gadget.c 89.3 KB
Newer Older
1
/**
2 3
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
15
 */
16 17 18 19 20 21 22 23 24 25 26

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
27
#include <linux/slab.h>
28
#include <linux/clk.h>
29
#include <linux/regulator/consumer.h>
30
#include <linux/of_platform.h>
31
#include <linux/phy/phy.h>
32 33 34

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
35
#include <linux/usb/phy.h>
36
#include <linux/platform_data/s3c-hsotg.h>
37

38
#include "core.h"
39
#include "hw.h"
40 41 42 43 44 45 46 47 48 49 50 51

/* conversion functions */
static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
{
	return container_of(req, struct s3c_hsotg_req, req);
}

static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
{
	return container_of(ep, struct s3c_hsotg_ep, ep);
}

52
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
53
{
54
	return container_of(gadget, struct dwc2_hsotg, gadget);
55 56 57 58 59 60 61 62 63 64 65 66 67
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) | val, ptr);
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) & ~val, ptr);
}

/* forward decleration of functions */
68
static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg);
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
 * Until this issue is sorted out, we always return 'false'.
 */
89
static inline bool using_dma(struct dwc2_hsotg *hsotg)
90 91 92 93 94 95 96 97 98
{
	return false;	/* support is not complete */
}

/**
 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
99
static void s3c_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
100
{
101
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
102 103 104 105 106 107
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
108
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
109 110 111 112 113 114 115 116
	}
}

/**
 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
117
static void s3c_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
118
{
119
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
120 121 122 123 124
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
125
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
126 127 128 129 130 131 132 133 134 135 136 137
}

/**
 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
138
static void s3c_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
139 140 141 142 143 144 145 146 147 148 149
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
150
	daint = readl(hsotg->regs + DAINTMSK);
151 152 153 154
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
155
	writel(daint, hsotg->regs + DAINTMSK);
156 157 158 159 160 161 162
	local_irq_restore(flags);
}

/**
 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
 * @hsotg: The device instance.
 */
163
static void s3c_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
164
{
165 166 167
	unsigned int ep;
	unsigned int addr;
	unsigned int size;
168
	int timeout;
169 170
	u32 val;

171
	/* set FIFO sizes to 2048/1024 */
172

173
	writel(2048, hsotg->regs + GRXFSIZ);
174 175
	writel((2048 << FIFOSIZE_STARTADDR_SHIFT) |
		(1024 << FIFOSIZE_DEPTH_SHIFT), hsotg->regs + GNPTXFSIZ);
176

177 178
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
179 180
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
181 182
	 * known values.
	 */
183 184 185 186

	/* start at the end of the GNPTXFSIZ, rounded up */
	addr = 2048 + 1024;

187
	/*
188 189 190 191 192
	 * Because we have not enough memory to have each TX FIFO of size at
	 * least 3072 bytes (the maximum single packet size), we create four
	 * FIFOs of lenght 1024, and four of length 3072 bytes, and assing
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
193
	 */
194

195 196 197 198 199 200 201 202 203 204 205 206 207 208
	/* 256*4=1024 bytes FIFO length */
	size = 256;
	for (ep = 1; ep <= 4; ep++) {
		val = addr;
		val |= size << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + size > hsotg->fifo_mem,
			  "insufficient fifo memory");
		addr += size;

		writel(val, hsotg->regs + DPTXFSIZN(ep));
	}
	/* 768*4=3072 bytes FIFO length */
	size = 768;
	for (ep = 5; ep <= 8; ep++) {
209
		val = addr;
210
		val |= size << FIFOSIZE_DEPTH_SHIFT;
211 212
		WARN_ONCE(addr + size > hsotg->fifo_mem,
			  "insufficient fifo memory");
213 214
		addr += size;

215
		writel(val, hsotg->regs + DPTXFSIZN(ep));
216
	}
217

218 219 220 221
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
222

223 224
	writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
225 226 227 228

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
229
		val = readl(hsotg->regs + GRSTCTL);
230

231
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
232 233 234 235 236 237 238 239 240 241 242 243
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
244 245 246 247 248 249 250 251
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
252 253
static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
						      gfp_t flags)
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
{
	struct s3c_hsotg_req *req;

	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
{
	return hs_ep->periodic;
}

/**
 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
 * of a request to ensure the buffer is ready for access by the caller.
286
 */
287
static void s3c_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
288 289 290 291 292 293 294 295 296
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

297
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
}

/**
 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
315
 */
316
static int s3c_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
317 318 319 320
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	bool periodic = is_ep_periodic(hs_ep);
321
	u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
322 323 324 325 326
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
327
	int max_transfer;
328 329 330 331 332 333 334

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

335
	if (periodic && !hsotg->dedicated_fifos) {
336
		u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
337 338 339
		int size_left;
		int size_done;

340 341 342 343
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
344

345
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
346

347 348
		/*
		 * if shared fifo, we cannot write anything until the
349 350 351
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
352
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
353 354 355
			return -ENOSPC;
		}

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
373
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
374 375
			return -ENOSPC;
		}
376
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
377
		can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
378 379 380

		can_write &= 0xffff;
		can_write *= 4;
381
	} else {
382
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
383 384 385 386
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

387
			s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
388 389 390
			return -ENOSPC;
		}

391
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
392
		can_write *= 4;	/* fifo size is in 32bit quantities. */
393 394
	}

395 396 397 398
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
		 __func__, gnptxsts, can_write, to_write, max_transfer);
399

400 401
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
402 403 404
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
405
	if (can_write > 512 && !periodic)
406 407
		can_write = 512;

408 409
	/*
	 * limit the write to one max-packet size worth of data, but allow
410
	 * the transfer to return that it did not run out of fifo space
411 412
	 * doing it.
	 */
413 414
	if (to_write > max_transfer) {
		to_write = max_transfer;
415

416 417 418
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
419 420
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
421 422
	}

423 424 425 426
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
427
		pkt_round = to_write % max_transfer;
428

429 430
		/*
		 * Round the write down to an
431 432 433 434 435 436 437 438 439
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

440 441 442 443
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
444

445 446 447
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
448 449
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

467
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
486 487
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
488
	} else {
489
		maxsize = 64+64;
490
		if (hs_ep->dir_in)
491
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
492
		else
493 494 495 496 497 498 499
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

500 501 502 503
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

/**
 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
521
static void s3c_hsotg_start_req(struct dwc2_hsotg *hsotg,
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req,
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

550 551
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
552 553 554 555 556

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
		__func__, readl(hsotg->regs + epctrl_reg), index,
		hs_ep->dir_in ? "in" : "out");

557 558 559
	/* If endpoint is stalled, we will restart request later */
	ctrl = readl(hsotg->regs + epctrl_reg);

560
	if (ctrl & DXEPCTL_STALL) {
561 562 563 564
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

565
	length = ureq->length - ureq->actual;
566 567
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
568 569
	if (0)
		dev_dbg(hsotg->dev,
570
			"REQ buf %p len %d dma %pad noi=%d zp=%d snok=%d\n",
571
			ureq->buf, length, &ureq->dma,
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
			ureq->no_interrupt, ureq->zero, ureq->short_not_ok);

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

593 594 595 596 597
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

598
	if (dir_in && index != 0)
599
		if (hs_ep->isochronous)
600
			epsize = DXEPTSIZ_MC(packets);
601
		else
602
			epsize = DXEPTSIZ_MC(1);
603 604 605 606
	else
		epsize = 0;

	if (index != 0 && ureq->zero) {
607 608 609 610
		/*
		 * test for the packets being exactly right for the
		 * transfer
		 */
611 612 613 614 615

		if (length == (packets * hs_ep->ep.maxpacket))
			packets++;
	}

616 617
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
618 619 620 621 622 623 624 625 626 627

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
	writel(epsize, hsotg->regs + epsize_reg);

628
	if (using_dma(hsotg) && !continuing) {
629 630
		unsigned int dma_reg;

631 632 633 634
		/*
		 * write DMA address to control register, buffer already
		 * synced by s3c_hsotg_ep_queue().
		 */
635

636
		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
637 638
		writel(ureq->dma, hsotg->regs + dma_reg);

639
		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
640
			__func__, &ureq->dma, dma_reg);
641 642
	}

643 644
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
645 646 647 648 649 650 651

	dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup);

	/* For Setup request do not clear NAK */
	if (hsotg->setup && index == 0)
		hsotg->setup = 0;
	else
652
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
653

654 655 656 657

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

658 659
	/*
	 * set these, it seems that DMA support increments past the end
660
	 * of the packet buffer so we need to calculate the length from
661 662
	 * this information.
	 */
663 664 665 666 667 668 669 670 671 672
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

673 674 675 676
	/*
	 * clear the INTknTXFEmpMsk when we start request, more as a aide
	 * to debugging to see what is going on.
	 */
677
	if (dir_in)
678
		writel(DIEPMSK_INTKNTXFEMPMSK,
679
		       hsotg->regs + DIEPINT(index));
680

681 682 683 684
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
685 686

	/* check ep is enabled */
687
	if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
688
		dev_warn(hsotg->dev,
689
			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
690 691
			 index, readl(hsotg->regs + epctrl_reg));

