gadget.c 90.3 KB
Newer Older
1
/**
2 3
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
15
 */
16 17 18 19 20 21 22 23 24 25 26

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
27
#include <linux/slab.h>
28
#include <linux/clk.h>
29
#include <linux/regulator/consumer.h>
30
#include <linux/of_platform.h>
31
#include <linux/phy/phy.h>
32 33 34

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
35
#include <linux/usb/phy.h>
36
#include <linux/platform_data/s3c-hsotg.h>
37

38
#include "core.h"
39
#include "hw.h"
40 41 42 43 44 45 46 47 48 49 50 51

/* conversion functions */
static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
{
	return container_of(req, struct s3c_hsotg_req, req);
}

static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
{
	return container_of(ep, struct s3c_hsotg_ep, ep);
}

52
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
53
{
54
	return container_of(gadget, struct dwc2_hsotg, gadget);
55 56 57 58 59 60 61 62 63 64 65 66 67
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) | val, ptr);
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) & ~val, ptr);
}

/* forward decleration of functions */
68
static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg);
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
 * Until this issue is sorted out, we always return 'false'.
 */
89
static inline bool using_dma(struct dwc2_hsotg *hsotg)
90 91 92 93 94 95 96 97 98
{
	return false;	/* support is not complete */
}

/**
 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
99
static void s3c_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
100
{
101
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
102 103 104 105 106 107
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
108
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
109 110 111 112 113 114 115 116
	}
}

/**
 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
117
static void s3c_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
118
{
119
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
120 121 122 123 124
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
125
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
126 127 128 129 130 131 132 133 134 135 136 137
}

/**
 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
138
static void s3c_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
139 140 141 142 143 144 145 146 147 148 149
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
150
	daint = readl(hsotg->regs + DAINTMSK);
151 152 153 154
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
155
	writel(daint, hsotg->regs + DAINTMSK);
156 157 158 159 160 161 162
	local_irq_restore(flags);
}

/**
 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
 * @hsotg: The device instance.
 */
163
static void s3c_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
164
{
165 166 167
	unsigned int ep;
	unsigned int addr;
	unsigned int size;
168
	int timeout;
169 170
	u32 val;

171
	/* set FIFO sizes to 2048/1024 */
172

173
	writel(2048, hsotg->regs + GRXFSIZ);
174 175
	writel((2048 << FIFOSIZE_STARTADDR_SHIFT) |
		(1024 << FIFOSIZE_DEPTH_SHIFT), hsotg->regs + GNPTXFSIZ);
176

177 178
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
179 180
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
181 182
	 * known values.
	 */
183 184 185 186

	/* start at the end of the GNPTXFSIZ, rounded up */
	addr = 2048 + 1024;

187
	/*
188 189 190 191 192
	 * Because we have not enough memory to have each TX FIFO of size at
	 * least 3072 bytes (the maximum single packet size), we create four
	 * FIFOs of lenght 1024, and four of length 3072 bytes, and assing
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
193
	 */
194

195 196 197 198 199 200 201 202 203 204 205 206 207 208
	/* 256*4=1024 bytes FIFO length */
	size = 256;
	for (ep = 1; ep <= 4; ep++) {
		val = addr;
		val |= size << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + size > hsotg->fifo_mem,
			  "insufficient fifo memory");
		addr += size;

		writel(val, hsotg->regs + DPTXFSIZN(ep));
	}
	/* 768*4=3072 bytes FIFO length */
	size = 768;
	for (ep = 5; ep <= 8; ep++) {
209
		val = addr;
210
		val |= size << FIFOSIZE_DEPTH_SHIFT;
211 212
		WARN_ONCE(addr + size > hsotg->fifo_mem,
			  "insufficient fifo memory");
213 214
		addr += size;

215
		writel(val, hsotg->regs + DPTXFSIZN(ep));
216
	}
217

218 219 220 221
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
222

223 224
	writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
225 226 227 228

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
229
		val = readl(hsotg->regs + GRSTCTL);
230

231
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
232 233 234 235 236 237 238 239 240 241 242 243
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
244 245 246 247 248 249 250 251
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
252 253
static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
						      gfp_t flags)
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
{
	struct s3c_hsotg_req *req;

	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
{
	return hs_ep->periodic;
}

/**
 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
 * of a request to ensure the buffer is ready for access by the caller.
286
 */
287
static void s3c_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
288 289 290 291 292 293 294 295 296
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

297
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
}

/**
 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
315
 */
316
static int s3c_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
317 318 319 320
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	bool periodic = is_ep_periodic(hs_ep);
321
	u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
322 323 324 325 326
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
327
	int max_transfer;
328 329 330 331 332 333 334

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

335
	if (periodic && !hsotg->dedicated_fifos) {
336
		u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
337 338 339
		int size_left;
		int size_done;

340 341 342 343
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
344

345
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
346

347 348
		/*
		 * if shared fifo, we cannot write anything until the
349 350 351
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
352
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
353 354 355
			return -ENOSPC;
		}

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
373
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
374 375
			return -ENOSPC;
		}
376
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
377
		can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
378 379 380

		can_write &= 0xffff;
		can_write *= 4;
381
	} else {
382
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
383 384 385 386
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

387
			s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
388 389 390
			return -ENOSPC;
		}

391
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
392
		can_write *= 4;	/* fifo size is in 32bit quantities. */
393 394
	}

395 396 397 398
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
		 __func__, gnptxsts, can_write, to_write, max_transfer);
399

400 401
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
402 403 404
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
405
	if (can_write > 512 && !periodic)
406 407
		can_write = 512;

408 409
	/*
	 * limit the write to one max-packet size worth of data, but allow
410
	 * the transfer to return that it did not run out of fifo space
411 412
	 * doing it.
	 */
413 414
	if (to_write > max_transfer) {
		to_write = max_transfer;
415

416 417 418
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
419 420
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
421 422
	}

423 424 425 426
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
427
		pkt_round = to_write % max_transfer;
428

429 430
		/*
		 * Round the write down to an
431 432 433 434 435 436 437 438 439
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

440 441 442 443
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
444

445 446 447
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
448 449
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

467
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
486 487
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
488
	} else {
489
		maxsize = 64+64;
490
		if (hs_ep->dir_in)
491
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
492
		else
493 494 495 496 497 498 499
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

500 501 502 503
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

/**
 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
521
static void s3c_hsotg_start_req(struct dwc2_hsotg *hsotg,
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req,
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

550 551
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
552 553 554 555 556

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
		__func__, readl(hsotg->regs + epctrl_reg), index,
		hs_ep->dir_in ? "in" : "out");

557 558 559
	/* If endpoint is stalled, we will restart request later */
	ctrl = readl(hsotg->regs + epctrl_reg);

560
	if (ctrl & DXEPCTL_STALL) {
561 562 563 564
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

565
	length = ureq->length - ureq->actual;
566 567
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
568 569
	if (0)
		dev_dbg(hsotg->dev,
570
			"REQ buf %p len %d dma %pad noi=%d zp=%d snok=%d\n",
571
			ureq->buf, length, &ureq->dma,
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
			ureq->no_interrupt, ureq->zero, ureq->short_not_ok);

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

593 594 595 596 597
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

598
	if (dir_in && index != 0)
599
		if (hs_ep->isochronous)
600
			epsize = DXEPTSIZ_MC(packets);
601
		else
602
			epsize = DXEPTSIZ_MC(1);
603 604 605 606
	else
		epsize = 0;

	if (index != 0 && ureq->zero) {
607 608 609 610
		/*
		 * test for the packets being exactly right for the
		 * transfer
		 */
611 612 613 614 615

		if (length == (packets * hs_ep->ep.maxpacket))
			packets++;
	}

616 617
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
618 619 620 621 622 623 624 625 626 627

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
	writel(epsize, hsotg->regs + epsize_reg);

628
	if (using_dma(hsotg) && !continuing) {
629 630
		unsigned int dma_reg;

631 632 633 634
		/*
		 * write DMA address to control register, buffer already
		 * synced by s3c_hsotg_ep_queue().
		 */
635

636
		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
637 638
		writel(ureq->dma, hsotg->regs + dma_reg);

639
		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
640
			__func__, &ureq->dma, dma_reg);
641 642
	}

643 644
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
645 646 647 648 649 650 651

	dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup);

	/* For Setup request do not clear NAK */
	if (hsotg->setup && index == 0)
		hsotg->setup = 0;
	else
652
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
653

654 655 656 657

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

658 659
	/*
	 * set these, it seems that DMA support increments past the end
660
	 * of the packet buffer so we need to calculate the length from
661 662
	 * this information.
	 */
663 664 665 666 667 668 669 670 671 672
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

673 674 675 676
	/*
	 * clear the INTknTXFEmpMsk when we start request, more as a aide
	 * to debugging to see what is going on.
	 */
677
	if (dir_in)
678
		writel(DIEPMSK_INTKNTXFEMPMSK,
679
		       hsotg->regs + DIEPINT(index));
680

681 682 683 684
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
685 686

	/* check ep is enabled */
687
	if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
688
		dev_warn(hsotg->dev,
689
			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
690 691
			 index, readl(hsotg->regs + epctrl_reg));

692
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
693
		__func__, readl(hsotg->regs + epctrl_reg));
694 695 696

	/* enable ep interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
697 698 699 700 701 702 703 704 705 706 707 708 709
}

