gadget.c 94.2 KB
Newer Older
1
/**
2 3
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
15
 */
16 17 18 19 20 21 22 23

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/debugfs.h>
24
#include <linux/mutex.h>
25 26 27
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
28
#include <linux/slab.h>
29
#include <linux/clk.h>
30
#include <linux/regulator/consumer.h>
31
#include <linux/of_platform.h>
32
#include <linux/phy/phy.h>
33 34 35

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
36
#include <linux/usb/phy.h>
37
#include <linux/platform_data/s3c-hsotg.h>
38

39
#include "core.h"
40
#include "hw.h"
41 42 43 44 45 46 47 48 49 50 51 52

/* conversion functions */
static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
{
	return container_of(req, struct s3c_hsotg_req, req);
}

static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
{
	return container_of(ep, struct s3c_hsotg_ep, ep);
}

53
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
54
{
55
	return container_of(gadget, struct dwc2_hsotg, gadget);
56 57 58 59 60 61 62 63 64 65 66 67
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) | val, ptr);
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) & ~val, ptr);
}

68 69 70 71 72 73 74 75 76
static inline struct s3c_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
						u32 ep_index, u32 dir_in)
{
	if (dir_in)
		return hsotg->eps_in[ep_index];
	else
		return hsotg->eps_out[ep_index];
}

77
/* forward declaration of functions */
78
static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg);
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
97
 * g_using_dma is set depending on dts flag.
98
 */
99
static inline bool using_dma(struct dwc2_hsotg *hsotg)
100
{
101
	return hsotg->g_using_dma;
102 103 104 105 106 107 108
}

/**
 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
109
static void s3c_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
110
{
111
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
112 113 114 115 116 117
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
118
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
119 120 121 122 123 124 125 126
	}
}

/**
 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
127
static void s3c_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
128
{
129
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
130 131 132 133 134
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
135
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
136 137 138 139 140 141 142 143 144 145 146 147
}

/**
 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
148
static void s3c_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
149 150 151 152 153 154 155 156 157 158 159
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
160
	daint = readl(hsotg->regs + DAINTMSK);
161 162 163 164
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
165
	writel(daint, hsotg->regs + DAINTMSK);
166 167 168 169 170 171 172
	local_irq_restore(flags);
}

/**
 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
 * @hsotg: The device instance.
 */
173
static void s3c_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
174
{
175 176
	unsigned int ep;
	unsigned int addr;
177
	int timeout;
178 179
	u32 val;

180 181 182 183 184
	/* set RX/NPTX FIFO sizes */
	writel(hsotg->g_rx_fifo_sz, hsotg->regs + GRXFSIZ);
	writel((hsotg->g_rx_fifo_sz << FIFOSIZE_STARTADDR_SHIFT) |
		(hsotg->g_np_g_tx_fifo_sz << FIFOSIZE_DEPTH_SHIFT),
		hsotg->regs + GNPTXFSIZ);
185

186 187
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
188 189
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
190 191
	 * known values.
	 */
192 193

	/* start at the end of the GNPTXFSIZ, rounded up */
194
	addr = hsotg->g_rx_fifo_sz + hsotg->g_np_g_tx_fifo_sz;
195

196
	/*
197
	 * Configure fifos sizes from provided configuration and assign
198 199
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
200
	 */
201 202 203
	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
		if (!hsotg->g_tx_fifo_sz[ep])
			continue;
204
		val = addr;
205 206
		val |= hsotg->g_tx_fifo_sz[ep] << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + hsotg->g_tx_fifo_sz[ep] > hsotg->fifo_mem,
207
			  "insufficient fifo memory");
208
		addr += hsotg->g_tx_fifo_sz[ep];
209

210
		writel(val, hsotg->regs + DPTXFSIZN(ep));
211
	}
212

213 214 215 216
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
217

218 219
	writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
220 221 222 223

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
224
		val = readl(hsotg->regs + GRSTCTL);
225

226
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
227 228 229 230 231 232
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
233
			break;
234 235 236 237 238 239
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
240 241 242 243 244 245 246 247
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
248 249
static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
						      gfp_t flags)
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
{
	struct s3c_hsotg_req *req;

	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
{
	return hs_ep->periodic;
}

/**
 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
 * of a request to ensure the buffer is ready for access by the caller.
282
 */
283
static void s3c_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
284 285 286 287 288 289 290 291 292
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

293
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
}

/**
 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
311
 */
312
static int s3c_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
313 314 315 316
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	bool periodic = is_ep_periodic(hs_ep);
317
	u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
318 319 320 321 322
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
323
	int max_transfer;
324 325 326 327 328 329 330

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

331
	if (periodic && !hsotg->dedicated_fifos) {
332
		u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
333 334 335
		int size_left;
		int size_done;

336 337 338 339
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
340

341
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
342

343 344
		/*
		 * if shared fifo, we cannot write anything until the
345 346 347
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
348
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
349 350 351
			return -ENOSPC;
		}

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
369
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
370 371
			return -ENOSPC;
		}
372
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
373
		can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
374 375 376

		can_write &= 0xffff;
		can_write *= 4;
377
	} else {
378
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
379 380 381 382
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

383
			s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
384 385 386
			return -ENOSPC;
		}

387
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
388
		can_write *= 4;	/* fifo size is in 32bit quantities. */
389 390
	}

391 392 393 394
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
		 __func__, gnptxsts, can_write, to_write, max_transfer);
395

396 397
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
398 399 400
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
401
	if (can_write > 512 && !periodic)
402 403
		can_write = 512;

404 405
	/*
	 * limit the write to one max-packet size worth of data, but allow
406
	 * the transfer to return that it did not run out of fifo space
407 408
	 * doing it.
	 */
409 410
	if (to_write > max_transfer) {
		to_write = max_transfer;
411

412 413 414
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
415 416
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
417 418
	}

419 420 421 422
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
423
		pkt_round = to_write % max_transfer;
424

425 426
		/*
		 * Round the write down to an
427 428 429 430 431 432 433 434 435
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

436 437 438 439
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
440

441 442 443
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
444 445
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

463
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
482 483
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
484
	} else {
485
		maxsize = 64+64;
486
		if (hs_ep->dir_in)
487
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
488
		else
489 490 491 492 493 494 495
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

496 497 498 499
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

/**
 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
517
static void s3c_hsotg_start_req(struct dwc2_hsotg *hsotg,
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req,
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

546 547
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
548 549 550 551 552

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
		__func__, readl(hsotg->regs + epctrl_reg), index,
		hs_ep->dir_in ? "in" : "out");

553 554 555
	/* If endpoint is stalled, we will restart request later */
	ctrl = readl(hsotg->regs + epctrl_reg);

556
	if (ctrl & DXEPCTL_STALL) {
557 558 559 560
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

561
	length = ureq->length - ureq->actual;
562 563
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
564 565
	if (0)
		dev_dbg(hsotg->dev,
566
			"REQ buf %p len %d dma %pad noi=%d zp=%d snok=%d\n",
567
			ureq->buf, length, &ureq->dma,
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
			ureq->no_interrupt, ureq->zero, ureq->short_not_ok);

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

589 590 591 592 593
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

594
	if (dir_in && index != 0)
595
		if (hs_ep->isochronous)
596
			epsize = DXEPTSIZ_MC(packets);
597
		else
598
			epsize = DXEPTSIZ_MC(1);
599 600 601
	else
		epsize = 0;

602 603 604 605 606 607 608 609 610
	/*
	 * zero length packet should be programmed on its own and should not
	 * be counted in DIEPTSIZ.PktCnt with other packets.
	 */
	if (dir_in && ureq->zero && !continuing) {
		/* Test if zlp is actually required. */
		if ((ureq->length >= hs_ep->ep.maxpacket) &&
					!(ureq->length % hs_ep->ep.maxpacket))
			hs_ep->sent_zlp = 1;
611 612
	}

613 614
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
615 616 617 618 619 620 621 622 623 624

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
	writel(epsize, hsotg->regs + epsize_reg);

625
	if (using_dma(hsotg) && !continuing) {
626 627
		unsigned int dma_reg;

628 629 630 631
		/*
		 * write DMA address to control register, buffer already
		 * synced by s3c_hsotg_ep_queue().
		 */
632

633
		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
634 635
		writel(ureq->dma, hsotg->regs + dma_reg);

636
		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
637
			__func__, &ureq->dma, dma_reg);
638 639
	}

640 641
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
642

643
	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
644 645

	/* For Setup request do not clear NAK */
646
	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
647
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
648

649 650 651
	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

652 653
	/*
	 * set these, it seems that DMA support increments past the end
654
	 * of the packet buffer so we need to calculate the length from
655 656
	 * this information.
	 */
657 658 659 660 661 662 663 664 665 666
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

667 668 669 670
	/*
	 * clear the INTknTXFEmpMsk when we start request, more as a aide
	 * to debugging to see what is going on.
	 */
671
	if (dir_in)
672
		writel(DIEPMSK_INTKNTXFEMPMSK,
673
		       hsotg->regs + DIEPINT(index));
674

675 676 677 678
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
679 680

	/* check ep is enabled */
681
	if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
682
		dev_dbg(hsotg->dev,
683
			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
684 685
			 index, readl(hsotg->regs + epctrl_reg));

686
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
687
		__func__, readl(hsotg->regs + epctrl_reg));
688 689 690

	/* enable ep interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
691 692 693 694 695 696 697 698 699 700 701 702 703
}

/**
 * s3c_hsotg_map_dma - map the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
704
 */
705
static int s3c_hsotg_map_dma(struct dwc2_hsotg *hsotg,
706 707 708 709
			     struct s3c_hsotg_ep *hs_ep,
			     struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
710
	int ret;
711 712 713 714 715

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

716 717 718
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
734
	struct dwc2_hsotg *hs = hs_ep->parent;
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
	bool first;

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
		int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
		if (ret)
			return ret;
	}

