 * this is the notification we've received a
2023 2024
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
2025 2026
			 * the setup here.
			 */
2027 2028 2029 2030 2031 2032 2033 2034

			if (dir_in)
				WARN_ON_ONCE(1);
			else
				s3c_hsotg_handle_outdone(hsotg, 0, true);
		}
	}

2035
	if (ints & DXEPINT_BACK2BACKSETUP)
2036 2037
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

2038
	if (dir_in && !hs_ep->isochronous) {
2039
		/* not sure if this is important, but we'll clear it anyway */
2040
		if (ints & DIEPMSK_INTKNTXFEMPMSK) {
2041 2042 2043 2044 2045
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
2046
		if (ints & DIEPMSK_INTKNEPMISMSK) {
2047 2048 2049
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
2050 2051 2052

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
2053
		    ints & DIEPMSK_TXFIFOEMPTY) {
2054 2055
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
2056 2057
			if (!using_dma(hsotg))
				s3c_hsotg_trytx(hsotg, hs_ep);
2058
		}
2059 2060 2061 2062 2063 2064 2065 2066 2067
	}
}

/**
 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
2068
 */
2069 2070
static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
{
2071
	u32 dsts = readl(hsotg->regs + DSTS);
2072 2073
	int ep0_mps = 0, ep_mps;

2074 2075
	/*
	 * This should signal the finish of the enumeration phase
2076
	 * of the USB handshaking, so we should now know what rate
2077 2078
	 * we connected at.
	 */
2079 2080 2081

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

2082 2083
	/*
	 * note, since we're limited by the size of transfer on EP0, and
2084
	 * it seems IN transfers must be a even number of packets we do
2085 2086
	 * not advertise a 64byte MPS on EP0.
	 */
2087 2088

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2089 2090 2091
	switch (dsts & DSTS_ENUMSPD_MASK) {
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
2092 2093
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
2094
		ep_mps = 1023;
2095 2096
		break;

2097
	case DSTS_ENUMSPD_HS:
2098 2099
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
2100
		ep_mps = 1024;
2101 2102
		break;

2103
	case DSTS_ENUMSPD_LS:
2104
		hsotg->gadget.speed = USB_SPEED_LOW;
2105 2106
		/*
		 * note, we don't actually support LS in this driver at the
2107 2108 2109 2110 2111
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
2112 2113
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
2114

2115 2116 2117 2118
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
2119 2120 2121 2122

	if (ep0_mps) {
		int i;
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
2123
		for (i = 1; i < hsotg->num_of_eps; i++)
2124 2125 2126 2127 2128 2129 2130 2131
			s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
	}

	/* ensure after enumeration our EP0 is active */

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2132 2133
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 * @force: Force removal of any current requests
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
static void kill_all_requests(struct s3c_hsotg *hsotg,
			      struct s3c_hsotg_ep *ep,
			      int result, bool force)
{
	struct s3c_hsotg_req *req, *treq;

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2153 2154 2155 2156
		/*
		 * currently, we can't do much about an already
		 * running request on an in endpoint
		 */
2157 2158 2159 2160 2161 2162 2163

		if (ep->req == req && ep->dir_in && !force)
			continue;

		s3c_hsotg_complete_request(hsotg, ep, req,
					   result);
	}
2164 2165 2166
	if(hsotg->dedicated_fifos)
		if ((readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4 < 3072)
			s3c_hsotg_txfifo_flush(hsotg, ep->index);
2167 2168 2169
}

#define call_gadget(_hs, _entry) \
2170
do { \
2171
	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN &&	\
2172 2173 2174 2175
	    (_hs)->driver && (_hs)->driver->_entry) { \
		spin_unlock(&_hs->lock); \
		(_hs)->driver->_entry(&(_hs)->gadget); \
		spin_lock(&_hs->lock); \
2176 2177
	} \
} while (0)
2178 2179

/**
2180
 * s3c_hsotg_disconnect - disconnect service
2181 2182
 * @hsotg: The device state.
 *
2183 2184 2185
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2186
 */
2187
static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg)
2188 2189 2190
{
	unsigned ep;

2191
	for (ep = 0; ep < hsotg->num_of_eps; ep++)
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208
		kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);

	call_gadget(hsotg, disconnect);
}

/**
 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
{
	struct s3c_hsotg_ep *ep;
	int epno, ret;

	/* look through for any more data to transmit */

2209
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
		ep = &hsotg->eps[epno];

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

		ret = s3c_hsotg_trytx(hsotg, ep);
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2226 2227 2228
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
2229

2230 2231 2232 2233 2234
/**
 * s3c_hsotg_corereset - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
2235
 */
2236 2237 2238 2239 2240 2241 2242 2243
static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
{
	int timeout;
	u32 grstctl;

	dev_dbg(hsotg->dev, "resetting core\n");

	/* issue soft reset */
2244
	writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2245

2246
	timeout = 10000;
2247
	do {
2248
		grstctl = readl(hsotg->regs + GRSTCTL);
2249
	} while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2250

2251
	if (grstctl & GRSTCTL_CSFTRST) {
2252 2253 2254 2255
		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
		return -EINVAL;
	}

2256
	timeout = 10000;
2257 2258

	while (1) {
2259
		u32 grstctl = readl(hsotg->regs + GRSTCTL);
2260 2261 2262 2263 2264 2265 2266 2267

		if (timeout-- < 0) {
			dev_info(hsotg->dev,
				 "%s: reset failed, GRSTCTL=%08x\n",
				 __func__, grstctl);
			return -ETIMEDOUT;
		}

2268
		if (!(grstctl & GRSTCTL_AHBIDLE))
2269 2270 2271 2272 2273 2274 2275 2276 2277
			continue;

		break;		/* reset done */
	}

	dev_dbg(hsotg->dev, "reset successful\n");
	return 0;
}

2278 2279 2280 2281 2282 2283
/**
 * s3c_hsotg_core_init - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
static void s3c_hsotg_core_init(struct s3c_hsotg *hsotg)
{
	s3c_hsotg_corereset(hsotg);