/**
 * s3c_hsotg_map_dma - map the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
710
 */
711
static int s3c_hsotg_map_dma(struct dwc2_hsotg *hsotg,
712 713 714 715
			     struct s3c_hsotg_ep *hs_ep,
			     struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
716
	int ret;
717 718 719 720 721

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

722 723 724
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
740
	struct dwc2_hsotg *hs = hs_ep->parent;
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
	bool first;

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
		int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
		if (ret)
			return ret;
	}

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

	if (first)
		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);

	return 0;
}

768 769 770 771
static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
772
	struct dwc2_hsotg *hs = hs_ep->parent;
773 774 775 776 777 778 779 780 781 782
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
				      struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);

	kfree(hs_req);
}

/**
 * s3c_hsotg_complete_oursetup - setup completion callback
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
					struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
803
	struct dwc2_hsotg *hsotg = hs_ep->parent;
804 805 806 807 808 809 810 811 812 813 814 815 816

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

	s3c_hsotg_ep_free_request(ep, req);
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
817
 */
818
static struct s3c_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
819 820 821 822 823 824 825 826 827
					   u32 windex)
{
	struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

828
	if (idx > hsotg->num_of_eps)
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
		return NULL;

	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

/**
 * s3c_hsotg_send_reply - send reply to control request
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
847
static int s3c_hsotg_send_reply(struct dwc2_hsotg *hsotg,
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
				struct s3c_hsotg_ep *ep,
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
	req->zero = 1; /* always do zero-length final transfer */
	req->complete = s3c_hsotg_complete_oursetup;

	if (length)
		memcpy(req->buf, buff, length);
	else
		ep->sent_zlp = 1;

	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
 * s3c_hsotg_process_req_status - process request GET_STATUS
 * @hsotg: The device state
 * @ctrl: USB control request
 */
888
static int s3c_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
					struct usb_ctrlrequest *ctrl)
{
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	struct s3c_hsotg_ep *ep;
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);

940 941 942 943 944 945 946 947 948 949 950 951 952 953
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
{
	if (list_empty(&hs_ep->queue))
		return NULL;

	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
}

954 955 956 957 958
/**
 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
 * @hsotg: The device state
 * @ctrl: USB control request
 */
959
static int s3c_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
960 961
					 struct usb_ctrlrequest *ctrl)
{
962
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
963 964
	struct s3c_hsotg_req *hs_req;
	bool restart;
965 966
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
	struct s3c_hsotg_ep *ep;
967
	int ret;
968
	bool halted;
969 970 971 972 973 974 975 976 977 978 979 980 981 982

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
				__func__, le16_to_cpu(ctrl->wIndex));
			return -ENOENT;
		}

		switch (le16_to_cpu(ctrl->wValue)) {
		case USB_ENDPOINT_HALT:
983 984
			halted = ep->halted;

985
			s3c_hsotg_ep_sethalt(&ep->ep, set);
986 987 988 989 990 991 992

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
993

994 995 996 997 998 999
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1000 1001 1002 1003 1004 1005 1006 1007
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1008 1009
					usb_gadget_giveback_request(&ep->ep,
								    &hs_req->req);
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
				}

				/* If we have pending request, then start it */
				restart = !list_empty(&ep->queue);
				if (restart) {
					hs_req = get_ep_head(ep);
					s3c_hsotg_start_req(hsotg, ep,
							    hs_req, false);
				}
			}

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
			break;

		default:
			return -ENOENT;
		}
	} else
		return -ENOENT;  /* currently only deal with endpoint */

	return 1;
}

1032 1033
static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
static void s3c_hsotg_disconnect(struct dwc2_hsotg *hsotg);
1034

1035 1036 1037 1038 1039 1040
/**
 * s3c_hsotg_stall_ep0 - stall ep0
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1041
static void s3c_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1042
{
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

	ctrl = readl(hsotg->regs + reg);
1056 1057
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1058 1059 1060
	writel(ctrl, hsotg->regs + reg);

	dev_dbg(hsotg->dev,
1061
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1062 1063 1064 1065 1066 1067 1068 1069 1070
		ctrl, reg, readl(hsotg->regs + reg));

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
	 s3c_hsotg_enqueue_setup(hsotg);
}

1071 1072 1073 1074 1075 1076 1077 1078 1079
/**
 * s3c_hsotg_process_control - process a control request
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1080
static void s3c_hsotg_process_control(struct dwc2_hsotg *hsotg,
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
				      struct usb_ctrlrequest *ctrl)
{
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	int ret = 0;
	u32 dcfg;

	ep0->sent_zlp = 0;

	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
		 ctrl->bRequest, ctrl->bRequestType,
		 ctrl->wValue, ctrl->wLength);

1093 1094 1095 1096
	/*
	 * record the direction of the request, for later use when enquing
	 * packets onto EP0.
	 */
1097 1098 1099 1100

	ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
	dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);

1101 1102 1103 1104
	/*
	 * if we've no data with this request, then the last part of the
	 * transaction is going to implicitly be IN.
	 */
1105 1106 1107 1108 1109 1110
	if (ctrl->wLength == 0)
		ep0->dir_in = 1;

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1111
			s3c_hsotg_disconnect(hsotg);
1112
			dcfg = readl(hsotg->regs + DCFG);
1113
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1114 1115
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1116
			writel(dcfg, hsotg->regs + DCFG);
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			return;

		case USB_REQ_GET_STATUS:
			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1137
		spin_unlock(&hsotg->lock);
1138
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1139
		spin_lock(&hsotg->lock);
1140 1141 1142 1143
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1144 1145
	/*
	 * the request is either unhandlable, or is not formatted correctly
1146 1147 1148
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1149 1150
	if (ret < 0)
		s3c_hsotg_stall_ep0(hsotg);
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
}

/**
 * s3c_hsotg_complete_setup - completion of a setup transfer
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
static void s3c_hsotg_complete_setup(struct usb_ep *ep,
				     struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1165
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1166 1167 1168 1169 1170 1171

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1172
	spin_lock(&hsotg->lock);
1173 1174 1175 1176
	if (req->actual == 0)
		s3c_hsotg_enqueue_setup(hsotg);
	else
		s3c_hsotg_process_control(hsotg, req->buf);
1177
	spin_unlock(&hsotg->lock);
1178 1179 1180 1181 1182 1183 1184 1185 1186
}

/**
 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1187
static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
{
	struct usb_request *req = hsotg->ctrl_req;
	struct s3c_hsotg_req *hs_req = our_req(req);
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
	req->complete = s3c_hsotg_complete_setup;

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

	hsotg->eps[0].dir_in = 0;

	ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1210 1211 1212 1213
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
	}
}

/**
 * s3c_hsotg_complete_request - complete a request given to us
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1229
 */
1230
static void s3c_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
				       struct s3c_hsotg_ep *hs_ep,
				       struct s3c_hsotg_req *hs_req,
				       int result)
{
	bool restart;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1245 1246 1247 1248
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

	if (using_dma(hsotg))
		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1259 1260 1261 1262
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1263 1264

	if (hs_req->req.complete) {
1265
		spin_unlock(&hsotg->lock);
1266
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1267
		spin_lock(&hsotg->lock);
1268 1269
	}

1270 1271
	/*
	 * Look to see if there is anything else to do. Note, the completion
1272
	 * of the previous request may have caused a new request to be started
1273 1274
	 * so be careful when doing this.
	 */
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294

	if (!hs_ep->req && result >= 0) {
		restart = !list_empty(&hs_ep->queue);
		if (restart) {
			hs_req = get_ep_head(hs_ep);
			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		}
	}
}

/**
 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
1295
static void s3c_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1296 1297 1298
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1299
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1300 1301 1302 1303
	int to_read;
	int max_req;
	int read_ptr;

1304

1305
	if (!hs_req) {
1306
		u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1307 1308 1309
		int ptr;

		dev_warn(hsotg->dev,
1310
			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
			(void)readl(fifo);

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1324 1325 1326
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1327
	if (to_read > max_req) {
1328 1329
		/*
		 * more data appeared than we where willing
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1341 1342 1343 1344
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1345
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
}

/**
 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
 * @hsotg: The device instance
 * @req: The request currently on this endpoint
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1357
 * currently believed that we do not need to wait for any space in
1358 1359
 * the TxFIFO.
 */
1360
static void s3c_hsotg_send_zlp(struct dwc2_hsotg *hsotg,
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
			       struct s3c_hsotg_req *req)
{
	u32 ctrl;

	if (!req) {
		dev_warn(hsotg->dev, "%s: no request?\n", __func__);
		return;
	}

	if (req->req.length == 0) {
		hsotg->eps[0].sent_zlp = 1;
		s3c_hsotg_enqueue_setup(hsotg);
		return;
	}

	hsotg->eps[0].dir_in = 1;
	hsotg->eps[0].sent_zlp = 1;

	dev_dbg(hsotg->dev, "sending zero-length packet\n");

	/* issue a zero-sized packet to terminate this */
1382 1383
	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
	       DXEPTSIZ_XFERSIZE(0), hsotg->regs + DIEPTSIZ(0));
1384

1385
	ctrl = readl(hsotg->regs + DIEPCTL0);
1386 1387 1388
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
1389
	writel(ctrl, hsotg->regs + DIEPCTL0);
1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
}