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

	if (first)
		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);

	return 0;
}

762 763 764 765
static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
766
	struct dwc2_hsotg *hs = hs_ep->parent;
767 768 769 770 771 772 773 774 775 776
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
				      struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);

	kfree(hs_req);
}

/**
 * s3c_hsotg_complete_oursetup - setup completion callback
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
					struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
797
	struct dwc2_hsotg *hsotg = hs_ep->parent;
798 799 800 801 802 803 804 805 806 807 808 809 810

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

	s3c_hsotg_ep_free_request(ep, req);
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
811
 */
812
static struct s3c_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
813 814
					   u32 windex)
{
815
	struct s3c_hsotg_ep *ep;
816 817 818 819 820 821
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

822
	if (idx > hsotg->num_of_eps)
823 824
		return NULL;

825 826
	ep = index_to_ep(hsotg, idx, dir);

827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

/**
 * s3c_hsotg_send_reply - send reply to control request
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
843
static int s3c_hsotg_send_reply(struct dwc2_hsotg *hsotg,
844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861
				struct s3c_hsotg_ep *ep,
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
862 863 864 865 866
	/*
	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
	 * STATUS stage.
	 */
	req->zero = 0;
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
	req->complete = s3c_hsotg_complete_oursetup;

	if (length)
		memcpy(req->buf, buff, length);

	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
 * s3c_hsotg_process_req_status - process request GET_STATUS
 * @hsotg: The device state
 * @ctrl: USB control request
 */
886
static int s3c_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
887 888
					struct usb_ctrlrequest *ctrl)
{
889
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
	struct s3c_hsotg_ep *ep;
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);

938 939 940 941 942 943 944 945 946 947 948 949 950 951
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
{
	if (list_empty(&hs_ep->queue))
		return NULL;

	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
}

952 953 954 955 956
/**
 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
 * @hsotg: The device state
 * @ctrl: USB control request
 */
957
static int s3c_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
958 959
					 struct usb_ctrlrequest *ctrl)
{
960
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
961 962
	struct s3c_hsotg_req *hs_req;
	bool restart;
963 964
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
	struct s3c_hsotg_ep *ep;
965
	int ret;
966
	bool halted;
967 968 969 970 971 972 973 974 975 976 977 978 979 980

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
				__func__, le16_to_cpu(ctrl->wIndex));
			return -ENOENT;
		}

		switch (le16_to_cpu(ctrl->wValue)) {
		case USB_ENDPOINT_HALT:
981 982
			halted = ep->halted;

983
			s3c_hsotg_ep_sethalt(&ep->ep, set);
984 985 986 987 988 989 990

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
991

992 993 994 995 996 997
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
998 999 1000 1001 1002 1003 1004 1005
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1006 1007
					usb_gadget_giveback_request(&ep->ep,
								    &hs_req->req);
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
				}

				/* If we have pending request, then start it */
				restart = !list_empty(&ep->queue);
				if (restart) {
					hs_req = get_ep_head(ep);
					s3c_hsotg_start_req(hsotg, ep,
							    hs_req, false);
				}
			}

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
			break;

		default:
			return -ENOENT;
		}
	} else
		return -ENOENT;  /* currently only deal with endpoint */

	return 1;
}

1030
static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1031

1032 1033 1034 1035 1036 1037
/**
 * s3c_hsotg_stall_ep0 - stall ep0
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1038
static void s3c_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1039
{
1040
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

	ctrl = readl(hsotg->regs + reg);
1053 1054
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1055 1056 1057
	writel(ctrl, hsotg->regs + reg);

	dev_dbg(hsotg->dev,
1058
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1059 1060 1061 1062 1063 1064 1065 1066 1067
		ctrl, reg, readl(hsotg->regs + reg));

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
	 s3c_hsotg_enqueue_setup(hsotg);
}

1068 1069 1070 1071 1072 1073 1074 1075 1076
/**
 * s3c_hsotg_process_control - process a control request
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1077
static void s3c_hsotg_process_control(struct dwc2_hsotg *hsotg,
1078 1079
				      struct usb_ctrlrequest *ctrl)
{
1080
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
1081 1082 1083 1084 1085 1086 1087
	int ret = 0;
	u32 dcfg;

	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
		 ctrl->bRequest, ctrl->bRequestType,
		 ctrl->wValue, ctrl->wLength);

1088 1089 1090 1091
	if (ctrl->wLength == 0) {
		ep0->dir_in = 1;
		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
	} else if (ctrl->bRequestType & USB_DIR_IN) {
1092
		ep0->dir_in = 1;
1093 1094 1095 1096 1097
		hsotg->ep0_state = DWC2_EP0_DATA_IN;
	} else {
		ep0->dir_in = 0;
		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
	}
1098 1099 1100 1101

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1102
			dcfg = readl(hsotg->regs + DCFG);
1103
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1104 1105
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1106
			writel(dcfg, hsotg->regs + DCFG);
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			return;

		case USB_REQ_GET_STATUS:
			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1127
		spin_unlock(&hsotg->lock);
1128
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1129
		spin_lock(&hsotg->lock);
1130 1131 1132 1133
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1134 1135
	/*
	 * the request is either unhandlable, or is not formatted correctly
1136 1137 1138
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1139 1140
	if (ret < 0)
		s3c_hsotg_stall_ep0(hsotg);
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
}

/**
 * s3c_hsotg_complete_setup - completion of a setup transfer
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
static void s3c_hsotg_complete_setup(struct usb_ep *ep,
				     struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1155
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1156 1157 1158 1159 1160 1161

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1162
	spin_lock(&hsotg->lock);
1163 1164 1165 1166
	if (req->actual == 0)
		s3c_hsotg_enqueue_setup(hsotg);
	else
		s3c_hsotg_process_control(hsotg, req->buf);
1167
	spin_unlock(&hsotg->lock);
1168 1169 1170 1171 1172 1173 1174 1175 1176
}

/**
 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1177
static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
{
	struct usb_request *req = hsotg->ctrl_req;
	struct s3c_hsotg_req *hs_req = our_req(req);
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
	req->complete = s3c_hsotg_complete_setup;

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

1195
	hsotg->eps_out[0]->dir_in = 0;
1196 1197
	hsotg->eps_out[0]->sent_zlp = 0;
	hsotg->ep0_state = DWC2_EP0_SETUP;
1198

1199
	ret = s3c_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1200 1201
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1202 1203 1204 1205
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1206 1207 1208
	}
}

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
static void s3c_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
					struct s3c_hsotg_ep *hs_ep)
{
	u32 ctrl;
	u8 index = hs_ep->index;
	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);

	dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n", index);

	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
			DXEPTSIZ_XFERSIZE(0), hsotg->regs +
			epsiz_reg);

	ctrl = readl(hsotg->regs + epctl_reg);
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
	writel(ctrl, hsotg->regs + epctl_reg);
}

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
/**
 * s3c_hsotg_complete_request - complete a request given to us
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1242
 */
1243
static void s3c_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
				       struct s3c_hsotg_ep *hs_ep,
				       struct s3c_hsotg_req *hs_req,
				       int result)
{
	bool restart;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1258 1259 1260 1261
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

	if (using_dma(hsotg))
		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1272 1273 1274 1275
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1276 1277

	if (hs_req->req.complete) {
1278
		spin_unlock(&hsotg->lock);
1279
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1280
		spin_lock(&hsotg->lock);
1281 1282
	}

1283 1284
	/*
	 * Look to see if there is anything else to do. Note, the completion
1285
	 * of the previous request may have caused a new request to be started
1286 1287
	 * so be careful when doing this.
	 */
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307

	if (!hs_ep->req && result >= 0) {
		restart = !list_empty(&hs_ep->queue);
		if (restart) {
			hs_req = get_ep_head(hs_ep);
			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		}
	}
}

/**
 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
1308
static void s3c_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1309
{
1310
	struct s3c_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
1311
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1312
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1313 1314 1315 1316
	int to_read;
	int max_req;
	int read_ptr;

1317

1318
	if (!hs_req) {
1319
		u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1320 1321
		int ptr;

1322
		dev_dbg(hsotg->dev,
1323
			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
			(void)readl(fifo);

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1337 1338 1339
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1340
	if (to_read > max_req) {
1341 1342
		/*
		 * more data appeared than we where willing
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1354 1355 1356 1357
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1358
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1359 1360 1361
}

/**
1362
 * s3c_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
1363
 * @hsotg: The device instance
1364
 * @dir_in: If IN zlp
1365 1366 1367 1368 1369
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1370
 * currently believed that we do not need to wait for any space in
1371 1372
 * the TxFIFO.
 */
1373
static void s3c_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
1374
{
1375
	/* eps_out[0] is used in both directions */
1376 1377
	hsotg->eps_out[0]->dir_in = dir_in;
	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
1378

1379
	s3c_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
}

/**
 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1390
 */
1391
static void s3c_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
1392
{
1393
	u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1394
	struct s3c_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
1395 1396
	struct s3c_hsotg_req *hs_req = hs_ep->req;
	struct usb_request *req = &hs_req->req;
1397
	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1398 1399 1400 1401 1402 1403 1404
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

1405 1406 1407 1408 1409 1410 1411
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
		s3c_hsotg_enqueue_setup(hsotg);
		return;
	}

1412 1413 1414
	if (using_dma(hsotg)) {
		unsigned size_done;

1415 1416
		/*
		 * Calculate the size of the transfer by checking how much
1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1430 1431 1432 1433 1434 1435
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
		return;
	}

1436 1437 1438 1439
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1440 1441 1442 1443
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1444 1445
	}

1446 1447 1448 1449
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
		/* Move to STATUS IN */
		s3c_hsotg_ep0_zlp(hsotg, true);
		return;
1450 1451
	}

1452
	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1453 1454 1455 1456 1457 1458 1459
}

/**
 * s3c_hsotg_read_frameno - read current frame number
 * @hsotg: The device instance
 *
 * Return the current frame number
1460
 */
1461
static u32 s3c_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1462 1463 1464
{
	u32 dsts;