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2294
	writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2295
	       (0x5 << 10), hsotg->regs + GUSBCFG);
2296 2297 2298

	s3c_hsotg_init_fifo(hsotg);

2299
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2300

2301
	writel(1 << 18 | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2302 2303

	/* Clear any pending OTG interrupts */
2304
	writel(0xffffffff, hsotg->regs + GOTGINT);
2305 2306

	/* Clear any pending interrupts */
2307
	writel(0xffffffff, hsotg->regs + GINTSTS);
2308

2309 2310 2311 2312 2313 2314
	writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
		GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
		GINTSTS_USBSUSP | GINTSTS_WKUPINT,
		hsotg->regs + GINTMSK);
2315 2316

	if (using_dma(hsotg))
2317 2318
		writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
		       GAHBCFG_HBSTLEN_INCR4,
2319
		       hsotg->regs + GAHBCFG);
2320
	else
2321 2322 2323
		writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL |
						    GAHBCFG_P_TXF_EMP_LVL) : 0) |
		       GAHBCFG_GLBL_INTR_EN,
2324
		       hsotg->regs + GAHBCFG);
2325 2326

	/*
2327 2328 2329
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
2330 2331
	 */

2332 2333 2334 2335 2336 2337
	writel(((hsotg->dedicated_fifos) ? DIEPMSK_TXFIFOEMPTY |
		DIEPMSK_INTKNTXFEMPMSK : 0) |
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_INTKNEPMISMSK,
		hsotg->regs + DIEPMSK);
2338 2339 2340 2341 2342

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2343 2344 2345 2346 2347
	writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
				    DIEPMSK_TIMEOUTMSK) : 0) |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_SETUPMSK,
		hsotg->regs + DOEPMSK);
2348

2349
	writel(0, hsotg->regs + DAINTMSK);
2350 2351

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2352 2353
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2354 2355

	/* enable in and out endpoint interrupts */
2356
	s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2357 2358 2359 2360 2361 2362 2363

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2364
		s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2365 2366 2367 2368 2369

	/* Enable interrupts for EP0 in and out */
	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);

2370
	__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2371
	udelay(10);  /* see openiboot */
2372
	__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2373

2374
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2375 2376

	/*
2377
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2378 2379 2380 2381
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2382 2383
	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2384 2385

	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2386 2387
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
2388
	       hsotg->regs + DOEPCTL0);
2389 2390 2391

	/* enable, but don't activate EP0in */
	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2392
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2393 2394 2395 2396

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2397 2398
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2399 2400

	/* clear global NAKs */
2401
	writel(DCTL_CGOUTNAK | DCTL_CGNPINNAK,
2402
	       hsotg->regs + DCTL);
2403 2404 2405 2406 2407

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

	/* remove the soft-disconnect and let's go */
2408
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2409 2410
}

2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
/**
 * s3c_hsotg_irq - handle device interrupt
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
{
	struct s3c_hsotg *hsotg = pw;
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

2423
	spin_lock(&hsotg->lock);
2424
irq_retry:
2425 2426
	gintsts = readl(hsotg->regs + GINTSTS);
	gintmsk = readl(hsotg->regs + GINTMSK);
2427 2428 2429 2430 2431 2432

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

2433
	if (gintsts & GINTSTS_OTGINT) {
2434
		u32 otgint = readl(hsotg->regs + GOTGINT);
2435 2436 2437

		dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);

2438
		writel(otgint, hsotg->regs + GOTGINT);
2439 2440
	}

2441
	if (gintsts & GINTSTS_SESSREQINT) {
2442
		dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
2443
		writel(GINTSTS_SESSREQINT, hsotg->regs + GINTSTS);
2444 2445
	}

2446 2447
	if (gintsts & GINTSTS_ENUMDONE) {
		writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2448 2449

		s3c_hsotg_irq_enumdone(hsotg);
2450 2451
	}

2452
	if (gintsts & GINTSTS_CONIDSTSCHNG) {
2453
		dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2454 2455
			readl(hsotg->regs + DSTS),
			readl(hsotg->regs + GOTGCTL));
2456

2457
		writel(GINTSTS_CONIDSTSCHNG, hsotg->regs + GINTSTS);
2458 2459
	}

2460
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2461
		u32 daint = readl(hsotg->regs + DAINT);
2462 2463
		u32 daintmsk = readl(hsotg->regs + DAINTMSK);
		u32 daint_out, daint_in;
2464 2465
		int ep;

2466
		daint &= daintmsk;
2467 2468
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2469

2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

		for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
			if (daint_out & 1)
				s3c_hsotg_epint(hsotg, ep, 0);
		}

		for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
			if (daint_in & 1)
				s3c_hsotg_epint(hsotg, ep, 1);
		}
	}

2483
	if (gintsts & GINTSTS_USBRST) {
2484

2485
		u32 usb_status = readl(hsotg->regs + GOTGCTL);
2486

2487 2488
		dev_info(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2489
			readl(hsotg->regs + GNPTXSTS));
2490

2491
		writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2492

2493
		if (usb_status & GOTGCTL_BSESVLD) {
2494 2495
			if (time_after(jiffies, hsotg->last_rst +
				       msecs_to_jiffies(200))) {
2496

2497 2498
				kill_all_requests(hsotg, &hsotg->eps[0],
							  -ECONNRESET, true);
2499

2500 2501 2502 2503
				s3c_hsotg_core_init(hsotg);
				hsotg->last_rst = jiffies;
			}
		}
2504 2505 2506 2507
	}

	/* check both FIFOs */

2508
	if (gintsts & GINTSTS_NPTXFEMP) {
2509 2510
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

2511 2512
		/*
		 * Disable the interrupt to stop it happening again
2513
		 * unless one of these endpoint routines decides that
2514 2515
		 * it needs re-enabling
		 */
2516

