gadget.c 94.2 KB
Newer Older
1
/**
2 3
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
15
 */
16 17 18 19 20 21 22 23

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/debugfs.h>
24
#include <linux/mutex.h>
25 26 27
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
28
#include <linux/slab.h>
29
#include <linux/clk.h>
30
#include <linux/regulator/consumer.h>
31
#include <linux/of_platform.h>
32
#include <linux/phy/phy.h>
33 34 35

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
36
#include <linux/usb/phy.h>
37
#include <linux/platform_data/s3c-hsotg.h>
38

39
#include "core.h"
40
#include "hw.h"
41 42 43 44 45 46 47 48 49 50 51 52

/* conversion functions */
static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
{
	return container_of(req, struct s3c_hsotg_req, req);
}

static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
{
	return container_of(ep, struct s3c_hsotg_ep, ep);
}

53
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
54
{
55
	return container_of(gadget, struct dwc2_hsotg, gadget);
56 57 58 59 60 61 62 63 64 65 66 67
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) | val, ptr);
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) & ~val, ptr);
}

68 69 70 71 72 73 74 75 76
static inline struct s3c_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
						u32 ep_index, u32 dir_in)
{
	if (dir_in)
		return hsotg->eps_in[ep_index];
	else
		return hsotg->eps_out[ep_index];
}

77
/* forward declaration of functions */
78
static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg);
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
97
 * g_using_dma is set depending on dts flag.
98
 */
99
static inline bool using_dma(struct dwc2_hsotg *hsotg)
100
{
101
	return hsotg->g_using_dma;
102 103 104 105 106 107 108
}

/**
 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
109
static void s3c_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
110
{
111
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
112 113 114 115 116 117
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
118
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
119 120 121 122 123 124 125 126
	}
}

/**
 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
127
static void s3c_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
128
{
129
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
130 131 132 133 134
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
135
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
136 137 138 139 140 141 142 143 144 145 146 147
}

/**
 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
148
static void s3c_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
149 150 151 152 153 154 155 156 157 158 159
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
160
	daint = readl(hsotg->regs + DAINTMSK);
161 162 163 164
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
165
	writel(daint, hsotg->regs + DAINTMSK);
166 167 168 169 170 171 172
	local_irq_restore(flags);
}

/**
 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
 * @hsotg: The device instance.
 */
173
static void s3c_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
174
{
175 176
	unsigned int ep;
	unsigned int addr;
177
	int timeout;
178 179
	u32 val;

180 181 182 183 184
	/* set RX/NPTX FIFO sizes */
	writel(hsotg->g_rx_fifo_sz, hsotg->regs + GRXFSIZ);
	writel((hsotg->g_rx_fifo_sz << FIFOSIZE_STARTADDR_SHIFT) |
		(hsotg->g_np_g_tx_fifo_sz << FIFOSIZE_DEPTH_SHIFT),
		hsotg->regs + GNPTXFSIZ);
185

186 187
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
188 189
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
190 191
	 * known values.
	 */
192 193

	/* start at the end of the GNPTXFSIZ, rounded up */
194
	addr = hsotg->g_rx_fifo_sz + hsotg->g_np_g_tx_fifo_sz;
195

196
	/*
197
	 * Configure fifos sizes from provided configuration and assign
198 199
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
200
	 */
201 202 203
	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
		if (!hsotg->g_tx_fifo_sz[ep])
			continue;
204
		val = addr;
205 206
		val |= hsotg->g_tx_fifo_sz[ep] << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + hsotg->g_tx_fifo_sz[ep] > hsotg->fifo_mem,
207
			  "insufficient fifo memory");
208
		addr += hsotg->g_tx_fifo_sz[ep];
209

210
		writel(val, hsotg->regs + DPTXFSIZN(ep));
211
	}
212

213 214 215 216
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
217

218 219
	writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
220 221 222 223

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
224
		val = readl(hsotg->regs + GRSTCTL);
225

226
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
227 228 229 230 231 232 233 234 235 236 237 238
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
239 240 241 242 243 244 245 246
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
247 248
static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
						      gfp_t flags)
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
{
	struct s3c_hsotg_req *req;

	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
{
	return hs_ep->periodic;
}

/**
 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
 * of a request to ensure the buffer is ready for access by the caller.
281
 */
282
static void s3c_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
283 284 285 286 287 288 289 290 291
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

292
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
}

/**
 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
310
 */
311
static int s3c_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
312 313 314 315
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	bool periodic = is_ep_periodic(hs_ep);
316
	u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
317 318 319 320 321
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
322
	int max_transfer;
323 324 325 326 327 328 329

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

330
	if (periodic && !hsotg->dedicated_fifos) {
331
		u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
332 333 334
		int size_left;
		int size_done;

335 336 337 338
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
339

340
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
341

342 343
		/*
		 * if shared fifo, we cannot write anything until the
344 345 346
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
347
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
348 349 350
			return -ENOSPC;
		}

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
368
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
369 370
			return -ENOSPC;
		}
371
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
372
		can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
373 374 375

		can_write &= 0xffff;
		can_write *= 4;
376
	} else {
377
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
378 379 380 381
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

382
			s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
383 384 385
			return -ENOSPC;
		}

386
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
387
		can_write *= 4;	/* fifo size is in 32bit quantities. */
388 389
	}

390 391 392 393
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
		 __func__, gnptxsts, can_write, to_write, max_transfer);
394

395 396
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
397 398 399
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
400
	if (can_write > 512 && !periodic)
401 402
		can_write = 512;

403 404
	/*
	 * limit the write to one max-packet size worth of data, but allow
405
	 * the transfer to return that it did not run out of fifo space
406 407
	 * doing it.
	 */
408 409
	if (to_write > max_transfer) {
		to_write = max_transfer;
410

411 412 413
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
414 415
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
416 417
	}

418 419 420 421
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
422
		pkt_round = to_write % max_transfer;
423

424 425
		/*
		 * Round the write down to an
426 427 428 429 430 431 432 433 434
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

435 436 437 438
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
439

440 441 442
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
443 444
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

462
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
481 482
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
483
	} else {
484
		maxsize = 64+64;
485
		if (hs_ep->dir_in)
486
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
487
		else
488 489 490 491 492 493 494
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

495 496 497 498
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

/**
 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
516
static void s3c_hsotg_start_req(struct dwc2_hsotg *hsotg,
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req,
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

545 546
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
547 548 549 550 551

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
		__func__, readl(hsotg->regs + epctrl_reg), index,
		hs_ep->dir_in ? "in" : "out");

552 553 554
	/* If endpoint is stalled, we will restart request later */
	ctrl = readl(hsotg->regs + epctrl_reg);

555
	if (ctrl & DXEPCTL_STALL) {
556 557 558 559
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

560
	length = ureq->length - ureq->actual;
561 562
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
563 564
	if (0)
		dev_dbg(hsotg->dev,
565
			"REQ buf %p len %d dma %pad noi=%d zp=%d snok=%d\n",
566
			ureq->buf, length, &ureq->dma,
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
			ureq->no_interrupt, ureq->zero, ureq->short_not_ok);

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

588 589 590 591 592
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

593
	if (dir_in && index != 0)
594
		if (hs_ep->isochronous)
595
			epsize = DXEPTSIZ_MC(packets);
596
		else
597
			epsize = DXEPTSIZ_MC(1);
598 599 600
	else
		epsize = 0;

601 602 603 604 605 606 607 608 609
	/*
	 * zero length packet should be programmed on its own and should not
	 * be counted in DIEPTSIZ.PktCnt with other packets.
	 */
	if (dir_in && ureq->zero && !continuing) {
		/* Test if zlp is actually required. */
		if ((ureq->length >= hs_ep->ep.maxpacket) &&
					!(ureq->length % hs_ep->ep.maxpacket))
			hs_ep->sent_zlp = 1;
610 611
	}

612 613
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
614 615 616 617 618 619 620 621 622 623

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
	writel(epsize, hsotg->regs + epsize_reg);

624
	if (using_dma(hsotg) && !continuing) {
625 626
		unsigned int dma_reg;

627 628 629 630
		/*
		 * write DMA address to control register, buffer already
		 * synced by s3c_hsotg_ep_queue().
		 */
631

632
		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
633 634
		writel(ureq->dma, hsotg->regs + dma_reg);

635
		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
636
			__func__, &ureq->dma, dma_reg);
637 638
	}

639 640
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
641

642
	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
643 644

	/* For Setup request do not clear NAK */
645
	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
646
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
647

648 649 650
	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

651 652
	/*
	 * set these, it seems that DMA support increments past the end
653
	 * of the packet buffer so we need to calculate the length from
654 655
	 * this information.
	 */
656 657 658 659 660 661 662 663 664 665
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

666 667 668 669
	/*
	 * clear the INTknTXFEmpMsk when we start request, more as a aide
	 * to debugging to see what is going on.
	 */
670
	if (dir_in)
671
		writel(DIEPMSK_INTKNTXFEMPMSK,
672
		       hsotg->regs + DIEPINT(index));
673

674 675 676 677
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
678 679

	/* check ep is enabled */
680
	if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
681
		dev_dbg(hsotg->dev,
682
			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
683 684
			 index, readl(hsotg->regs + epctrl_reg));

685
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
686
		__func__, readl(hsotg->regs + epctrl_reg));
687 688 689

	/* enable ep interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
690 691 692 693 694 695 696 697 698 699 700 701 702
}

/**
 * s3c_hsotg_map_dma - map the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
703
 */
704
static int s3c_hsotg_map_dma(struct dwc2_hsotg *hsotg,
705 706 707 708
			     struct s3c_hsotg_ep *hs_ep,
			     struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
709
	int ret;
710 711 712 713 714

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

715 716 717
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
733
	struct dwc2_hsotg *hs = hs_ep->parent;
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
	bool first;

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
		int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
		if (ret)
			return ret;
	}