692
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
693
		__func__, readl(hsotg->regs + epctrl_reg));
694 695 696

	/* enable ep interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
697 698 699 700 701 702 703 704 705 706 707 708 709
}

/**
 * s3c_hsotg_map_dma - map the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
710
 */
711
static int s3c_hsotg_map_dma(struct dwc2_hsotg *hsotg,
712 713 714 715
			     struct s3c_hsotg_ep *hs_ep,
			     struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
716
	int ret;
717 718 719 720 721

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

722 723 724
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
740
	struct dwc2_hsotg *hs = hs_ep->parent;
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
	bool first;

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
		int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
		if (ret)
			return ret;
	}

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

	if (first)
		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);

	return 0;
}

768 769 770 771
static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
772
	struct dwc2_hsotg *hs = hs_ep->parent;
773 774 775 776 777 778 779 780 781 782
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
				      struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);

	kfree(hs_req);
}

/**
 * s3c_hsotg_complete_oursetup - setup completion callback
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
					struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
803
	struct dwc2_hsotg *hsotg = hs_ep->parent;
804 805 806 807 808 809 810 811 812 813 814 815 816

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

	s3c_hsotg_ep_free_request(ep, req);
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
817
 */
818
static struct s3c_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
819 820 821 822 823 824 825 826 827
					   u32 windex)
{
	struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

828
	if (idx > hsotg->num_of_eps)
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
		return NULL;

	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

/**
 * s3c_hsotg_send_reply - send reply to control request
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
847
static int s3c_hsotg_send_reply(struct dwc2_hsotg *hsotg,
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
				struct s3c_hsotg_ep *ep,
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
	req->zero = 1; /* always do zero-length final transfer */
	req->complete = s3c_hsotg_complete_oursetup;

	if (length)
		memcpy(req->buf, buff, length);
	else
		ep->sent_zlp = 1;

	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
 * s3c_hsotg_process_req_status - process request GET_STATUS
 * @hsotg: The device state
 * @ctrl: USB control request
 */
888
static int s3c_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
					struct usb_ctrlrequest *ctrl)
{
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	struct s3c_hsotg_ep *ep;
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);

940 941 942 943 944 945 946 947 948 949 950 951 952 953
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
{
	if (list_empty(&hs_ep->queue))
		return NULL;

	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
}

954 955 956 957 958
/**
 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
 * @hsotg: The device state
 * @ctrl: USB control request
 */
959
static int s3c_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
960 961
					 struct usb_ctrlrequest *ctrl)
{
962
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
963 964
	struct s3c_hsotg_req *hs_req;
	bool restart;
965 966
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
	struct s3c_hsotg_ep *ep;
967
	int ret;
968
	bool halted;
969 970 971 972 973 974 975 976 977 978 979 980 981 982

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
				__func__, le16_to_cpu(ctrl->wIndex));
			return -ENOENT;
		}

		switch (le16_to_cpu(ctrl->wValue)) {
		case USB_ENDPOINT_HALT:
983 984
			halted = ep->halted;

985
			s3c_hsotg_ep_sethalt(&ep->ep, set);
986 987 988 989 990 991 992

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
993

994 995 996 997 998 999
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1000 1001 1002 1003 1004 1005 1006 1007
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1008 1009
					usb_gadget_giveback_request(&ep->ep,
								    &hs_req->req);
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
				}

				/* If we have pending request, then start it */
				restart = !list_empty(&ep->queue);
				if (restart) {
					hs_req = get_ep_head(ep);
					s3c_hsotg_start_req(hsotg, ep,
							    hs_req, false);
				}
			}

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
			break;

		default:
			return -ENOENT;
		}
	} else
		return -ENOENT;  /* currently only deal with endpoint */

	return 1;
}

1032 1033
static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
static void s3c_hsotg_disconnect(struct dwc2_hsotg *hsotg);
1034

1035 1036 1037 1038 1039 1040
/**
 * s3c_hsotg_stall_ep0 - stall ep0
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1041
static void s3c_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1042
{
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

	ctrl = readl(hsotg->regs + reg);
1056 1057
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1058 1059 1060
	writel(ctrl, hsotg->regs + reg);

	dev_dbg(hsotg->dev,
1061
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1062 1063 1064 1065 1066 1067 1068 1069 1070
		ctrl, reg, readl(hsotg->regs + reg));

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
	 s3c_hsotg_enqueue_setup(hsotg);
}

1071 1072 1073 1074 1075 1076 1077 1078 1079
/**
 * s3c_hsotg_process_control - process a control request
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1080
static void s3c_hsotg_process_control(struct dwc2_hsotg *hsotg,
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
				      struct usb_ctrlrequest *ctrl)
{
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	int ret = 0;
	u32 dcfg;

	ep0->sent_zlp = 0;

	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
		 ctrl->bRequest, ctrl->bRequestType,
		 ctrl->wValue, ctrl->wLength);

1093 1094 1095 1096
	/*
	 * record the direction of the request, for later use when enquing
	 * packets onto EP0.
	 */
1097 1098 1099 1100

	ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
	dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);

1101 1102 1103 1104
	/*
	 * if we've no data with this request, then the last part of the
	 * transaction is going to implicitly be IN.
	 */
1105 1106 1107 1108 1109 1110
	if (ctrl->wLength == 0)
		ep0->dir_in = 1;

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1111
			s3c_hsotg_disconnect(hsotg);
1112
			dcfg = readl(hsotg->regs + DCFG);
1113
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1114 1115
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1116
			writel(dcfg, hsotg->regs + DCFG);
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			return;

		case USB_REQ_GET_STATUS:
			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1137
		spin_unlock(&hsotg->lock);
1138
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1139
		spin_lock(&hsotg->lock);
1140 1141 1142 1143
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1144 1145
	/*
	 * the request is either unhandlable, or is not formatted correctly
1146 1147 1148
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1149 1150
	if (ret < 0)
		s3c_hsotg_stall_ep0(hsotg);
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
}

/**
 * s3c_hsotg_complete_setup - completion of a setup transfer
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
static void s3c_hsotg_complete_setup(struct usb_ep *ep,
				     struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1165
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1166 1167 1168 1169 1170 1171

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1172
	spin_lock(&hsotg->lock);
1173 1174 1175 1176
	if (req->actual == 0)
		s3c_hsotg_enqueue_setup(hsotg);
	else
		s3c_hsotg_process_control(hsotg, req->buf);
1177
	spin_unlock(&hsotg->lock);
1178 1179 1180 1181 1182 1183 1184 1185 1186
}

/**
 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1187
static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
{
	struct usb_request *req = hsotg->ctrl_req;
	struct s3c_hsotg_req *hs_req = our_req(req);
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
	req->complete = s3c_hsotg_complete_setup;

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

	hsotg->eps[0].dir_in = 0;

	ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1210 1211 1212 1213
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
	}
}

/**
 * s3c_hsotg_complete_request - complete a request given to us
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1229
 */
1230
static void s3c_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
				       struct s3c_hsotg_ep *hs_ep,
				       struct s3c_hsotg_req *hs_req,
				       int result)
{
	bool restart;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1245 1246 1247 1248
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

	if (using_dma(hsotg))
		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1259 1260 1261 1262
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1263 1264

	if (hs_req->req.complete) {
1265
		spin_unlock(&hsotg->lock);
1266
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1267
		spin_lock(&hsotg->lock);
1268 1269
	}

1270 1271
	/*
	 * Look to see if there is anything else to do. Note, the completion
1272
	 * of the previous request may have caused a new request to be started
1273 1274
	 * so be careful when doing this.
	 */
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294

	if (!hs_ep->req && result >= 0) {
		restart = !list_empty(&hs_ep->queue);
		if (restart) {
			hs_req = get_ep_head(hs_ep);
			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		}
	}
}

/**
 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
1295
static void s3c_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1296 1297 1298
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1299
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1300 1301 1302 1303
	int to_read;
	int max_req;
	int read_ptr;

1304

1305
	if (!hs_req) {
1306
		u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1307 1308 1309
		int ptr;

		dev_warn(hsotg->dev,
1310
			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
			(void)readl(fifo);

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1324 1325 1326
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1327
	if (to_read > max_req) {
1328 1329
		/*
		 * more data appeared than we where willing
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1341 1342 1343 1344
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1345
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
}

/**
 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
 * @hsotg: The device instance
 * @req: The request currently on this endpoint
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1357
 * currently believed that we do not need to wait for any space in
1358 1359
 * the TxFIFO.
 */
1360
static void s3c_hsotg_send_zlp(struct dwc2_hsotg *hsotg,
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
			       struct s3c_hsotg_req *req)
{
	u32 ctrl;

	if (!req) {
		dev_warn(hsotg->dev, "%s: no request?\n", __func__);
		return;
	}

	if (req->req.length == 0) {
		hsotg->eps[0].sent_zlp = 1;
		s3c_hsotg_enqueue_setup(hsotg);
		return;
	}

	hsotg->eps[0].dir_in = 1;
	hsotg->eps[0].sent_zlp = 1;

	dev_dbg(hsotg->dev, "sending zero-length packet\n");