1465 1466 1467
	dsts = readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479

	return dsts;
}

/**
 * s3c_hsotg_handle_rx - RX FIFO has data
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1480
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1481 1482 1483 1484 1485 1486 1487
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1488
static void s3c_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1489
{
1490
	u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1491 1492 1493 1494
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

1495 1496
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
1497

1498 1499
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
1500 1501 1502 1503 1504

	if (1)
		dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
			__func__, grxstsr, size, epnum);

1505 1506 1507
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1508 1509
		break;

1510
	case GRXSTS_PKTSTS_OUTDONE:
1511 1512 1513 1514
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg));

		if (!using_dma(hsotg))
1515
			s3c_hsotg_handle_outdone(hsotg, epnum);
1516 1517
		break;

1518
	case GRXSTS_PKTSTS_SETUPDONE:
1519 1520 1521
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1522
			readl(hsotg->regs + DOEPCTL(0)));
1523 1524 1525 1526 1527 1528 1529
		/*
		 * Call s3c_hsotg_handle_outdone here if it was not called from
		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
		 */
		if (hsotg->ep0_state == DWC2_EP0_SETUP)
			s3c_hsotg_handle_outdone(hsotg, epnum);
1530 1531
		break;

1532
	case GRXSTS_PKTSTS_OUTRX:
1533 1534 1535
		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

1536
	case GRXSTS_PKTSTS_SETUPRX:
1537 1538 1539
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1540
			readl(hsotg->regs + DOEPCTL(0)));
1541

1542 1543
		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

		s3c_hsotg_dump(hsotg);
		break;
	}
}

/**
 * s3c_hsotg_ep0_mps - turn max packet size into register setting
 * @mps: The maximum packet size in bytes.
1559
 */
1560 1561 1562 1563
static u32 s3c_hsotg_ep0_mps(unsigned int mps)
{
	switch (mps) {
	case 64:
1564
		return D0EPCTL_MPS_64;
1565
	case 32:
1566
		return D0EPCTL_MPS_32;
1567
	case 16:
1568
		return D0EPCTL_MPS_16;
1569
	case 8:
1570
		return D0EPCTL_MPS_8;
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
1587
static void s3c_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1588
			unsigned int ep, unsigned int mps, unsigned int dir_in)
1589
{
1590
	struct s3c_hsotg_ep *hs_ep;
1591 1592
	void __iomem *regs = hsotg->regs;
	u32 mpsval;
1593
	u32 mcval;
1594 1595
	u32 reg;

1596 1597 1598 1599
	hs_ep = index_to_ep(hsotg, ep, dir_in);
	if (!hs_ep)
		return;

1600 1601 1602 1603 1604
	if (ep == 0) {
		/* EP0 is a special case */
		mpsval = s3c_hsotg_ep0_mps(mps);
		if (mpsval > 3)
			goto bad_mps;
1605
		hs_ep->ep.maxpacket = mps;
1606
		hs_ep->mc = 1;
1607
	} else {
1608
		mpsval = mps & DXEPCTL_MPS_MASK;
1609
		if (mpsval > 1024)
1610
			goto bad_mps;
1611 1612 1613 1614
		mcval = ((mps >> 11) & 0x3) + 1;
		hs_ep->mc = mcval;
		if (mcval > 3)
			goto bad_mps;
1615
		hs_ep->ep.maxpacket = mpsval;
1616 1617
	}

1618 1619 1620 1621 1622 1623
	if (dir_in) {
		reg = readl(regs + DIEPCTL(ep));
		reg &= ~DXEPCTL_MPS_MASK;
		reg |= mpsval;
		writel(reg, regs + DIEPCTL(ep));
	} else {
1624
		reg = readl(regs + DOEPCTL(ep));
1625
		reg &= ~DXEPCTL_MPS_MASK;
1626
		reg |= mpsval;
1627
		writel(reg, regs + DOEPCTL(ep));
1628
	}
1629 1630 1631 1632 1633 1634 1635

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1636 1637 1638 1639 1640
/**
 * s3c_hsotg_txfifo_flush - flush Tx FIFO
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
1641
static void s3c_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1642 1643 1644 1645
{
	int timeout;
	int val;

1646
	writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1647
		hsotg->regs + GRSTCTL);
1648 1649 1650 1651 1652

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
1653
		val = readl(hsotg->regs + GRSTCTL);
1654

1655
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1656 1657 1658 1659 1660 1661
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
1662
			break;
1663 1664 1665 1666 1667
		}

		udelay(1);
	}
}
1668 1669 1670 1671 1672 1673 1674 1675 1676

/**
 * s3c_hsotg_trytx - check to see if anything needs transmitting
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
1677
static int s3c_hsotg_trytx(struct dwc2_hsotg *hsotg,
1678 1679 1680 1681
			   struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;

1682 1683 1684 1685 1686 1687 1688 1689
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
			s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
					     hs_ep->dir_in, 0);
1690
		return 0;
1691
	}
1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

	return 0;
}

/**
 * s3c_hsotg_complete_in - complete IN transfer
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
1710
static void s3c_hsotg_complete_in(struct dwc2_hsotg *hsotg,
1711 1712 1713
				  struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1714
	u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1715 1716 1717 1718 1719 1720 1721
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

1722
	/* Finish ZLP handling for IN EP0 transactions */
1723 1724
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
		dev_dbg(hsotg->dev, "zlp packet sent\n");
1725
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1726
		s3c_hsotg_enqueue_setup(hsotg);
1727 1728 1729
		return;
	}

1730 1731
	/*
	 * Calculate the size of the transfer by checking how much is left
1732 1733 1734 1735 1736 1737 1738 1739
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

1740
	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1741 1742 1743 1744 1745 1746 1747 1748 1749

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
1750 1751 1752
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

1753 1754 1755
	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1756 1757 1758
		return;
	}

1759 1760 1761 1762 1763 1764 1765 1766
	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
	if (hs_ep->sent_zlp) {
		s3c_hsotg_program_zlp(hsotg, hs_ep);
		hs_ep->sent_zlp = 0;
		/* transfer will be completed on next complete interrupt */
		return;
	}

1767 1768 1769 1770 1771 1772 1773
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
		/* Move to STATUS OUT */
		s3c_hsotg_ep0_zlp(hsotg, false);
		return;
	}

	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1774 1775 1776 1777 1778 1779 1780 1781 1782
}

/**
 * s3c_hsotg_epint - handle an in/out endpoint interrupt
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
1783
 */
1784
static void s3c_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
1785 1786
			    int dir_in)
{
1787
	struct s3c_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
1788 1789 1790
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1791
	u32 ints;
1792
	u32 ctrl;
1793 1794

	ints = readl(hsotg->regs + epint_reg);
1795
	ctrl = readl(hsotg->regs + epctl_reg);
1796

1797 1798 1799
	/* Clear endpoint interrupts */
	writel(ints, hsotg->regs + epint_reg);

1800 1801 1802 1803 1804 1805
	if (!hs_ep) {
		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
					__func__, idx, dir_in ? "in" : "out");
		return;
	}

1806 1807 1808
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

1809 1810 1811 1812
	/* Don't process XferCompl interrupt if it is a setup packet */
	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
		ints &= ~DXEPINT_XFERCOMPL;

1813
	if (ints & DXEPINT_XFERCOMPL) {
1814
		if (hs_ep->isochronous && hs_ep->interval == 1) {
1815 1816
			if (ctrl & DXEPCTL_EOFRNUM)
				ctrl |= DXEPCTL_SETEVENFR;
1817
			else
1818
				ctrl |= DXEPCTL_SETODDFR;
1819 1820 1821
			writel(ctrl, hsotg->regs + epctl_reg);
		}

1822
		dev_dbg(hsotg->dev,
1823
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1824 1825 1826
			__func__, readl(hsotg->regs + epctl_reg),
			readl(hsotg->regs + epsiz_reg));

1827 1828 1829 1830
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
1831 1832 1833
		if (dir_in) {
			s3c_hsotg_complete_in(hsotg, hs_ep);

1834
			if (idx == 0 && !hs_ep->req)
1835 1836
				s3c_hsotg_enqueue_setup(hsotg);
		} else if (using_dma(hsotg)) {
1837 1838 1839 1840
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
1841

1842
			s3c_hsotg_handle_outdone(hsotg, idx);
1843 1844 1845
		}
	}

1846
	if (ints & DXEPINT_EPDISBLD) {
1847 1848
		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

1849 1850 1851
		if (dir_in) {
			int epctl = readl(hsotg->regs + epctl_reg);

1852
			s3c_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
1853

1854 1855
			if ((epctl & DXEPCTL_STALL) &&
				(epctl & DXEPCTL_EPTYPE_BULK)) {
1856
				int dctl = readl(hsotg->regs + DCTL);
1857

1858
				dctl |= DCTL_CGNPINNAK;
1859
				writel(dctl, hsotg->regs + DCTL);
1860 1861 1862 1863
			}
		}
	}

1864
	if (ints & DXEPINT_AHBERR)
1865 1866
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

1867
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
1868 1869 1870
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
1871 1872
			/*
			 * this is the notification we've received a
1873 1874
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
1875 1876
			 * the setup here.
			 */
1877 1878 1879 1880

			if (dir_in)
				WARN_ON_ONCE(1);
			else
1881
				s3c_hsotg_handle_outdone(hsotg, 0);
1882 1883 1884
		}
	}

1885
	if (ints & DXEPINT_BACK2BACKSETUP)
1886 1887
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

1888
	if (dir_in && !hs_ep->isochronous) {
1889
		/* not sure if this is important, but we'll clear it anyway */
1890
		if (ints & DIEPMSK_INTKNTXFEMPMSK) {
1891 1892 1893 1894 1895
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
1896
		if (ints & DIEPMSK_INTKNEPMISMSK) {
1897 1898 1899
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
1900 1901 1902