/**
 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 * @was_setup: Set if processing a SetupDone event.
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1401
 */
1402
static void s3c_hsotg_handle_outdone(struct dwc2_hsotg *hsotg,
1403 1404
				     int epnum, bool was_setup)
{
1405
	u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1406 1407 1408
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
	struct s3c_hsotg_req *hs_req = hs_ep->req;
	struct usb_request *req = &hs_req->req;
1409
	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

	if (using_dma(hsotg)) {
		unsigned size_done;

1420 1421
		/*
		 * Calculate the size of the transfer by checking how much
1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1435 1436 1437 1438
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
		return;
1439 1440 1441 1442 1443 1444
	} else if (epnum == 0) {
		/*
		 * After was_setup = 1 =>
		 * set CNAK for non Setup requests
		 */
		hsotg->setup = was_setup ? 0 : 1;
1445 1446
	}

1447 1448 1449 1450
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1451 1452 1453 1454
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1455 1456 1457
	}

	if (epnum == 0) {
1458 1459 1460 1461
		/*
		 * Condition req->complete != s3c_hsotg_complete_setup says:
		 * send ZLP when we have an asynchronous request from gadget
		 */
1462 1463 1464 1465
		if (!was_setup && req->complete != s3c_hsotg_complete_setup)
			s3c_hsotg_send_zlp(hsotg, hs_req);
	}

1466
	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1467 1468 1469 1470 1471 1472 1473
}

/**
 * s3c_hsotg_read_frameno - read current frame number
 * @hsotg: The device instance
 *
 * Return the current frame number
1474
 */
1475
static u32 s3c_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1476 1477 1478
{
	u32 dsts;

1479 1480 1481
	dsts = readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493

	return dsts;
}

/**
 * s3c_hsotg_handle_rx - RX FIFO has data
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1494
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1495 1496 1497 1498 1499 1500 1501
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1502
static void s3c_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1503
{
1504
	u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1505 1506 1507 1508
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

1509 1510
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
1511

1512 1513
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
1514 1515 1516 1517 1518

	if (1)
		dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
			__func__, grxstsr, size, epnum);

1519 1520 1521
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1522 1523
		break;

1524
	case GRXSTS_PKTSTS_OUTDONE:
1525 1526 1527 1528 1529 1530 1531
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg));

		if (!using_dma(hsotg))
			s3c_hsotg_handle_outdone(hsotg, epnum, false);
		break;

1532
	case GRXSTS_PKTSTS_SETUPDONE:
1533 1534 1535
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1536
			readl(hsotg->regs + DOEPCTL(0)));
1537 1538 1539 1540

		s3c_hsotg_handle_outdone(hsotg, epnum, true);
		break;

1541
	case GRXSTS_PKTSTS_OUTRX:
1542 1543 1544
		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

1545
	case GRXSTS_PKTSTS_SETUPRX:
1546 1547 1548
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1549
			readl(hsotg->regs + DOEPCTL(0)));
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565

		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

		s3c_hsotg_dump(hsotg);
		break;
	}
}

/**
 * s3c_hsotg_ep0_mps - turn max packet size into register setting
 * @mps: The maximum packet size in bytes.
1566
 */
1567 1568 1569 1570
static u32 s3c_hsotg_ep0_mps(unsigned int mps)
{
	switch (mps) {
	case 64:
1571
		return D0EPCTL_MPS_64;
1572
	case 32:
1573
		return D0EPCTL_MPS_32;
1574
	case 16:
1575
		return D0EPCTL_MPS_16;
1576
	case 8:
1577
		return D0EPCTL_MPS_8;
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
1594
static void s3c_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1595 1596 1597 1598 1599
				       unsigned int ep, unsigned int mps)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
	void __iomem *regs = hsotg->regs;
	u32 mpsval;
1600
	u32 mcval;
1601 1602 1603 1604 1605 1606 1607
	u32 reg;

	if (ep == 0) {
		/* EP0 is a special case */
		mpsval = s3c_hsotg_ep0_mps(mps);
		if (mpsval > 3)
			goto bad_mps;
1608
		hs_ep->ep.maxpacket = mps;
1609
		hs_ep->mc = 1;
1610
	} else {
1611
		mpsval = mps & DXEPCTL_MPS_MASK;
1612
		if (mpsval > 1024)
1613
			goto bad_mps;
1614 1615 1616 1617
		mcval = ((mps >> 11) & 0x3) + 1;
		hs_ep->mc = mcval;
		if (mcval > 3)
			goto bad_mps;
1618
		hs_ep->ep.maxpacket = mpsval;
1619 1620
	}

1621 1622 1623 1624
	/*
	 * update both the in and out endpoint controldir_ registers, even
	 * if one of the directions may not be in use.
	 */
1625

1626
	reg = readl(regs + DIEPCTL(ep));
1627
	reg &= ~DXEPCTL_MPS_MASK;
1628
	reg |= mpsval;
1629
	writel(reg, regs + DIEPCTL(ep));
1630

1631
	if (ep) {
1632
		reg = readl(regs + DOEPCTL(ep));
1633
		reg &= ~DXEPCTL_MPS_MASK;
1634
		reg |= mpsval;
1635
		writel(reg, regs + DOEPCTL(ep));
1636
	}
1637 1638 1639 1640 1641 1642 1643

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1644 1645 1646 1647 1648
/**
 * s3c_hsotg_txfifo_flush - flush Tx FIFO
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
1649
static void s3c_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1650 1651 1652 1653
{
	int timeout;
	int val;

1654
	writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1655
		hsotg->regs + GRSTCTL);
1656 1657 1658 1659 1660

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
1661
		val = readl(hsotg->regs + GRSTCTL);
1662

1663
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1664 1665 1666 1667 1668 1669
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
1670
			break;
1671 1672 1673 1674 1675
		}

		udelay(1);
	}
}
1676 1677 1678 1679 1680 1681 1682 1683 1684

/**
 * s3c_hsotg_trytx - check to see if anything needs transmitting
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
1685
static int s3c_hsotg_trytx(struct dwc2_hsotg *hsotg,
1686 1687 1688 1689
			   struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;

1690 1691 1692 1693 1694 1695 1696 1697
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
			s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
					     hs_ep->dir_in, 0);
1698
		return 0;
1699
	}
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

	return 0;
}

/**
 * s3c_hsotg_complete_in - complete IN transfer
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
1718
static void s3c_hsotg_complete_in(struct dwc2_hsotg *hsotg,
1719 1720 1721
				  struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1722
	u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1723 1724 1725 1726 1727 1728 1729
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

1730 1731 1732
	/* Finish ZLP handling for IN EP0 transactions */
	if (hsotg->eps[0].sent_zlp) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
1733
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1734 1735 1736
		return;
	}

1737 1738
	/*
	 * Calculate the size of the transfer by checking how much is left
1739 1740 1741 1742 1743 1744 1745 1746
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

1747
	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1748 1749 1750 1751 1752 1753 1754 1755 1756

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

	/*
	 * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0
	 * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B
	 * ,256B ... ), after last MPS sized packet send IN ZLP packet to
	 * inform the host that no more data is available.
	 * The state of req.zero member is checked to be sure that the value to
	 * send is smaller than wValue expected from host.
	 * Check req.length to NOT send another ZLP when the current one is
	 * under completion (the one for which this completion has been called).
	 */
	if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero &&
	    hs_req->req.length == hs_req->req.actual &&
	    !(hs_req->req.length % hs_ep->ep.maxpacket)) {

		dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n");
		s3c_hsotg_send_zlp(hsotg, hs_req);
1776

1777 1778
		return;
	}
1779 1780 1781 1782 1783

	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
	} else
1784
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1785 1786 1787 1788 1789 1790 1791 1792 1793
}

/**
 * s3c_hsotg_epint - handle an in/out endpoint interrupt
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
1794
 */
1795
static void s3c_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
1796 1797 1798
			    int dir_in)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1799 1800 1801
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1802
	u32 ints;
1803
	u32 ctrl;
1804 1805

	ints = readl(hsotg->regs + epint_reg);
1806
	ctrl = readl(hsotg->regs + epctl_reg);
1807

1808 1809 1810
	/* Clear endpoint interrupts */
	writel(ints, hsotg->regs + epint_reg);

1811 1812 1813
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

1814
	if (ints & DXEPINT_XFERCOMPL) {
1815
		if (hs_ep->isochronous && hs_ep->interval == 1) {
1816 1817
			if (ctrl & DXEPCTL_EOFRNUM)
				ctrl |= DXEPCTL_SETEVENFR;
1818
			else
1819
				ctrl |= DXEPCTL_SETODDFR;
1820 1821 1822
			writel(ctrl, hsotg->regs + epctl_reg);
		}

1823
		dev_dbg(hsotg->dev,
1824
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1825 1826 1827
			__func__, readl(hsotg->regs + epctl_reg),
			readl(hsotg->regs + epsiz_reg));

1828 1829 1830 1831
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
1832 1833 1834
		if (dir_in) {
			s3c_hsotg_complete_in(hsotg, hs_ep);

1835
			if (idx == 0 && !hs_ep->req)
1836 1837
				s3c_hsotg_enqueue_setup(hsotg);
		} else if (using_dma(hsotg)) {
1838 1839 1840 1841
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
1842 1843 1844 1845 1846

			s3c_hsotg_handle_outdone(hsotg, idx, false);
		}
	}

1847
	if (ints & DXEPINT_EPDISBLD) {
1848 1849
		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