2517
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2518 2519 2520
		s3c_hsotg_irq_fifoempty(hsotg, false);
	}

2521
	if (gintsts & GINTSTS_PTXFEMP) {
2522 2523
		dev_dbg(hsotg->dev, "PTxFEmp\n");

2524
		/* See note in GINTSTS_NPTxFEmp */
2525

2526
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2527 2528 2529
		s3c_hsotg_irq_fifoempty(hsotg, true);
	}

2530
	if (gintsts & GINTSTS_RXFLVL) {
2531 2532
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2533
		 * we need to retry s3c_hsotg_handle_rx if this is still
2534 2535
		 * set.
		 */
2536 2537 2538 2539

		s3c_hsotg_handle_rx(hsotg);
	}

2540
	if (gintsts & GINTSTS_MODEMIS) {
2541
		dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2542
		writel(GINTSTS_MODEMIS, hsotg->regs + GINTSTS);
2543 2544
	}

2545
	if (gintsts & GINTSTS_USBSUSP) {
2546
		dev_info(hsotg->dev, "GINTSTS_USBSusp\n");
2547
		writel(GINTSTS_USBSUSP, hsotg->regs + GINTSTS);
2548 2549 2550 2551

		call_gadget(hsotg, suspend);
	}

2552
	if (gintsts & GINTSTS_WKUPINT) {
2553
		dev_info(hsotg->dev, "GINTSTS_WkUpIn\n");
2554
		writel(GINTSTS_WKUPINT, hsotg->regs + GINTSTS);
2555 2556 2557 2558

		call_gadget(hsotg, resume);
	}

2559
	if (gintsts & GINTSTS_ERLYSUSP) {
2560
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2561
		writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2562 2563
	}

2564 2565
	/*
	 * these next two seem to crop-up occasionally causing the core
2566
	 * to shutdown the USB transfer, so try clearing them and logging
2567 2568
	 * the occurrence.
	 */
2569

2570
	if (gintsts & GINTSTS_GOUTNAKEFF) {
2571 2572
		dev_info(hsotg->dev, "GOUTNakEff triggered\n");

2573
		writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2574 2575

		s3c_hsotg_dump(hsotg);
2576 2577
	}

2578
	if (gintsts & GINTSTS_GINNAKEFF) {
2579 2580
		dev_info(hsotg->dev, "GINNakEff triggered\n");

2581
		writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2582 2583

		s3c_hsotg_dump(hsotg);
2584 2585
	}

2586 2587 2588 2589
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
2590 2591 2592 2593

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

2594 2595
	spin_unlock(&hsotg->lock);

2596 2597 2598 2599 2600 2601 2602 2603 2604
	return IRQ_HANDLED;
}

/**
 * s3c_hsotg_ep_enable - enable the given endpoint
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
2605
 */
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616
static int s3c_hsotg_ep_enable(struct usb_ep *ep,
			       const struct usb_endpoint_descriptor *desc)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;
	unsigned long flags;
	int index = hs_ep->index;
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
	int dir_in;
2617
	int ret = 0;
2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
	WARN_ON(index == 0);

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

2633
	mps = usb_endpoint_maxp(desc);
2634 2635 2636

	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */

2637
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2638 2639 2640 2641 2642
	epctrl = readl(hsotg->regs + epctrl_reg);

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

2643
	spin_lock_irqsave(&hsotg->lock, flags);
2644

2645 2646
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
2647

2648 2649 2650 2651
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
2652
	epctrl |= DXEPCTL_USBACTEP;
2653

2654 2655
	/*
	 * set the NAK status on the endpoint, otherwise we might try and
2656 2657 2658 2659 2660
	 * do something with data that we've yet got a request to process
	 * since the RXFIFO will take data for an endpoint even if the
	 * size register hasn't been set.
	 */

2661
	epctrl |= DXEPCTL_SNAK;
2662 2663

	/* update the endpoint state */
2664
	s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps);
2665 2666

	/* default, set to non-periodic */
2667
	hs_ep->isochronous = 0;
2668
	hs_ep->periodic = 0;
2669
	hs_ep->halted = 0;
2670
	hs_ep->interval = desc->bInterval;
2671

2672 2673 2674
	if (hs_ep->interval > 1 && hs_ep->mc > 1)
		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");

2675 2676
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
2677 2678
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
2679 2680 2681 2682
		hs_ep->isochronous = 1;
		if (dir_in)
			hs_ep->periodic = 1;
		break;
2683 2684

	case USB_ENDPOINT_XFER_BULK:
2685
		epctrl |= DXEPCTL_EPTYPE_BULK;
2686 2687 2688 2689
		break;

	case USB_ENDPOINT_XFER_INT:
		if (dir_in) {
2690 2691
			/*
			 * Allocate our TxFNum by simply using the index
2692 2693
			 * of the endpoint for the moment. We could do
			 * something better if the host indicates how
2694 2695
			 * many FIFOs we are expecting to use.
			 */
2696 2697

			hs_ep->periodic = 1;
2698
			epctrl |= DXEPCTL_TXFNUM(index);
2699 2700
		}

2701
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2702 2703 2704
		break;

	case USB_ENDPOINT_XFER_CONTROL:
2705
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2706 2707 2708
		break;
	}

2709 2710
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
2711 2712 2713
	 * a unique tx-fifo even if it is non-periodic.
	 */
	if (dir_in && hsotg->dedicated_fifos)
2714
		epctrl |= DXEPCTL_TXFNUM(index);
2715

2716 2717
	/* for non control endpoints, set PID to D0 */
	if (index)
2718
		epctrl |= DXEPCTL_SETD0PID;
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

	writel(epctrl, hsotg->regs + epctrl_reg);
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
		__func__, readl(hsotg->regs + epctrl_reg));

	/* enable the endpoint interrupt */
	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);