	/* issue a zero-sized packet to terminate this */
1382 1383
	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
	       DXEPTSIZ_XFERSIZE(0), hsotg->regs + DIEPTSIZ(0));
1384

1385
	ctrl = readl(hsotg->regs + DIEPCTL0);
1386 1387 1388
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
1389
	writel(ctrl, hsotg->regs + DIEPCTL0);
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
}

/**
 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 * @was_setup: Set if processing a SetupDone event.
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1401
 */
1402
static void s3c_hsotg_handle_outdone(struct dwc2_hsotg *hsotg,
1403 1404
				     int epnum, bool was_setup)
{
1405
	u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1406 1407 1408
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
	struct s3c_hsotg_req *hs_req = hs_ep->req;
	struct usb_request *req = &hs_req->req;
1409
	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

	if (using_dma(hsotg)) {
		unsigned size_done;

1420 1421
		/*
		 * Calculate the size of the transfer by checking how much
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1435 1436 1437 1438
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
		return;
1439 1440 1441 1442 1443 1444
	} else if (epnum == 0) {
		/*
		 * After was_setup = 1 =>
		 * set CNAK for non Setup requests
		 */
		hsotg->setup = was_setup ? 0 : 1;
1445 1446
	}

1447 1448 1449 1450
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1451 1452 1453 1454
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1455 1456 1457
	}

	if (epnum == 0) {
1458 1459 1460 1461
		/*
		 * Condition req->complete != s3c_hsotg_complete_setup says:
		 * send ZLP when we have an asynchronous request from gadget
		 */
1462 1463 1464 1465
		if (!was_setup && req->complete != s3c_hsotg_complete_setup)
			s3c_hsotg_send_zlp(hsotg, hs_req);
	}

1466
	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1467 1468 1469 1470 1471 1472 1473
}

/**
 * s3c_hsotg_read_frameno - read current frame number
 * @hsotg: The device instance
 *
 * Return the current frame number
1474
 */
1475
static u32 s3c_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1476 1477 1478
{
	u32 dsts;

1479 1480 1481
	dsts = readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493

	return dsts;
}

/**
 * s3c_hsotg_handle_rx - RX FIFO has data
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1494
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1495 1496 1497 1498 1499 1500 1501
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1502
static void s3c_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1503
{
1504
	u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1505 1506 1507 1508
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

1509 1510
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
1511

1512 1513
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
1514 1515 1516 1517 1518

	if (1)
		dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
			__func__, grxstsr, size, epnum);

1519 1520 1521
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1522 1523
		break;

1524
	case GRXSTS_PKTSTS_OUTDONE:
1525 1526 1527 1528 1529 1530 1531
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg));

		if (!using_dma(hsotg))
			s3c_hsotg_handle_outdone(hsotg, epnum, false);
		break;

1532
	case GRXSTS_PKTSTS_SETUPDONE:
1533 1534 1535
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1536
			readl(hsotg->regs + DOEPCTL(0)));
1537 1538 1539 1540

		s3c_hsotg_handle_outdone(hsotg, epnum, true);
		break;

1541
	case GRXSTS_PKTSTS_OUTRX:
1542 1543 1544
		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

1545
	case GRXSTS_PKTSTS_SETUPRX:
1546 1547 1548
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1549
			readl(hsotg->regs + DOEPCTL(0)));
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565

		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

		s3c_hsotg_dump(hsotg);
		break;
	}
}

/**
 * s3c_hsotg_ep0_mps - turn max packet size into register setting
 * @mps: The maximum packet size in bytes.
1566
 */
1567 1568 1569 1570
static u32 s3c_hsotg_ep0_mps(unsigned int mps)
{
	switch (mps) {
	case 64:
1571
		return D0EPCTL_MPS_64;
1572
	case 32:
1573
		return D0EPCTL_MPS_32;
1574
	case 16:
1575
		return D0EPCTL_MPS_16;
1576
	case 8:
1577
		return D0EPCTL_MPS_8;
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
1594
static void s3c_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1595 1596 1597 1598 1599
				       unsigned int ep, unsigned int mps)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
	void __iomem *regs = hsotg->regs;
	u32 mpsval;
1600
	u32 mcval;
1601 1602 1603 1604 1605 1606 1607
	u32 reg;

	if (ep == 0) {
		/* EP0 is a special case */
		mpsval = s3c_hsotg_ep0_mps(mps);
		if (mpsval > 3)
			goto bad_mps;
1608
		hs_ep->ep.maxpacket = mps;
1609
		hs_ep->mc = 1;
1610
	} else {
1611
		mpsval = mps & DXEPCTL_MPS_MASK;
1612
		if (mpsval > 1024)
1613
			goto bad_mps;
1614 1615 1616 1617
		mcval = ((mps >> 11) & 0x3) + 1;
		hs_ep->mc = mcval;
		if (mcval > 3)
			goto bad_mps;
1618
		hs_ep->ep.maxpacket = mpsval;
1619 1620
	}

1621 1622 1623 1624
	/*
	 * update both the in and out endpoint controldir_ registers, even
	 * if one of the directions may not be in use.
	 */
1625

1626
	reg = readl(regs + DIEPCTL(ep));
1627
	reg &= ~DXEPCTL_MPS_MASK;
1628
	reg |= mpsval;
1629
	writel(reg, regs + DIEPCTL(ep));
1630

1631
	if (ep) {
1632
		reg = readl(regs + DOEPCTL(ep));
1633
		reg &= ~DXEPCTL_MPS_MASK;
1634
		reg |= mpsval;
1635
		writel(reg, regs + DOEPCTL(ep));
1636
	}
1637 1638 1639 1640 1641 1642 1643

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1644 1645 1646 1647 1648
/**
 * s3c_hsotg_txfifo_flush - flush Tx FIFO
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
1649
static void s3c_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1650 1651 1652 1653
{
	int timeout;
	int val;

1654
	writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1655
		hsotg->regs + GRSTCTL);
1656 1657 1658 1659 1660

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
1661
		val = readl(hsotg->regs + GRSTCTL);
1662

1663
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1664 1665 1666 1667 1668 1669
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
1670
			break;
1671 1672 1673 1674 1675
		}

		udelay(1);
	}
}
1676 1677 1678 1679 1680 1681 1682 1683 1684

/**
 * s3c_hsotg_trytx - check to see if anything needs transmitting
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
1685
static int s3c_hsotg_trytx(struct dwc2_hsotg *hsotg,
1686 1687 1688 1689
			   struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;

1690 1691 1692 1693 1694 1695 1696 1697
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
			s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
					     hs_ep->dir_in, 0);
1698
		return 0;
1699
	}
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

	return 0;
}

/**
 * s3c_hsotg_complete_in - complete IN transfer
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
1718
static void s3c_hsotg_complete_in(struct dwc2_hsotg *hsotg,
1719 1720 1721
				  struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1722
	u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1723 1724 1725 1726 1727 1728 1729
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

1730 1731 1732
	/* Finish ZLP handling for IN EP0 transactions */
	if (hsotg->eps[0].sent_zlp) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
1733
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1734 1735 1736
		return;
	}

1737 1738
	/*
	 * Calculate the size of the transfer by checking how much is left
1739 1740 1741 1742 1743 1744 1745 1746
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

1747
	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1748 1749 1750 1751 1752 1753 1754 1755 1756

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

	/*
	 * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0
	 * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B
	 * ,256B ... ), after last MPS sized packet send IN ZLP packet to
	 * inform the host that no more data is available.
	 * The state of req.zero member is checked to be sure that the value to
	 * send is smaller than wValue expected from host.
	 * Check req.length to NOT send another ZLP when the current one is
	 * under completion (the one for which this completion has been called).
	 */
	if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero &&
	    hs_req->req.length == hs_req->req.actual &&
	    !(hs_req->req.length % hs_ep->ep.maxpacket)) {

		dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n");
		s3c_hsotg_send_zlp(hsotg, hs_req);
1776

1777 1778
		return;
	}
1779 1780 1781 1782 1783

	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
	} else
1784
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1785 1786 1787 1788 1789 1790 1791 1792 1793
}

/**
 * s3c_hsotg_epint - handle an in/out endpoint interrupt
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
1794
 */
1795
static void s3c_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
1796 1797 1798
			    int dir_in)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1799 1800 1801
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1802
	u32 ints;
1803
	u32 ctrl;
1804 1805

	ints = readl(hsotg->regs + epint_reg);
1806
	ctrl = readl(hsotg->regs + epctl_reg);
1807

1808 1809 1810
	/* Clear endpoint interrupts */
	writel(ints, hsotg->regs + epint_reg);

1811 1812 1813
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

1814
	if (ints & DXEPINT_XFERCOMPL) {
1815
		if (hs_ep->isochronous && hs_ep->interval == 1) {
1816 1817
			if (ctrl & DXEPCTL_EOFRNUM)
				ctrl |= DXEPCTL_SETEVENFR;
1818
			else
1819
				ctrl |= DXEPCTL_SETODDFR;
1820 1821 1822
			writel(ctrl, hsotg->regs + epctl_reg);
		}

1823
		dev_dbg(hsotg->dev,
1824
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1825 1826 1827
			__func__, readl(hsotg->regs + epctl_reg),
			readl(hsotg->regs + epsiz_reg));