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

	if (first)
		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);

	return 0;
}

761 762 763 764
static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
765
	struct dwc2_hsotg *hs = hs_ep->parent;
766 767 768 769 770 771 772 773 774 775
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
				      struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);

	kfree(hs_req);
}

/**
 * s3c_hsotg_complete_oursetup - setup completion callback
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
					struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
796
	struct dwc2_hsotg *hsotg = hs_ep->parent;
797 798 799 800 801 802 803 804 805 806 807 808 809

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

	s3c_hsotg_ep_free_request(ep, req);
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
810
 */
811
static struct s3c_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
812 813
					   u32 windex)
{
814
	struct s3c_hsotg_ep *ep;
815 816 817 818 819 820
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

821
	if (idx > hsotg->num_of_eps)
822 823
		return NULL;

824 825
	ep = index_to_ep(hsotg, idx, dir);

826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841
	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

/**
 * s3c_hsotg_send_reply - send reply to control request
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
842
static int s3c_hsotg_send_reply(struct dwc2_hsotg *hsotg,
843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
				struct s3c_hsotg_ep *ep,
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
861 862 863 864 865
	/*
	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
	 * STATUS stage.
	 */
	req->zero = 0;
866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
	req->complete = s3c_hsotg_complete_oursetup;

	if (length)
		memcpy(req->buf, buff, length);

	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
 * s3c_hsotg_process_req_status - process request GET_STATUS
 * @hsotg: The device state
 * @ctrl: USB control request
 */
885
static int s3c_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
886 887
					struct usb_ctrlrequest *ctrl)
{
888
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
	struct s3c_hsotg_ep *ep;
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);

937 938 939 940 941 942 943 944 945 946 947 948 949 950
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
{
	if (list_empty(&hs_ep->queue))
		return NULL;

	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
}

951 952 953 954 955
/**
 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
 * @hsotg: The device state
 * @ctrl: USB control request
 */
956
static int s3c_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
957 958
					 struct usb_ctrlrequest *ctrl)
{
959
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
960 961
	struct s3c_hsotg_req *hs_req;
	bool restart;
962 963
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
	struct s3c_hsotg_ep *ep;
964
	int ret;
965
	bool halted;
966 967 968 969 970 971 972 973 974 975 976 977 978 979

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
				__func__, le16_to_cpu(ctrl->wIndex));
			return -ENOENT;
		}

		switch (le16_to_cpu(ctrl->wValue)) {
		case USB_ENDPOINT_HALT:
980 981
			halted = ep->halted;

982
			s3c_hsotg_ep_sethalt(&ep->ep, set);
983 984 985 986 987 988 989

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
990

991 992 993 994 995 996
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
997 998 999 1000 1001 1002 1003 1004
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1005 1006
					usb_gadget_giveback_request(&ep->ep,
								    &hs_req->req);
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
				}

				/* If we have pending request, then start it */
				restart = !list_empty(&ep->queue);
				if (restart) {
					hs_req = get_ep_head(ep);
					s3c_hsotg_start_req(hsotg, ep,
							    hs_req, false);
				}
			}

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
			break;

		default:
			return -ENOENT;
		}
	} else
		return -ENOENT;  /* currently only deal with endpoint */

	return 1;
}

1029
static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1030

1031 1032 1033 1034 1035 1036
/**
 * s3c_hsotg_stall_ep0 - stall ep0
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1037
static void s3c_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1038
{
1039
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

	ctrl = readl(hsotg->regs + reg);
1052 1053
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1054 1055 1056
	writel(ctrl, hsotg->regs + reg);

	dev_dbg(hsotg->dev,
1057
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1058 1059 1060 1061 1062 1063 1064 1065 1066
		ctrl, reg, readl(hsotg->regs + reg));

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
	 s3c_hsotg_enqueue_setup(hsotg);
}

1067 1068 1069 1070 1071 1072 1073 1074 1075
/**
 * s3c_hsotg_process_control - process a control request
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1076
static void s3c_hsotg_process_control(struct dwc2_hsotg *hsotg,
1077 1078
				      struct usb_ctrlrequest *ctrl)
{
1079
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
1080 1081 1082 1083 1084 1085 1086
	int ret = 0;
	u32 dcfg;

	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
		 ctrl->bRequest, ctrl->bRequestType,
		 ctrl->wValue, ctrl->wLength);

1087 1088 1089 1090
	if (ctrl->wLength == 0) {
		ep0->dir_in = 1;
		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
	} else if (ctrl->bRequestType & USB_DIR_IN) {
1091
		ep0->dir_in = 1;
1092 1093 1094 1095 1096
		hsotg->ep0_state = DWC2_EP0_DATA_IN;
	} else {
		ep0->dir_in = 0;
		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
	}
1097 1098 1099 1100

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1101
			dcfg = readl(hsotg->regs + DCFG);
1102
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1103 1104
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1105
			writel(dcfg, hsotg->regs + DCFG);
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			return;

		case USB_REQ_GET_STATUS:
			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1126
		spin_unlock(&hsotg->lock);
1127
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1128
		spin_lock(&hsotg->lock);
1129 1130 1131 1132
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1133 1134
	/*
	 * the request is either unhandlable, or is not formatted correctly
1135 1136 1137
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1138 1139
	if (ret < 0)
		s3c_hsotg_stall_ep0(hsotg);
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
}

/**
 * s3c_hsotg_complete_setup - completion of a setup transfer
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
static void s3c_hsotg_complete_setup(struct usb_ep *ep,
				     struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1154
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1155 1156 1157 1158 1159 1160

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1161
	spin_lock(&hsotg->lock);
1162 1163 1164 1165
	if (req->actual == 0)
		s3c_hsotg_enqueue_setup(hsotg);
	else
		s3c_hsotg_process_control(hsotg, req->buf);
1166
	spin_unlock(&hsotg->lock);
1167 1168 1169 1170 1171 1172 1173 1174 1175
}

/**
 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1176
static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
{
	struct usb_request *req = hsotg->ctrl_req;
	struct s3c_hsotg_req *hs_req = our_req(req);
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
	req->complete = s3c_hsotg_complete_setup;

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

1194
	hsotg->eps_out[0]->dir_in = 0;
1195 1196
	hsotg->eps_out[0]->sent_zlp = 0;
	hsotg->ep0_state = DWC2_EP0_SETUP;
1197

1198
	ret = s3c_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1199 1200
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1201 1202 1203 1204
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1205 1206 1207
	}
}

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
static void s3c_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
					struct s3c_hsotg_ep *hs_ep)
{
	u32 ctrl;
	u8 index = hs_ep->index;
	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);

	dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n", index);

	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
			DXEPTSIZ_XFERSIZE(0), hsotg->regs +
			epsiz_reg);

	ctrl = readl(hsotg->regs + epctl_reg);
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
	writel(ctrl, hsotg->regs + epctl_reg);
}

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
/**
 * s3c_hsotg_complete_request - complete a request given to us
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1241
 */
1242
static void s3c_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
				       struct s3c_hsotg_ep *hs_ep,
				       struct s3c_hsotg_req *hs_req,
				       int result)
{
	bool restart;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1257 1258 1259 1260
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

	if (using_dma(hsotg))
		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1271 1272 1273 1274
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1275 1276

	if (hs_req->req.complete) {
1277
		spin_unlock(&hsotg->lock);
1278
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1279
		spin_lock(&hsotg->lock);
1280 1281
	}

1282 1283
	/*
	 * Look to see if there is anything else to do. Note, the completion
1284
	 * of the previous request may have caused a new request to be started
1285 1286
	 * so be careful when doing this.
	 */
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306

	if (!hs_ep->req && result >= 0) {
		restart = !list_empty(&hs_ep->queue);
		if (restart) {
			hs_req = get_ep_head(hs_ep);
			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		}
	}
}

/**
 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
1307
static void s3c_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1308
{
1309
	struct s3c_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
1310
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1311
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1312 1313 1314 1315
	int to_read;
	int max_req;
	int read_ptr;

1316

1317
	if (!hs_req) {
1318
		u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1319 1320
		int ptr;

1321
		dev_dbg(hsotg->dev,
1322
			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
			(void)readl(fifo);

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1336 1337 1338
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1339
	if (to_read > max_req) {
1340 1341
		/*
		 * more data appeared than we where willing
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1353 1354 1355 1356
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1357
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1358 1359 1360
}

/**
1361
 * s3c_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
1362
 * @hsotg: The device instance
1363
 * @dir_in: If IN zlp
1364 1365 1366 1367 1368
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1369
 * currently believed that we do not need to wait for any space in
1370 1371
 * the TxFIFO.
 */
1372
static void s3c_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
1373
{
1374
	/* eps_out[0] is used in both directions */
1375 1376
	hsotg->eps_out[0]->dir_in = dir_in;
	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
1377

1378
	s3c_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
}

/**
 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1389
 */
1390
static void s3c_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
1391
{
1392
	u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1393
	struct s3c_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
1394 1395
	struct s3c_hsotg_req *hs_req = hs_ep->req;
	struct usb_request *req = &hs_req->req;
1396
	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1397 1398 1399 1400 1401 1402 1403
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

1404 1405 1406 1407 1408 1409 1410
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
		s3c_hsotg_enqueue_setup(hsotg);
		return;
	}

1411 1412 1413
	if (using_dma(hsotg)) {
		unsigned size_done;

1414 1415
		/*
		 * Calculate the size of the transfer by checking how much
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1429 1430 1431 1432 1433 1434
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
		return;
	}

1435 1436 1437 1438
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1439 1440 1441 1442
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1443 1444
	}

1445 1446 1447 1448
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
		/* Move to STATUS IN */
		s3c_hsotg_ep0_zlp(hsotg, true);
		return;
1449 1450
	}

1451
	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1452 1453 1454 1455 1456 1457 1458
}

/**
 * s3c_hsotg_read_frameno - read current frame number
 * @hsotg: The device instance
 *
 * Return the current frame number
1459
 */
1460
static u32 s3c_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1461 1462 1463
{
	u32 dsts;