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
1903
		    ints & DIEPMSK_TXFIFOEMPTY) {
1904 1905
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
1906 1907
			if (!using_dma(hsotg))
				s3c_hsotg_trytx(hsotg, hs_ep);
1908
		}
1909 1910 1911 1912 1913 1914 1915 1916 1917
	}
}

/**
 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
1918
 */
1919
static void s3c_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
1920
{
1921
	u32 dsts = readl(hsotg->regs + DSTS);
1922
	int ep0_mps = 0, ep_mps = 8;
1923

1924 1925
	/*
	 * This should signal the finish of the enumeration phase
1926
	 * of the USB handshaking, so we should now know what rate
1927 1928
	 * we connected at.
	 */
1929 1930 1931

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

1932 1933
	/*
	 * note, since we're limited by the size of transfer on EP0, and
1934
	 * it seems IN transfers must be a even number of packets we do
1935 1936
	 * not advertise a 64byte MPS on EP0.
	 */
1937 1938

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
1939 1940 1941
	switch (dsts & DSTS_ENUMSPD_MASK) {
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
1942 1943
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
1944
		ep_mps = 1023;
1945 1946
		break;

1947
	case DSTS_ENUMSPD_HS:
1948 1949
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
1950
		ep_mps = 1024;
1951 1952
		break;

1953
	case DSTS_ENUMSPD_LS:
1954
		hsotg->gadget.speed = USB_SPEED_LOW;
1955 1956
		/*
		 * note, we don't actually support LS in this driver at the
1957 1958 1959 1960 1961
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
1962 1963
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
1964

1965 1966 1967 1968
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
1969 1970 1971

	if (ep0_mps) {
		int i;
1972 1973 1974 1975 1976 1977 1978 1979 1980
		/* Initialize ep0 for both in and out directions */
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 1);
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0);
		for (i = 1; i < hsotg->num_of_eps; i++) {
			if (hsotg->eps_in[i])
				s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 1);
			if (hsotg->eps_out[i])
				s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0);
		}
1981 1982 1983 1984 1985 1986 1987
	}

	/* ensure after enumeration our EP0 is active */

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1988 1989
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
2001
static void kill_all_requests(struct dwc2_hsotg *hsotg,
2002
			      struct s3c_hsotg_ep *ep,
2003
			      int result)
2004 2005
{
	struct s3c_hsotg_req *req, *treq;
2006
	unsigned size;
2007

2008
	ep->req = NULL;
2009

2010
	list_for_each_entry_safe(req, treq, &ep->queue, queue)
2011 2012
		s3c_hsotg_complete_request(hsotg, ep, req,
					   result);
2013

2014 2015 2016 2017 2018
	if (!hsotg->dedicated_fifos)
		return;
	size = (readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
	if (size < ep->fifo_size)
		s3c_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2019 2020 2021
}

/**
2022
 * s3c_hsotg_disconnect - disconnect service
2023 2024
 * @hsotg: The device state.
 *
2025 2026 2027
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2028
 */
2029
void s3c_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2030 2031 2032
{
	unsigned ep;

2033 2034 2035 2036
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
2037 2038 2039 2040 2041 2042 2043 2044 2045

	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			kill_all_requests(hsotg, hsotg->eps_in[ep],
								-ESHUTDOWN);
		if (hsotg->eps_out[ep])
			kill_all_requests(hsotg, hsotg->eps_out[ep],
								-ESHUTDOWN);
	}
2046 2047 2048

	call_gadget(hsotg, disconnect);
}
2049
EXPORT_SYMBOL_GPL(s3c_hsotg_disconnect);
2050 2051 2052 2053 2054 2055

/**
 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
2056
static void s3c_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2057 2058 2059 2060 2061
{
	struct s3c_hsotg_ep *ep;
	int epno, ret;

	/* look through for any more data to transmit */
2062
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2063 2064 2065 2066
		ep = index_to_ep(hsotg, epno, 1);

		if (!ep)
			continue;
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

		ret = s3c_hsotg_trytx(hsotg, ep);
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2082 2083 2084
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
2085

2086 2087 2088 2089 2090
/**
 * s3c_hsotg_corereset - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
2091
 */
2092
static int s3c_hsotg_corereset(struct dwc2_hsotg *hsotg)
2093 2094 2095 2096 2097 2098 2099
{
	int timeout;
	u32 grstctl;

	dev_dbg(hsotg->dev, "resetting core\n");

	/* issue soft reset */
2100
	writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2101

2102
	timeout = 10000;
2103
	do {
2104
		grstctl = readl(hsotg->regs + GRSTCTL);
2105
	} while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2106

2107
	if (grstctl & GRSTCTL_CSFTRST) {
2108 2109 2110 2111
		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
		return -EINVAL;
	}

2112
	timeout = 10000;
2113 2114

	while (1) {
2115
		u32 grstctl = readl(hsotg->regs + GRSTCTL);
2116 2117 2118 2119 2120 2121 2122 2123

		if (timeout-- < 0) {
			dev_info(hsotg->dev,
				 "%s: reset failed, GRSTCTL=%08x\n",
				 __func__, grstctl);
			return -ETIMEDOUT;
		}

2124
		if (!(grstctl & GRSTCTL_AHBIDLE))
2125 2126 2127 2128 2129 2130 2131 2132 2133
			continue;

		break;		/* reset done */
	}

	dev_dbg(hsotg->dev, "reset successful\n");
	return 0;
}

2134 2135 2136 2137 2138 2139
/**
 * s3c_hsotg_core_init - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2140
void s3c_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg)
2141 2142 2143 2144 2145 2146 2147 2148 2149
{
	s3c_hsotg_corereset(hsotg);

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2150
	writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2151
	       (0x5 << 10), hsotg->regs + GUSBCFG);
2152 2153 2154

	s3c_hsotg_init_fifo(hsotg);

2155
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2156

2157
	writel(1 << 18 | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2158 2159

	/* Clear any pending OTG interrupts */
2160
	writel(0xffffffff, hsotg->regs + GOTGINT);
2161 2162

	/* Clear any pending interrupts */
2163
	writel(0xffffffff, hsotg->regs + GINTSTS);
2164

2165 2166 2167 2168 2169 2170
	writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
		GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
		GINTSTS_USBSUSP | GINTSTS_WKUPINT,
		hsotg->regs + GINTMSK);
2171 2172

	if (using_dma(hsotg))
2173
		writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
2174
		       (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
2175
		       hsotg->regs + GAHBCFG);
2176
	else
2177 2178 2179
		writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL |
						    GAHBCFG_P_TXF_EMP_LVL) : 0) |
		       GAHBCFG_GLBL_INTR_EN,
2180
		       hsotg->regs + GAHBCFG);
2181 2182

	/*
2183 2184 2185
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
2186 2187
	 */

2188 2189
	writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2190 2191 2192 2193
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_INTKNEPMISMSK,
		hsotg->regs + DIEPMSK);
2194 2195 2196 2197 2198

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2199 2200 2201 2202 2203
	writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
				    DIEPMSK_TIMEOUTMSK) : 0) |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_SETUPMSK,
		hsotg->regs + DOEPMSK);
2204

2205
	writel(0, hsotg->regs + DAINTMSK);
2206 2207

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2208 2209
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2210 2211

	/* enable in and out endpoint interrupts */
2212
	s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2213 2214 2215 2216 2217 2218 2219

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2220
		s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2221 2222 2223 2224 2225

	/* Enable interrupts for EP0 in and out */
	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);

2226
	__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2227
	udelay(10);  /* see openiboot */
2228
	__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2229

2230
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2231 2232

	/*
2233
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2234 2235 2236 2237
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2238 2239
	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2240

2241
	writel(s3c_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2242 2243
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
2244
	       hsotg->regs + DOEPCTL0);
2245 2246

	/* enable, but don't activate EP0in */
2247
	writel(s3c_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2248
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2249 2250 2251 2252

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2253 2254
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2255 2256

	/* clear global NAKs */
2257
	writel(DCTL_CGOUTNAK | DCTL_CGNPINNAK | DCTL_SFTDISCON,
2258
	       hsotg->regs + DCTL);
2259 2260 2261 2262

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

2263
	hsotg->last_rst = jiffies;
2264 2265
}

2266
static void s3c_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2267 2268 2269 2270
{
	/* set the soft-disconnect bit */
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
2271

2272
void s3c_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2273
{
2274
	/* remove the soft-disconnect and let's go */
2275
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2276 2277
}

2278 2279 2280 2281 2282 2283 2284
/**
 * s3c_hsotg_irq - handle device interrupt
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
{
2285
	struct dwc2_hsotg *hsotg = pw;
2286 2287 2288 2289
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

2290
	spin_lock(&hsotg->lock);
2291
irq_retry:
2292 2293
	gintsts = readl(hsotg->regs + GINTSTS);
	gintmsk = readl(hsotg->regs + GINTMSK);
2294 2295 2296 2297 2298 2299

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

2300 2301
	if (gintsts & GINTSTS_ENUMDONE) {
		writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2302 2303

		s3c_hsotg_irq_enumdone(hsotg);
2304
		hsotg->connected = 1;
2305 2306
	}

2307
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2308
		u32 daint = readl(hsotg->regs + DAINT);
2309 2310
		u32 daintmsk = readl(hsotg->regs + DAINTMSK);
		u32 daint_out, daint_in;
2311 2312
		int ep;

2313
		daint &= daintmsk;
2314 2315
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2316

2317 2318
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

2319 2320
		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
						ep++, daint_out >>= 1) {
2321 2322 2323 2324
			if (daint_out & 1)
				s3c_hsotg_epint(hsotg, ep, 0);
		}

2325 2326
		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
						ep++, daint_in >>= 1) {
2327 2328 2329 2330 2331
			if (daint_in & 1)
				s3c_hsotg_epint(hsotg, ep, 1);
		}
	}