1828 1829 1830 1831
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
1832 1833 1834
		if (dir_in) {
			s3c_hsotg_complete_in(hsotg, hs_ep);

1835
			if (idx == 0 && !hs_ep->req)
1836 1837
				s3c_hsotg_enqueue_setup(hsotg);
		} else if (using_dma(hsotg)) {
1838 1839 1840 1841
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
1842 1843 1844 1845 1846

			s3c_hsotg_handle_outdone(hsotg, idx, false);
		}
	}

1847
	if (ints & DXEPINT_EPDISBLD) {
1848 1849
		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

1850 1851 1852
		if (dir_in) {
			int epctl = readl(hsotg->regs + epctl_reg);

1853
			s3c_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
1854

1855 1856
			if ((epctl & DXEPCTL_STALL) &&
				(epctl & DXEPCTL_EPTYPE_BULK)) {
1857
				int dctl = readl(hsotg->regs + DCTL);
1858

1859
				dctl |= DCTL_CGNPINNAK;
1860
				writel(dctl, hsotg->regs + DCTL);
1861 1862 1863 1864
			}
		}
	}

1865
	if (ints & DXEPINT_AHBERR)
1866 1867
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

1868
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
1869 1870 1871
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
1872 1873
			/*
			 * this is the notification we've received a
1874 1875
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
1876 1877
			 * the setup here.
			 */
1878 1879 1880 1881 1882 1883 1884 1885

			if (dir_in)
				WARN_ON_ONCE(1);
			else
				s3c_hsotg_handle_outdone(hsotg, 0, true);
		}
	}

1886
	if (ints & DXEPINT_BACK2BACKSETUP)
1887 1888
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

1889
	if (dir_in && !hs_ep->isochronous) {
1890
		/* not sure if this is important, but we'll clear it anyway */
1891
		if (ints & DIEPMSK_INTKNTXFEMPMSK) {
1892 1893 1894 1895 1896
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
1897
		if (ints & DIEPMSK_INTKNEPMISMSK) {
1898 1899 1900
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
1901 1902 1903

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
1904
		    ints & DIEPMSK_TXFIFOEMPTY) {
1905 1906
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
1907 1908
			if (!using_dma(hsotg))
				s3c_hsotg_trytx(hsotg, hs_ep);
1909
		}
1910 1911 1912 1913 1914 1915 1916 1917 1918
	}
}

/**
 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
1919
 */
1920
static void s3c_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
1921
{
1922
	u32 dsts = readl(hsotg->regs + DSTS);
1923
	int ep0_mps = 0, ep_mps = 8;
1924

1925 1926
	/*
	 * This should signal the finish of the enumeration phase
1927
	 * of the USB handshaking, so we should now know what rate
1928 1929
	 * we connected at.
	 */
1930 1931 1932

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

1933 1934
	/*
	 * note, since we're limited by the size of transfer on EP0, and
1935
	 * it seems IN transfers must be a even number of packets we do
1936 1937
	 * not advertise a 64byte MPS on EP0.
	 */
1938 1939

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
1940 1941 1942
	switch (dsts & DSTS_ENUMSPD_MASK) {
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
1943 1944
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
1945
		ep_mps = 1023;
1946 1947
		break;

1948
	case DSTS_ENUMSPD_HS:
1949 1950
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
1951
		ep_mps = 1024;
1952 1953
		break;

1954
	case DSTS_ENUMSPD_LS:
1955
		hsotg->gadget.speed = USB_SPEED_LOW;
1956 1957
		/*
		 * note, we don't actually support LS in this driver at the
1958 1959 1960 1961 1962
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
1963 1964
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
1965

1966 1967 1968 1969
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
1970 1971 1972 1973

	if (ep0_mps) {
		int i;
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
1974
		for (i = 1; i < hsotg->num_of_eps; i++)
1975 1976 1977 1978 1979 1980 1981 1982
			s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
	}

	/* ensure after enumeration our EP0 is active */

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1983 1984
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 * @force: Force removal of any current requests
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
1997
static void kill_all_requests(struct dwc2_hsotg *hsotg,
1998 1999 2000 2001
			      struct s3c_hsotg_ep *ep,
			      int result, bool force)
{
	struct s3c_hsotg_req *req, *treq;
2002
	unsigned size;
2003 2004

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2005 2006 2007 2008
		/*
		 * currently, we can't do much about an already
		 * running request on an in endpoint
		 */
2009 2010 2011 2012 2013 2014 2015

		if (ep->req == req && ep->dir_in && !force)
			continue;

		s3c_hsotg_complete_request(hsotg, ep, req,
					   result);
	}
2016 2017 2018 2019 2020
	if (!hsotg->dedicated_fifos)
		return;
	size = (readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
	if (size < ep->fifo_size)
		s3c_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2021 2022 2023
}

/**
2024
 * s3c_hsotg_disconnect - disconnect service
2025 2026
 * @hsotg: The device state.
 *
2027 2028 2029
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2030
 */
2031
static void s3c_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2032 2033 2034
{
	unsigned ep;

2035
	for (ep = 0; ep < hsotg->num_of_eps; ep++)
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
		kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);

	call_gadget(hsotg, disconnect);
}

/**
 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
2046
static void s3c_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2047 2048 2049 2050 2051 2052
{
	struct s3c_hsotg_ep *ep;
	int epno, ret;

	/* look through for any more data to transmit */

2053
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
		ep = &hsotg->eps[epno];

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

		ret = s3c_hsotg_trytx(hsotg, ep);
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2070 2071 2072
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
2073

2074 2075 2076 2077 2078
/**
 * s3c_hsotg_corereset - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
2079
 */
2080
static int s3c_hsotg_corereset(struct dwc2_hsotg *hsotg)
2081 2082 2083 2084 2085 2086 2087
{
	int timeout;
	u32 grstctl;

	dev_dbg(hsotg->dev, "resetting core\n");

	/* issue soft reset */
2088
	writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2089

2090
	timeout = 10000;
2091
	do {
2092
		grstctl = readl(hsotg->regs + GRSTCTL);
2093
	} while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2094

2095
	if (grstctl & GRSTCTL_CSFTRST) {
2096 2097 2098 2099
		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
		return -EINVAL;
	}

2100
	timeout = 10000;
2101 2102

	while (1) {
2103
		u32 grstctl = readl(hsotg->regs + GRSTCTL);
2104 2105 2106 2107 2108 2109 2110 2111

		if (timeout-- < 0) {
			dev_info(hsotg->dev,
				 "%s: reset failed, GRSTCTL=%08x\n",
				 __func__, grstctl);
			return -ETIMEDOUT;
		}

2112
		if (!(grstctl & GRSTCTL_AHBIDLE))
2113 2114 2115 2116 2117 2118 2119 2120 2121
			continue;

		break;		/* reset done */
	}

	dev_dbg(hsotg->dev, "reset successful\n");
	return 0;
}

2122 2123 2124 2125 2126 2127
/**
 * s3c_hsotg_core_init - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2128
void s3c_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg)
2129 2130 2131 2132 2133 2134 2135 2136 2137
{
	s3c_hsotg_corereset(hsotg);

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2138
	writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2139
	       (0x5 << 10), hsotg->regs + GUSBCFG);
2140 2141 2142

	s3c_hsotg_init_fifo(hsotg);

2143
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2144

2145
	writel(1 << 18 | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2146 2147

	/* Clear any pending OTG interrupts */
2148
	writel(0xffffffff, hsotg->regs + GOTGINT);
2149 2150

	/* Clear any pending interrupts */
2151
	writel(0xffffffff, hsotg->regs + GINTSTS);
2152

2153 2154 2155 2156 2157 2158
	writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
		GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
		GINTSTS_USBSUSP | GINTSTS_WKUPINT,
		hsotg->regs + GINTMSK);
2159 2160

	if (using_dma(hsotg))
2161 2162
		writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
		       GAHBCFG_HBSTLEN_INCR4,
2163
		       hsotg->regs + GAHBCFG);
2164
	else
2165 2166 2167
		writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL |
						    GAHBCFG_P_TXF_EMP_LVL) : 0) |
		       GAHBCFG_GLBL_INTR_EN,
2168
		       hsotg->regs + GAHBCFG);
2169 2170

	/*
2171 2172 2173
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
2174 2175
	 */

2176 2177 2178 2179 2180 2181
	writel(((hsotg->dedicated_fifos) ? DIEPMSK_TXFIFOEMPTY |
		DIEPMSK_INTKNTXFEMPMSK : 0) |
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_INTKNEPMISMSK,
		hsotg->regs + DIEPMSK);
2182 2183 2184 2185 2186

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2187 2188 2189 2190 2191
	writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
				    DIEPMSK_TIMEOUTMSK) : 0) |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_SETUPMSK,
		hsotg->regs + DOEPMSK);
2192

2193
	writel(0, hsotg->regs + DAINTMSK);
2194 2195

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2196 2197
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2198 2199

	/* enable in and out endpoint interrupts */
2200
	s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2201 2202 2203 2204 2205 2206 2207

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2208
		s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2209 2210 2211 2212 2213

	/* Enable interrupts for EP0 in and out */
	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);