1850 1851 1852
		if (dir_in) {
			int epctl = readl(hsotg->regs + epctl_reg);

1853
			s3c_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
1854

1855 1856
			if ((epctl & DXEPCTL_STALL) &&
				(epctl & DXEPCTL_EPTYPE_BULK)) {
1857
				int dctl = readl(hsotg->regs + DCTL);
1858

1859
				dctl |= DCTL_CGNPINNAK;
1860
				writel(dctl, hsotg->regs + DCTL);
1861 1862 1863 1864
			}
		}
	}

1865
	if (ints & DXEPINT_AHBERR)
1866 1867
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

1868
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
1869 1870 1871
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
1872 1873
			/*
			 * this is the notification we've received a
1874 1875
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
1876 1877
			 * the setup here.
			 */
1878 1879 1880 1881 1882 1883 1884 1885

			if (dir_in)
				WARN_ON_ONCE(1);
			else
				s3c_hsotg_handle_outdone(hsotg, 0, true);
		}
	}

1886
	if (ints & DXEPINT_BACK2BACKSETUP)
1887 1888
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

1889
	if (dir_in && !hs_ep->isochronous) {
1890
		/* not sure if this is important, but we'll clear it anyway */
1891
		if (ints & DIEPMSK_INTKNTXFEMPMSK) {
1892 1893 1894 1895 1896
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
1897
		if (ints & DIEPMSK_INTKNEPMISMSK) {
1898 1899 1900
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
1901 1902 1903

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
1904
		    ints & DIEPMSK_TXFIFOEMPTY) {
1905 1906
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
1907 1908
			if (!using_dma(hsotg))
				s3c_hsotg_trytx(hsotg, hs_ep);
1909
		}
1910 1911 1912 1913 1914 1915 1916 1917 1918
	}
}

/**
 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
1919
 */
1920
static void s3c_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
1921
{
1922
	u32 dsts = readl(hsotg->regs + DSTS);
1923
	int ep0_mps = 0, ep_mps = 8;
1924

1925 1926
	/*
	 * This should signal the finish of the enumeration phase
1927
	 * of the USB handshaking, so we should now know what rate
1928 1929
	 * we connected at.
	 */
1930 1931 1932

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

1933 1934
	/*
	 * note, since we're limited by the size of transfer on EP0, and
1935
	 * it seems IN transfers must be a even number of packets we do
1936 1937
	 * not advertise a 64byte MPS on EP0.
	 */
1938 1939

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
1940 1941 1942
	switch (dsts & DSTS_ENUMSPD_MASK) {
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
1943 1944
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
1945
		ep_mps = 1023;
1946 1947
		break;

1948
	case DSTS_ENUMSPD_HS:
1949 1950
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
1951
		ep_mps = 1024;
1952 1953
		break;

1954
	case DSTS_ENUMSPD_LS:
1955
		hsotg->gadget.speed = USB_SPEED_LOW;
1956 1957
		/*
		 * note, we don't actually support LS in this driver at the
1958 1959 1960 1961 1962
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
1963 1964
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
1965

1966 1967 1968 1969
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
1970 1971 1972 1973

	if (ep0_mps) {
		int i;
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
1974
		for (i = 1; i < hsotg->num_of_eps; i++)
1975 1976 1977 1978 1979 1980 1981 1982
			s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
	}

	/* ensure after enumeration our EP0 is active */

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1983 1984
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 * @force: Force removal of any current requests
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
1997
static void kill_all_requests(struct dwc2_hsotg *hsotg,
1998 1999 2000 2001
			      struct s3c_hsotg_ep *ep,
			      int result, bool force)
{
	struct s3c_hsotg_req *req, *treq;
2002
	unsigned size;
2003 2004

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2005 2006 2007 2008
		/*
		 * currently, we can't do much about an already
		 * running request on an in endpoint
		 */
2009 2010 2011 2012 2013 2014 2015

		if (ep->req == req && ep->dir_in && !force)
			continue;

		s3c_hsotg_complete_request(hsotg, ep, req,
					   result);
	}
2016 2017 2018 2019 2020
	if (!hsotg->dedicated_fifos)
		return;
	size = (readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
	if (size < ep->fifo_size)
		s3c_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2021 2022 2023
}

/**
2024
 * s3c_hsotg_disconnect - disconnect service
2025 2026
 * @hsotg: The device state.
 *
2027 2028 2029
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2030
 */
2031
static void s3c_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2032 2033 2034
{
	unsigned ep;

2035
	for (ep = 0; ep < hsotg->num_of_eps; ep++)
2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
		kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);

	call_gadget(hsotg, disconnect);
}

/**
 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
2046
static void s3c_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2047 2048 2049 2050 2051 2052
{
	struct s3c_hsotg_ep *ep;
	int epno, ret;

	/* look through for any more data to transmit */

2053
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
		ep = &hsotg->eps[epno];

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

		ret = s3c_hsotg_trytx(hsotg, ep);
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2070 2071 2072
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
2073

2074 2075 2076 2077 2078
/**
 * s3c_hsotg_corereset - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
2079
 */
2080
static int s3c_hsotg_corereset(struct dwc2_hsotg *hsotg)
2081 2082 2083 2084 2085 2086 2087
{
	int timeout;
	u32 grstctl;

	dev_dbg(hsotg->dev, "resetting core\n");

	/* issue soft reset */
2088
	writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2089

2090
	timeout = 10000;
2091
	do {
2092
		grstctl = readl(hsotg->regs + GRSTCTL);
2093
	} while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2094

2095
	if (grstctl & GRSTCTL_CSFTRST) {
2096 2097 2098 2099
		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
		return -EINVAL;
	}

2100
	timeout = 10000;
2101 2102

	while (1) {
2103
		u32 grstctl = readl(hsotg->regs + GRSTCTL);
2104 2105 2106 2107 2108 2109 2110 2111

		if (timeout-- < 0) {
			dev_info(hsotg->dev,
				 "%s: reset failed, GRSTCTL=%08x\n",
				 __func__, grstctl);
			return -ETIMEDOUT;
		}

2112
		if (!(grstctl & GRSTCTL_AHBIDLE))
2113 2114 2115 2116 2117 2118 2119 2120 2121
			continue;

		break;		/* reset done */
	}

	dev_dbg(hsotg->dev, "reset successful\n");
	return 0;
}

2122 2123 2124 2125 2126 2127
/**
 * s3c_hsotg_core_init - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2128
static void s3c_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg)
2129 2130 2131 2132 2133 2134 2135 2136 2137
{
	s3c_hsotg_corereset(hsotg);

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2138
	writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2139
	       (0x5 << 10), hsotg->regs + GUSBCFG);
2140 2141 2142

	s3c_hsotg_init_fifo(hsotg);

2143
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2144

2145
	writel(1 << 18 | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2146 2147

	/* Clear any pending OTG interrupts */
2148
	writel(0xffffffff, hsotg->regs + GOTGINT);
2149 2150

	/* Clear any pending interrupts */
2151
	writel(0xffffffff, hsotg->regs + GINTSTS);
2152

2153 2154 2155 2156 2157 2158
	writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
		GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
		GINTSTS_USBSUSP | GINTSTS_WKUPINT,
		hsotg->regs + GINTMSK);
2159 2160

	if (using_dma(hsotg))
2161 2162
		writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
		       GAHBCFG_HBSTLEN_INCR4,
2163
		       hsotg->regs + GAHBCFG);
2164
	else
2165 2166 2167
		writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL |
						    GAHBCFG_P_TXF_EMP_LVL) : 0) |
		       GAHBCFG_GLBL_INTR_EN,
2168
		       hsotg->regs + GAHBCFG);
2169 2170

	/*
2171 2172 2173
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
2174 2175
	 */

2176 2177 2178 2179 2180 2181
	writel(((hsotg->dedicated_fifos) ? DIEPMSK_TXFIFOEMPTY |
		DIEPMSK_INTKNTXFEMPMSK : 0) |
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_INTKNEPMISMSK,
		hsotg->regs + DIEPMSK);
2182 2183 2184 2185 2186

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2187 2188 2189 2190 2191
	writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
				    DIEPMSK_TIMEOUTMSK) : 0) |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_SETUPMSK,
		hsotg->regs + DOEPMSK);
2192

2193
	writel(0, hsotg->regs + DAINTMSK);
2194 2195

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2196 2197
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2198 2199

	/* enable in and out endpoint interrupts */
2200
	s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2201 2202 2203 2204 2205 2206 2207

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2208
		s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2209 2210 2211 2212 2213

	/* Enable interrupts for EP0 in and out */
	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);

2214
	__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2215
	udelay(10);  /* see openiboot */
2216
	__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2217

2218
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2219 2220

	/*
2221
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2222 2223 2224 2225
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2226 2227
	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2228 2229

	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2230 2231
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
2232
	       hsotg->regs + DOEPCTL0);
2233 2234 2235

	/* enable, but don't activate EP0in */
	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2236
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2237 2238 2239 2240

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2241 2242
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2243 2244

	/* clear global NAKs */
2245
	writel(DCTL_CGOUTNAK | DCTL_CGNPINNAK | DCTL_SFTDISCON,
2246
	       hsotg->regs + DCTL);
2247 2248 2249 2250