2730
	spin_unlock_irqrestore(&hsotg->lock, flags);
2731
	return ret;
2732 2733
}

2734 2735 2736 2737
/**
 * s3c_hsotg_ep_disable - disable given endpoint
 * @ep: The endpoint to disable.
 */
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
static int s3c_hsotg_ep_disable(struct usb_ep *ep)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

	dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);

	if (ep == &hsotg->eps[0].ep) {
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

2755
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2756

2757
	spin_lock_irqsave(&hsotg->lock, flags);
2758 2759 2760 2761 2762
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);


	ctrl = readl(hsotg->regs + epctrl_reg);
2763 2764 2765
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
2766 2767 2768 2769 2770 2771 2772

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

	/* disable endpoint interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);

2773
	spin_unlock_irqrestore(&hsotg->lock, flags);
2774 2775 2776 2777 2778 2779 2780
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
2781
 */
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793
static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
{
	struct s3c_hsotg_req *req, *treq;

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

2794 2795 2796 2797 2798
/**
 * s3c_hsotg_ep_dequeue - dequeue given endpoint
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
2799 2800 2801 2802 2803 2804 2805 2806 2807
static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	unsigned long flags;

	dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);

2808
	spin_lock_irqsave(&hs->lock, flags);
2809 2810

	if (!on_list(hs_ep, hs_req)) {
2811
		spin_unlock_irqrestore(&hs->lock, flags);
2812 2813 2814 2815
		return -EINVAL;
	}

	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2816
	spin_unlock_irqrestore(&hs->lock, flags);
2817 2818 2819 2820

	return 0;
}

2821 2822 2823 2824 2825
/**
 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
2826 2827 2828 2829 2830 2831 2832
static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
2833
	u32 xfertype;
2834 2835 2836

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

2837 2838 2839 2840 2841 2842 2843 2844 2845
	if (index == 0) {
		if (value)
			s3c_hsotg_stall_ep0(hs);
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

2846 2847
	/* write both IN and OUT control registers */

2848
	epreg = DIEPCTL(index);
2849 2850
	epctl = readl(hs->regs + epreg);

2851
	if (value) {
2852 2853 2854
		epctl |= DXEPCTL_STALL + DXEPCTL_SNAK;
		if (epctl & DXEPCTL_EPENA)
			epctl |= DXEPCTL_EPDIS;
2855
	} else {
2856 2857 2858 2859 2860
		epctl &= ~DXEPCTL_STALL;
		xfertype = epctl & DXEPCTL_EPTYPE_MASK;
		if (xfertype == DXEPCTL_EPTYPE_BULK ||
			xfertype == DXEPCTL_EPTYPE_INTERRUPT)
				epctl |= DXEPCTL_SETD0PID;
2861
	}
2862 2863 2864

	writel(epctl, hs->regs + epreg);

2865
	epreg = DOEPCTL(index);
2866 2867 2868
	epctl = readl(hs->regs + epreg);

	if (value)
2869
		epctl |= DXEPCTL_STALL;
2870
	else {
2871 2872 2873 2874 2875
		epctl &= ~DXEPCTL_STALL;
		xfertype = epctl & DXEPCTL_EPTYPE_MASK;
		if (xfertype == DXEPCTL_EPTYPE_BULK ||
			xfertype == DXEPCTL_EPTYPE_INTERRUPT)
				epctl |= DXEPCTL_SETD0PID;
2876
	}
2877 2878 2879

	writel(epctl, hs->regs + epreg);

2880 2881
	hs_ep->halted = value;

2882 2883 2884
	return 0;
}

2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
/**
 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_sethalt(ep, value);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

2904 2905 2906 2907 2908
static struct usb_ep_ops s3c_hsotg_ep_ops = {
	.enable		= s3c_hsotg_ep_enable,
	.disable	= s3c_hsotg_ep_disable,
	.alloc_request	= s3c_hsotg_ep_alloc_request,
	.free_request	= s3c_hsotg_ep_free_request,
2909
	.queue		= s3c_hsotg_ep_queue_lock,
2910
	.dequeue	= s3c_hsotg_ep_dequeue,
2911
	.set_halt	= s3c_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
2912
	/* note, don't believe we have any call for the fifo routines */
2913 2914
};

2915 2916
/**
 * s3c_hsotg_phy_enable - enable platform phy dev
2917
 * @hsotg: The driver state
2918 2919 2920 2921 2922 2923 2924 2925 2926
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
static void s3c_hsotg_phy_enable(struct s3c_hsotg *hsotg)
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

	dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2927

2928 2929 2930 2931 2932
	if (hsotg->phy) {
		phy_init(hsotg->phy);
		phy_power_on(hsotg->phy);
	} else if (hsotg->uphy)
		usb_phy_init(hsotg->uphy);
2933
	else if (hsotg->plat->phy_init)
2934 2935 2936 2937 2938
		hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
}

/**
 * s3c_hsotg_phy_disable - disable platform phy dev
2939
 * @hsotg: The driver state
2940 2941 2942 2943 2944 2945 2946 2947
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
static void s3c_hsotg_phy_disable(struct s3c_hsotg *hsotg)
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

2948 2949 2950 2951 2952
	if (hsotg->phy) {
		phy_power_off(hsotg->phy);
		phy_exit(hsotg->phy);
	} else if (hsotg->uphy)
		usb_phy_shutdown(hsotg->uphy);
2953
	else if (hsotg->plat->phy_exit)
2954 2955 2956
		hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
}

2957 2958 2959 2960
/**
 * s3c_hsotg_init - initalize the usb core
 * @hsotg: The driver state
 */
2961 2962 2963 2964
static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
{
	/* unmask subset of endpoint interrupts */

2965 2966 2967
	writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		hsotg->regs + DIEPMSK);
2968

2969 2970 2971
	writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		hsotg->regs + DOEPMSK);
2972