2214
	__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2215
	udelay(10);  /* see openiboot */
2216
	__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2217

2218
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2219 2220

	/*
2221
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2222 2223 2224 2225
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2226 2227
	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2228 2229

	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2230 2231
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
2232
	       hsotg->regs + DOEPCTL0);
2233 2234 2235

	/* enable, but don't activate EP0in */
	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2236
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2237 2238 2239 2240

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2241 2242
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2243 2244

	/* clear global NAKs */
2245
	writel(DCTL_CGOUTNAK | DCTL_CGNPINNAK | DCTL_SFTDISCON,
2246
	       hsotg->regs + DCTL);
2247 2248 2249 2250

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

2251
	hsotg->last_rst = jiffies;
2252 2253
}

2254
static void s3c_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2255 2256 2257 2258
{
	/* set the soft-disconnect bit */
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
2259

2260
void s3c_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2261
{
2262
	/* remove the soft-disconnect and let's go */
2263
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2264 2265
}

2266 2267 2268 2269 2270 2271 2272
/**
 * s3c_hsotg_irq - handle device interrupt
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
{
2273
	struct dwc2_hsotg *hsotg = pw;
2274 2275 2276 2277
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

2278
	spin_lock(&hsotg->lock);
2279
irq_retry:
2280 2281
	gintsts = readl(hsotg->regs + GINTSTS);
	gintmsk = readl(hsotg->regs + GINTMSK);
2282 2283 2284 2285 2286 2287

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

2288 2289
	if (gintsts & GINTSTS_ENUMDONE) {
		writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2290 2291

		s3c_hsotg_irq_enumdone(hsotg);
2292 2293
	}

2294
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2295
		u32 daint = readl(hsotg->regs + DAINT);
2296 2297
		u32 daintmsk = readl(hsotg->regs + DAINTMSK);
		u32 daint_out, daint_in;
2298 2299
		int ep;

2300
		daint &= daintmsk;
2301 2302
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2303

2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

		for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
			if (daint_out & 1)
				s3c_hsotg_epint(hsotg, ep, 0);
		}

		for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
			if (daint_in & 1)
				s3c_hsotg_epint(hsotg, ep, 1);
		}
	}

2317
	if (gintsts & GINTSTS_USBRST) {
2318

2319
		u32 usb_status = readl(hsotg->regs + GOTGCTL);
2320

2321 2322
		dev_info(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2323
			readl(hsotg->regs + GNPTXSTS));
2324

2325
		writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2326

2327
		if (usb_status & GOTGCTL_BSESVLD) {
2328 2329
			if (time_after(jiffies, hsotg->last_rst +
				       msecs_to_jiffies(200))) {
2330

2331 2332
				kill_all_requests(hsotg, &hsotg->eps[0],
							  -ECONNRESET, true);
2333

2334 2335
				s3c_hsotg_core_init_disconnected(hsotg);
				s3c_hsotg_core_connect(hsotg);
2336 2337
			}
		}
2338 2339 2340 2341
	}

	/* check both FIFOs */

2342
	if (gintsts & GINTSTS_NPTXFEMP) {
2343 2344
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

2345 2346
		/*
		 * Disable the interrupt to stop it happening again
2347
		 * unless one of these endpoint routines decides that
2348 2349
		 * it needs re-enabling
		 */
2350

2351
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2352 2353 2354
		s3c_hsotg_irq_fifoempty(hsotg, false);
	}

2355
	if (gintsts & GINTSTS_PTXFEMP) {
2356 2357
		dev_dbg(hsotg->dev, "PTxFEmp\n");

2358
		/* See note in GINTSTS_NPTxFEmp */
2359

2360
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2361 2362 2363
		s3c_hsotg_irq_fifoempty(hsotg, true);
	}

2364
	if (gintsts & GINTSTS_RXFLVL) {
2365 2366
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2367
		 * we need to retry s3c_hsotg_handle_rx if this is still
2368 2369
		 * set.
		 */
2370 2371 2372 2373

		s3c_hsotg_handle_rx(hsotg);
	}

2374
	if (gintsts & GINTSTS_ERLYSUSP) {
2375
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2376
		writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2377 2378
	}

2379 2380
	/*
	 * these next two seem to crop-up occasionally causing the core
2381
	 * to shutdown the USB transfer, so try clearing them and logging
2382 2383
	 * the occurrence.
	 */
2384

2385
	if (gintsts & GINTSTS_GOUTNAKEFF) {
2386 2387
		dev_info(hsotg->dev, "GOUTNakEff triggered\n");

2388
		writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2389 2390

		s3c_hsotg_dump(hsotg);
2391 2392
	}

2393
	if (gintsts & GINTSTS_GINNAKEFF) {
2394 2395
		dev_info(hsotg->dev, "GINNakEff triggered\n");

2396
		writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2397 2398

		s3c_hsotg_dump(hsotg);
2399 2400
	}

2401 2402 2403 2404
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
2405 2406 2407 2408

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

2409 2410
	spin_unlock(&hsotg->lock);

2411 2412 2413 2414 2415 2416 2417 2418 2419
	return IRQ_HANDLED;
}

/**
 * s3c_hsotg_ep_enable - enable the given endpoint
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
2420
 */
2421 2422 2423 2424
static int s3c_hsotg_ep_enable(struct usb_ep *ep,
			       const struct usb_endpoint_descriptor *desc)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2425
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2426 2427 2428 2429 2430 2431
	unsigned long flags;
	int index = hs_ep->index;
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
	int dir_in;
2432
	int i, val, size;
2433
	int ret = 0;
2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
	WARN_ON(index == 0);

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

2449
	mps = usb_endpoint_maxp(desc);
2450 2451 2452

	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */

2453
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2454 2455 2456 2457 2458
	epctrl = readl(hsotg->regs + epctrl_reg);

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

2459
	spin_lock_irqsave(&hsotg->lock, flags);
2460

2461 2462
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
2463

2464 2465 2466 2467
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
2468
	epctrl |= DXEPCTL_USBACTEP;
2469

2470 2471
	/*
	 * set the NAK status on the endpoint, otherwise we might try and
2472 2473 2474 2475 2476
	 * do something with data that we've yet got a request to process
	 * since the RXFIFO will take data for an endpoint even if the
	 * size register hasn't been set.
	 */

2477
	epctrl |= DXEPCTL_SNAK;
2478 2479

	/* update the endpoint state */
2480
	s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps);
2481 2482

	/* default, set to non-periodic */
2483
	hs_ep->isochronous = 0;
2484
	hs_ep->periodic = 0;
2485
	hs_ep->halted = 0;
2486
	hs_ep->interval = desc->bInterval;
2487

2488 2489 2490
	if (hs_ep->interval > 1 && hs_ep->mc > 1)
		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");

2491 2492
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
2493 2494
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
2495 2496 2497 2498
		hs_ep->isochronous = 1;
		if (dir_in)
			hs_ep->periodic = 1;
		break;
2499 2500

	case USB_ENDPOINT_XFER_BULK:
2501
		epctrl |= DXEPCTL_EPTYPE_BULK;
2502 2503 2504
		break;

	case USB_ENDPOINT_XFER_INT:
2505
		if (dir_in)
2506 2507
			hs_ep->periodic = 1;

2508
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2509 2510 2511
		break;

	case USB_ENDPOINT_XFER_CONTROL:
2512
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2513 2514 2515
		break;
	}

2516 2517
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
2518 2519
	 * a unique tx-fifo even if it is non-periodic.
	 */
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535
	if (dir_in && hsotg->dedicated_fifos) {
		size = hs_ep->ep.maxpacket*hs_ep->mc;
		for (i = 1; i <= 8; ++i) {
			if (hsotg->fifo_map & (1<<i))
				continue;
			val = readl(hsotg->regs + DPTXFSIZN(i));
			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
			if (val < size)
				continue;
			hsotg->fifo_map |= 1<<i;

			epctrl |= DXEPCTL_TXFNUM(i);
			hs_ep->fifo_index = i;
			hs_ep->fifo_size = val;
			break;
		}
2536 2537 2538 2539
		if (i == 8) {
			ret = -ENOMEM;
			goto error;
		}
2540
	}
2541

2542 2543
	/* for non control endpoints, set PID to D0 */
	if (index)
2544
		epctrl |= DXEPCTL_SETD0PID;
2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

	writel(epctrl, hsotg->regs + epctrl_reg);
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
		__func__, readl(hsotg->regs + epctrl_reg));

	/* enable the endpoint interrupt */
	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);

2556
error:
2557
	spin_unlock_irqrestore(&hsotg->lock, flags);
2558
	return ret;
2559 2560
}

2561 2562 2563 2564
/**
 * s3c_hsotg_ep_disable - disable given endpoint
 * @ep: The endpoint to disable.
 */
2565 2566 2567
static int s3c_hsotg_ep_disable(struct usb_ep *ep)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2568
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2569 2570 2571 2572 2573 2574
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

2575
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2576 2577 2578 2579 2580 2581

	if (ep == &hsotg->eps[0].ep) {
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

2582
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2583

2584
	spin_lock_irqsave(&hsotg->lock, flags);
2585 2586 2587
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);