2332
	if (gintsts & GINTSTS_USBRST) {
2333

2334
		u32 usb_status = readl(hsotg->regs + GOTGCTL);
2335

2336
		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
2337
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2338
			readl(hsotg->regs + GNPTXSTS));
2339

2340
		writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2341

2342
		if (usb_status & GOTGCTL_BSESVLD) {
2343 2344
			if (time_after(jiffies, hsotg->last_rst +
				       msecs_to_jiffies(200))) {
2345

2346
				kill_all_requests(hsotg, hsotg->eps_out[0],
2347
							  -ECONNRESET);
2348

2349 2350
				s3c_hsotg_core_init_disconnected(hsotg);
				s3c_hsotg_core_connect(hsotg);
2351 2352
			}
		}
2353 2354 2355 2356
	}

	/* check both FIFOs */

2357
	if (gintsts & GINTSTS_NPTXFEMP) {
2358 2359
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

2360 2361
		/*
		 * Disable the interrupt to stop it happening again
2362
		 * unless one of these endpoint routines decides that
2363 2364
		 * it needs re-enabling
		 */
2365

2366
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2367 2368 2369
		s3c_hsotg_irq_fifoempty(hsotg, false);
	}

2370
	if (gintsts & GINTSTS_PTXFEMP) {
2371 2372
		dev_dbg(hsotg->dev, "PTxFEmp\n");

2373
		/* See note in GINTSTS_NPTxFEmp */
2374

2375
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2376 2377 2378
		s3c_hsotg_irq_fifoempty(hsotg, true);
	}

2379
	if (gintsts & GINTSTS_RXFLVL) {
2380 2381
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2382
		 * we need to retry s3c_hsotg_handle_rx if this is still
2383 2384
		 * set.
		 */
2385 2386 2387 2388

		s3c_hsotg_handle_rx(hsotg);
	}

2389
	if (gintsts & GINTSTS_ERLYSUSP) {
2390
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2391
		writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2392 2393
	}

2394 2395
	/*
	 * these next two seem to crop-up occasionally causing the core
2396
	 * to shutdown the USB transfer, so try clearing them and logging
2397 2398
	 * the occurrence.
	 */
2399

2400
	if (gintsts & GINTSTS_GOUTNAKEFF) {
2401 2402
		dev_info(hsotg->dev, "GOUTNakEff triggered\n");

2403
		writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2404 2405

		s3c_hsotg_dump(hsotg);
2406 2407
	}

2408
	if (gintsts & GINTSTS_GINNAKEFF) {
2409 2410
		dev_info(hsotg->dev, "GINNakEff triggered\n");

2411
		writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2412 2413

		s3c_hsotg_dump(hsotg);
2414 2415
	}

2416 2417 2418 2419
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
2420 2421 2422 2423

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

2424 2425
	spin_unlock(&hsotg->lock);

2426 2427 2428 2429 2430 2431 2432 2433 2434
	return IRQ_HANDLED;
}

/**
 * s3c_hsotg_ep_enable - enable the given endpoint
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
2435
 */
2436 2437 2438 2439
static int s3c_hsotg_ep_enable(struct usb_ep *ep,
			       const struct usb_endpoint_descriptor *desc)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2440
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2441 2442 2443 2444 2445 2446
	unsigned long flags;
	int index = hs_ep->index;
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
	int dir_in;
2447
	int i, val, size;
2448
	int ret = 0;
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
	WARN_ON(index == 0);

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

2464
	mps = usb_endpoint_maxp(desc);
2465 2466 2467

	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */

2468
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2469 2470 2471 2472 2473
	epctrl = readl(hsotg->regs + epctrl_reg);

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

2474
	spin_lock_irqsave(&hsotg->lock, flags);
2475

2476 2477
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
2478

2479 2480 2481 2482
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
2483
	epctrl |= DXEPCTL_USBACTEP;
2484

2485 2486
	/*
	 * set the NAK status on the endpoint, otherwise we might try and
2487 2488 2489 2490 2491
	 * do something with data that we've yet got a request to process
	 * since the RXFIFO will take data for an endpoint even if the
	 * size register hasn't been set.
	 */

2492
	epctrl |= DXEPCTL_SNAK;
2493 2494

	/* update the endpoint state */
2495
	s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, dir_in);
2496 2497

	/* default, set to non-periodic */
2498
	hs_ep->isochronous = 0;
2499
	hs_ep->periodic = 0;
2500
	hs_ep->halted = 0;
2501
	hs_ep->interval = desc->bInterval;
2502

2503 2504 2505
	if (hs_ep->interval > 1 && hs_ep->mc > 1)
		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");

2506 2507
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
2508 2509
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
2510 2511 2512 2513
		hs_ep->isochronous = 1;
		if (dir_in)
			hs_ep->periodic = 1;
		break;
2514 2515

	case USB_ENDPOINT_XFER_BULK:
2516
		epctrl |= DXEPCTL_EPTYPE_BULK;
2517 2518 2519
		break;

	case USB_ENDPOINT_XFER_INT:
2520
		if (dir_in)
2521 2522
			hs_ep->periodic = 1;

2523
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2524 2525 2526
		break;

	case USB_ENDPOINT_XFER_CONTROL:
2527
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2528 2529 2530
		break;
	}

2531 2532
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
2533 2534
	 * a unique tx-fifo even if it is non-periodic.
	 */
2535 2536
	if (dir_in && hsotg->dedicated_fifos) {
		size = hs_ep->ep.maxpacket*hs_ep->mc;
2537
		for (i = 1; i < hsotg->num_of_eps; ++i) {
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550
			if (hsotg->fifo_map & (1<<i))
				continue;
			val = readl(hsotg->regs + DPTXFSIZN(i));
			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
			if (val < size)
				continue;
			hsotg->fifo_map |= 1<<i;

			epctrl |= DXEPCTL_TXFNUM(i);
			hs_ep->fifo_index = i;
			hs_ep->fifo_size = val;
			break;
		}
2551 2552 2553
		if (i == hsotg->num_of_eps) {
			dev_err(hsotg->dev,
				"%s: No suitable fifo found\n", __func__);
2554 2555 2556
			ret = -ENOMEM;
			goto error;
		}
2557
	}
2558

2559 2560
	/* for non control endpoints, set PID to D0 */
	if (index)
2561
		epctrl |= DXEPCTL_SETD0PID;
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

	writel(epctrl, hsotg->regs + epctrl_reg);
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
		__func__, readl(hsotg->regs + epctrl_reg));

	/* enable the endpoint interrupt */
	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);

2573
error:
2574
	spin_unlock_irqrestore(&hsotg->lock, flags);
2575
	return ret;
2576 2577
}

2578 2579 2580 2581
/**
 * s3c_hsotg_ep_disable - disable given endpoint
 * @ep: The endpoint to disable.
 */
2582 2583 2584
static int s3c_hsotg_ep_disable(struct usb_ep *ep)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2585
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2586 2587 2588 2589 2590 2591
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

2592
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2593

2594
	if (ep == &hsotg->eps_out[0]->ep) {
2595 2596 2597 2598
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

2599
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2600

2601
	spin_lock_irqsave(&hsotg->lock, flags);
2602

2603 2604 2605
	hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;
2606 2607

	ctrl = readl(hsotg->regs + epctrl_reg);
2608 2609 2610
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
2611 2612 2613 2614 2615 2616 2617

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

	/* disable endpoint interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);

2618 2619 2620
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);

2621
	spin_unlock_irqrestore(&hsotg->lock, flags);
2622 2623 2624 2625 2626 2627 2628
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
2629
 */
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
{
	struct s3c_hsotg_req *req, *treq;

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

2642 2643 2644 2645 2646
/**
 * s3c_hsotg_ep_dequeue - dequeue given endpoint
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
2647 2648 2649 2650
static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2651
	struct dwc2_hsotg *hs = hs_ep->parent;
2652 2653
	unsigned long flags;

2654
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2655

2656
	spin_lock_irqsave(&hs->lock, flags);
2657 2658

	if (!on_list(hs_ep, hs_req)) {
2659
		spin_unlock_irqrestore(&hs->lock, flags);
2660 2661 2662 2663
		return -EINVAL;
	}

	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2664
	spin_unlock_irqrestore(&hs->lock, flags);
2665 2666 2667 2668

	return 0;
}

2669 2670 2671 2672 2673
/**
 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
2674 2675 2676
static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2677
	struct dwc2_hsotg *hs = hs_ep->parent;
2678 2679 2680
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
2681
	u32 xfertype;
2682 2683 2684

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

2685 2686 2687 2688 2689 2690 2691 2692 2693
	if (index == 0) {
		if (value)
			s3c_hsotg_stall_ep0(hs);
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
	if (hs_ep->dir_in) {
		epreg = DIEPCTL(index);
		epctl = readl(hs->regs + epreg);

		if (value) {
			epctl |= DXEPCTL_STALL + DXEPCTL_SNAK;
			if (epctl & DXEPCTL_EPENA)
				epctl |= DXEPCTL_EPDIS;
		} else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
		writel(epctl, hs->regs + epreg);
2710
	} else {
2711

2712 2713
		epreg = DOEPCTL(index);
		epctl = readl(hs->regs + epreg);
2714

2715 2716 2717 2718 2719 2720 2721 2722 2723 2724
		if (value)
			epctl |= DXEPCTL_STALL;
		else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
		writel(epctl, hs->regs + epreg);
2725
	}
2726

2727 2728
	hs_ep->halted = value;

2729 2730 2731
	return 0;
}

2732 2733 2734 2735 2736 2737 2738 2739
/**
 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2740
	struct dwc2_hsotg *hs = hs_ep->parent;
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_sethalt(ep, value);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