1464 1465 1466
	dsts = readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478

	return dsts;
}

/**
 * s3c_hsotg_handle_rx - RX FIFO has data
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1479
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1480 1481 1482 1483 1484 1485 1486
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1487
static void s3c_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1488
{
1489
	u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1490 1491 1492 1493
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

1494 1495
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
1496

1497 1498
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
1499 1500 1501 1502 1503

	if (1)
		dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
			__func__, grxstsr, size, epnum);

1504 1505 1506
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1507 1508
		break;

1509
	case GRXSTS_PKTSTS_OUTDONE:
1510 1511 1512 1513
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg));

		if (!using_dma(hsotg))
1514
			s3c_hsotg_handle_outdone(hsotg, epnum);
1515 1516
		break;

1517
	case GRXSTS_PKTSTS_SETUPDONE:
1518 1519 1520
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1521
			readl(hsotg->regs + DOEPCTL(0)));
1522 1523 1524 1525 1526 1527 1528
		/*
		 * Call s3c_hsotg_handle_outdone here if it was not called from
		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
		 */
		if (hsotg->ep0_state == DWC2_EP0_SETUP)
			s3c_hsotg_handle_outdone(hsotg, epnum);
1529 1530
		break;

1531
	case GRXSTS_PKTSTS_OUTRX:
1532 1533 1534
		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

1535
	case GRXSTS_PKTSTS_SETUPRX:
1536 1537 1538
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1539
			readl(hsotg->regs + DOEPCTL(0)));
1540

1541 1542
		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);

1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

		s3c_hsotg_dump(hsotg);
		break;
	}
}

/**
 * s3c_hsotg_ep0_mps - turn max packet size into register setting
 * @mps: The maximum packet size in bytes.
1558
 */
1559 1560 1561 1562
static u32 s3c_hsotg_ep0_mps(unsigned int mps)
{
	switch (mps) {
	case 64:
1563
		return D0EPCTL_MPS_64;
1564
	case 32:
1565
		return D0EPCTL_MPS_32;
1566
	case 16:
1567
		return D0EPCTL_MPS_16;
1568
	case 8:
1569
		return D0EPCTL_MPS_8;
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
1586
static void s3c_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1587
			unsigned int ep, unsigned int mps, unsigned int dir_in)
1588
{
1589
	struct s3c_hsotg_ep *hs_ep;
1590 1591
	void __iomem *regs = hsotg->regs;
	u32 mpsval;
1592
	u32 mcval;
1593 1594
	u32 reg;

1595 1596 1597 1598
	hs_ep = index_to_ep(hsotg, ep, dir_in);
	if (!hs_ep)
		return;

1599 1600 1601 1602 1603
	if (ep == 0) {
		/* EP0 is a special case */
		mpsval = s3c_hsotg_ep0_mps(mps);
		if (mpsval > 3)
			goto bad_mps;
1604
		hs_ep->ep.maxpacket = mps;
1605
		hs_ep->mc = 1;
1606
	} else {
1607
		mpsval = mps & DXEPCTL_MPS_MASK;
1608
		if (mpsval > 1024)
1609
			goto bad_mps;
1610 1611 1612 1613
		mcval = ((mps >> 11) & 0x3) + 1;
		hs_ep->mc = mcval;
		if (mcval > 3)
			goto bad_mps;
1614
		hs_ep->ep.maxpacket = mpsval;
1615 1616
	}

1617 1618 1619 1620 1621 1622
	if (dir_in) {
		reg = readl(regs + DIEPCTL(ep));
		reg &= ~DXEPCTL_MPS_MASK;
		reg |= mpsval;
		writel(reg, regs + DIEPCTL(ep));
	} else {
1623
		reg = readl(regs + DOEPCTL(ep));
1624
		reg &= ~DXEPCTL_MPS_MASK;
1625
		reg |= mpsval;
1626
		writel(reg, regs + DOEPCTL(ep));
1627
	}
1628 1629 1630 1631 1632 1633 1634

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1635 1636 1637 1638 1639
/**
 * s3c_hsotg_txfifo_flush - flush Tx FIFO
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
1640
static void s3c_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1641 1642 1643 1644
{
	int timeout;
	int val;

1645
	writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1646
		hsotg->regs + GRSTCTL);
1647 1648 1649 1650 1651

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
1652
		val = readl(hsotg->regs + GRSTCTL);
1653

1654
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1655 1656 1657 1658 1659 1660
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
1661
			break;
1662 1663 1664 1665 1666
		}

		udelay(1);
	}
}
1667 1668 1669 1670 1671 1672 1673 1674 1675

/**
 * s3c_hsotg_trytx - check to see if anything needs transmitting
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
1676
static int s3c_hsotg_trytx(struct dwc2_hsotg *hsotg,
1677 1678 1679 1680
			   struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;

1681 1682 1683 1684 1685 1686 1687 1688
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
			s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
					     hs_ep->dir_in, 0);
1689
		return 0;
1690
	}
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

	return 0;
}

/**
 * s3c_hsotg_complete_in - complete IN transfer
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
1709
static void s3c_hsotg_complete_in(struct dwc2_hsotg *hsotg,
1710 1711 1712
				  struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1713
	u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1714 1715 1716 1717 1718 1719 1720
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

1721
	/* Finish ZLP handling for IN EP0 transactions */
1722 1723
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
		dev_dbg(hsotg->dev, "zlp packet sent\n");
1724
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1725
		s3c_hsotg_enqueue_setup(hsotg);
1726 1727 1728
		return;
	}

1729 1730
	/*
	 * Calculate the size of the transfer by checking how much is left
1731 1732 1733 1734 1735 1736 1737 1738
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

1739
	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1740 1741 1742 1743 1744 1745 1746 1747 1748

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
1749 1750 1751
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

1752 1753 1754
	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1755 1756 1757
		return;
	}

1758 1759 1760 1761 1762 1763 1764 1765
	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
	if (hs_ep->sent_zlp) {
		s3c_hsotg_program_zlp(hsotg, hs_ep);
		hs_ep->sent_zlp = 0;
		/* transfer will be completed on next complete interrupt */
		return;
	}

1766 1767 1768 1769 1770 1771 1772
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
		/* Move to STATUS OUT */
		s3c_hsotg_ep0_zlp(hsotg, false);
		return;
	}

	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1773 1774 1775 1776 1777 1778 1779 1780 1781
}

/**
 * s3c_hsotg_epint - handle an in/out endpoint interrupt
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
1782
 */
1783
static void s3c_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
1784 1785
			    int dir_in)
{
1786
	struct s3c_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
1787 1788 1789
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1790
	u32 ints;
1791
	u32 ctrl;
1792 1793

	ints = readl(hsotg->regs + epint_reg);
1794
	ctrl = readl(hsotg->regs + epctl_reg);
1795

1796 1797 1798
	/* Clear endpoint interrupts */
	writel(ints, hsotg->regs + epint_reg);

1799 1800 1801 1802 1803 1804
	if (!hs_ep) {
		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
					__func__, idx, dir_in ? "in" : "out");
		return;
	}

1805 1806 1807
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

1808 1809 1810 1811
	/* Don't process XferCompl interrupt if it is a setup packet */
	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
		ints &= ~DXEPINT_XFERCOMPL;

1812
	if (ints & DXEPINT_XFERCOMPL) {
1813
		if (hs_ep->isochronous && hs_ep->interval == 1) {
1814 1815
			if (ctrl & DXEPCTL_EOFRNUM)
				ctrl |= DXEPCTL_SETEVENFR;
1816
			else
1817
				ctrl |= DXEPCTL_SETODDFR;
1818 1819 1820
			writel(ctrl, hsotg->regs + epctl_reg);
		}

1821
		dev_dbg(hsotg->dev,
1822
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1823 1824 1825
			__func__, readl(hsotg->regs + epctl_reg),
			readl(hsotg->regs + epsiz_reg));

1826 1827 1828 1829
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
1830 1831 1832
		if (dir_in) {
			s3c_hsotg_complete_in(hsotg, hs_ep);

1833
			if (idx == 0 && !hs_ep->req)
1834 1835
				s3c_hsotg_enqueue_setup(hsotg);
		} else if (using_dma(hsotg)) {
1836 1837 1838 1839
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
1840

1841
			s3c_hsotg_handle_outdone(hsotg, idx);
1842 1843 1844
		}
	}

1845
	if (ints & DXEPINT_EPDISBLD) {
1846 1847
		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

1848 1849 1850
		if (dir_in) {
			int epctl = readl(hsotg->regs + epctl_reg);

1851
			s3c_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
1852

1853 1854
			if ((epctl & DXEPCTL_STALL) &&
				(epctl & DXEPCTL_EPTYPE_BULK)) {
1855
				int dctl = readl(hsotg->regs + DCTL);
1856

1857
				dctl |= DCTL_CGNPINNAK;
1858
				writel(dctl, hsotg->regs + DCTL);
1859 1860 1861 1862
			}
		}
	}

1863
	if (ints & DXEPINT_AHBERR)
1864 1865
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

1866
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
1867 1868 1869
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
1870 1871
			/*
			 * this is the notification we've received a
1872 1873
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
1874 1875
			 * the setup here.
			 */
1876 1877 1878 1879

			if (dir_in)
				WARN_ON_ONCE(1);
			else
1880
				s3c_hsotg_handle_outdone(hsotg, 0);
1881 1882 1883
		}
	}

1884
	if (ints & DXEPINT_BACK2BACKSETUP)
1885 1886
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

1887
	if (dir_in && !hs_ep->isochronous) {
1888
		/* not sure if this is important, but we'll clear it anyway */
1889
		if (ints & DIEPMSK_INTKNTXFEMPMSK) {
1890 1891 1892 1893 1894
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
1895
		if (ints & DIEPMSK_INTKNEPMISMSK) {
1896 1897 1898
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
1899 1900 1901