2973
	writel(0, hsotg->regs + DAINTMSK);
2974 2975

	/* Be in disconnected state until gadget is registered */
2976
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2977 2978 2979

	if (0) {
		/* post global nak until we're ready */
2980
		writel(DCTL_SGNPINNAK | DCTL_SGOUTNAK,
2981
		       hsotg->regs + DCTL);
2982 2983 2984 2985 2986
	}

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2987 2988
		readl(hsotg->regs + GRXFSIZ),
		readl(hsotg->regs + GNPTXFSIZ));
2989 2990 2991 2992

	s3c_hsotg_init_fifo(hsotg);

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2993
	writel(GUSBCFG_PHYIF16 | GUSBCFG_TOUTCAL(7) | (0x5 << 10),
2994
	       hsotg->regs + GUSBCFG);
2995

2996
	writel(using_dma(hsotg) ? GAHBCFG_DMA_EN : 0x0,
2997
	       hsotg->regs + GAHBCFG);
2998 2999
}

3000 3001 3002 3003 3004 3005 3006 3007
/**
 * s3c_hsotg_udc_start - prepare the udc for work
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
3008 3009
static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
			   struct usb_gadget_driver *driver)
3010
{
3011
	struct s3c_hsotg *hsotg = to_hsotg(gadget);
3012 3013 3014
	int ret;

	if (!hsotg) {
3015
		pr_err("%s: called with no device\n", __func__);
3016 3017 3018 3019 3020 3021 3022 3023
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

3024
	if (driver->max_speed < USB_SPEED_FULL)
3025 3026
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

3027
	if (!driver->setup) {
3028 3029 3030 3031 3032 3033 3034 3035
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
3036
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
3037 3038
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

3039 3040
	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
3041
	if (ret) {
3042
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
3043 3044 3045
		goto err;
	}

3046
	hsotg->last_rst = jiffies;
3047 3048 3049 3050 3051 3052 3053 3054
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
	return 0;

err:
	hsotg->driver = NULL;
	return ret;
}

3055 3056 3057 3058 3059 3060 3061
/**
 * s3c_hsotg_udc_stop - stop the udc
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
3062 3063
static int s3c_hsotg_udc_stop(struct usb_gadget *gadget,
			  struct usb_gadget_driver *driver)
3064
{
3065
	struct s3c_hsotg *hsotg = to_hsotg(gadget);
3066
	unsigned long flags = 0;
3067 3068 3069 3070 3071 3072
	int ep;

	if (!hsotg)
		return -ENODEV;

	/* all endpoints should be shutdown */
3073
	for (ep = 0; ep < hsotg->num_of_eps; ep++)
3074 3075
		s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);

3076 3077
	spin_lock_irqsave(&hsotg->lock, flags);

3078
	s3c_hsotg_phy_disable(hsotg);
3079

3080 3081 3082
	if (!driver)
		hsotg->driver = NULL;

3083 3084
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

3085 3086
	spin_unlock_irqrestore(&hsotg->lock, flags);

3087
	regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
3088 3089 3090 3091

	return 0;
}

3092 3093 3094 3095 3096 3097
/**
 * s3c_hsotg_gadget_getframe - read the frame number
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
3098 3099 3100 3101 3102
static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
{
	return s3c_hsotg_read_frameno(to_hsotg(gadget));
}

3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
/**
 * s3c_hsotg_pullup - connect/disconnect the USB PHY
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
{
	struct s3c_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags = 0;

	dev_dbg(hsotg->dev, "%s: is_in: %d\n", __func__, is_on);

	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
		s3c_hsotg_phy_enable(hsotg);
		s3c_hsotg_core_init(hsotg);
	} else {
		s3c_hsotg_disconnect(hsotg);
		s3c_hsotg_phy_disable(hsotg);
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return 0;
}

3132
static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
3133
	.get_frame	= s3c_hsotg_gadget_getframe,
3134 3135
	.udc_start		= s3c_hsotg_udc_start,
	.udc_stop		= s3c_hsotg_udc_stop,
3136
	.pullup                 = s3c_hsotg_pullup,
3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
};

/**
 * s3c_hsotg_initep - initialise a single endpoint
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
B
Bill Pemberton 已提交
3149
static void s3c_hsotg_initep(struct s3c_hsotg *hsotg,
3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
				       struct s3c_hsotg_ep *hs_ep,
				       int epnum)
{
	u32 ptxfifo;
	char *dir;

	if (epnum == 0)
		dir = "";
	else if ((epnum % 2) == 0) {
		dir = "out";
	} else {
		dir = "in";
		hs_ep->dir_in = 1;
	}

	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
3178
	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3179 3180
	hs_ep->ep.ops = &s3c_hsotg_ep_ops;

3181 3182
	/*
	 * Read the FIFO size for the Periodic TX FIFO, even if we're
3183 3184 3185 3186
	 * an OUT endpoint, we may as well do this if in future the
	 * code is changed to make each endpoint's direction changeable.
	 */

3187 3188
	ptxfifo = readl(hsotg->regs + DPTXFSIZN(epnum));
	hs_ep->fifo_size = FIFOSIZE_DEPTH_GET(ptxfifo) * 4;
3189

3190 3191
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
3192 3193 3194 3195
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
3196
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3197 3198
		writel(next, hsotg->regs + DIEPCTL(epnum));
		writel(next, hsotg->regs + DOEPCTL(epnum));
3199 3200 3201
	}
}

3202 3203 3204 3205 3206 3207 3208
/**
 * s3c_hsotg_hw_cfg - read HW configuration registers
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
static void s3c_hsotg_hw_cfg(struct s3c_hsotg *hsotg)
3209
{
3210 3211
	u32 cfg2, cfg4;
	/* check hardware configuration */
3212

3213 3214
	cfg2 = readl(hsotg->regs + 0x48);
	hsotg->num_of_eps = (cfg2 >> 10) & 0xF;
3215