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

2251
	hsotg->last_rst = jiffies;
2252 2253
}

2254
static void s3c_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2255 2256 2257 2258
{
	/* set the soft-disconnect bit */
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
2259

2260
static void s3c_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2261
{
2262
	/* remove the soft-disconnect and let's go */
2263
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2264 2265
}

2266 2267 2268 2269 2270 2271 2272
/**
 * s3c_hsotg_irq - handle device interrupt
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
{
2273
	struct dwc2_hsotg *hsotg = pw;
2274 2275 2276 2277
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

2278
	spin_lock(&hsotg->lock);
2279
irq_retry:
2280 2281
	gintsts = readl(hsotg->regs + GINTSTS);
	gintmsk = readl(hsotg->regs + GINTMSK);
2282 2283 2284 2285 2286 2287

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

2288
	if (gintsts & GINTSTS_OTGINT) {
2289
		u32 otgint = readl(hsotg->regs + GOTGINT);
2290 2291 2292

		dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);

2293
		writel(otgint, hsotg->regs + GOTGINT);
2294 2295
	}

2296
	if (gintsts & GINTSTS_SESSREQINT) {
2297
		dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
2298
		writel(GINTSTS_SESSREQINT, hsotg->regs + GINTSTS);
2299 2300
	}

2301 2302
	if (gintsts & GINTSTS_ENUMDONE) {
		writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2303 2304

		s3c_hsotg_irq_enumdone(hsotg);
2305 2306
	}

2307
	if (gintsts & GINTSTS_CONIDSTSCHNG) {
2308
		dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2309 2310
			readl(hsotg->regs + DSTS),
			readl(hsotg->regs + GOTGCTL));
2311

2312
		writel(GINTSTS_CONIDSTSCHNG, hsotg->regs + GINTSTS);
2313 2314
	}

2315
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2316
		u32 daint = readl(hsotg->regs + DAINT);
2317 2318
		u32 daintmsk = readl(hsotg->regs + DAINTMSK);
		u32 daint_out, daint_in;
2319 2320
		int ep;

2321
		daint &= daintmsk;
2322 2323
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2324

2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

		for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
			if (daint_out & 1)
				s3c_hsotg_epint(hsotg, ep, 0);
		}

		for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
			if (daint_in & 1)
				s3c_hsotg_epint(hsotg, ep, 1);
		}
	}

2338
	if (gintsts & GINTSTS_USBRST) {
2339

2340
		u32 usb_status = readl(hsotg->regs + GOTGCTL);
2341

2342 2343
		dev_info(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2344
			readl(hsotg->regs + GNPTXSTS));
2345

2346
		writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2347

2348
		if (usb_status & GOTGCTL_BSESVLD) {
2349 2350
			if (time_after(jiffies, hsotg->last_rst +
				       msecs_to_jiffies(200))) {
2351

2352 2353
				kill_all_requests(hsotg, &hsotg->eps[0],
							  -ECONNRESET, true);
2354

2355 2356
				s3c_hsotg_core_init_disconnected(hsotg);
				s3c_hsotg_core_connect(hsotg);
2357 2358
			}
		}
2359 2360 2361 2362
	}

	/* check both FIFOs */

2363
	if (gintsts & GINTSTS_NPTXFEMP) {
2364 2365
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

2366 2367
		/*
		 * Disable the interrupt to stop it happening again
2368
		 * unless one of these endpoint routines decides that
2369 2370
		 * it needs re-enabling
		 */
2371

2372
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2373 2374 2375
		s3c_hsotg_irq_fifoempty(hsotg, false);
	}

2376
	if (gintsts & GINTSTS_PTXFEMP) {
2377 2378
		dev_dbg(hsotg->dev, "PTxFEmp\n");

2379
		/* See note in GINTSTS_NPTxFEmp */
2380

2381
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2382 2383 2384
		s3c_hsotg_irq_fifoempty(hsotg, true);
	}

2385
	if (gintsts & GINTSTS_RXFLVL) {
2386 2387
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2388
		 * we need to retry s3c_hsotg_handle_rx if this is still
2389 2390
		 * set.
		 */
2391 2392 2393 2394

		s3c_hsotg_handle_rx(hsotg);
	}

2395
	if (gintsts & GINTSTS_MODEMIS) {
2396
		dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2397
		writel(GINTSTS_MODEMIS, hsotg->regs + GINTSTS);
2398 2399
	}

2400
	if (gintsts & GINTSTS_USBSUSP) {
2401
		dev_info(hsotg->dev, "GINTSTS_USBSusp\n");
2402
		writel(GINTSTS_USBSUSP, hsotg->regs + GINTSTS);
2403 2404 2405 2406

		call_gadget(hsotg, suspend);
	}

2407
	if (gintsts & GINTSTS_WKUPINT) {
2408
		dev_info(hsotg->dev, "GINTSTS_WkUpIn\n");
2409
		writel(GINTSTS_WKUPINT, hsotg->regs + GINTSTS);
2410 2411 2412 2413

		call_gadget(hsotg, resume);
	}

2414
	if (gintsts & GINTSTS_ERLYSUSP) {
2415
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2416
		writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2417 2418
	}

2419 2420
	/*
	 * these next two seem to crop-up occasionally causing the core
2421
	 * to shutdown the USB transfer, so try clearing them and logging
2422 2423
	 * the occurrence.
	 */
2424

2425
	if (gintsts & GINTSTS_GOUTNAKEFF) {
2426 2427
		dev_info(hsotg->dev, "GOUTNakEff triggered\n");

2428
		writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2429 2430

		s3c_hsotg_dump(hsotg);
2431 2432
	}

2433
	if (gintsts & GINTSTS_GINNAKEFF) {
2434 2435
		dev_info(hsotg->dev, "GINNakEff triggered\n");

2436
		writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2437 2438

		s3c_hsotg_dump(hsotg);
2439 2440
	}

2441 2442 2443 2444
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
2445 2446 2447 2448

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

2449 2450
	spin_unlock(&hsotg->lock);

2451 2452 2453 2454 2455 2456 2457 2458 2459
	return IRQ_HANDLED;
}

/**
 * s3c_hsotg_ep_enable - enable the given endpoint
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
2460
 */
2461 2462 2463 2464
static int s3c_hsotg_ep_enable(struct usb_ep *ep,
			       const struct usb_endpoint_descriptor *desc)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2465
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2466 2467 2468 2469 2470 2471
	unsigned long flags;
	int index = hs_ep->index;
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
	int dir_in;
2472
	int i, val, size;
2473
	int ret = 0;
2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
	WARN_ON(index == 0);

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

2489
	mps = usb_endpoint_maxp(desc);
2490 2491 2492

	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */

2493
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2494 2495 2496 2497 2498
	epctrl = readl(hsotg->regs + epctrl_reg);

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

2499
	spin_lock_irqsave(&hsotg->lock, flags);
2500

2501 2502
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
2503

2504 2505 2506 2507
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
2508
	epctrl |= DXEPCTL_USBACTEP;
2509

2510 2511
	/*
	 * set the NAK status on the endpoint, otherwise we might try and
2512 2513 2514 2515 2516
	 * do something with data that we've yet got a request to process
	 * since the RXFIFO will take data for an endpoint even if the
	 * size register hasn't been set.
	 */

2517
	epctrl |= DXEPCTL_SNAK;
2518 2519

	/* update the endpoint state */
2520
	s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps);
2521 2522

	/* default, set to non-periodic */
2523
	hs_ep->isochronous = 0;
2524
	hs_ep->periodic = 0;
2525
	hs_ep->halted = 0;
2526
	hs_ep->interval = desc->bInterval;
2527

2528 2529 2530
	if (hs_ep->interval > 1 && hs_ep->mc > 1)
		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");

2531 2532
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
2533 2534
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
2535 2536 2537 2538
		hs_ep->isochronous = 1;
		if (dir_in)
			hs_ep->periodic = 1;
		break;
2539 2540

	case USB_ENDPOINT_XFER_BULK:
2541
		epctrl |= DXEPCTL_EPTYPE_BULK;
2542 2543 2544
		break;

	case USB_ENDPOINT_XFER_INT:
2545
		if (dir_in)
2546 2547
			hs_ep->periodic = 1;

2548
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2549 2550 2551
		break;

	case USB_ENDPOINT_XFER_CONTROL:
2552
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2553 2554 2555
		break;
	}

2556 2557
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
2558 2559
	 * a unique tx-fifo even if it is non-periodic.
	 */
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
	if (dir_in && hsotg->dedicated_fifos) {
		size = hs_ep->ep.maxpacket*hs_ep->mc;
		for (i = 1; i <= 8; ++i) {
			if (hsotg->fifo_map & (1<<i))
				continue;
			val = readl(hsotg->regs + DPTXFSIZN(i));
			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
			if (val < size)
				continue;
			hsotg->fifo_map |= 1<<i;

			epctrl |= DXEPCTL_TXFNUM(i);
			hs_ep->fifo_index = i;
			hs_ep->fifo_size = val;
			break;
		}
2576 2577 2578 2579
		if (i == 8) {
			ret = -ENOMEM;
			goto error;
		}
2580
	}
2581

2582 2583
	/* for non control endpoints, set PID to D0 */
	if (index)
2584
		epctrl |= DXEPCTL_SETD0PID;
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

	writel(epctrl, hsotg->regs + epctrl_reg);
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
		__func__, readl(hsotg->regs + epctrl_reg));