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
1902
		    ints & DIEPMSK_TXFIFOEMPTY) {
1903 1904
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
1905 1906
			if (!using_dma(hsotg))
				s3c_hsotg_trytx(hsotg, hs_ep);
1907
		}
1908 1909 1910 1911 1912 1913 1914 1915 1916
	}
}

/**
 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
1917
 */
1918
static void s3c_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
1919
{
1920
	u32 dsts = readl(hsotg->regs + DSTS);
1921
	int ep0_mps = 0, ep_mps = 8;
1922

1923 1924
	/*
	 * This should signal the finish of the enumeration phase
1925
	 * of the USB handshaking, so we should now know what rate
1926 1927
	 * we connected at.
	 */
1928 1929 1930

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

1931 1932
	/*
	 * note, since we're limited by the size of transfer on EP0, and
1933
	 * it seems IN transfers must be a even number of packets we do
1934 1935
	 * not advertise a 64byte MPS on EP0.
	 */
1936 1937

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
1938 1939 1940
	switch (dsts & DSTS_ENUMSPD_MASK) {
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
1941 1942
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
1943
		ep_mps = 1023;
1944 1945
		break;

1946
	case DSTS_ENUMSPD_HS:
1947 1948
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
1949
		ep_mps = 1024;
1950 1951
		break;

1952
	case DSTS_ENUMSPD_LS:
1953
		hsotg->gadget.speed = USB_SPEED_LOW;
1954 1955
		/*
		 * note, we don't actually support LS in this driver at the
1956 1957 1958 1959 1960
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
1961 1962
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
1963

1964 1965 1966 1967
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
1968 1969 1970

	if (ep0_mps) {
		int i;
1971 1972 1973 1974 1975 1976 1977 1978 1979
		/* Initialize ep0 for both in and out directions */
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 1);
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0);
		for (i = 1; i < hsotg->num_of_eps; i++) {
			if (hsotg->eps_in[i])
				s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 1);
			if (hsotg->eps_out[i])
				s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0);
		}
1980 1981 1982 1983 1984 1985 1986
	}

	/* ensure after enumeration our EP0 is active */

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1987 1988
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
2000
static void kill_all_requests(struct dwc2_hsotg *hsotg,
2001
			      struct s3c_hsotg_ep *ep,
2002
			      int result)
2003 2004
{
	struct s3c_hsotg_req *req, *treq;
2005
	unsigned size;
2006

2007
	ep->req = NULL;
2008

2009
	list_for_each_entry_safe(req, treq, &ep->queue, queue)
2010 2011
		s3c_hsotg_complete_request(hsotg, ep, req,
					   result);
2012

2013 2014 2015 2016 2017
	if (!hsotg->dedicated_fifos)
		return;
	size = (readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
	if (size < ep->fifo_size)
		s3c_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2018 2019 2020
}

/**
2021
 * s3c_hsotg_disconnect - disconnect service
2022 2023
 * @hsotg: The device state.
 *
2024 2025 2026
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2027
 */
2028
void s3c_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2029 2030 2031
{
	unsigned ep;

2032 2033 2034 2035
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
2036 2037 2038 2039 2040 2041 2042 2043 2044

	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			kill_all_requests(hsotg, hsotg->eps_in[ep],
								-ESHUTDOWN);
		if (hsotg->eps_out[ep])
			kill_all_requests(hsotg, hsotg->eps_out[ep],
								-ESHUTDOWN);
	}
2045 2046 2047

	call_gadget(hsotg, disconnect);
}
2048
EXPORT_SYMBOL_GPL(s3c_hsotg_disconnect);
2049 2050 2051 2052 2053 2054

/**
 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
2055
static void s3c_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2056 2057 2058 2059 2060
{
	struct s3c_hsotg_ep *ep;
	int epno, ret;

	/* look through for any more data to transmit */
2061
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2062 2063 2064 2065
		ep = index_to_ep(hsotg, epno, 1);

		if (!ep)
			continue;
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

		ret = s3c_hsotg_trytx(hsotg, ep);
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2081 2082 2083
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
2084

2085 2086 2087 2088 2089
/**
 * s3c_hsotg_corereset - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
2090
 */
2091
static int s3c_hsotg_corereset(struct dwc2_hsotg *hsotg)
2092 2093 2094 2095 2096 2097 2098
{
	int timeout;
	u32 grstctl;

	dev_dbg(hsotg->dev, "resetting core\n");

	/* issue soft reset */
2099
	writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2100

2101
	timeout = 10000;
2102
	do {
2103
		grstctl = readl(hsotg->regs + GRSTCTL);
2104
	} while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2105

2106
	if (grstctl & GRSTCTL_CSFTRST) {
2107 2108 2109 2110
		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
		return -EINVAL;
	}

2111
	timeout = 10000;
2112 2113

	while (1) {
2114
		u32 grstctl = readl(hsotg->regs + GRSTCTL);
2115 2116 2117 2118 2119 2120 2121 2122

		if (timeout-- < 0) {
			dev_info(hsotg->dev,
				 "%s: reset failed, GRSTCTL=%08x\n",
				 __func__, grstctl);
			return -ETIMEDOUT;
		}

2123
		if (!(grstctl & GRSTCTL_AHBIDLE))
2124 2125 2126 2127 2128 2129 2130 2131 2132
			continue;

		break;		/* reset done */
	}

	dev_dbg(hsotg->dev, "reset successful\n");
	return 0;
}

2133 2134 2135 2136 2137 2138
/**
 * s3c_hsotg_core_init - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2139
void s3c_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg)
2140 2141 2142 2143 2144 2145 2146 2147 2148
{
	s3c_hsotg_corereset(hsotg);

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2149
	writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2150
	       (0x5 << 10), hsotg->regs + GUSBCFG);
2151 2152 2153

	s3c_hsotg_init_fifo(hsotg);

2154
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2155

2156
	writel(1 << 18 | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2157 2158

	/* Clear any pending OTG interrupts */
2159
	writel(0xffffffff, hsotg->regs + GOTGINT);
2160 2161

	/* Clear any pending interrupts */
2162
	writel(0xffffffff, hsotg->regs + GINTSTS);
2163

2164 2165 2166 2167 2168 2169
	writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
		GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
		GINTSTS_USBSUSP | GINTSTS_WKUPINT,
		hsotg->regs + GINTMSK);
2170 2171

	if (using_dma(hsotg))
2172
		writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
2173
		       (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
2174
		       hsotg->regs + GAHBCFG);
2175
	else
2176 2177 2178
		writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL |
						    GAHBCFG_P_TXF_EMP_LVL) : 0) |
		       GAHBCFG_GLBL_INTR_EN,
2179
		       hsotg->regs + GAHBCFG);
2180 2181

	/*
2182 2183 2184
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
2185 2186
	 */

2187 2188
	writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2189 2190 2191 2192
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_INTKNEPMISMSK,
		hsotg->regs + DIEPMSK);
2193 2194 2195 2196 2197

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2198 2199 2200 2201 2202
	writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
				    DIEPMSK_TIMEOUTMSK) : 0) |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_SETUPMSK,
		hsotg->regs + DOEPMSK);
2203

2204
	writel(0, hsotg->regs + DAINTMSK);
2205 2206

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2207 2208
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2209 2210

	/* enable in and out endpoint interrupts */
2211
	s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2212 2213 2214 2215 2216 2217 2218

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2219
		s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2220 2221 2222 2223 2224

	/* Enable interrupts for EP0 in and out */
	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);

2225
	__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2226
	udelay(10);  /* see openiboot */
2227
	__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2228

2229
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2230 2231

	/*
2232
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2233 2234 2235 2236
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2237 2238
	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2239

2240
	writel(s3c_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2241 2242
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
2243
	       hsotg->regs + DOEPCTL0);
2244 2245

	/* enable, but don't activate EP0in */
2246
	writel(s3c_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2247
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2248 2249 2250 2251

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2252 2253
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2254 2255

	/* clear global NAKs */
2256
	writel(DCTL_CGOUTNAK | DCTL_CGNPINNAK | DCTL_SFTDISCON,
2257
	       hsotg->regs + DCTL);
2258 2259 2260 2261

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

2262
	hsotg->last_rst = jiffies;
2263 2264
}

2265
static void s3c_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2266 2267 2268 2269
{
	/* set the soft-disconnect bit */
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
2270

2271
void s3c_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2272
{
2273
	/* remove the soft-disconnect and let's go */
2274
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2275 2276
}

2277 2278 2279 2280 2281 2282 2283
/**
 * s3c_hsotg_irq - handle device interrupt
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
{
2284
	struct dwc2_hsotg *hsotg = pw;
2285 2286 2287 2288
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

2289
	spin_lock(&hsotg->lock);
2290
irq_retry:
2291 2292
	gintsts = readl(hsotg->regs + GINTSTS);
	gintmsk = readl(hsotg->regs + GINTMSK);
2293 2294 2295 2296 2297 2298

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

2299 2300
	if (gintsts & GINTSTS_ENUMDONE) {
		writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2301 2302

		s3c_hsotg_irq_enumdone(hsotg);
2303
		hsotg->connected = 1;
2304 2305
	}

2306
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2307
		u32 daint = readl(hsotg->regs + DAINT);
2308 2309
		u32 daintmsk = readl(hsotg->regs + DAINTMSK);
		u32 daint_out, daint_in;
2310 2311
		int ep;

2312
		daint &= daintmsk;
2313 2314
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2315

2316 2317
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

2318 2319
		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
						ep++, daint_out >>= 1) {
2320 2321 2322 2323
			if (daint_out & 1)
				s3c_hsotg_epint(hsotg, ep, 0);
		}

2324 2325
		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
						ep++, daint_in >>= 1) {
2326 2327 2328 2329 2330
			if (daint_in & 1)
				s3c_hsotg_epint(hsotg, ep, 1);
		}
	}