2588 2589 2590
	hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;
2591 2592

	ctrl = readl(hsotg->regs + epctrl_reg);
2593 2594 2595
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
2596 2597 2598 2599 2600 2601 2602

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

	/* disable endpoint interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);

2603
	spin_unlock_irqrestore(&hsotg->lock, flags);
2604 2605 2606 2607 2608 2609 2610
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
2611
 */
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
{
	struct s3c_hsotg_req *req, *treq;

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

2624 2625 2626 2627 2628
/**
 * s3c_hsotg_ep_dequeue - dequeue given endpoint
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
2629 2630 2631 2632
static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2633
	struct dwc2_hsotg *hs = hs_ep->parent;
2634 2635
	unsigned long flags;

2636
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2637

2638
	spin_lock_irqsave(&hs->lock, flags);
2639 2640

	if (!on_list(hs_ep, hs_req)) {
2641
		spin_unlock_irqrestore(&hs->lock, flags);
2642 2643 2644 2645
		return -EINVAL;
	}

	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2646
	spin_unlock_irqrestore(&hs->lock, flags);
2647 2648 2649 2650

	return 0;
}

2651 2652 2653 2654 2655
/**
 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
2656 2657 2658
static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2659
	struct dwc2_hsotg *hs = hs_ep->parent;
2660 2661 2662
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
2663
	u32 xfertype;
2664 2665 2666

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

2667 2668 2669 2670 2671 2672 2673 2674 2675
	if (index == 0) {
		if (value)
			s3c_hsotg_stall_ep0(hs);
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

2676 2677
	/* write both IN and OUT control registers */

2678
	epreg = DIEPCTL(index);
2679 2680
	epctl = readl(hs->regs + epreg);

2681
	if (value) {
2682 2683 2684
		epctl |= DXEPCTL_STALL + DXEPCTL_SNAK;
		if (epctl & DXEPCTL_EPENA)
			epctl |= DXEPCTL_EPDIS;
2685
	} else {
2686 2687 2688 2689 2690
		epctl &= ~DXEPCTL_STALL;
		xfertype = epctl & DXEPCTL_EPTYPE_MASK;
		if (xfertype == DXEPCTL_EPTYPE_BULK ||
			xfertype == DXEPCTL_EPTYPE_INTERRUPT)
				epctl |= DXEPCTL_SETD0PID;
2691
	}
2692 2693 2694

	writel(epctl, hs->regs + epreg);

2695
	epreg = DOEPCTL(index);
2696 2697 2698
	epctl = readl(hs->regs + epreg);

	if (value)
2699
		epctl |= DXEPCTL_STALL;
2700
	else {
2701 2702 2703 2704 2705
		epctl &= ~DXEPCTL_STALL;
		xfertype = epctl & DXEPCTL_EPTYPE_MASK;
		if (xfertype == DXEPCTL_EPTYPE_BULK ||
			xfertype == DXEPCTL_EPTYPE_INTERRUPT)
				epctl |= DXEPCTL_SETD0PID;
2706
	}
2707 2708 2709

	writel(epctl, hs->regs + epreg);

2710 2711
	hs_ep->halted = value;

2712 2713 2714
	return 0;
}

2715 2716 2717 2718 2719 2720 2721 2722
/**
 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2723
	struct dwc2_hsotg *hs = hs_ep->parent;
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_sethalt(ep, value);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

2734 2735 2736 2737 2738
static struct usb_ep_ops s3c_hsotg_ep_ops = {
	.enable		= s3c_hsotg_ep_enable,
	.disable	= s3c_hsotg_ep_disable,
	.alloc_request	= s3c_hsotg_ep_alloc_request,
	.free_request	= s3c_hsotg_ep_free_request,
2739
	.queue		= s3c_hsotg_ep_queue_lock,
2740
	.dequeue	= s3c_hsotg_ep_dequeue,
2741
	.set_halt	= s3c_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
2742
	/* note, don't believe we have any call for the fifo routines */
2743 2744
};

2745 2746
/**
 * s3c_hsotg_phy_enable - enable platform phy dev
2747
 * @hsotg: The driver state
2748 2749 2750 2751
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
2752
static void s3c_hsotg_phy_enable(struct dwc2_hsotg *hsotg)
2753 2754 2755 2756
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

	dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2757

2758
	if (hsotg->uphy)
2759
		usb_phy_init(hsotg->uphy);
2760
	else if (hsotg->plat && hsotg->plat->phy_init)
2761
		hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2762 2763 2764 2765
	else {
		phy_init(hsotg->phy);
		phy_power_on(hsotg->phy);
	}
2766 2767 2768 2769
}

/**
 * s3c_hsotg_phy_disable - disable platform phy dev
2770
 * @hsotg: The driver state
2771 2772 2773 2774
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
2775
static void s3c_hsotg_phy_disable(struct dwc2_hsotg *hsotg)
2776 2777 2778
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

2779
	if (hsotg->uphy)
2780
		usb_phy_shutdown(hsotg->uphy);
2781
	else if (hsotg->plat && hsotg->plat->phy_exit)
2782
		hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2783 2784 2785 2786
	else {
		phy_power_off(hsotg->phy);
		phy_exit(hsotg->phy);
	}
2787 2788
}

2789 2790 2791 2792
/**
 * s3c_hsotg_init - initalize the usb core
 * @hsotg: The driver state
 */
2793
static void s3c_hsotg_init(struct dwc2_hsotg *hsotg)
2794 2795 2796
{
	/* unmask subset of endpoint interrupts */

2797 2798 2799
	writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		hsotg->regs + DIEPMSK);
2800

2801 2802 2803
	writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		hsotg->regs + DOEPMSK);
2804

2805
	writel(0, hsotg->regs + DAINTMSK);
2806 2807

	/* Be in disconnected state until gadget is registered */
2808
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2809 2810 2811

	if (0) {
		/* post global nak until we're ready */
2812
		writel(DCTL_SGNPINNAK | DCTL_SGOUTNAK,
2813
		       hsotg->regs + DCTL);
2814 2815 2816 2817 2818
	}

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2819 2820
		readl(hsotg->regs + GRXFSIZ),
		readl(hsotg->regs + GNPTXFSIZ));
2821 2822 2823 2824

	s3c_hsotg_init_fifo(hsotg);

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2825
	writel(GUSBCFG_PHYIF16 | GUSBCFG_TOUTCAL(7) | (0x5 << 10),
2826
	       hsotg->regs + GUSBCFG);
2827

2828
	writel(using_dma(hsotg) ? GAHBCFG_DMA_EN : 0x0,
2829
	       hsotg->regs + GAHBCFG);
2830 2831
}

2832 2833 2834 2835 2836 2837 2838 2839
/**
 * s3c_hsotg_udc_start - prepare the udc for work
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
2840 2841
static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
			   struct usb_gadget_driver *driver)
2842
{
2843
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2844
	unsigned long flags;
2845 2846 2847
	int ret;

	if (!hsotg) {
2848
		pr_err("%s: called with no device\n", __func__);
2849 2850 2851 2852 2853 2854 2855 2856
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

2857
	if (driver->max_speed < USB_SPEED_FULL)
2858 2859
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

2860
	if (!driver->setup) {
2861 2862 2863 2864 2865 2866 2867 2868
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
2869
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
2870 2871
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

2872 2873
	clk_enable(hsotg->clk);

2874 2875
	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
2876
	if (ret) {
2877
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
2878 2879 2880
		goto err;
	}

2881 2882
	s3c_hsotg_phy_enable(hsotg);

2883 2884 2885 2886 2887
	spin_lock_irqsave(&hsotg->lock, flags);
	s3c_hsotg_init(hsotg);
	s3c_hsotg_core_init_disconnected(hsotg);
	spin_unlock_irqrestore(&hsotg->lock, flags);

2888
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
2889

2890 2891 2892 2893 2894 2895 2896
	return 0;

err:
	hsotg->driver = NULL;
	return ret;
}

2897 2898 2899 2900 2901 2902 2903
/**
 * s3c_hsotg_udc_stop - stop the udc
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
2904
static int s3c_hsotg_udc_stop(struct usb_gadget *gadget)
2905
{
2906
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2907
	unsigned long flags = 0;
2908 2909 2910 2911 2912 2913
	int ep;

	if (!hsotg)
		return -ENODEV;

	/* all endpoints should be shutdown */
2914
	for (ep = 1; ep < hsotg->num_of_eps; ep++)
2915 2916
		s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);

2917 2918
	spin_lock_irqsave(&hsotg->lock, flags);

2919
	hsotg->driver = NULL;
2920 2921
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

2922 2923
	spin_unlock_irqrestore(&hsotg->lock, flags);

2924 2925
	s3c_hsotg_phy_disable(hsotg);

2926
	regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
2927

2928 2929
	clk_disable(hsotg->clk);

2930 2931 2932
	return 0;
}

2933 2934 2935 2936 2937 2938
/**
 * s3c_hsotg_gadget_getframe - read the frame number
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
2939 2940 2941 2942 2943
static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
{
	return s3c_hsotg_read_frameno(to_hsotg(gadget));
}