	/* enable the endpoint interrupt */
	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);

2596
error:
2597
	spin_unlock_irqrestore(&hsotg->lock, flags);
2598
	return ret;
2599 2600
}

2601 2602 2603 2604
/**
 * s3c_hsotg_ep_disable - disable given endpoint
 * @ep: The endpoint to disable.
 */
2605 2606 2607
static int s3c_hsotg_ep_disable(struct usb_ep *ep)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2608
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2609 2610 2611 2612 2613 2614
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

2615
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2616 2617 2618 2619 2620 2621

	if (ep == &hsotg->eps[0].ep) {
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

2622
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2623

2624
	spin_lock_irqsave(&hsotg->lock, flags);
2625 2626 2627
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);

2628 2629 2630
	hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;
2631 2632

	ctrl = readl(hsotg->regs + epctrl_reg);
2633 2634 2635
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
2636 2637 2638 2639 2640 2641 2642

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

	/* disable endpoint interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);

2643
	spin_unlock_irqrestore(&hsotg->lock, flags);
2644 2645 2646 2647 2648 2649 2650
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
2651
 */
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
{
	struct s3c_hsotg_req *req, *treq;

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

2664 2665 2666 2667 2668
/**
 * s3c_hsotg_ep_dequeue - dequeue given endpoint
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
2669 2670 2671 2672
static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2673
	struct dwc2_hsotg *hs = hs_ep->parent;
2674 2675
	unsigned long flags;

2676
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2677

2678
	spin_lock_irqsave(&hs->lock, flags);
2679 2680

	if (!on_list(hs_ep, hs_req)) {
2681
		spin_unlock_irqrestore(&hs->lock, flags);
2682 2683 2684 2685
		return -EINVAL;
	}

	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2686
	spin_unlock_irqrestore(&hs->lock, flags);
2687 2688 2689 2690

	return 0;
}

2691 2692 2693 2694 2695
/**
 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
2696 2697 2698
static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2699
	struct dwc2_hsotg *hs = hs_ep->parent;
2700 2701 2702
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
2703
	u32 xfertype;
2704 2705 2706

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

2707 2708 2709 2710 2711 2712 2713 2714 2715
	if (index == 0) {
		if (value)
			s3c_hsotg_stall_ep0(hs);
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

2716 2717
	/* write both IN and OUT control registers */

2718
	epreg = DIEPCTL(index);
2719 2720
	epctl = readl(hs->regs + epreg);

2721
	if (value) {
2722 2723 2724
		epctl |= DXEPCTL_STALL + DXEPCTL_SNAK;
		if (epctl & DXEPCTL_EPENA)
			epctl |= DXEPCTL_EPDIS;
2725
	} else {
2726 2727 2728 2729 2730
		epctl &= ~DXEPCTL_STALL;
		xfertype = epctl & DXEPCTL_EPTYPE_MASK;
		if (xfertype == DXEPCTL_EPTYPE_BULK ||
			xfertype == DXEPCTL_EPTYPE_INTERRUPT)
				epctl |= DXEPCTL_SETD0PID;
2731
	}
2732 2733 2734

	writel(epctl, hs->regs + epreg);

2735
	epreg = DOEPCTL(index);
2736 2737 2738
	epctl = readl(hs->regs + epreg);

	if (value)
2739
		epctl |= DXEPCTL_STALL;
2740
	else {
2741 2742 2743 2744 2745
		epctl &= ~DXEPCTL_STALL;
		xfertype = epctl & DXEPCTL_EPTYPE_MASK;
		if (xfertype == DXEPCTL_EPTYPE_BULK ||
			xfertype == DXEPCTL_EPTYPE_INTERRUPT)
				epctl |= DXEPCTL_SETD0PID;
2746
	}
2747 2748 2749

	writel(epctl, hs->regs + epreg);

2750 2751
	hs_ep->halted = value;

2752 2753 2754
	return 0;
}

2755 2756 2757 2758 2759 2760 2761 2762
/**
 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2763
	struct dwc2_hsotg *hs = hs_ep->parent;
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_sethalt(ep, value);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

2774 2775 2776 2777 2778
static struct usb_ep_ops s3c_hsotg_ep_ops = {
	.enable		= s3c_hsotg_ep_enable,
	.disable	= s3c_hsotg_ep_disable,
	.alloc_request	= s3c_hsotg_ep_alloc_request,
	.free_request	= s3c_hsotg_ep_free_request,
2779
	.queue		= s3c_hsotg_ep_queue_lock,
2780
	.dequeue	= s3c_hsotg_ep_dequeue,
2781
	.set_halt	= s3c_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
2782
	/* note, don't believe we have any call for the fifo routines */
2783 2784
};

2785 2786
/**
 * s3c_hsotg_phy_enable - enable platform phy dev
2787
 * @hsotg: The driver state
2788 2789 2790 2791
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
2792
static void s3c_hsotg_phy_enable(struct dwc2_hsotg *hsotg)
2793 2794 2795 2796
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

	dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2797

2798
	if (hsotg->uphy)
2799
		usb_phy_init(hsotg->uphy);
2800
	else if (hsotg->plat && hsotg->plat->phy_init)
2801
		hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2802 2803 2804 2805
	else {
		phy_init(hsotg->phy);
		phy_power_on(hsotg->phy);
	}
2806 2807 2808 2809
}

/**
 * s3c_hsotg_phy_disable - disable platform phy dev
2810
 * @hsotg: The driver state
2811 2812 2813 2814
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
2815
static void s3c_hsotg_phy_disable(struct dwc2_hsotg *hsotg)
2816 2817 2818
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

2819
	if (hsotg->uphy)
2820
		usb_phy_shutdown(hsotg->uphy);
2821
	else if (hsotg->plat && hsotg->plat->phy_exit)
2822
		hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2823 2824 2825 2826
	else {
		phy_power_off(hsotg->phy);
		phy_exit(hsotg->phy);
	}
2827 2828
}

2829 2830 2831 2832
/**
 * s3c_hsotg_init - initalize the usb core
 * @hsotg: The driver state
 */
2833
static void s3c_hsotg_init(struct dwc2_hsotg *hsotg)
2834 2835 2836
{
	/* unmask subset of endpoint interrupts */

2837 2838 2839
	writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		hsotg->regs + DIEPMSK);
2840

2841 2842 2843
	writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		hsotg->regs + DOEPMSK);
2844

2845
	writel(0, hsotg->regs + DAINTMSK);
2846 2847

	/* Be in disconnected state until gadget is registered */
2848
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2849 2850 2851

	if (0) {
		/* post global nak until we're ready */
2852
		writel(DCTL_SGNPINNAK | DCTL_SGOUTNAK,
2853
		       hsotg->regs + DCTL);
2854 2855 2856 2857 2858
	}

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2859 2860
		readl(hsotg->regs + GRXFSIZ),
		readl(hsotg->regs + GNPTXFSIZ));
2861 2862 2863 2864

	s3c_hsotg_init_fifo(hsotg);

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2865
	writel(GUSBCFG_PHYIF16 | GUSBCFG_TOUTCAL(7) | (0x5 << 10),
2866
	       hsotg->regs + GUSBCFG);
2867

2868
	writel(using_dma(hsotg) ? GAHBCFG_DMA_EN : 0x0,
2869
	       hsotg->regs + GAHBCFG);
2870 2871
}

2872 2873 2874 2875 2876 2877 2878 2879
/**
 * s3c_hsotg_udc_start - prepare the udc for work
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
2880 2881
static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
			   struct usb_gadget_driver *driver)
2882
{
2883
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2884
	unsigned long flags;
2885 2886 2887
	int ret;

	if (!hsotg) {
2888
		pr_err("%s: called with no device\n", __func__);
2889 2890 2891 2892 2893 2894 2895 2896
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

2897
	if (driver->max_speed < USB_SPEED_FULL)
2898 2899
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

2900
	if (!driver->setup) {
2901 2902 2903 2904 2905 2906 2907 2908
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
2909
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
2910 2911
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

2912 2913
	clk_enable(hsotg->clk);

2914 2915
	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
2916
	if (ret) {
2917
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
2918 2919 2920
		goto err;
	}

2921 2922
	s3c_hsotg_phy_enable(hsotg);

2923 2924 2925 2926 2927
	spin_lock_irqsave(&hsotg->lock, flags);
	s3c_hsotg_init(hsotg);
	s3c_hsotg_core_init_disconnected(hsotg);
	spin_unlock_irqrestore(&hsotg->lock, flags);

2928
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
2929

2930 2931 2932 2933 2934 2935 2936
	return 0;

err:
	hsotg->driver = NULL;
	return ret;
}

2937 2938 2939 2940 2941 2942 2943
/**
 * s3c_hsotg_udc_stop - stop the udc
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
2944
static int s3c_hsotg_udc_stop(struct usb_gadget *gadget)
2945
{
2946
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2947
	unsigned long flags = 0;
2948 2949 2950 2951 2952 2953
	int ep;

	if (!hsotg)
		return -ENODEV;

	/* all endpoints should be shutdown */
2954
	for (ep = 1; ep < hsotg->num_of_eps; ep++)
2955 2956
		s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);

2957 2958
	spin_lock_irqsave(&hsotg->lock, flags);

2959
	hsotg->driver = NULL;
2960 2961
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

2962 2963
	spin_unlock_irqrestore(&hsotg->lock, flags);