3216
	dev_info(hsotg->dev, "EPs:%d\n", hsotg->num_of_eps);
3217 3218 3219 3220 3221 3222

	cfg4 = readl(hsotg->regs + 0x50);
	hsotg->dedicated_fifos = (cfg4 >> 25) & 1;

	dev_info(hsotg->dev, "%s fifos\n",
		 hsotg->dedicated_fifos ? "dedicated" : "shared");
3223 3224
}

3225 3226 3227 3228
/**
 * s3c_hsotg_dump - dump state of the udc
 * @param: The device state
 */
3229 3230
static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
{
M
Mark Brown 已提交
3231
#ifdef DEBUG
3232 3233 3234 3235 3236 3237
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3238 3239
		 readl(regs + DCFG), readl(regs + DCTL),
		 readl(regs + DIEPMSK));
3240 3241

	dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3242
		 readl(regs + GAHBCFG), readl(regs + 0x44));
3243 3244

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3245
		 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3246 3247 3248 3249

	/* show periodic fifo settings */

	for (idx = 1; idx <= 15; idx++) {
3250
		val = readl(regs + DPTXFSIZN(idx));
3251
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3252 3253
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
3254 3255 3256 3257 3258
	}

	for (idx = 0; idx < 15; idx++) {
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3259 3260 3261
			 readl(regs + DIEPCTL(idx)),
			 readl(regs + DIEPTSIZ(idx)),
			 readl(regs + DIEPDMA(idx)));
3262

3263
		val = readl(regs + DOEPCTL(idx));
3264 3265
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3266 3267 3268
			 idx, readl(regs + DOEPCTL(idx)),
			 readl(regs + DOEPTSIZ(idx)),
			 readl(regs + DOEPDMA(idx)));
3269 3270 3271 3272

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3273
		 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
3274
#endif
3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
}

/**
 * state_show - debugfs: show overall driver and device state.
 * @seq: The seq file to write to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the overall state of the hardware and
 * some general information about each of the endpoints available
 * to the system.
 */
static int state_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg *hsotg = seq->private;
	void __iomem *regs = hsotg->regs;
	int idx;

	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3293 3294 3295
		 readl(regs + DCFG),
		 readl(regs + DCTL),
		 readl(regs + DSTS));
3296 3297

	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3298
		   readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3299 3300

	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3301 3302
		   readl(regs + GINTMSK),
		   readl(regs + GINTSTS));
3303 3304

	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3305 3306
		   readl(regs + DAINTMSK),
		   readl(regs + DAINT));
3307 3308

	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3309 3310
		   readl(regs + GNPTXSTS),
		   readl(regs + GRXSTSR));
3311

3312
	seq_puts(seq, "\nEndpoint status:\n");
3313 3314 3315 3316

	for (idx = 0; idx < 15; idx++) {
		u32 in, out;

3317 3318
		in = readl(regs + DIEPCTL(idx));
		out = readl(regs + DOEPCTL(idx));
3319 3320 3321 3322

		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
			   idx, in, out);

3323 3324
		in = readl(regs + DIEPTSIZ(idx));
		out = readl(regs + DOEPTSIZ(idx));
3325 3326 3327 3328

		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
			   in, out);

3329
		seq_puts(seq, "\n");
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354
	}

	return 0;
}

static int state_open(struct inode *inode, struct file *file)
{
	return single_open(file, state_show, inode->i_private);
}

static const struct file_operations state_fops = {
	.owner		= THIS_MODULE,
	.open		= state_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * fifo_show - debugfs: show the fifo information
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * Show the FIFO information for the overall fifo and all the
 * periodic transmission FIFOs.
3355
 */
3356 3357 3358 3359 3360 3361 3362
static int fifo_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg *hsotg = seq->private;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

3363
	seq_puts(seq, "Non-periodic FIFOs:\n");
3364
	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3365

3366
	val = readl(regs + GNPTXFSIZ);
3367
	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3368 3369
		   val >> FIFOSIZE_DEPTH_SHIFT,
		   val & FIFOSIZE_DEPTH_MASK);
3370

3371
	seq_puts(seq, "\nPeriodic TXFIFOs:\n");
3372 3373

	for (idx = 1; idx <= 15; idx++) {
3374
		val = readl(regs + DPTXFSIZN(idx));
3375 3376

		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3377 3378
			   val >> FIFOSIZE_DEPTH_SHIFT,
			   val & FIFOSIZE_STARTADDR_MASK);
3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
	}

	return 0;
}

static int fifo_open(struct inode *inode, struct file *file)
{
	return single_open(file, fifo_show, inode->i_private);
}

static const struct file_operations fifo_fops = {
	.owner		= THIS_MODULE,
	.open		= fifo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};


static const char *decode_direction(int is_in)
{
	return is_in ? "in" : "out";
}

/**
 * ep_show - debugfs: show the state of an endpoint.
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the state of the given endpoint (one is
 * registered for each available).
3410
 */
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
static int ep_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg_ep *ep = seq->private;
	struct s3c_hsotg *hsotg = ep->parent;
	struct s3c_hsotg_req *req;
	void __iomem *regs = hsotg->regs;
	int index = ep->index;
	int show_limit = 15;
	unsigned long flags;

	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
		   ep->index, ep->ep.name, decode_direction(ep->dir_in));

	/* first show the register state */

	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3427 3428
		   readl(regs + DIEPCTL(index)),
		   readl(regs + DOEPCTL(index)));
3429 3430

	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3431 3432
		   readl(regs + DIEPDMA(index)),
		   readl(regs + DOEPDMA(index)));
3433 3434

	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3435 3436
		   readl(regs + DIEPINT(index)),
		   readl(regs + DOEPINT(index)));
3437 3438

	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3439 3440
		   readl(regs + DIEPTSIZ(index)),
		   readl(regs + DOEPTSIZ(index)));
3441