2751 2752 2753 2754 2755
static struct usb_ep_ops s3c_hsotg_ep_ops = {
	.enable		= s3c_hsotg_ep_enable,
	.disable	= s3c_hsotg_ep_disable,
	.alloc_request	= s3c_hsotg_ep_alloc_request,
	.free_request	= s3c_hsotg_ep_free_request,
2756
	.queue		= s3c_hsotg_ep_queue_lock,
2757
	.dequeue	= s3c_hsotg_ep_dequeue,
2758
	.set_halt	= s3c_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
2759
	/* note, don't believe we have any call for the fifo routines */
2760 2761
};

2762 2763
/**
 * s3c_hsotg_phy_enable - enable platform phy dev
2764
 * @hsotg: The driver state
2765 2766 2767 2768
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
2769
static void s3c_hsotg_phy_enable(struct dwc2_hsotg *hsotg)
2770 2771 2772 2773
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

	dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2774

2775
	if (hsotg->uphy)
2776
		usb_phy_init(hsotg->uphy);
2777
	else if (hsotg->plat && hsotg->plat->phy_init)
2778
		hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2779 2780 2781 2782
	else {
		phy_init(hsotg->phy);
		phy_power_on(hsotg->phy);
	}
2783 2784 2785 2786
}

/**
 * s3c_hsotg_phy_disable - disable platform phy dev
2787
 * @hsotg: The driver state
2788 2789 2790 2791
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
2792
static void s3c_hsotg_phy_disable(struct dwc2_hsotg *hsotg)
2793 2794 2795
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

2796
	if (hsotg->uphy)
2797
		usb_phy_shutdown(hsotg->uphy);
2798
	else if (hsotg->plat && hsotg->plat->phy_exit)
2799
		hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2800 2801 2802 2803
	else {
		phy_power_off(hsotg->phy);
		phy_exit(hsotg->phy);
	}
2804 2805
}

2806 2807 2808 2809
/**
 * s3c_hsotg_init - initalize the usb core
 * @hsotg: The driver state
 */
2810
static void s3c_hsotg_init(struct dwc2_hsotg *hsotg)
2811 2812 2813
{
	/* unmask subset of endpoint interrupts */

2814 2815 2816
	writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		hsotg->regs + DIEPMSK);
2817

2818 2819 2820
	writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		hsotg->regs + DOEPMSK);
2821

2822
	writel(0, hsotg->regs + DAINTMSK);
2823 2824

	/* Be in disconnected state until gadget is registered */
2825
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2826 2827 2828

	if (0) {
		/* post global nak until we're ready */
2829
		writel(DCTL_SGNPINNAK | DCTL_SGOUTNAK,
2830
		       hsotg->regs + DCTL);
2831 2832 2833 2834 2835
	}

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2836 2837
		readl(hsotg->regs + GRXFSIZ),
		readl(hsotg->regs + GNPTXFSIZ));
2838 2839 2840 2841

	s3c_hsotg_init_fifo(hsotg);

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2842
	writel(GUSBCFG_PHYIF16 | GUSBCFG_TOUTCAL(7) | (0x5 << 10),
2843
	       hsotg->regs + GUSBCFG);
2844

2845 2846
	if (using_dma(hsotg))
		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
2847 2848
}

2849 2850 2851 2852 2853 2854 2855 2856
/**
 * s3c_hsotg_udc_start - prepare the udc for work
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
2857 2858
static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
			   struct usb_gadget_driver *driver)
2859
{
2860
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2861
	unsigned long flags;
2862 2863 2864
	int ret;

	if (!hsotg) {
2865
		pr_err("%s: called with no device\n", __func__);
2866 2867 2868 2869 2870 2871 2872 2873
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

2874
	if (driver->max_speed < USB_SPEED_FULL)
2875 2876
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

2877
	if (!driver->setup) {
2878 2879 2880 2881
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

2882
	mutex_lock(&hsotg->init_mutex);
2883 2884 2885 2886
	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
2887
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
2888 2889
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

2890 2891
	clk_enable(hsotg->clk);

2892 2893
	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
2894
	if (ret) {
2895
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
2896 2897 2898
		goto err;
	}

2899
	s3c_hsotg_phy_enable(hsotg);
2900 2901
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
2902

2903 2904 2905
	spin_lock_irqsave(&hsotg->lock, flags);
	s3c_hsotg_init(hsotg);
	s3c_hsotg_core_init_disconnected(hsotg);
2906
	hsotg->enabled = 0;
2907 2908
	spin_unlock_irqrestore(&hsotg->lock, flags);

2909
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
2910

2911 2912
	mutex_unlock(&hsotg->init_mutex);

2913 2914 2915
	return 0;

err:
2916
	mutex_unlock(&hsotg->init_mutex);
2917 2918 2919 2920
	hsotg->driver = NULL;
	return ret;
}

2921 2922 2923 2924 2925 2926 2927
/**
 * s3c_hsotg_udc_stop - stop the udc
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
2928
static int s3c_hsotg_udc_stop(struct usb_gadget *gadget)
2929
{
2930
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2931
	unsigned long flags = 0;
2932 2933 2934 2935 2936
	int ep;

	if (!hsotg)
		return -ENODEV;

2937 2938
	mutex_lock(&hsotg->init_mutex);

2939
	/* all endpoints should be shutdown */
2940 2941 2942 2943 2944 2945
	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			s3c_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
		if (hsotg->eps_out[ep])
			s3c_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
	}
2946

2947 2948
	spin_lock_irqsave(&hsotg->lock, flags);

2949
	hsotg->driver = NULL;
2950
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2951
	hsotg->enabled = 0;
2952

2953 2954
	spin_unlock_irqrestore(&hsotg->lock, flags);

2955 2956
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, NULL);
2957 2958
	s3c_hsotg_phy_disable(hsotg);

2959
	regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
2960

2961 2962
	clk_disable(hsotg->clk);

2963 2964
	mutex_unlock(&hsotg->init_mutex);

2965 2966 2967
	return 0;
}

2968 2969 2970 2971 2972 2973
/**
 * s3c_hsotg_gadget_getframe - read the frame number
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
2974 2975 2976 2977 2978
static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
{
	return s3c_hsotg_read_frameno(to_hsotg(gadget));
}

2979 2980 2981 2982 2983 2984 2985 2986 2987
/**
 * s3c_hsotg_pullup - connect/disconnect the USB PHY
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
{
2988
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2989 2990
	unsigned long flags = 0;

2991
	dev_dbg(hsotg->dev, "%s: is_on: %d\n", __func__, is_on);
2992

2993
	mutex_lock(&hsotg->init_mutex);
2994 2995
	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
2996
		clk_enable(hsotg->clk);
2997
		hsotg->enabled = 1;
2998
		s3c_hsotg_core_connect(hsotg);
2999
	} else {
3000
		s3c_hsotg_core_disconnect(hsotg);
3001
		hsotg->enabled = 0;
3002
		clk_disable(hsotg->clk);
3003 3004 3005 3006
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);
3007
	mutex_unlock(&hsotg->init_mutex);
3008 3009 3010 3011

	return 0;
}

3012
static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
3013
	.get_frame	= s3c_hsotg_gadget_getframe,
3014 3015
	.udc_start		= s3c_hsotg_udc_start,
	.udc_stop		= s3c_hsotg_udc_stop,
3016
	.pullup                 = s3c_hsotg_pullup,
3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
};

/**
 * s3c_hsotg_initep - initialise a single endpoint
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
3029
static void s3c_hsotg_initep(struct dwc2_hsotg *hsotg,
3030
				       struct s3c_hsotg_ep *hs_ep,
3031 3032
				       int epnum,
				       bool dir_in)
3033 3034 3035 3036 3037
{
	char *dir;

	if (epnum == 0)
		dir = "";
3038
	else if (dir_in)
3039
		dir = "in";
3040 3041
	else
		dir = "out";
3042

3043
	hs_ep->dir_in = dir_in;
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
3057
	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3058 3059
	hs_ep->ep.ops = &s3c_hsotg_ep_ops;

3060 3061
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
3062 3063 3064 3065
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
3066
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3067 3068 3069 3070
		if (dir_in)
			writel(next, hsotg->regs + DIEPCTL(epnum));
		else
			writel(next, hsotg->regs + DOEPCTL(epnum));
3071 3072 3073
	}
}

3074 3075 3076 3077 3078 3079
/**
 * s3c_hsotg_hw_cfg - read HW configuration registers
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
3080
static int s3c_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3081
{
3082 3083 3084 3085
	u32 cfg;
	u32 ep_type;
	u32 i;

3086
	/* check hardware configuration */
3087

3088 3089 3090 3091
	cfg = readl(hsotg->regs + GHWCFG2);
	hsotg->num_of_eps = (cfg >> 10) & 0xF;
	/* Add ep0 */
	hsotg->num_of_eps++;
3092

3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct s3c_hsotg_ep),
								GFP_KERNEL);
	if (!hsotg->eps_in[0])
		return -ENOMEM;
	/* Same s3c_hsotg_ep is used in both directions for ep0 */
	hsotg->eps_out[0] = hsotg->eps_in[0];

	cfg = readl(hsotg->regs + GHWCFG1);
	for (i = 1; i < hsotg->num_of_eps; i++, cfg >>= 2) {
		ep_type = cfg & 3;
		/* Direction in or both */
		if (!(ep_type & 2)) {
			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
				sizeof(struct s3c_hsotg_ep), GFP_KERNEL);
			if (!hsotg->eps_in[i])
				return -ENOMEM;
		}
		/* Direction out or both */
		if (!(ep_type & 1)) {
			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
				sizeof(struct s3c_hsotg_ep), GFP_KERNEL);
			if (!hsotg->eps_out[i])
				return -ENOMEM;
		}
	}

	cfg = readl(hsotg->regs + GHWCFG3);
	hsotg->fifo_mem = (cfg >> 16);
3121

3122 3123
	cfg = readl(hsotg->regs + GHWCFG4);
	hsotg->dedicated_fifos = (cfg >> 25) & 1;
3124

3125 3126 3127 3128
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
3129
	return 0;
3130 3131
}