2331
	if (gintsts & GINTSTS_USBRST) {
2332

2333
		u32 usb_status = readl(hsotg->regs + GOTGCTL);
2334

2335
		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
2336
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2337
			readl(hsotg->regs + GNPTXSTS));
2338

2339
		writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2340

2341
		if (usb_status & GOTGCTL_BSESVLD) {
2342 2343
			if (time_after(jiffies, hsotg->last_rst +
				       msecs_to_jiffies(200))) {
2344

2345
				kill_all_requests(hsotg, hsotg->eps_out[0],
2346
							  -ECONNRESET);
2347

2348 2349
				s3c_hsotg_core_init_disconnected(hsotg);
				s3c_hsotg_core_connect(hsotg);
2350 2351
			}
		}
2352 2353 2354 2355
	}

	/* check both FIFOs */

2356
	if (gintsts & GINTSTS_NPTXFEMP) {
2357 2358
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

2359 2360
		/*
		 * Disable the interrupt to stop it happening again
2361
		 * unless one of these endpoint routines decides that
2362 2363
		 * it needs re-enabling
		 */
2364

2365
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2366 2367 2368
		s3c_hsotg_irq_fifoempty(hsotg, false);
	}

2369
	if (gintsts & GINTSTS_PTXFEMP) {
2370 2371
		dev_dbg(hsotg->dev, "PTxFEmp\n");

2372
		/* See note in GINTSTS_NPTxFEmp */
2373

2374
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2375 2376 2377
		s3c_hsotg_irq_fifoempty(hsotg, true);
	}

2378
	if (gintsts & GINTSTS_RXFLVL) {
2379 2380
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2381
		 * we need to retry s3c_hsotg_handle_rx if this is still
2382 2383
		 * set.
		 */
2384 2385 2386 2387

		s3c_hsotg_handle_rx(hsotg);
	}

2388
	if (gintsts & GINTSTS_ERLYSUSP) {
2389
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2390
		writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2391 2392
	}

2393 2394
	/*
	 * these next two seem to crop-up occasionally causing the core
2395
	 * to shutdown the USB transfer, so try clearing them and logging
2396 2397
	 * the occurrence.
	 */
2398

2399
	if (gintsts & GINTSTS_GOUTNAKEFF) {
2400 2401
		dev_info(hsotg->dev, "GOUTNakEff triggered\n");

2402
		writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2403 2404

		s3c_hsotg_dump(hsotg);
2405 2406
	}

2407
	if (gintsts & GINTSTS_GINNAKEFF) {
2408 2409
		dev_info(hsotg->dev, "GINNakEff triggered\n");

2410
		writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2411 2412

		s3c_hsotg_dump(hsotg);
2413 2414
	}

2415 2416 2417 2418
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
2419 2420 2421 2422

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

2423 2424
	spin_unlock(&hsotg->lock);

2425 2426 2427 2428 2429 2430 2431 2432 2433
	return IRQ_HANDLED;
}

/**
 * s3c_hsotg_ep_enable - enable the given endpoint
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
2434
 */
2435 2436 2437 2438
static int s3c_hsotg_ep_enable(struct usb_ep *ep,
			       const struct usb_endpoint_descriptor *desc)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2439
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2440 2441 2442 2443 2444 2445
	unsigned long flags;
	int index = hs_ep->index;
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
	int dir_in;
2446
	int i, val, size;
2447
	int ret = 0;
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
	WARN_ON(index == 0);

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

2463
	mps = usb_endpoint_maxp(desc);
2464 2465 2466

	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */

2467
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2468 2469 2470 2471 2472
	epctrl = readl(hsotg->regs + epctrl_reg);

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

2473
	spin_lock_irqsave(&hsotg->lock, flags);
2474

2475 2476
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
2477

2478 2479 2480 2481
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
2482
	epctrl |= DXEPCTL_USBACTEP;
2483

2484 2485
	/*
	 * set the NAK status on the endpoint, otherwise we might try and
2486 2487 2488 2489 2490
	 * do something with data that we've yet got a request to process
	 * since the RXFIFO will take data for an endpoint even if the
	 * size register hasn't been set.
	 */

2491
	epctrl |= DXEPCTL_SNAK;
2492 2493

	/* update the endpoint state */
2494
	s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, dir_in);
2495 2496

	/* default, set to non-periodic */
2497
	hs_ep->isochronous = 0;
2498
	hs_ep->periodic = 0;
2499
	hs_ep->halted = 0;
2500
	hs_ep->interval = desc->bInterval;
2501

2502 2503 2504
	if (hs_ep->interval > 1 && hs_ep->mc > 1)
		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");

2505 2506
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
2507 2508
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
2509 2510 2511 2512
		hs_ep->isochronous = 1;
		if (dir_in)
			hs_ep->periodic = 1;
		break;
2513 2514

	case USB_ENDPOINT_XFER_BULK:
2515
		epctrl |= DXEPCTL_EPTYPE_BULK;
2516 2517 2518
		break;

	case USB_ENDPOINT_XFER_INT:
2519
		if (dir_in)
2520 2521
			hs_ep->periodic = 1;

2522
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2523 2524 2525
		break;

	case USB_ENDPOINT_XFER_CONTROL:
2526
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2527 2528 2529
		break;
	}

2530 2531
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
2532 2533
	 * a unique tx-fifo even if it is non-periodic.
	 */
2534 2535
	if (dir_in && hsotg->dedicated_fifos) {
		size = hs_ep->ep.maxpacket*hs_ep->mc;
2536
		for (i = 1; i < hsotg->num_of_eps; ++i) {
2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
			if (hsotg->fifo_map & (1<<i))
				continue;
			val = readl(hsotg->regs + DPTXFSIZN(i));
			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
			if (val < size)
				continue;
			hsotg->fifo_map |= 1<<i;

			epctrl |= DXEPCTL_TXFNUM(i);
			hs_ep->fifo_index = i;
			hs_ep->fifo_size = val;
			break;
		}
2550 2551 2552
		if (i == hsotg->num_of_eps) {
			dev_err(hsotg->dev,
				"%s: No suitable fifo found\n", __func__);
2553 2554 2555
			ret = -ENOMEM;
			goto error;
		}
2556
	}
2557

2558 2559
	/* for non control endpoints, set PID to D0 */
	if (index)
2560
		epctrl |= DXEPCTL_SETD0PID;
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

	writel(epctrl, hsotg->regs + epctrl_reg);
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
		__func__, readl(hsotg->regs + epctrl_reg));

	/* enable the endpoint interrupt */
	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);

2572
error:
2573
	spin_unlock_irqrestore(&hsotg->lock, flags);
2574
	return ret;
2575 2576
}

2577 2578 2579 2580
/**
 * s3c_hsotg_ep_disable - disable given endpoint
 * @ep: The endpoint to disable.
 */
2581 2582 2583
static int s3c_hsotg_ep_disable(struct usb_ep *ep)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2584
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2585 2586 2587 2588 2589 2590
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

2591
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2592

2593
	if (ep == &hsotg->eps_out[0]->ep) {
2594 2595 2596 2597
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

2598
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2599

2600
	spin_lock_irqsave(&hsotg->lock, flags);
2601

2602 2603 2604
	hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;
2605 2606

	ctrl = readl(hsotg->regs + epctrl_reg);
2607 2608 2609
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
2610 2611 2612 2613 2614 2615 2616

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

	/* disable endpoint interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);

2617 2618 2619
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);

2620
	spin_unlock_irqrestore(&hsotg->lock, flags);
2621 2622 2623 2624 2625 2626 2627
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
2628
 */
2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
{
	struct s3c_hsotg_req *req, *treq;

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

2641 2642 2643 2644 2645
/**
 * s3c_hsotg_ep_dequeue - dequeue given endpoint
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
2646 2647 2648 2649
static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2650
	struct dwc2_hsotg *hs = hs_ep->parent;
2651 2652
	unsigned long flags;

2653
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2654

2655
	spin_lock_irqsave(&hs->lock, flags);
2656 2657

	if (!on_list(hs_ep, hs_req)) {
2658
		spin_unlock_irqrestore(&hs->lock, flags);
2659 2660 2661 2662
		return -EINVAL;
	}

	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2663
	spin_unlock_irqrestore(&hs->lock, flags);
2664 2665 2666 2667

	return 0;
}

2668 2669 2670 2671 2672
/**
 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
2673 2674 2675
static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2676
	struct dwc2_hsotg *hs = hs_ep->parent;
2677 2678 2679
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
2680
	u32 xfertype;
2681 2682 2683

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

2684 2685 2686 2687 2688 2689 2690 2691 2692
	if (index == 0) {
		if (value)
			s3c_hsotg_stall_ep0(hs);
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
	if (hs_ep->dir_in) {
		epreg = DIEPCTL(index);
		epctl = readl(hs->regs + epreg);

		if (value) {
			epctl |= DXEPCTL_STALL + DXEPCTL_SNAK;
			if (epctl & DXEPCTL_EPENA)
				epctl |= DXEPCTL_EPDIS;
		} else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
		writel(epctl, hs->regs + epreg);
2709
	} else {
2710

2711 2712
		epreg = DOEPCTL(index);
		epctl = readl(hs->regs + epreg);
2713

2714 2715 2716 2717 2718 2719 2720 2721 2722 2723
		if (value)
			epctl |= DXEPCTL_STALL;
		else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
		writel(epctl, hs->regs + epreg);
2724
	}
2725

2726 2727
	hs_ep->halted = value;

2728 2729 2730
	return 0;
}

2731 2732 2733 2734 2735 2736 2737 2738
/**
 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2739
	struct dwc2_hsotg *hs = hs_ep->parent;
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_sethalt(ep, value);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