3442
	seq_puts(seq, "\n");
3443 3444 3445 3446 3447 3448
	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
	seq_printf(seq, "total_data=%ld\n", ep->total_data);

	seq_printf(seq, "request list (%p,%p):\n",
		   ep->queue.next, ep->queue.prev);

3449
	spin_lock_irqsave(&hsotg->lock, flags);
3450 3451 3452

	list_for_each_entry(req, &ep->queue, queue) {
		if (--show_limit < 0) {
3453
			seq_puts(seq, "not showing more requests...\n");
3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
			break;
		}

		seq_printf(seq, "%c req %p: %d bytes @%p, ",
			   req == ep->req ? '*' : ' ',
			   req, req->req.length, req->req.buf);
		seq_printf(seq, "%d done, res %d\n",
			   req->req.actual, req->req.status);
	}

3464
	spin_unlock_irqrestore(&hsotg->lock, flags);
3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489

	return 0;
}

static int ep_open(struct inode *inode, struct file *file)
{
	return single_open(file, ep_show, inode->i_private);
}

static const struct file_operations ep_fops = {
	.owner		= THIS_MODULE,
	.open		= ep_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * s3c_hsotg_create_debug - create debugfs directory and files
 * @hsotg: The driver state
 *
 * Create the debugfs files to allow the user to get information
 * about the state of the system. The directory name is created
 * with the same name as the device itself, in case we end up
 * with multiple blocks in future systems.
3490
 */
B
Bill Pemberton 已提交
3491
static void s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518
{
	struct dentry *root;
	unsigned epidx;

	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
	hsotg->debug_root = root;
	if (IS_ERR(root)) {
		dev_err(hsotg->dev, "cannot create debug root\n");
		return;
	}

	/* create general state file */

	hsotg->debug_file = debugfs_create_file("state", 0444, root,
						hsotg, &state_fops);

	if (IS_ERR(hsotg->debug_file))
		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);

	hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
						hsotg, &fifo_fops);

	if (IS_ERR(hsotg->debug_fifo))
		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);

	/* create one file for each endpoint */

3519
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];

		ep->debugfs = debugfs_create_file(ep->name, 0444,
						  root, ep, &ep_fops);

		if (IS_ERR(ep->debugfs))
			dev_err(hsotg->dev, "failed to create %s debug file\n",
				ep->name);
	}
}

/**
 * s3c_hsotg_delete_debug - cleanup debugfs entries
 * @hsotg: The driver state
 *
 * Cleanup (remove) the debugfs files for use on module exit.
3536
 */
B
Bill Pemberton 已提交
3537
static void s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
3538 3539 3540
{
	unsigned epidx;

3541
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3542 3543 3544 3545 3546 3547 3548 3549 3550
		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
		debugfs_remove(ep->debugfs);
	}

	debugfs_remove(hsotg->debug_file);
	debugfs_remove(hsotg->debug_fifo);
	debugfs_remove(hsotg->debug_root);
}

3551 3552 3553 3554
/**
 * s3c_hsotg_probe - probe function for hsotg driver
 * @pdev: The platform information for the driver
 */
3555

B
Bill Pemberton 已提交
3556
static int s3c_hsotg_probe(struct platform_device *pdev)
3557
{
J
Jingoo Han 已提交
3558
	struct s3c_hsotg_plat *plat = dev_get_platdata(&pdev->dev);
3559 3560
	struct phy *phy;
	struct usb_phy *uphy;
3561
	struct device *dev = &pdev->dev;
3562
	struct s3c_hsotg_ep *eps;
3563 3564 3565 3566
	struct s3c_hsotg *hsotg;
	struct resource *res;
	int epnum;
	int ret;
3567
	int i;
3568

3569
	hsotg = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsotg), GFP_KERNEL);
3570 3571 3572 3573 3574
	if (!hsotg) {
		dev_err(dev, "cannot get memory\n");
		return -ENOMEM;
	}

3575 3576 3577 3578 3579
	/*
	 * Attempt to find a generic PHY, then look for an old style
	 * USB PHY, finally fall back to pdata
	 */
	phy = devm_phy_get(&pdev->dev, "usb2-phy");
3580
	if (IS_ERR(phy)) {
3581 3582 3583 3584 3585 3586 3587 3588 3589
		uphy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2);
		if (IS_ERR(uphy)) {
			/* Fallback for pdata */
			plat = dev_get_platdata(&pdev->dev);
			if (!plat) {
				dev_err(&pdev->dev,
				"no platform data or transceiver defined\n");
				return -EPROBE_DEFER;
			}
3590
			hsotg->plat = plat;
3591 3592 3593
		} else
			hsotg->uphy = uphy;
	} else
3594 3595
		hsotg->phy = phy;

3596 3597
	hsotg->dev = dev;

3598
	hsotg->clk = devm_clk_get(&pdev->dev, "otg");
3599 3600
	if (IS_ERR(hsotg->clk)) {
		dev_err(dev, "cannot get otg clock\n");
3601
		return PTR_ERR(hsotg->clk);
3602 3603
	}

3604 3605 3606 3607
	platform_set_drvdata(pdev, hsotg);

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

3608 3609 3610
	hsotg->regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(hsotg->regs)) {
		ret = PTR_ERR(hsotg->regs);
3611
		goto err_clk;
3612 3613 3614 3615 3616
	}

	ret = platform_get_irq(pdev, 0);
	if (ret < 0) {
		dev_err(dev, "cannot find IRQ\n");
3617
		goto err_clk;
3618 3619
	}

3620 3621
	spin_lock_init(&hsotg->lock);

3622 3623
	hsotg->irq = ret;

3624 3625
	ret = devm_request_irq(&pdev->dev, hsotg->irq, s3c_hsotg_irq, 0,
				dev_name(dev), hsotg);
3626 3627
	if (ret < 0) {
		dev_err(dev, "cannot claim IRQ\n");
3628
		goto err_clk;
3629 3630 3631 3632
	}

	dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);