2964 2965
	s3c_hsotg_phy_disable(hsotg);

2966
	regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
2967

2968 2969
	clk_disable(hsotg->clk);

2970 2971 2972
	return 0;
}

2973 2974 2975 2976 2977 2978
/**
 * s3c_hsotg_gadget_getframe - read the frame number
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
2979 2980 2981 2982 2983
static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
{
	return s3c_hsotg_read_frameno(to_hsotg(gadget));
}

2984 2985 2986 2987 2988 2989 2990 2991 2992
/**
 * s3c_hsotg_pullup - connect/disconnect the USB PHY
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
{
2993
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2994 2995
	unsigned long flags = 0;

2996
	dev_dbg(hsotg->dev, "%s: is_on: %d\n", __func__, is_on);
2997 2998 2999

	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
3000
		clk_enable(hsotg->clk);
3001
		s3c_hsotg_core_connect(hsotg);
3002
	} else {
3003
		s3c_hsotg_core_disconnect(hsotg);
3004
		clk_disable(hsotg->clk);
3005 3006 3007 3008 3009 3010 3011 3012
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return 0;
}

3013
static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
3014
	.get_frame	= s3c_hsotg_gadget_getframe,
3015 3016
	.udc_start		= s3c_hsotg_udc_start,
	.udc_stop		= s3c_hsotg_udc_stop,
3017
	.pullup                 = s3c_hsotg_pullup,
3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
};

/**
 * s3c_hsotg_initep - initialise a single endpoint
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
3030
static void s3c_hsotg_initep(struct dwc2_hsotg *hsotg,
3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
				       struct s3c_hsotg_ep *hs_ep,
				       int epnum)
{
	char *dir;

	if (epnum == 0)
		dir = "";
	else if ((epnum % 2) == 0) {
		dir = "out";
	} else {
		dir = "in";
		hs_ep->dir_in = 1;
	}

	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
3058
	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3059 3060
	hs_ep->ep.ops = &s3c_hsotg_ep_ops;

3061 3062
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
3063 3064 3065 3066
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
3067
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3068 3069
		writel(next, hsotg->regs + DIEPCTL(epnum));
		writel(next, hsotg->regs + DOEPCTL(epnum));
3070 3071 3072
	}
}

3073 3074 3075 3076 3077 3078
/**
 * s3c_hsotg_hw_cfg - read HW configuration registers
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
3079
static void s3c_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3080
{
3081
	u32 cfg2, cfg3, cfg4;
3082
	/* check hardware configuration */
3083

3084 3085
	cfg2 = readl(hsotg->regs + 0x48);
	hsotg->num_of_eps = (cfg2 >> 10) & 0xF;
3086

3087 3088
	cfg3 = readl(hsotg->regs + 0x4C);
	hsotg->fifo_mem = (cfg3 >> 16);
3089 3090 3091 3092

	cfg4 = readl(hsotg->regs + 0x50);
	hsotg->dedicated_fifos = (cfg4 >> 25) & 1;

3093 3094 3095 3096
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
3097 3098
}

3099 3100 3101 3102
/**
 * s3c_hsotg_dump - dump state of the udc
 * @param: The device state
 */
3103
static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg)
3104
{
M
Mark Brown 已提交
3105
#ifdef DEBUG
3106 3107 3108 3109 3110 3111
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3112 3113
		 readl(regs + DCFG), readl(regs + DCTL),
		 readl(regs + DIEPMSK));
3114 3115

	dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3116
		 readl(regs + GAHBCFG), readl(regs + 0x44));
3117 3118

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3119
		 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3120 3121 3122 3123

	/* show periodic fifo settings */

	for (idx = 1; idx <= 15; idx++) {
3124
		val = readl(regs + DPTXFSIZN(idx));
3125
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3126 3127
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
3128 3129 3130 3131 3132
	}

	for (idx = 0; idx < 15; idx++) {
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3133 3134 3135
			 readl(regs + DIEPCTL(idx)),
			 readl(regs + DIEPTSIZ(idx)),
			 readl(regs + DIEPDMA(idx)));
3136

3137
		val = readl(regs + DOEPCTL(idx));
3138 3139
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3140 3141 3142
			 idx, readl(regs + DOEPCTL(idx)),
			 readl(regs + DOEPTSIZ(idx)),
			 readl(regs + DOEPDMA(idx)));
3143 3144 3145 3146

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3147
		 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
3148
#endif
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161
}

/**
 * state_show - debugfs: show overall driver and device state.
 * @seq: The seq file to write to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the overall state of the hardware and
 * some general information about each of the endpoints available
 * to the system.
 */
static int state_show(struct seq_file *seq, void *v)
{
3162
	struct dwc2_hsotg *hsotg = seq->private;
3163 3164 3165 3166
	void __iomem *regs = hsotg->regs;
	int idx;

	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3167 3168 3169
		 readl(regs + DCFG),
		 readl(regs + DCTL),
		 readl(regs + DSTS));
3170 3171

	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3172
		   readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3173 3174

	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3175 3176
		   readl(regs + GINTMSK),
		   readl(regs + GINTSTS));
3177 3178

	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3179 3180
		   readl(regs + DAINTMSK),
		   readl(regs + DAINT));
3181 3182

	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3183 3184
		   readl(regs + GNPTXSTS),
		   readl(regs + GRXSTSR));
3185

3186
	seq_puts(seq, "\nEndpoint status:\n");
3187 3188 3189 3190

	for (idx = 0; idx < 15; idx++) {
		u32 in, out;

3191 3192
		in = readl(regs + DIEPCTL(idx));
		out = readl(regs + DOEPCTL(idx));
3193 3194 3195 3196

		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
			   idx, in, out);

3197 3198
		in = readl(regs + DIEPTSIZ(idx));
		out = readl(regs + DOEPTSIZ(idx));
3199 3200 3201 3202

		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
			   in, out);

3203
		seq_puts(seq, "\n");
3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
	}

	return 0;
}

static int state_open(struct inode *inode, struct file *file)
{
	return single_open(file, state_show, inode->i_private);
}

static const struct file_operations state_fops = {
	.owner		= THIS_MODULE,
	.open		= state_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * fifo_show - debugfs: show the fifo information
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * Show the FIFO information for the overall fifo and all the
 * periodic transmission FIFOs.
3229
 */
3230 3231
static int fifo_show(struct seq_file *seq, void *v)
{
3232
	struct dwc2_hsotg *hsotg = seq->private;
3233 3234 3235 3236
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

3237
	seq_puts(seq, "Non-periodic FIFOs:\n");
3238
	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3239

3240
	val = readl(regs + GNPTXFSIZ);
3241
	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3242 3243
		   val >> FIFOSIZE_DEPTH_SHIFT,
		   val & FIFOSIZE_DEPTH_MASK);
3244

3245
	seq_puts(seq, "\nPeriodic TXFIFOs:\n");
3246 3247

	for (idx = 1; idx <= 15; idx++) {
3248
		val = readl(regs + DPTXFSIZN(idx));
3249 3250

		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3251 3252
			   val >> FIFOSIZE_DEPTH_SHIFT,
			   val & FIFOSIZE_STARTADDR_MASK);
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283
	}

	return 0;
}

static int fifo_open(struct inode *inode, struct file *file)
{
	return single_open(file, fifo_show, inode->i_private);
}

static const struct file_operations fifo_fops = {
	.owner		= THIS_MODULE,
	.open		= fifo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};


static const char *decode_direction(int is_in)
{
	return is_in ? "in" : "out";
}

/**
 * ep_show - debugfs: show the state of an endpoint.
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the state of the given endpoint (one is
 * registered for each available).
3284
 */
3285 3286 3287
static int ep_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg_ep *ep = seq->private;
3288
	struct dwc2_hsotg *hsotg = ep->parent;
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300
	struct s3c_hsotg_req *req;
	void __iomem *regs = hsotg->regs;
	int index = ep->index;
	int show_limit = 15;
	unsigned long flags;

	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
		   ep->index, ep->ep.name, decode_direction(ep->dir_in));

	/* first show the register state */

	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3301 3302
		   readl(regs + DIEPCTL(index)),
		   readl(regs + DOEPCTL(index)));
3303 3304

	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3305 3306
		   readl(regs + DIEPDMA(index)),
		   readl(regs + DOEPDMA(index)));
3307 3308

	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3309 3310
		   readl(regs + DIEPINT(index)),
		   readl(regs + DOEPINT(index)));
3311 3312

	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3313 3314
		   readl(regs + DIEPTSIZ(index)),
		   readl(regs + DOEPTSIZ(index)));
3315

3316
	seq_puts(seq, "\n");
3317 3318 3319 3320 3321 3322
	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
	seq_printf(seq, "total_data=%ld\n", ep->total_data);

	seq_printf(seq, "request list (%p,%p):\n",
		   ep->queue.next, ep->queue.prev);

3323
	spin_lock_irqsave(&hsotg->lock, flags);
3324 3325 3326

	list_for_each_entry(req, &ep->queue, queue) {
		if (--show_limit < 0) {
3327
			seq_puts(seq, "not showing more requests...\n");
3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
			break;
		}

		seq_printf(seq, "%c req %p: %d bytes @%p, ",
			   req == ep->req ? '*' : ' ',
			   req, req->req.length, req->req.buf);
		seq_printf(seq, "%d done, res %d\n",
			   req->req.actual, req->req.status);
	}