2750 2751 2752 2753 2754
static struct usb_ep_ops s3c_hsotg_ep_ops = {
	.enable		= s3c_hsotg_ep_enable,
	.disable	= s3c_hsotg_ep_disable,
	.alloc_request	= s3c_hsotg_ep_alloc_request,
	.free_request	= s3c_hsotg_ep_free_request,
2755
	.queue		= s3c_hsotg_ep_queue_lock,
2756
	.dequeue	= s3c_hsotg_ep_dequeue,
2757
	.set_halt	= s3c_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
2758
	/* note, don't believe we have any call for the fifo routines */
2759 2760
};

2761 2762
/**
 * s3c_hsotg_phy_enable - enable platform phy dev
2763
 * @hsotg: The driver state
2764 2765 2766 2767
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
2768
static void s3c_hsotg_phy_enable(struct dwc2_hsotg *hsotg)
2769 2770 2771 2772
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

	dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2773

2774
	if (hsotg->uphy)
2775
		usb_phy_init(hsotg->uphy);
2776
	else if (hsotg->plat && hsotg->plat->phy_init)
2777
		hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2778 2779 2780 2781
	else {
		phy_init(hsotg->phy);
		phy_power_on(hsotg->phy);
	}
2782 2783 2784 2785
}

/**
 * s3c_hsotg_phy_disable - disable platform phy dev
2786
 * @hsotg: The driver state
2787 2788 2789 2790
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
2791
static void s3c_hsotg_phy_disable(struct dwc2_hsotg *hsotg)
2792 2793 2794
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

2795
	if (hsotg->uphy)
2796
		usb_phy_shutdown(hsotg->uphy);
2797
	else if (hsotg->plat && hsotg->plat->phy_exit)
2798
		hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2799 2800 2801 2802
	else {
		phy_power_off(hsotg->phy);
		phy_exit(hsotg->phy);
	}
2803 2804
}

2805 2806 2807 2808
/**
 * s3c_hsotg_init - initalize the usb core
 * @hsotg: The driver state
 */
2809
static void s3c_hsotg_init(struct dwc2_hsotg *hsotg)
2810 2811 2812
{
	/* unmask subset of endpoint interrupts */

2813 2814 2815
	writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		hsotg->regs + DIEPMSK);
2816

2817 2818 2819
	writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		hsotg->regs + DOEPMSK);
2820

2821
	writel(0, hsotg->regs + DAINTMSK);
2822 2823

	/* Be in disconnected state until gadget is registered */
2824
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2825 2826 2827

	if (0) {
		/* post global nak until we're ready */
2828
		writel(DCTL_SGNPINNAK | DCTL_SGOUTNAK,
2829
		       hsotg->regs + DCTL);
2830 2831 2832 2833 2834
	}

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2835 2836
		readl(hsotg->regs + GRXFSIZ),
		readl(hsotg->regs + GNPTXFSIZ));
2837 2838 2839 2840

	s3c_hsotg_init_fifo(hsotg);

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2841
	writel(GUSBCFG_PHYIF16 | GUSBCFG_TOUTCAL(7) | (0x5 << 10),
2842
	       hsotg->regs + GUSBCFG);
2843

2844 2845
	if (using_dma(hsotg))
		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
2846 2847
}

2848 2849 2850 2851 2852 2853 2854 2855
/**
 * s3c_hsotg_udc_start - prepare the udc for work
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
2856 2857
static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
			   struct usb_gadget_driver *driver)
2858
{
2859
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2860
	unsigned long flags;
2861 2862 2863
	int ret;

	if (!hsotg) {
2864
		pr_err("%s: called with no device\n", __func__);
2865 2866 2867 2868 2869 2870 2871 2872
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

2873
	if (driver->max_speed < USB_SPEED_FULL)
2874 2875
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

2876
	if (!driver->setup) {
2877 2878 2879 2880
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

2881
	mutex_lock(&hsotg->init_mutex);
2882 2883 2884 2885
	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
2886
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
2887 2888
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

2889 2890
	clk_enable(hsotg->clk);

2891 2892
	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
2893
	if (ret) {
2894
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
2895 2896 2897
		goto err;
	}

2898
	s3c_hsotg_phy_enable(hsotg);
2899 2900
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
2901

2902 2903 2904
	spin_lock_irqsave(&hsotg->lock, flags);
	s3c_hsotg_init(hsotg);
	s3c_hsotg_core_init_disconnected(hsotg);
2905
	hsotg->enabled = 0;
2906 2907
	spin_unlock_irqrestore(&hsotg->lock, flags);

2908
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
2909

2910 2911
	mutex_unlock(&hsotg->init_mutex);

2912 2913 2914
	return 0;

err:
2915
	mutex_unlock(&hsotg->init_mutex);
2916 2917 2918 2919
	hsotg->driver = NULL;
	return ret;
}

2920 2921 2922 2923 2924 2925 2926
/**
 * s3c_hsotg_udc_stop - stop the udc
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
2927
static int s3c_hsotg_udc_stop(struct usb_gadget *gadget)
2928
{
2929
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2930
	unsigned long flags = 0;
2931 2932 2933 2934 2935
	int ep;

	if (!hsotg)
		return -ENODEV;

2936 2937
	mutex_lock(&hsotg->init_mutex);

2938
	/* all endpoints should be shutdown */
2939 2940 2941 2942 2943 2944
	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			s3c_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
		if (hsotg->eps_out[ep])
			s3c_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
	}
2945

2946 2947
	spin_lock_irqsave(&hsotg->lock, flags);

2948
	hsotg->driver = NULL;
2949
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2950
	hsotg->enabled = 0;
2951

2952 2953
	spin_unlock_irqrestore(&hsotg->lock, flags);

2954 2955
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, NULL);
2956 2957
	s3c_hsotg_phy_disable(hsotg);

2958
	regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
2959

2960 2961
	clk_disable(hsotg->clk);

2962 2963
	mutex_unlock(&hsotg->init_mutex);

2964 2965 2966
	return 0;
}

2967 2968 2969 2970 2971 2972
/**
 * s3c_hsotg_gadget_getframe - read the frame number
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
2973 2974 2975 2976 2977
static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
{
	return s3c_hsotg_read_frameno(to_hsotg(gadget));
}

2978 2979 2980 2981 2982 2983 2984 2985 2986
/**
 * s3c_hsotg_pullup - connect/disconnect the USB PHY
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
{
2987
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2988 2989
	unsigned long flags = 0;

2990
	dev_dbg(hsotg->dev, "%s: is_on: %d\n", __func__, is_on);
2991

2992
	mutex_lock(&hsotg->init_mutex);
2993 2994
	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
2995
		clk_enable(hsotg->clk);
2996
		hsotg->enabled = 1;
2997
		s3c_hsotg_core_connect(hsotg);
2998
	} else {
2999
		s3c_hsotg_core_disconnect(hsotg);
3000
		hsotg->enabled = 0;
3001
		clk_disable(hsotg->clk);
3002 3003 3004 3005
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);
3006
	mutex_unlock(&hsotg->init_mutex);
3007 3008 3009 3010

	return 0;
}

3011
static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
3012
	.get_frame	= s3c_hsotg_gadget_getframe,
3013 3014
	.udc_start		= s3c_hsotg_udc_start,
	.udc_stop		= s3c_hsotg_udc_stop,
3015
	.pullup                 = s3c_hsotg_pullup,
3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
};

/**
 * s3c_hsotg_initep - initialise a single endpoint
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
3028
static void s3c_hsotg_initep(struct dwc2_hsotg *hsotg,
3029
				       struct s3c_hsotg_ep *hs_ep,
3030 3031
				       int epnum,
				       bool dir_in)
3032 3033 3034 3035 3036
{
	char *dir;

	if (epnum == 0)
		dir = "";
3037
	else if (dir_in)
3038
		dir = "in";
3039 3040
	else
		dir = "out";
3041

3042
	hs_ep->dir_in = dir_in;
3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
3056
	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3057 3058
	hs_ep->ep.ops = &s3c_hsotg_ep_ops;

3059 3060
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
3061 3062 3063 3064
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
3065
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3066 3067 3068 3069
		if (dir_in)
			writel(next, hsotg->regs + DIEPCTL(epnum));
		else
			writel(next, hsotg->regs + DOEPCTL(epnum));
3070 3071 3072
	}
}

3073 3074 3075 3076 3077 3078
/**
 * s3c_hsotg_hw_cfg - read HW configuration registers
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
3079
static int s3c_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3080
{
3081 3082 3083 3084
	u32 cfg;
	u32 ep_type;
	u32 i;

3085
	/* check hardware configuration */
3086

3087 3088 3089 3090
	cfg = readl(hsotg->regs + GHWCFG2);
	hsotg->num_of_eps = (cfg >> 10) & 0xF;
	/* Add ep0 */
	hsotg->num_of_eps++;
3091

3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct s3c_hsotg_ep),
								GFP_KERNEL);
	if (!hsotg->eps_in[0])
		return -ENOMEM;
	/* Same s3c_hsotg_ep is used in both directions for ep0 */
	hsotg->eps_out[0] = hsotg->eps_in[0];

	cfg = readl(hsotg->regs + GHWCFG1);
	for (i = 1; i < hsotg->num_of_eps; i++, cfg >>= 2) {
		ep_type = cfg & 3;
		/* Direction in or both */
		if (!(ep_type & 2)) {
			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
				sizeof(struct s3c_hsotg_ep), GFP_KERNEL);
			if (!hsotg->eps_in[i])
				return -ENOMEM;
		}
		/* Direction out or both */
		if (!(ep_type & 1)) {
			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
				sizeof(struct s3c_hsotg_ep), GFP_KERNEL);
			if (!hsotg->eps_out[i])
				return -ENOMEM;
		}
	}

	cfg = readl(hsotg->regs + GHWCFG3);
	hsotg->fifo_mem = (cfg >> 16);
3120

3121 3122
	cfg = readl(hsotg->regs + GHWCFG4);
	hsotg->dedicated_fifos = (cfg >> 25) & 1;
3123

3124 3125 3126 3127
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
3128
	return 0;
3129 3130
}