2944 2945 2946 2947 2948 2949 2950 2951 2952
/**
 * s3c_hsotg_pullup - connect/disconnect the USB PHY
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
{
2953
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2954 2955
	unsigned long flags = 0;

2956
	dev_dbg(hsotg->dev, "%s: is_on: %d\n", __func__, is_on);
2957 2958 2959

	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
2960
		clk_enable(hsotg->clk);
2961
		s3c_hsotg_core_connect(hsotg);
2962
	} else {
2963
		s3c_hsotg_core_disconnect(hsotg);
2964
		clk_disable(hsotg->clk);
2965 2966 2967 2968 2969 2970 2971 2972
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return 0;
}

2973
static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
2974
	.get_frame	= s3c_hsotg_gadget_getframe,
2975 2976
	.udc_start		= s3c_hsotg_udc_start,
	.udc_stop		= s3c_hsotg_udc_stop,
2977
	.pullup                 = s3c_hsotg_pullup,
2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
};

/**
 * s3c_hsotg_initep - initialise a single endpoint
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
2990
static void s3c_hsotg_initep(struct dwc2_hsotg *hsotg,
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017
				       struct s3c_hsotg_ep *hs_ep,
				       int epnum)
{
	char *dir;

	if (epnum == 0)
		dir = "";
	else if ((epnum % 2) == 0) {
		dir = "out";
	} else {
		dir = "in";
		hs_ep->dir_in = 1;
	}

	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
3018
	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3019 3020
	hs_ep->ep.ops = &s3c_hsotg_ep_ops;

3021 3022
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
3023 3024 3025 3026
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
3027
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3028 3029
		writel(next, hsotg->regs + DIEPCTL(epnum));
		writel(next, hsotg->regs + DOEPCTL(epnum));
3030 3031 3032
	}
}

3033 3034 3035 3036 3037 3038
/**
 * s3c_hsotg_hw_cfg - read HW configuration registers
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
3039
static void s3c_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3040
{
3041
	u32 cfg2, cfg3, cfg4;
3042
	/* check hardware configuration */
3043

3044 3045
	cfg2 = readl(hsotg->regs + 0x48);
	hsotg->num_of_eps = (cfg2 >> 10) & 0xF;
3046

3047 3048
	cfg3 = readl(hsotg->regs + 0x4C);
	hsotg->fifo_mem = (cfg3 >> 16);
3049 3050 3051 3052

	cfg4 = readl(hsotg->regs + 0x50);
	hsotg->dedicated_fifos = (cfg4 >> 25) & 1;

3053 3054 3055 3056
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
3057 3058
}

3059 3060 3061 3062
/**
 * s3c_hsotg_dump - dump state of the udc
 * @param: The device state
 */
3063
static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg)
3064
{
M
Mark Brown 已提交
3065
#ifdef DEBUG
3066 3067 3068 3069 3070 3071
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3072 3073
		 readl(regs + DCFG), readl(regs + DCTL),
		 readl(regs + DIEPMSK));
3074 3075

	dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3076
		 readl(regs + GAHBCFG), readl(regs + 0x44));
3077 3078

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3079
		 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3080 3081 3082 3083

	/* show periodic fifo settings */

	for (idx = 1; idx <= 15; idx++) {
3084
		val = readl(regs + DPTXFSIZN(idx));
3085
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3086 3087
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
3088 3089 3090 3091 3092
	}

	for (idx = 0; idx < 15; idx++) {
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3093 3094 3095
			 readl(regs + DIEPCTL(idx)),
			 readl(regs + DIEPTSIZ(idx)),
			 readl(regs + DIEPDMA(idx)));
3096

3097
		val = readl(regs + DOEPCTL(idx));
3098 3099
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3100 3101 3102
			 idx, readl(regs + DOEPCTL(idx)),
			 readl(regs + DOEPTSIZ(idx)),
			 readl(regs + DOEPDMA(idx)));
3103 3104 3105 3106

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3107
		 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
3108
#endif
3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
}

/**
 * state_show - debugfs: show overall driver and device state.
 * @seq: The seq file to write to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the overall state of the hardware and
 * some general information about each of the endpoints available
 * to the system.
 */
static int state_show(struct seq_file *seq, void *v)
{
3122
	struct dwc2_hsotg *hsotg = seq->private;
3123 3124 3125 3126
	void __iomem *regs = hsotg->regs;
	int idx;

	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3127 3128 3129
		 readl(regs + DCFG),
		 readl(regs + DCTL),
		 readl(regs + DSTS));
3130 3131

	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3132
		   readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3133 3134

	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3135 3136
		   readl(regs + GINTMSK),
		   readl(regs + GINTSTS));
3137 3138

	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3139 3140
		   readl(regs + DAINTMSK),
		   readl(regs + DAINT));
3141 3142

	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3143 3144
		   readl(regs + GNPTXSTS),
		   readl(regs + GRXSTSR));
3145

3146
	seq_puts(seq, "\nEndpoint status:\n");
3147 3148 3149 3150

	for (idx = 0; idx < 15; idx++) {
		u32 in, out;

3151 3152
		in = readl(regs + DIEPCTL(idx));
		out = readl(regs + DOEPCTL(idx));
3153 3154 3155 3156

		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
			   idx, in, out);

3157 3158
		in = readl(regs + DIEPTSIZ(idx));
		out = readl(regs + DOEPTSIZ(idx));
3159 3160 3161 3162

		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
			   in, out);

3163
		seq_puts(seq, "\n");
3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
	}

	return 0;
}

static int state_open(struct inode *inode, struct file *file)
{
	return single_open(file, state_show, inode->i_private);
}

static const struct file_operations state_fops = {
	.owner		= THIS_MODULE,
	.open		= state_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * fifo_show - debugfs: show the fifo information
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * Show the FIFO information for the overall fifo and all the
 * periodic transmission FIFOs.
3189
 */
3190 3191
static int fifo_show(struct seq_file *seq, void *v)
{
3192
	struct dwc2_hsotg *hsotg = seq->private;
3193 3194 3195 3196
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

3197
	seq_puts(seq, "Non-periodic FIFOs:\n");
3198
	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3199

3200
	val = readl(regs + GNPTXFSIZ);
3201
	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3202 3203
		   val >> FIFOSIZE_DEPTH_SHIFT,
		   val & FIFOSIZE_DEPTH_MASK);
3204

3205
	seq_puts(seq, "\nPeriodic TXFIFOs:\n");
3206 3207

	for (idx = 1; idx <= 15; idx++) {
3208
		val = readl(regs + DPTXFSIZN(idx));
3209 3210

		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3211 3212
			   val >> FIFOSIZE_DEPTH_SHIFT,
			   val & FIFOSIZE_STARTADDR_MASK);
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
	}

	return 0;
}

static int fifo_open(struct inode *inode, struct file *file)
{
	return single_open(file, fifo_show, inode->i_private);
}

static const struct file_operations fifo_fops = {
	.owner		= THIS_MODULE,
	.open		= fifo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};


static const char *decode_direction(int is_in)
{
	return is_in ? "in" : "out";
}

/**
 * ep_show - debugfs: show the state of an endpoint.
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the state of the given endpoint (one is
 * registered for each available).
3244
 */
3245 3246 3247
static int ep_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg_ep *ep = seq->private;
3248
	struct dwc2_hsotg *hsotg = ep->parent;
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
	struct s3c_hsotg_req *req;
	void __iomem *regs = hsotg->regs;
	int index = ep->index;
	int show_limit = 15;
	unsigned long flags;

	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
		   ep->index, ep->ep.name, decode_direction(ep->dir_in));

	/* first show the register state */

	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3261 3262
		   readl(regs + DIEPCTL(index)),
		   readl(regs + DOEPCTL(index)));
3263 3264

	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3265 3266
		   readl(regs + DIEPDMA(index)),
		   readl(regs + DOEPDMA(index)));
3267 3268

	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3269 3270
		   readl(regs + DIEPINT(index)),
		   readl(regs + DOEPINT(index)));
3271 3272

	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3273 3274
		   readl(regs + DIEPTSIZ(index)),
		   readl(regs + DOEPTSIZ(index)));
3275

3276
	seq_puts(seq, "\n");
3277 3278 3279 3280 3281 3282
	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
	seq_printf(seq, "total_data=%ld\n", ep->total_data);

	seq_printf(seq, "request list (%p,%p):\n",
		   ep->queue.next, ep->queue.prev);

3283
	spin_lock_irqsave(&hsotg->lock, flags);
3284 3285 3286

	list_for_each_entry(req, &ep->queue, queue) {
		if (--show_limit < 0) {
3287
			seq_puts(seq, "not showing more requests...\n");
3288 3289 3290 3291 3292 3293 3294 3295 3296 3297
			break;
		}

		seq_printf(seq, "%c req %p: %d bytes @%p, ",
			   req == ep->req ? '*' : ' ',
			   req, req->req.length, req->req.buf);
		seq_printf(seq, "%d done, res %d\n",
			   req->req.actual, req->req.status);
	}