3633
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3634 3635 3636 3637 3638
	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
	hsotg->gadget.name = dev_name(dev);

	/* reset the system */

3639
	clk_prepare_enable(hsotg->clk);
3640

3641 3642 3643 3644 3645
	/* regulators */

	for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
		hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];

3646
	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3647 3648 3649
				 hsotg->supplies);
	if (ret) {
		dev_err(dev, "failed to request supplies: %d\n", ret);
3650
		goto err_clk;
3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
	}

	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);

	if (ret) {
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
		goto err_supplies;
	}

3661
	/* Set default UTMI width */
3662
	hsotg->phyif = GUSBCFG_PHYIF16;
3663 3664 3665 3666 3667 3668

	/*
	 * If using the generic PHY framework, check if the PHY bus
	 * width is 8-bit and set the phyif appropriately.
	 */
	if (hsotg->phy && (phy_get_bus_width(phy) == 8))
3669
		hsotg->phyif = GUSBCFG_PHYIF8;
3670

3671 3672 3673
	if (hsotg->phy)
		phy_init(hsotg->phy);

3674 3675
	/* usb phy enable */
	s3c_hsotg_phy_enable(hsotg);
3676 3677 3678

	s3c_hsotg_corereset(hsotg);
	s3c_hsotg_init(hsotg);
3679 3680 3681 3682 3683 3684
	s3c_hsotg_hw_cfg(hsotg);

	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
3685
		ret = -EINVAL;
3686 3687 3688 3689 3690 3691 3692
		goto err_supplies;
	}

	eps = kcalloc(hsotg->num_of_eps + 1, sizeof(struct s3c_hsotg_ep),
		      GFP_KERNEL);
	if (!eps) {
		dev_err(dev, "cannot get memory\n");
3693
		ret = -ENOMEM;
3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709
		goto err_supplies;
	}

	hsotg->eps = eps;

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
	hsotg->gadget.ep0 = &hsotg->eps[0].ep;

	/* allocate EP0 request */

	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
3710
		ret = -ENOMEM;
3711 3712
		goto err_ep_mem;
	}
3713 3714

	/* initialise the endpoints now the core has been initialised */
3715
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++)
3716 3717
		s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);

3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728
	/* disable power and clock */

	ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
	if (ret) {
		dev_err(hsotg->dev, "failed to disable supplies: %d\n", ret);
		goto err_ep_mem;
	}

	s3c_hsotg_phy_disable(hsotg);

3729 3730
	ret = usb_add_gadget_udc(&pdev->dev, &hsotg->gadget);
	if (ret)
3731
		goto err_ep_mem;
3732

3733 3734 3735 3736 3737 3738
	s3c_hsotg_create_debug(hsotg);

	s3c_hsotg_dump(hsotg);

	return 0;

3739
err_ep_mem:
3740
	kfree(eps);
3741
err_supplies:
3742
	s3c_hsotg_phy_disable(hsotg);
3743
err_clk:
3744
	clk_disable_unprepare(hsotg->clk);
3745

3746 3747 3748
	return ret;
}

3749 3750 3751 3752
/**
 * s3c_hsotg_remove - remove function for hsotg driver
 * @pdev: The platform information for the driver
 */
B
Bill Pemberton 已提交
3753
static int s3c_hsotg_remove(struct platform_device *pdev)
3754 3755 3756
{
	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);

3757 3758
	usb_del_gadget_udc(&hsotg->gadget);

3759 3760
	s3c_hsotg_delete_debug(hsotg);

3761 3762 3763 3764
	if (hsotg->driver) {
		/* should have been done already by driver model core */
		usb_gadget_unregister_driver(hsotg->driver);
	}
3765

3766
	s3c_hsotg_phy_disable(hsotg);
3767 3768
	if (hsotg->phy)
		phy_exit(hsotg->phy);
3769
	clk_disable_unprepare(hsotg->clk);
3770

3771 3772 3773
	return 0;
}

3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822
static int s3c_hsotg_suspend(struct platform_device *pdev, pm_message_t state)
{
	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
	unsigned long flags;
	int ret = 0;

	if (hsotg->driver)
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

	spin_lock_irqsave(&hsotg->lock, flags);
	s3c_hsotg_disconnect(hsotg);
	s3c_hsotg_phy_disable(hsotg);
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	if (hsotg->driver) {
		int ep;
		for (ep = 0; ep < hsotg->num_of_eps; ep++)
			s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);

		ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
					     hsotg->supplies);
	}

	return ret;
}

static int s3c_hsotg_resume(struct platform_device *pdev)
{
	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
	unsigned long flags;
	int ret = 0;

	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
		ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				      hsotg->supplies);
	}

	spin_lock_irqsave(&hsotg->lock, flags);
	hsotg->last_rst = jiffies;
	s3c_hsotg_phy_enable(hsotg);
	s3c_hsotg_core_init(hsotg);
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return ret;
}
3823

3824 3825 3826
#ifdef CONFIG_OF
static const struct of_device_id s3c_hsotg_of_ids[] = {
	{ .compatible = "samsung,s3c6400-hsotg", },
3827
	{ .compatible = "snps,dwc2", },
3828 3829 3830 3831 3832
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, s3c_hsotg_of_ids);
#endif

3833 3834 3835 3836
static struct platform_driver s3c_hsotg_driver = {
	.driver		= {
		.name	= "s3c-hsotg",
		.owner	= THIS_MODULE,
3837
		.of_match_table = of_match_ptr(s3c_hsotg_of_ids),
3838 3839
	},
	.probe		= s3c_hsotg_probe,
B
Bill Pemberton 已提交
3840
	.remove		= s3c_hsotg_remove,
3841 3842 3843 3844
	.suspend	= s3c_hsotg_suspend,
	.resume		= s3c_hsotg_resume,
};

3845
module_platform_driver(s3c_hsotg_driver);
3846 3847 3848 3849 3850

MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:s3c-hsotg");