3132 3133 3134 3135
/**
 * s3c_hsotg_dump - dump state of the udc
 * @param: The device state
 */
3136
static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg)
3137
{
M
Mark Brown 已提交
3138
#ifdef DEBUG
3139 3140 3141 3142 3143 3144
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3145 3146
		 readl(regs + DCFG), readl(regs + DCTL),
		 readl(regs + DIEPMSK));
3147 3148

	dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3149
		 readl(regs + GAHBCFG), readl(regs + 0x44));
3150 3151

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3152
		 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3153 3154 3155

	/* show periodic fifo settings */

3156
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3157
		val = readl(regs + DPTXFSIZN(idx));
3158
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3159 3160
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
3161 3162
	}

3163
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3164 3165
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3166 3167 3168
			 readl(regs + DIEPCTL(idx)),
			 readl(regs + DIEPTSIZ(idx)),
			 readl(regs + DIEPDMA(idx)));
3169

3170
		val = readl(regs + DOEPCTL(idx));
3171 3172
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3173 3174 3175
			 idx, readl(regs + DOEPCTL(idx)),
			 readl(regs + DOEPTSIZ(idx)),
			 readl(regs + DOEPDMA(idx)));
3176 3177 3178 3179

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3180
		 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
3181
#endif
3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194
}

/**
 * state_show - debugfs: show overall driver and device state.
 * @seq: The seq file to write to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the overall state of the hardware and
 * some general information about each of the endpoints available
 * to the system.
 */
static int state_show(struct seq_file *seq, void *v)
{
3195
	struct dwc2_hsotg *hsotg = seq->private;
3196 3197 3198 3199
	void __iomem *regs = hsotg->regs;
	int idx;

	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3200 3201 3202
		 readl(regs + DCFG),
		 readl(regs + DCTL),
		 readl(regs + DSTS));
3203 3204

	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3205
		   readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3206 3207

	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3208 3209
		   readl(regs + GINTMSK),
		   readl(regs + GINTSTS));
3210 3211

	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3212 3213
		   readl(regs + DAINTMSK),
		   readl(regs + DAINT));
3214 3215

	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3216 3217
		   readl(regs + GNPTXSTS),
		   readl(regs + GRXSTSR));
3218

3219
	seq_puts(seq, "\nEndpoint status:\n");
3220

3221
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3222 3223
		u32 in, out;

3224 3225
		in = readl(regs + DIEPCTL(idx));
		out = readl(regs + DOEPCTL(idx));
3226 3227 3228 3229

		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
			   idx, in, out);

3230 3231
		in = readl(regs + DIEPTSIZ(idx));
		out = readl(regs + DOEPTSIZ(idx));
3232 3233 3234 3235

		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
			   in, out);

3236
		seq_puts(seq, "\n");
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261
	}

	return 0;
}

static int state_open(struct inode *inode, struct file *file)
{
	return single_open(file, state_show, inode->i_private);
}

static const struct file_operations state_fops = {
	.owner		= THIS_MODULE,
	.open		= state_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * fifo_show - debugfs: show the fifo information
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * Show the FIFO information for the overall fifo and all the
 * periodic transmission FIFOs.
3262
 */
3263 3264
static int fifo_show(struct seq_file *seq, void *v)
{
3265
	struct dwc2_hsotg *hsotg = seq->private;
3266 3267 3268 3269
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

3270
	seq_puts(seq, "Non-periodic FIFOs:\n");
3271
	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3272

3273
	val = readl(regs + GNPTXFSIZ);
3274
	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3275 3276
		   val >> FIFOSIZE_DEPTH_SHIFT,
		   val & FIFOSIZE_DEPTH_MASK);
3277

3278
	seq_puts(seq, "\nPeriodic TXFIFOs:\n");
3279

3280
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3281
		val = readl(regs + DPTXFSIZN(idx));
3282 3283

		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3284 3285
			   val >> FIFOSIZE_DEPTH_SHIFT,
			   val & FIFOSIZE_STARTADDR_MASK);
3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
	}

	return 0;
}

static int fifo_open(struct inode *inode, struct file *file)
{
	return single_open(file, fifo_show, inode->i_private);
}

static const struct file_operations fifo_fops = {
	.owner		= THIS_MODULE,
	.open		= fifo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};


static const char *decode_direction(int is_in)
{
	return is_in ? "in" : "out";
}

/**
 * ep_show - debugfs: show the state of an endpoint.
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the state of the given endpoint (one is
 * registered for each available).
3317
 */
3318 3319 3320
static int ep_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg_ep *ep = seq->private;
3321
	struct dwc2_hsotg *hsotg = ep->parent;
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
	struct s3c_hsotg_req *req;
	void __iomem *regs = hsotg->regs;
	int index = ep->index;
	int show_limit = 15;
	unsigned long flags;

	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
		   ep->index, ep->ep.name, decode_direction(ep->dir_in));

	/* first show the register state */

	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3334 3335
		   readl(regs + DIEPCTL(index)),
		   readl(regs + DOEPCTL(index)));
3336 3337

	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3338 3339
		   readl(regs + DIEPDMA(index)),
		   readl(regs + DOEPDMA(index)));
3340 3341

	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3342 3343
		   readl(regs + DIEPINT(index)),
		   readl(regs + DOEPINT(index)));
3344 3345

	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3346 3347
		   readl(regs + DIEPTSIZ(index)),
		   readl(regs + DOEPTSIZ(index)));
3348

3349
	seq_puts(seq, "\n");
3350 3351 3352 3353 3354 3355
	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
	seq_printf(seq, "total_data=%ld\n", ep->total_data);

	seq_printf(seq, "request list (%p,%p):\n",
		   ep->queue.next, ep->queue.prev);

3356
	spin_lock_irqsave(&hsotg->lock, flags);
3357 3358 3359

	list_for_each_entry(req, &ep->queue, queue) {
		if (--show_limit < 0) {
3360
			seq_puts(seq, "not showing more requests...\n");
3361 3362 3363 3364 3365 3366 3367 3368 3369 3370
			break;
		}

		seq_printf(seq, "%c req %p: %d bytes @%p, ",
			   req == ep->req ? '*' : ' ',
			   req, req->req.length, req->req.buf);
		seq_printf(seq, "%d done, res %d\n",
			   req->req.actual, req->req.status);
	}

3371
	spin_unlock_irqrestore(&hsotg->lock, flags);
3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396

	return 0;
}

static int ep_open(struct inode *inode, struct file *file)
{
	return single_open(file, ep_show, inode->i_private);
}

static const struct file_operations ep_fops = {
	.owner		= THIS_MODULE,
	.open		= ep_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * s3c_hsotg_create_debug - create debugfs directory and files
 * @hsotg: The driver state
 *
 * Create the debugfs files to allow the user to get information
 * about the state of the system. The directory name is created
 * with the same name as the device itself, in case we end up
 * with multiple blocks in future systems.
3397
 */
3398
static void s3c_hsotg_create_debug(struct dwc2_hsotg *hsotg)
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
{
	struct dentry *root;
	unsigned epidx;

	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
	hsotg->debug_root = root;
	if (IS_ERR(root)) {
		dev_err(hsotg->dev, "cannot create debug root\n");
		return;
	}

	/* create general state file */

	hsotg->debug_file = debugfs_create_file("state", 0444, root,
						hsotg, &state_fops);

	if (IS_ERR(hsotg->debug_file))
		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);

	hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
						hsotg, &fifo_fops);

	if (IS_ERR(hsotg->debug_fifo))
		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);

3424
	/* Create one file for each out endpoint */
3425
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3426
		struct s3c_hsotg_ep *ep;
3427

3428 3429 3430 3431
		ep = hsotg->eps_out[epidx];
		if (ep) {
			ep->debugfs = debugfs_create_file(ep->name, 0444,
							  root, ep, &ep_fops);
3432

3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
			if (IS_ERR(ep->debugfs))
				dev_err(hsotg->dev, "failed to create %s debug file\n",
					ep->name);
		}
	}
	/* Create one file for each in endpoint. EP0 is handled with out eps */
	for (epidx = 1; epidx < hsotg->num_of_eps; epidx++) {
		struct s3c_hsotg_ep *ep;

		ep = hsotg->eps_in[epidx];
		if (ep) {
			ep->debugfs = debugfs_create_file(ep->name, 0444,
							  root, ep, &ep_fops);

			if (IS_ERR(ep->debugfs))
				dev_err(hsotg->dev, "failed to create %s debug file\n",
					ep->name);
		}
3451 3452 3453 3454 3455 3456 3457 3458
	}
}

/**
 * s3c_hsotg_delete_debug - cleanup debugfs entries
 * @hsotg: The driver state
 *
 * Cleanup (remove) the debugfs files for use on module exit.
3459
 */
3460
static void s3c_hsotg_delete_debug(struct dwc2_hsotg *hsotg)
3461 3462 3463
{
	unsigned epidx;

3464
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3465 3466 3467 3468
		if (hsotg->eps_in[epidx])
			debugfs_remove(hsotg->eps_in[epidx]->debugfs);
		if (hsotg->eps_out[epidx])
			debugfs_remove(hsotg->eps_out[epidx]->debugfs);
3469 3470 3471 3472 3473 3474 3475
	}

	debugfs_remove(hsotg->debug_file);
	debugfs_remove(hsotg->debug_fifo);
	debugfs_remove(hsotg->debug_root);
}

3476 3477 3478 3479
#ifdef CONFIG_OF
static void s3c_hsotg_of_probe(struct dwc2_hsotg *hsotg)
{
	struct device_node *np = hsotg->dev->of_node;
3480 3481
	u32 len = 0;
	u32 i = 0;
3482 3483 3484

	/* Enable dma if requested in device tree */
	hsotg->g_using_dma = of_property_read_bool(np, "g-use-dma");
3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515

	/*
	* Register TX periodic fifo size per endpoint.
	* EP0 is excluded since it has no fifo configuration.
	*/
	if (!of_find_property(np, "g-tx-fifo-size", &len))
		goto rx_fifo;

	len /= sizeof(u32);