3131 3132 3133 3134
/**
 * s3c_hsotg_dump - dump state of the udc
 * @param: The device state
 */
3135
static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg)
3136
{
M
Mark Brown 已提交
3137
#ifdef DEBUG
3138 3139 3140 3141 3142 3143
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3144 3145
		 readl(regs + DCFG), readl(regs + DCTL),
		 readl(regs + DIEPMSK));
3146 3147

	dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3148
		 readl(regs + GAHBCFG), readl(regs + 0x44));
3149 3150

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3151
		 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3152 3153 3154

	/* show periodic fifo settings */

3155
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3156
		val = readl(regs + DPTXFSIZN(idx));
3157
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3158 3159
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
3160 3161
	}

3162
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3163 3164
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3165 3166 3167
			 readl(regs + DIEPCTL(idx)),
			 readl(regs + DIEPTSIZ(idx)),
			 readl(regs + DIEPDMA(idx)));
3168

3169
		val = readl(regs + DOEPCTL(idx));
3170 3171
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3172 3173 3174
			 idx, readl(regs + DOEPCTL(idx)),
			 readl(regs + DOEPTSIZ(idx)),
			 readl(regs + DOEPDMA(idx)));
3175 3176 3177 3178

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3179
		 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
3180
#endif
3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
}

/**
 * state_show - debugfs: show overall driver and device state.
 * @seq: The seq file to write to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the overall state of the hardware and
 * some general information about each of the endpoints available
 * to the system.
 */
static int state_show(struct seq_file *seq, void *v)
{
3194
	struct dwc2_hsotg *hsotg = seq->private;
3195 3196 3197 3198
	void __iomem *regs = hsotg->regs;
	int idx;

	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3199 3200 3201
		 readl(regs + DCFG),
		 readl(regs + DCTL),
		 readl(regs + DSTS));
3202 3203

	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3204
		   readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3205 3206

	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3207 3208
		   readl(regs + GINTMSK),
		   readl(regs + GINTSTS));
3209 3210

	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3211 3212
		   readl(regs + DAINTMSK),
		   readl(regs + DAINT));
3213 3214

	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3215 3216
		   readl(regs + GNPTXSTS),
		   readl(regs + GRXSTSR));
3217

3218
	seq_puts(seq, "\nEndpoint status:\n");
3219

3220
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3221 3222
		u32 in, out;

3223 3224
		in = readl(regs + DIEPCTL(idx));
		out = readl(regs + DOEPCTL(idx));
3225 3226 3227 3228

		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
			   idx, in, out);

3229 3230
		in = readl(regs + DIEPTSIZ(idx));
		out = readl(regs + DOEPTSIZ(idx));
3231 3232 3233 3234

		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
			   in, out);

3235
		seq_puts(seq, "\n");
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
	}

	return 0;
}

static int state_open(struct inode *inode, struct file *file)
{
	return single_open(file, state_show, inode->i_private);
}

static const struct file_operations state_fops = {
	.owner		= THIS_MODULE,
	.open		= state_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * fifo_show - debugfs: show the fifo information
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * Show the FIFO information for the overall fifo and all the
 * periodic transmission FIFOs.
3261
 */
3262 3263
static int fifo_show(struct seq_file *seq, void *v)
{
3264
	struct dwc2_hsotg *hsotg = seq->private;
3265 3266 3267 3268
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

3269
	seq_puts(seq, "Non-periodic FIFOs:\n");
3270
	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3271

3272
	val = readl(regs + GNPTXFSIZ);
3273
	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3274 3275
		   val >> FIFOSIZE_DEPTH_SHIFT,
		   val & FIFOSIZE_DEPTH_MASK);
3276

3277
	seq_puts(seq, "\nPeriodic TXFIFOs:\n");
3278

3279
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3280
		val = readl(regs + DPTXFSIZN(idx));
3281 3282

		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3283 3284
			   val >> FIFOSIZE_DEPTH_SHIFT,
			   val & FIFOSIZE_STARTADDR_MASK);
3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
	}

	return 0;
}

static int fifo_open(struct inode *inode, struct file *file)
{
	return single_open(file, fifo_show, inode->i_private);
}

static const struct file_operations fifo_fops = {
	.owner		= THIS_MODULE,
	.open		= fifo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};


static const char *decode_direction(int is_in)
{
	return is_in ? "in" : "out";
}

/**
 * ep_show - debugfs: show the state of an endpoint.
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the state of the given endpoint (one is
 * registered for each available).
3316
 */
3317 3318 3319
static int ep_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg_ep *ep = seq->private;
3320
	struct dwc2_hsotg *hsotg = ep->parent;
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
	struct s3c_hsotg_req *req;
	void __iomem *regs = hsotg->regs;
	int index = ep->index;
	int show_limit = 15;
	unsigned long flags;

	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
		   ep->index, ep->ep.name, decode_direction(ep->dir_in));

	/* first show the register state */

	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3333 3334
		   readl(regs + DIEPCTL(index)),
		   readl(regs + DOEPCTL(index)));
3335 3336

	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3337 3338
		   readl(regs + DIEPDMA(index)),
		   readl(regs + DOEPDMA(index)));
3339 3340

	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3341 3342
		   readl(regs + DIEPINT(index)),
		   readl(regs + DOEPINT(index)));
3343 3344

	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3345 3346
		   readl(regs + DIEPTSIZ(index)),
		   readl(regs + DOEPTSIZ(index)));
3347

3348
	seq_puts(seq, "\n");
3349 3350 3351 3352 3353 3354
	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
	seq_printf(seq, "total_data=%ld\n", ep->total_data);

	seq_printf(seq, "request list (%p,%p):\n",
		   ep->queue.next, ep->queue.prev);

3355
	spin_lock_irqsave(&hsotg->lock, flags);
3356 3357 3358

	list_for_each_entry(req, &ep->queue, queue) {
		if (--show_limit < 0) {
3359
			seq_puts(seq, "not showing more requests...\n");
3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
			break;
		}

		seq_printf(seq, "%c req %p: %d bytes @%p, ",
			   req == ep->req ? '*' : ' ',
			   req, req->req.length, req->req.buf);
		seq_printf(seq, "%d done, res %d\n",
			   req->req.actual, req->req.status);
	}

3370
	spin_unlock_irqrestore(&hsotg->lock, flags);
3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395

	return 0;
}

static int ep_open(struct inode *inode, struct file *file)
{
	return single_open(file, ep_show, inode->i_private);
}

static const struct file_operations ep_fops = {
	.owner		= THIS_MODULE,
	.open		= ep_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * s3c_hsotg_create_debug - create debugfs directory and files
 * @hsotg: The driver state
 *
 * Create the debugfs files to allow the user to get information
 * about the state of the system. The directory name is created
 * with the same name as the device itself, in case we end up
 * with multiple blocks in future systems.
3396
 */
3397
static void s3c_hsotg_create_debug(struct dwc2_hsotg *hsotg)
3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
{
	struct dentry *root;
	unsigned epidx;

	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
	hsotg->debug_root = root;
	if (IS_ERR(root)) {
		dev_err(hsotg->dev, "cannot create debug root\n");
		return;
	}

	/* create general state file */

	hsotg->debug_file = debugfs_create_file("state", 0444, root,
						hsotg, &state_fops);

	if (IS_ERR(hsotg->debug_file))
		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);

	hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
						hsotg, &fifo_fops);

	if (IS_ERR(hsotg->debug_fifo))
		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);

3423
	/* Create one file for each out endpoint */
3424
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3425
		struct s3c_hsotg_ep *ep;
3426

3427 3428 3429 3430
		ep = hsotg->eps_out[epidx];
		if (ep) {
			ep->debugfs = debugfs_create_file(ep->name, 0444,
							  root, ep, &ep_fops);
3431

3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
			if (IS_ERR(ep->debugfs))
				dev_err(hsotg->dev, "failed to create %s debug file\n",
					ep->name);
		}
	}
	/* Create one file for each in endpoint. EP0 is handled with out eps */
	for (epidx = 1; epidx < hsotg->num_of_eps; epidx++) {
		struct s3c_hsotg_ep *ep;

		ep = hsotg->eps_in[epidx];
		if (ep) {
			ep->debugfs = debugfs_create_file(ep->name, 0444,
							  root, ep, &ep_fops);

			if (IS_ERR(ep->debugfs))
				dev_err(hsotg->dev, "failed to create %s debug file\n",
					ep->name);
		}
3450 3451 3452 3453 3454 3455 3456 3457
	}
}

/**
 * s3c_hsotg_delete_debug - cleanup debugfs entries
 * @hsotg: The driver state
 *
 * Cleanup (remove) the debugfs files for use on module exit.
3458
 */
3459
static void s3c_hsotg_delete_debug(struct dwc2_hsotg *hsotg)
3460 3461 3462
{
	unsigned epidx;

3463
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3464 3465 3466 3467
		if (hsotg->eps_in[epidx])
			debugfs_remove(hsotg->eps_in[epidx]->debugfs);
		if (hsotg->eps_out[epidx])
			debugfs_remove(hsotg->eps_out[epidx]->debugfs);
3468 3469 3470 3471 3472 3473 3474
	}

	debugfs_remove(hsotg->debug_file);
	debugfs_remove(hsotg->debug_fifo);
	debugfs_remove(hsotg->debug_root);
}

3475 3476 3477 3478
#ifdef CONFIG_OF
static void s3c_hsotg_of_probe(struct dwc2_hsotg *hsotg)
{
	struct device_node *np = hsotg->dev->of_node;
3479 3480
	u32 len = 0;
	u32 i = 0;
3481 3482 3483

	/* Enable dma if requested in device tree */
	hsotg->g_using_dma = of_property_read_bool(np, "g-use-dma");
3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514

	/*
	* Register TX periodic fifo size per endpoint.
	* EP0 is excluded since it has no fifo configuration.
	*/
	if (!of_find_property(np, "g-tx-fifo-size", &len))
		goto rx_fifo;

	len /= sizeof(u32);