3298
	spin_unlock_irqrestore(&hsotg->lock, flags);
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323

	return 0;
}

static int ep_open(struct inode *inode, struct file *file)
{
	return single_open(file, ep_show, inode->i_private);
}

static const struct file_operations ep_fops = {
	.owner		= THIS_MODULE,
	.open		= ep_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * s3c_hsotg_create_debug - create debugfs directory and files
 * @hsotg: The driver state
 *
 * Create the debugfs files to allow the user to get information
 * about the state of the system. The directory name is created
 * with the same name as the device itself, in case we end up
 * with multiple blocks in future systems.
3324
 */
3325
static void s3c_hsotg_create_debug(struct dwc2_hsotg *hsotg)
3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
{
	struct dentry *root;
	unsigned epidx;

	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
	hsotg->debug_root = root;
	if (IS_ERR(root)) {
		dev_err(hsotg->dev, "cannot create debug root\n");
		return;
	}

	/* create general state file */

	hsotg->debug_file = debugfs_create_file("state", 0444, root,
						hsotg, &state_fops);

	if (IS_ERR(hsotg->debug_file))
		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);

	hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
						hsotg, &fifo_fops);

	if (IS_ERR(hsotg->debug_fifo))
		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);

	/* create one file for each endpoint */

3353
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];

		ep->debugfs = debugfs_create_file(ep->name, 0444,
						  root, ep, &ep_fops);

		if (IS_ERR(ep->debugfs))
			dev_err(hsotg->dev, "failed to create %s debug file\n",
				ep->name);
	}
}

/**
 * s3c_hsotg_delete_debug - cleanup debugfs entries
 * @hsotg: The driver state
 *
 * Cleanup (remove) the debugfs files for use on module exit.
3370
 */
3371
static void s3c_hsotg_delete_debug(struct dwc2_hsotg *hsotg)
3372 3373 3374
{
	unsigned epidx;

3375
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3376 3377 3378 3379 3380 3381 3382 3383 3384
		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
		debugfs_remove(ep->debugfs);
	}

	debugfs_remove(hsotg->debug_file);
	debugfs_remove(hsotg->debug_fifo);
	debugfs_remove(hsotg->debug_root);
}

3385
/**
3386 3387 3388
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
 * @irq: The IRQ number for the controller.
3389
 */
3390
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3391
{
3392 3393
	struct device *dev = hsotg->dev;
	struct s3c_hsotg_plat *plat = dev->platform_data;
3394 3395
	struct phy *phy;
	struct usb_phy *uphy;
3396
	struct s3c_hsotg_ep *eps;
3397 3398
	int epnum;
	int ret;
3399
	int i;
3400

3401 3402 3403
	/* Set default UTMI width */
	hsotg->phyif = GUSBCFG_PHYIF16;

3404 3405 3406 3407
	/*
	 * Attempt to find a generic PHY, then look for an old style
	 * USB PHY, finally fall back to pdata
	 */
3408
	phy = devm_phy_get(dev, "usb2-phy");
3409
	if (IS_ERR(phy)) {
3410 3411 3412
		uphy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2);
		if (IS_ERR(uphy)) {
			/* Fallback for pdata */
3413
			plat = dev_get_platdata(dev);
3414
			if (!plat) {
3415
				dev_err(dev,
3416 3417 3418
				"no platform data or transceiver defined\n");
				return -EPROBE_DEFER;
			}
3419
			hsotg->plat = plat;
3420 3421
		} else
			hsotg->uphy = uphy;
3422
	} else {
3423
		hsotg->phy = phy;
3424 3425 3426 3427 3428 3429 3430
		/*
		 * If using the generic PHY framework, check if the PHY bus
		 * width is 8-bit and set the phyif appropriately.
		 */
		if (phy_get_bus_width(phy) == 8)
			hsotg->phyif = GUSBCFG_PHYIF8;
	}
3431

3432
	hsotg->clk = devm_clk_get(dev, "otg");
3433 3434
	if (IS_ERR(hsotg->clk)) {
		dev_err(dev, "cannot get otg clock\n");
3435
		return PTR_ERR(hsotg->clk);
3436 3437
	}

3438
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3439 3440 3441 3442 3443
	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
	hsotg->gadget.name = dev_name(dev);

	/* reset the system */

3444
	clk_prepare_enable(hsotg->clk);
3445

3446 3447 3448 3449 3450
	/* regulators */

	for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
		hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];

3451
	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3452 3453
				 hsotg->supplies);
	if (ret) {
3454
		dev_err(dev, "failed to request supplies: %d\n", ret);
3455
		goto err_clk;
3456 3457 3458 3459 3460 3461
	}

	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);

	if (ret) {
3462
		dev_err(dev, "failed to enable supplies: %d\n", ret);
3463 3464 3465
		goto err_supplies;
	}

3466 3467
	/* usb phy enable */
	s3c_hsotg_phy_enable(hsotg);
3468 3469

	s3c_hsotg_corereset(hsotg);
3470
	s3c_hsotg_hw_cfg(hsotg);
3471
	s3c_hsotg_init(hsotg);
3472

3473 3474
	ret = devm_request_irq(hsotg->dev, irq, s3c_hsotg_irq, IRQF_SHARED,
				dev_name(hsotg->dev), hsotg);
3475 3476 3477 3478 3479
	if (ret < 0) {
		s3c_hsotg_phy_disable(hsotg);
		clk_disable_unprepare(hsotg->clk);
		regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				       hsotg->supplies);
3480
		dev_err(dev, "cannot claim IRQ for gadget\n");
3481 3482 3483
		goto err_clk;
	}

3484 3485 3486 3487
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
3488
		ret = -EINVAL;
3489 3490 3491 3492 3493 3494
		goto err_supplies;
	}

	eps = kcalloc(hsotg->num_of_eps + 1, sizeof(struct s3c_hsotg_ep),
		      GFP_KERNEL);
	if (!eps) {
3495
		ret = -ENOMEM;
3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
		goto err_supplies;
	}

	hsotg->eps = eps;

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
	hsotg->gadget.ep0 = &hsotg->eps[0].ep;

	/* allocate EP0 request */

	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
3512
		ret = -ENOMEM;
3513 3514
		goto err_ep_mem;
	}
3515 3516

	/* initialise the endpoints now the core has been initialised */
3517
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++)
3518 3519
		s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);

3520
	/* disable power and clock */
3521
	s3c_hsotg_phy_disable(hsotg);
3522 3523 3524 3525

	ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
	if (ret) {
3526
		dev_err(dev, "failed to disable supplies: %d\n", ret);
3527 3528 3529
		goto err_ep_mem;
	}

3530
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3531
	if (ret)
3532
		goto err_ep_mem;
3533

3534 3535 3536 3537 3538 3539
	s3c_hsotg_create_debug(hsotg);

	s3c_hsotg_dump(hsotg);

	return 0;

3540
err_ep_mem:
3541
	kfree(eps);
3542
err_supplies:
3543
	s3c_hsotg_phy_disable(hsotg);
3544
err_clk:
3545
	clk_disable_unprepare(hsotg->clk);
3546

3547 3548
	return ret;
}
3549
EXPORT_SYMBOL_GPL(dwc2_gadget_init);
3550

3551 3552 3553 3554
/**
 * s3c_hsotg_remove - remove function for hsotg driver
 * @pdev: The platform information for the driver
 */
3555
int s3c_hsotg_remove(struct dwc2_hsotg *hsotg)
3556
{
3557
	usb_del_gadget_udc(&hsotg->gadget);
3558
	s3c_hsotg_delete_debug(hsotg);
3559
	clk_disable_unprepare(hsotg->clk);
3560

3561 3562
	return 0;
}
3563
EXPORT_SYMBOL_GPL(s3c_hsotg_remove);
3564

3565
int s3c_hsotg_suspend(struct dwc2_hsotg *hsotg)
3566 3567 3568 3569 3570 3571 3572 3573 3574
{
	unsigned long flags;
	int ret = 0;

	if (hsotg->driver)
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

	spin_lock_irqsave(&hsotg->lock, flags);
3575
	s3c_hsotg_core_disconnect(hsotg);
3576 3577 3578 3579
	s3c_hsotg_disconnect(hsotg);
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

3580 3581
	s3c_hsotg_phy_disable(hsotg);

3582 3583 3584 3585 3586 3587 3588
	if (hsotg->driver) {
		int ep;
		for (ep = 0; ep < hsotg->num_of_eps; ep++)
			s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);

		ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
					     hsotg->supplies);
3589
		clk_disable(hsotg->clk);
3590 3591 3592 3593
	}

	return ret;
}
3594
EXPORT_SYMBOL_GPL(s3c_hsotg_suspend);
3595

3596
int s3c_hsotg_resume(struct dwc2_hsotg *hsotg)
3597 3598 3599 3600 3601 3602 3603
{
	unsigned long flags;
	int ret = 0;

	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
3604 3605

		clk_enable(hsotg->clk);
3606 3607 3608 3609 3610
		ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				      hsotg->supplies);
	}

	s3c_hsotg_phy_enable(hsotg);
3611 3612

	spin_lock_irqsave(&hsotg->lock, flags);
3613 3614
	s3c_hsotg_core_init_disconnected(hsotg);
	s3c_hsotg_core_connect(hsotg);
3615 3616 3617 3618
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return ret;
}
3619
EXPORT_SYMBOL_GPL(s3c_hsotg_resume);