	/* Read tx fifo sizes other than ep0 */
	if (of_property_read_u32_array(np, "g-tx-fifo-size",
						&hsotg->g_tx_fifo_sz[1], len))
		goto rx_fifo;

	/* Add ep0 */
	len++;

	/* Make remaining TX fifos unavailable */
	if (len < MAX_EPS_CHANNELS) {
		for (i = len; i < MAX_EPS_CHANNELS; i++)
			hsotg->g_tx_fifo_sz[i] = 0;
	}

rx_fifo:
	/* Register RX fifo size */
	of_property_read_u32(np, "g-rx-fifo-size", &hsotg->g_rx_fifo_sz);

	/* Register NPTX fifo size */
	of_property_read_u32(np, "g-np-tx-fifo-size",
						&hsotg->g_np_g_tx_fifo_sz);
3516 3517 3518 3519 3520
}
#else
static inline void s3c_hsotg_of_probe(struct dwc2_hsotg *hsotg) { }
#endif

3521
/**
3522 3523 3524
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
 * @irq: The IRQ number for the controller.
3525
 */
3526
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3527
{
3528 3529
	struct device *dev = hsotg->dev;
	struct s3c_hsotg_plat *plat = dev->platform_data;
3530 3531
	int epnum;
	int ret;
3532
	int i;
3533
	u32 p_tx_fifo[] = DWC2_G_P_LEGACY_TX_FIFO_SIZE;
3534

3535 3536 3537
	/* Set default UTMI width */
	hsotg->phyif = GUSBCFG_PHYIF16;

3538 3539
	s3c_hsotg_of_probe(hsotg);

3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
	/* Initialize to legacy fifo configuration values */
	hsotg->g_rx_fifo_sz = 2048;
	hsotg->g_np_g_tx_fifo_sz = 1024;
	memcpy(&hsotg->g_tx_fifo_sz[1], p_tx_fifo, sizeof(p_tx_fifo));
	/* Device tree specific probe */
	s3c_hsotg_of_probe(hsotg);
	/* Dump fifo information */
	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
						hsotg->g_np_g_tx_fifo_sz);
	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->g_rx_fifo_sz);
	for (i = 0; i < MAX_EPS_CHANNELS; i++)
		dev_dbg(dev, "Periodic TXFIFO%2d size: %d\n", i,
						hsotg->g_tx_fifo_sz[i]);
3553
	/*
3554 3555
	 * If platform probe couldn't find a generic PHY or an old style
	 * USB PHY, fall back to pdata
3556
	 */
3557 3558 3559 3560 3561 3562 3563 3564 3565
	if (IS_ERR_OR_NULL(hsotg->phy) && IS_ERR_OR_NULL(hsotg->uphy)) {
		plat = dev_get_platdata(dev);
		if (!plat) {
			dev_err(dev,
			"no platform data or transceiver defined\n");
			return -EPROBE_DEFER;
		}
		hsotg->plat = plat;
	} else if (hsotg->phy) {
3566 3567 3568 3569
		/*
		 * If using the generic PHY framework, check if the PHY bus
		 * width is 8-bit and set the phyif appropriately.
		 */
3570
		if (phy_get_bus_width(hsotg->phy) == 8)
3571 3572
			hsotg->phyif = GUSBCFG_PHYIF8;
	}
3573

3574
	hsotg->clk = devm_clk_get(dev, "otg");
3575
	if (IS_ERR(hsotg->clk)) {
3576
		hsotg->clk = NULL;
3577
		dev_dbg(dev, "cannot get otg clock\n");
3578 3579
	}

3580
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3581 3582 3583 3584 3585
	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
	hsotg->gadget.name = dev_name(dev);

	/* reset the system */

3586 3587 3588 3589 3590 3591
	ret = clk_prepare_enable(hsotg->clk);
	if (ret) {
		dev_err(dev, "failed to enable otg clk\n");
		goto err_clk;
	}

3592

3593 3594 3595 3596 3597
	/* regulators */

	for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
		hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];

3598
	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3599 3600 3601
				 hsotg->supplies);
	if (ret) {
		dev_err(dev, "failed to request supplies: %d\n", ret);
3602
		goto err_clk;
3603 3604 3605 3606 3607 3608
	}

	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);

	if (ret) {
3609
		dev_err(dev, "failed to enable supplies: %d\n", ret);
3610
		goto err_clk;
3611 3612
	}

3613 3614
	/* usb phy enable */
	s3c_hsotg_phy_enable(hsotg);
3615 3616

	s3c_hsotg_corereset(hsotg);
3617 3618 3619 3620 3621 3622
	ret = s3c_hsotg_hw_cfg(hsotg);
	if (ret) {
		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
		goto err_clk;
	}

3623
	s3c_hsotg_init(hsotg);
3624

3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
	if (!hsotg->ctrl_buff) {
		dev_err(dev, "failed to allocate ctrl request buff\n");
		ret = -ENOMEM;
		goto err_supplies;
	}

	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
	if (!hsotg->ep0_buff) {
		dev_err(dev, "failed to allocate ctrl reply buff\n");
		ret = -ENOMEM;
		goto err_supplies;
	}

3641 3642
	ret = devm_request_irq(hsotg->dev, irq, s3c_hsotg_irq, IRQF_SHARED,
				dev_name(hsotg->dev), hsotg);
3643 3644 3645 3646 3647
	if (ret < 0) {
		s3c_hsotg_phy_disable(hsotg);
		clk_disable_unprepare(hsotg->clk);
		regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				       hsotg->supplies);
3648
		dev_err(dev, "cannot claim IRQ for gadget\n");
3649
		goto err_supplies;
3650 3651
	}

3652 3653 3654 3655
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
3656
		ret = -EINVAL;
3657 3658 3659 3660 3661 3662
		goto err_supplies;
	}

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3663
	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
3664 3665 3666

	/* allocate EP0 request */

3667
	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
3668 3669 3670
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
3671
		ret = -ENOMEM;
3672
		goto err_supplies;
3673
	}
3674 3675

	/* initialise the endpoints now the core has been initialised */
3676 3677 3678 3679 3680 3681 3682 3683
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
		if (hsotg->eps_in[epnum])
			s3c_hsotg_initep(hsotg, hsotg->eps_in[epnum],
								epnum, 1);
		if (hsotg->eps_out[epnum])
			s3c_hsotg_initep(hsotg, hsotg->eps_out[epnum],
								epnum, 0);
	}
3684

3685
	/* disable power and clock */
3686
	s3c_hsotg_phy_disable(hsotg);
3687 3688 3689 3690

	ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
	if (ret) {
3691
		dev_err(dev, "failed to disable supplies: %d\n", ret);
3692
		goto err_supplies;
3693 3694
	}

3695
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3696
	if (ret)
3697
		goto err_supplies;
3698

3699 3700 3701 3702 3703 3704
	s3c_hsotg_create_debug(hsotg);

	s3c_hsotg_dump(hsotg);

	return 0;

3705
err_supplies:
3706
	s3c_hsotg_phy_disable(hsotg);
3707
err_clk:
3708
	clk_disable_unprepare(hsotg->clk);
3709

3710 3711
	return ret;
}
3712
EXPORT_SYMBOL_GPL(dwc2_gadget_init);
3713

3714 3715 3716 3717
/**
 * s3c_hsotg_remove - remove function for hsotg driver
 * @pdev: The platform information for the driver
 */
3718
int s3c_hsotg_remove(struct dwc2_hsotg *hsotg)
3719
{
3720
	usb_del_gadget_udc(&hsotg->gadget);
3721
	s3c_hsotg_delete_debug(hsotg);
3722
	clk_disable_unprepare(hsotg->clk);
3723

3724 3725
	return 0;
}
3726
EXPORT_SYMBOL_GPL(s3c_hsotg_remove);
3727

3728
int s3c_hsotg_suspend(struct dwc2_hsotg *hsotg)
3729 3730 3731 3732
{
	unsigned long flags;
	int ret = 0;

3733 3734
	mutex_lock(&hsotg->init_mutex);

3735 3736 3737
	if (hsotg->driver) {
		int ep;

3738 3739 3740
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

3741 3742 3743 3744 3745 3746
		spin_lock_irqsave(&hsotg->lock, flags);
		if (hsotg->enabled)
			s3c_hsotg_core_disconnect(hsotg);
		s3c_hsotg_disconnect(hsotg);
		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
		spin_unlock_irqrestore(&hsotg->lock, flags);
3747

3748
		s3c_hsotg_phy_disable(hsotg);
3749

3750 3751 3752 3753 3754 3755
		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
			if (hsotg->eps_in[ep])
				s3c_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
			if (hsotg->eps_out[ep])
				s3c_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
		}
3756 3757 3758

		ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
					     hsotg->supplies);
3759
		clk_disable(hsotg->clk);
3760 3761
	}

3762 3763
	mutex_unlock(&hsotg->init_mutex);

3764 3765
	return ret;
}
3766
EXPORT_SYMBOL_GPL(s3c_hsotg_suspend);
3767

3768
int s3c_hsotg_resume(struct dwc2_hsotg *hsotg)
3769 3770 3771 3772
{
	unsigned long flags;
	int ret = 0;

3773 3774
	mutex_lock(&hsotg->init_mutex);

3775 3776 3777
	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
3778 3779

		clk_enable(hsotg->clk);
3780
		ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3781
					    hsotg->supplies);
3782

3783
		s3c_hsotg_phy_enable(hsotg);
3784

3785 3786 3787 3788 3789 3790
		spin_lock_irqsave(&hsotg->lock, flags);
		s3c_hsotg_core_init_disconnected(hsotg);
		if (hsotg->enabled)
			s3c_hsotg_core_connect(hsotg);
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
3791
	mutex_unlock(&hsotg->init_mutex);
3792 3793 3794

	return ret;
}
3795
EXPORT_SYMBOL_GPL(s3c_hsotg_resume);