	/* Read tx fifo sizes other than ep0 */
	if (of_property_read_u32_array(np, "g-tx-fifo-size",
						&hsotg->g_tx_fifo_sz[1], len))
		goto rx_fifo;

	/* Add ep0 */
	len++;

	/* Make remaining TX fifos unavailable */
	if (len < MAX_EPS_CHANNELS) {
		for (i = len; i < MAX_EPS_CHANNELS; i++)
			hsotg->g_tx_fifo_sz[i] = 0;
	}

rx_fifo:
	/* Register RX fifo size */
	of_property_read_u32(np, "g-rx-fifo-size", &hsotg->g_rx_fifo_sz);

	/* Register NPTX fifo size */
	of_property_read_u32(np, "g-np-tx-fifo-size",
						&hsotg->g_np_g_tx_fifo_sz);
3515 3516 3517 3518 3519
}
#else
static inline void s3c_hsotg_of_probe(struct dwc2_hsotg *hsotg) { }
#endif

3520
/**
3521 3522 3523
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
 * @irq: The IRQ number for the controller.
3524
 */
3525
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3526
{
3527 3528
	struct device *dev = hsotg->dev;
	struct s3c_hsotg_plat *plat = dev->platform_data;
3529 3530
	int epnum;
	int ret;
3531
	int i;
3532
	u32 p_tx_fifo[] = DWC2_G_P_LEGACY_TX_FIFO_SIZE;
3533

3534 3535 3536
	/* Set default UTMI width */
	hsotg->phyif = GUSBCFG_PHYIF16;

3537 3538
	s3c_hsotg_of_probe(hsotg);

3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
	/* Initialize to legacy fifo configuration values */
	hsotg->g_rx_fifo_sz = 2048;
	hsotg->g_np_g_tx_fifo_sz = 1024;
	memcpy(&hsotg->g_tx_fifo_sz[1], p_tx_fifo, sizeof(p_tx_fifo));
	/* Device tree specific probe */
	s3c_hsotg_of_probe(hsotg);
	/* Dump fifo information */
	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
						hsotg->g_np_g_tx_fifo_sz);
	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->g_rx_fifo_sz);
	for (i = 0; i < MAX_EPS_CHANNELS; i++)
		dev_dbg(dev, "Periodic TXFIFO%2d size: %d\n", i,
						hsotg->g_tx_fifo_sz[i]);
3552
	/*
3553 3554
	 * If platform probe couldn't find a generic PHY or an old style
	 * USB PHY, fall back to pdata
3555
	 */
3556 3557 3558 3559 3560 3561 3562 3563 3564
	if (IS_ERR_OR_NULL(hsotg->phy) && IS_ERR_OR_NULL(hsotg->uphy)) {
		plat = dev_get_platdata(dev);
		if (!plat) {
			dev_err(dev,
			"no platform data or transceiver defined\n");
			return -EPROBE_DEFER;
		}
		hsotg->plat = plat;
	} else if (hsotg->phy) {
3565 3566 3567 3568
		/*
		 * If using the generic PHY framework, check if the PHY bus
		 * width is 8-bit and set the phyif appropriately.
		 */
3569
		if (phy_get_bus_width(hsotg->phy) == 8)
3570 3571
			hsotg->phyif = GUSBCFG_PHYIF8;
	}
3572

3573
	hsotg->clk = devm_clk_get(dev, "otg");
3574
	if (IS_ERR(hsotg->clk)) {
3575
		hsotg->clk = NULL;
3576
		dev_dbg(dev, "cannot get otg clock\n");
3577 3578
	}

3579
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3580 3581 3582 3583 3584
	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
	hsotg->gadget.name = dev_name(dev);

	/* reset the system */

3585 3586 3587 3588 3589 3590
	ret = clk_prepare_enable(hsotg->clk);
	if (ret) {
		dev_err(dev, "failed to enable otg clk\n");
		goto err_clk;
	}

3591

3592 3593 3594 3595 3596
	/* regulators */

	for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
		hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];

3597
	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3598 3599 3600
				 hsotg->supplies);
	if (ret) {
		dev_err(dev, "failed to request supplies: %d\n", ret);
3601
		goto err_clk;
3602 3603 3604 3605 3606 3607
	}

	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);

	if (ret) {
3608
		dev_err(dev, "failed to enable supplies: %d\n", ret);
3609
		goto err_clk;
3610 3611
	}

3612 3613
	/* usb phy enable */
	s3c_hsotg_phy_enable(hsotg);
3614 3615

	s3c_hsotg_corereset(hsotg);
3616 3617 3618 3619 3620 3621
	ret = s3c_hsotg_hw_cfg(hsotg);
	if (ret) {
		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
		goto err_clk;
	}

3622
	s3c_hsotg_init(hsotg);
3623

3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
	if (!hsotg->ctrl_buff) {
		dev_err(dev, "failed to allocate ctrl request buff\n");
		ret = -ENOMEM;
		goto err_supplies;
	}

	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
	if (!hsotg->ep0_buff) {
		dev_err(dev, "failed to allocate ctrl reply buff\n");
		ret = -ENOMEM;
		goto err_supplies;
	}

3640 3641
	ret = devm_request_irq(hsotg->dev, irq, s3c_hsotg_irq, IRQF_SHARED,
				dev_name(hsotg->dev), hsotg);
3642 3643 3644 3645 3646
	if (ret < 0) {
		s3c_hsotg_phy_disable(hsotg);
		clk_disable_unprepare(hsotg->clk);
		regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				       hsotg->supplies);
3647
		dev_err(dev, "cannot claim IRQ for gadget\n");
3648
		goto err_supplies;
3649 3650
	}

3651 3652 3653 3654
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
3655
		ret = -EINVAL;
3656 3657 3658 3659 3660 3661
		goto err_supplies;
	}

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3662
	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
3663 3664 3665

	/* allocate EP0 request */

3666
	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
3667 3668 3669
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
3670
		ret = -ENOMEM;
3671
		goto err_supplies;
3672
	}
3673 3674

	/* initialise the endpoints now the core has been initialised */
3675 3676 3677 3678 3679 3680 3681 3682
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
		if (hsotg->eps_in[epnum])
			s3c_hsotg_initep(hsotg, hsotg->eps_in[epnum],
								epnum, 1);
		if (hsotg->eps_out[epnum])
			s3c_hsotg_initep(hsotg, hsotg->eps_out[epnum],
								epnum, 0);
	}
3683

3684
	/* disable power and clock */
3685
	s3c_hsotg_phy_disable(hsotg);
3686 3687 3688 3689

	ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
	if (ret) {
3690
		dev_err(dev, "failed to disable supplies: %d\n", ret);
3691
		goto err_supplies;
3692 3693
	}

3694
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3695
	if (ret)
3696
		goto err_supplies;
3697

3698 3699 3700 3701 3702 3703
	s3c_hsotg_create_debug(hsotg);

	s3c_hsotg_dump(hsotg);

	return 0;

3704
err_supplies:
3705
	s3c_hsotg_phy_disable(hsotg);
3706
err_clk:
3707
	clk_disable_unprepare(hsotg->clk);
3708

3709 3710
	return ret;
}
3711
EXPORT_SYMBOL_GPL(dwc2_gadget_init);
3712

3713 3714 3715 3716
/**
 * s3c_hsotg_remove - remove function for hsotg driver
 * @pdev: The platform information for the driver
 */
3717
int s3c_hsotg_remove(struct dwc2_hsotg *hsotg)
3718
{
3719
	usb_del_gadget_udc(&hsotg->gadget);
3720
	s3c_hsotg_delete_debug(hsotg);
3721
	clk_disable_unprepare(hsotg->clk);
3722

3723 3724
	return 0;
}
3725
EXPORT_SYMBOL_GPL(s3c_hsotg_remove);
3726

3727
int s3c_hsotg_suspend(struct dwc2_hsotg *hsotg)
3728 3729 3730 3731
{
	unsigned long flags;
	int ret = 0;

3732 3733
	mutex_lock(&hsotg->init_mutex);

3734 3735 3736
	if (hsotg->driver) {
		int ep;

3737 3738 3739
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

3740 3741 3742 3743 3744 3745
		spin_lock_irqsave(&hsotg->lock, flags);
		if (hsotg->enabled)
			s3c_hsotg_core_disconnect(hsotg);
		s3c_hsotg_disconnect(hsotg);
		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
		spin_unlock_irqrestore(&hsotg->lock, flags);
3746

3747
		s3c_hsotg_phy_disable(hsotg);
3748

3749 3750 3751 3752 3753 3754
		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
			if (hsotg->eps_in[ep])
				s3c_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
			if (hsotg->eps_out[ep])
				s3c_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
		}
3755 3756 3757

		ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
					     hsotg->supplies);
3758
		clk_disable(hsotg->clk);
3759 3760
	}

3761 3762
	mutex_unlock(&hsotg->init_mutex);

3763 3764
	return ret;
}
3765
EXPORT_SYMBOL_GPL(s3c_hsotg_suspend);
3766

3767
int s3c_hsotg_resume(struct dwc2_hsotg *hsotg)
3768 3769 3770 3771
{
	unsigned long flags;
	int ret = 0;

3772 3773
	mutex_lock(&hsotg->init_mutex);

3774 3775 3776
	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
3777 3778

		clk_enable(hsotg->clk);
3779
		ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3780
					    hsotg->supplies);
3781

3782
		s3c_hsotg_phy_enable(hsotg);
3783

3784 3785 3786 3787 3788 3789
		spin_lock_irqsave(&hsotg->lock, flags);
		s3c_hsotg_core_init_disconnected(hsotg);
		if (hsotg->enabled)
			s3c_hsotg_core_connect(hsotg);
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
3790
	mutex_unlock(&hsotg->init_mutex);
3791 3792 3793

	return ret;
}
3794
EXPORT_SYMBOL_GPL(s3c_hsotg_resume);