3338
	spin_unlock_irqrestore(&hsotg->lock, flags);
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363

	return 0;
}

static int ep_open(struct inode *inode, struct file *file)
{
	return single_open(file, ep_show, inode->i_private);
}

static const struct file_operations ep_fops = {
	.owner		= THIS_MODULE,
	.open		= ep_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * s3c_hsotg_create_debug - create debugfs directory and files
 * @hsotg: The driver state
 *
 * Create the debugfs files to allow the user to get information
 * about the state of the system. The directory name is created
 * with the same name as the device itself, in case we end up
 * with multiple blocks in future systems.
3364
 */
3365
static void s3c_hsotg_create_debug(struct dwc2_hsotg *hsotg)
3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392
{
	struct dentry *root;
	unsigned epidx;

	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
	hsotg->debug_root = root;
	if (IS_ERR(root)) {
		dev_err(hsotg->dev, "cannot create debug root\n");
		return;
	}

	/* create general state file */

	hsotg->debug_file = debugfs_create_file("state", 0444, root,
						hsotg, &state_fops);

	if (IS_ERR(hsotg->debug_file))
		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);

	hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
						hsotg, &fifo_fops);

	if (IS_ERR(hsotg->debug_fifo))
		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);

	/* create one file for each endpoint */

3393
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409
		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];

		ep->debugfs = debugfs_create_file(ep->name, 0444,
						  root, ep, &ep_fops);

		if (IS_ERR(ep->debugfs))
			dev_err(hsotg->dev, "failed to create %s debug file\n",
				ep->name);
	}
}

/**
 * s3c_hsotg_delete_debug - cleanup debugfs entries
 * @hsotg: The driver state
 *
 * Cleanup (remove) the debugfs files for use on module exit.
3410
 */
3411
static void s3c_hsotg_delete_debug(struct dwc2_hsotg *hsotg)
3412 3413 3414
{
	unsigned epidx;

3415
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3416 3417 3418 3419 3420 3421 3422 3423 3424
		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
		debugfs_remove(ep->debugfs);
	}

	debugfs_remove(hsotg->debug_file);
	debugfs_remove(hsotg->debug_fifo);
	debugfs_remove(hsotg->debug_root);
}

3425
/**
3426 3427 3428
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
 * @irq: The IRQ number for the controller.
3429
 */
3430
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3431
{
3432 3433
	struct device *dev = hsotg->dev;
	struct s3c_hsotg_plat *plat = dev->platform_data;
3434 3435
	struct phy *phy;
	struct usb_phy *uphy;
3436
	struct s3c_hsotg_ep *eps;
3437 3438
	int epnum;
	int ret;
3439
	int i;
3440

3441 3442 3443
	/* Set default UTMI width */
	hsotg->phyif = GUSBCFG_PHYIF16;

3444 3445 3446 3447
	/*
	 * Attempt to find a generic PHY, then look for an old style
	 * USB PHY, finally fall back to pdata
	 */
3448
	phy = devm_phy_get(dev, "usb2-phy");
3449
	if (IS_ERR(phy)) {
3450 3451 3452
		uphy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2);
		if (IS_ERR(uphy)) {
			/* Fallback for pdata */
3453
			plat = dev_get_platdata(dev);
3454
			if (!plat) {
3455
				dev_err(dev,
3456 3457 3458
				"no platform data or transceiver defined\n");
				return -EPROBE_DEFER;
			}
3459
			hsotg->plat = plat;
3460 3461
		} else
			hsotg->uphy = uphy;
3462
	} else {
3463
		hsotg->phy = phy;
3464 3465 3466 3467 3468 3469 3470
		/*
		 * If using the generic PHY framework, check if the PHY bus
		 * width is 8-bit and set the phyif appropriately.
		 */
		if (phy_get_bus_width(phy) == 8)
			hsotg->phyif = GUSBCFG_PHYIF8;
	}
3471

3472
	hsotg->clk = devm_clk_get(dev, "otg");
3473 3474
	if (IS_ERR(hsotg->clk)) {
		dev_err(dev, "cannot get otg clock\n");
3475
		return PTR_ERR(hsotg->clk);
3476 3477
	}

3478
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3479 3480 3481 3482 3483
	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
	hsotg->gadget.name = dev_name(dev);

	/* reset the system */

3484
	clk_prepare_enable(hsotg->clk);
3485

3486 3487 3488 3489 3490
	/* regulators */

	for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
		hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];

3491
	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3492 3493
				 hsotg->supplies);
	if (ret) {
3494
		dev_err(dev, "failed to request supplies: %d\n", ret);
3495
		goto err_clk;
3496 3497 3498 3499 3500 3501
	}

	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);

	if (ret) {
3502
		dev_err(dev, "failed to enable supplies: %d\n", ret);
3503 3504 3505
		goto err_supplies;
	}

3506 3507
	/* usb phy enable */
	s3c_hsotg_phy_enable(hsotg);
3508 3509

	s3c_hsotg_corereset(hsotg);
3510
	s3c_hsotg_hw_cfg(hsotg);
3511
	s3c_hsotg_init(hsotg);
3512

3513
	ret = devm_request_irq(dev, irq, s3c_hsotg_irq, 0,
3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
				dev_name(dev), hsotg);
	if (ret < 0) {
		s3c_hsotg_phy_disable(hsotg);
		clk_disable_unprepare(hsotg->clk);
		regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				       hsotg->supplies);
		dev_err(dev, "cannot claim IRQ\n");
		goto err_clk;
	}

3524 3525 3526 3527
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
3528
		ret = -EINVAL;
3529 3530 3531 3532 3533 3534
		goto err_supplies;
	}

	eps = kcalloc(hsotg->num_of_eps + 1, sizeof(struct s3c_hsotg_ep),
		      GFP_KERNEL);
	if (!eps) {
3535
		ret = -ENOMEM;
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
		goto err_supplies;
	}

	hsotg->eps = eps;

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
	hsotg->gadget.ep0 = &hsotg->eps[0].ep;

	/* allocate EP0 request */

	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
3552
		ret = -ENOMEM;
3553 3554
		goto err_ep_mem;
	}
3555 3556

	/* initialise the endpoints now the core has been initialised */
3557
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++)
3558 3559
		s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);

3560
	/* disable power and clock */
3561
	s3c_hsotg_phy_disable(hsotg);
3562 3563 3564 3565

	ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
	if (ret) {
3566
		dev_err(dev, "failed to disable supplies: %d\n", ret);
3567 3568 3569
		goto err_ep_mem;
	}

3570
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3571
	if (ret)
3572
		goto err_ep_mem;
3573

3574 3575 3576 3577 3578 3579
	s3c_hsotg_create_debug(hsotg);

	s3c_hsotg_dump(hsotg);

	return 0;

3580
err_ep_mem:
3581
	kfree(eps);
3582
err_supplies:
3583
	s3c_hsotg_phy_disable(hsotg);
3584
err_clk:
3585
	clk_disable_unprepare(hsotg->clk);
3586

3587 3588
	return ret;
}
3589
EXPORT_SYMBOL_GPL(dwc2_gadget_init);
3590

3591 3592 3593 3594
/**
 * s3c_hsotg_remove - remove function for hsotg driver
 * @pdev: The platform information for the driver
 */
3595
int s3c_hsotg_remove(struct dwc2_hsotg *hsotg)
3596
{
3597
	usb_del_gadget_udc(&hsotg->gadget);
3598
	s3c_hsotg_delete_debug(hsotg);
3599
	clk_disable_unprepare(hsotg->clk);
3600

3601 3602
	return 0;
}
3603
EXPORT_SYMBOL_GPL(s3c_hsotg_remove);
3604

3605
int s3c_hsotg_suspend(struct dwc2_hsotg *hsotg)
3606 3607 3608 3609 3610 3611 3612 3613 3614
{
	unsigned long flags;
	int ret = 0;

	if (hsotg->driver)
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

	spin_lock_irqsave(&hsotg->lock, flags);
3615
	s3c_hsotg_core_disconnect(hsotg);
3616 3617 3618 3619
	s3c_hsotg_disconnect(hsotg);
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

3620 3621
	s3c_hsotg_phy_disable(hsotg);

3622 3623 3624 3625 3626 3627 3628
	if (hsotg->driver) {
		int ep;
		for (ep = 0; ep < hsotg->num_of_eps; ep++)
			s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);

		ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
					     hsotg->supplies);
3629
		clk_disable(hsotg->clk);
3630 3631 3632 3633
	}

	return ret;
}
3634
EXPORT_SYMBOL_GPL(s3c_hsotg_suspend);
3635

3636
int s3c_hsotg_resume(struct dwc2_hsotg *hsotg)
3637 3638 3639 3640 3641 3642 3643
{
	unsigned long flags;
	int ret = 0;

	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
3644 3645

		clk_enable(hsotg->clk);
3646 3647 3648 3649 3650
		ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				      hsotg->supplies);
	}

	s3c_hsotg_phy_enable(hsotg);
3651 3652

	spin_lock_irqsave(&hsotg->lock, flags);
3653 3654
	s3c_hsotg_core_init_disconnected(hsotg);
	s3c_hsotg_core_connect(hsotg);
3655 3656 3657 3658
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return ret;
}
3659
EXPORT_SYMBOL_GPL(s3c_hsotg_resume);