gadget.c 96.7 KB
Newer Older
1
/**
2 3
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
15
 */
16 17 18 19 20 21 22 23

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/debugfs.h>
24
#include <linux/mutex.h>
25 26 27
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
28
#include <linux/slab.h>
29
#include <linux/clk.h>
30
#include <linux/regulator/consumer.h>
31
#include <linux/of_platform.h>
32
#include <linux/phy/phy.h>
33 34 35

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
36
#include <linux/usb/phy.h>
37
#include <linux/platform_data/s3c-hsotg.h>
38

39
#include "core.h"
40
#include "hw.h"
41 42 43 44 45 46 47 48 49 50 51 52

/* conversion functions */
static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
{
	return container_of(req, struct s3c_hsotg_req, req);
}

static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
{
	return container_of(ep, struct s3c_hsotg_ep, ep);
}

53
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
54
{
55
	return container_of(gadget, struct dwc2_hsotg, gadget);
56 57 58 59 60 61 62 63 64 65 66 67
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) | val, ptr);
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) & ~val, ptr);
}

68 69 70 71 72 73 74 75 76
static inline struct s3c_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
						u32 ep_index, u32 dir_in)
{
	if (dir_in)
		return hsotg->eps_in[ep_index];
	else
		return hsotg->eps_out[ep_index];
}

77
/* forward declaration of functions */
78
static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg);
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
97
 * g_using_dma is set depending on dts flag.
98
 */
99
static inline bool using_dma(struct dwc2_hsotg *hsotg)
100
{
101
	return hsotg->g_using_dma;
102 103 104 105 106 107 108
}

/**
 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
109
static void s3c_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
110
{
111
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
112 113 114 115 116 117
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
118
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
119 120 121 122 123 124 125 126
	}
}

/**
 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
127
static void s3c_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
128
{
129
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
130 131 132 133 134
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
135
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
136 137 138 139 140 141 142 143 144 145 146 147
}

/**
 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
148
static void s3c_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
149 150 151 152 153 154 155 156 157 158 159
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
160
	daint = readl(hsotg->regs + DAINTMSK);
161 162 163 164
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
165
	writel(daint, hsotg->regs + DAINTMSK);
166 167 168 169 170 171 172
	local_irq_restore(flags);
}

/**
 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
 * @hsotg: The device instance.
 */
173
static void s3c_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
174
{
175 176
	unsigned int ep;
	unsigned int addr;
177
	int timeout;
178 179
	u32 val;

180 181 182 183
	/* Reset fifo map if not correctly cleared during previous session */
	WARN_ON(hsotg->fifo_map);
	hsotg->fifo_map = 0;

184 185 186 187 188
	/* set RX/NPTX FIFO sizes */
	writel(hsotg->g_rx_fifo_sz, hsotg->regs + GRXFSIZ);
	writel((hsotg->g_rx_fifo_sz << FIFOSIZE_STARTADDR_SHIFT) |
		(hsotg->g_np_g_tx_fifo_sz << FIFOSIZE_DEPTH_SHIFT),
		hsotg->regs + GNPTXFSIZ);
189

190 191
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
192 193
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
194 195
	 * known values.
	 */
196 197

	/* start at the end of the GNPTXFSIZ, rounded up */
198
	addr = hsotg->g_rx_fifo_sz + hsotg->g_np_g_tx_fifo_sz;
199

200
	/*
201
	 * Configure fifos sizes from provided configuration and assign
202 203
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
204
	 */
205 206 207
	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
		if (!hsotg->g_tx_fifo_sz[ep])
			continue;
208
		val = addr;
209 210
		val |= hsotg->g_tx_fifo_sz[ep] << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + hsotg->g_tx_fifo_sz[ep] > hsotg->fifo_mem,
211
			  "insufficient fifo memory");
212
		addr += hsotg->g_tx_fifo_sz[ep];
213

214
		writel(val, hsotg->regs + DPTXFSIZN(ep));
215
	}
216

217 218 219 220
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
221

222 223
	writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
224 225 226 227

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
228
		val = readl(hsotg->regs + GRSTCTL);
229

230
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
231 232 233 234 235 236
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
237
			break;
238 239 240 241 242 243
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
244 245 246 247 248 249 250 251
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
252 253
static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
						      gfp_t flags)
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
{
	struct s3c_hsotg_req *req;

	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
{
	return hs_ep->periodic;
}

/**
 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
 * of a request to ensure the buffer is ready for access by the caller.
286
 */
287
static void s3c_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
288 289 290 291 292 293 294 295 296
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

297
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
}

/**
 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
315
 */
316
static int s3c_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
317 318 319 320
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	bool periodic = is_ep_periodic(hs_ep);
321
	u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
322 323 324 325 326
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
327
	int max_transfer;
328 329 330 331 332 333 334

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

335
	if (periodic && !hsotg->dedicated_fifos) {
336
		u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
337 338 339
		int size_left;
		int size_done;

340 341 342 343
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
344

345
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
346

347 348
		/*
		 * if shared fifo, we cannot write anything until the
349 350 351
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
352
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
353 354 355
			return -ENOSPC;
		}

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
373
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
374 375
			return -ENOSPC;
		}
376
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
377
		can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
378 379 380

		can_write &= 0xffff;
		can_write *= 4;
381
	} else {
382
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
383 384 385 386
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

387
			s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
388 389 390
			return -ENOSPC;
		}

391
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
392
		can_write *= 4;	/* fifo size is in 32bit quantities. */
393 394
	}

395 396 397 398
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
		 __func__, gnptxsts, can_write, to_write, max_transfer);
399

400 401
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
402 403 404
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
405
	if (can_write > 512 && !periodic)
406 407
		can_write = 512;

408 409
	/*
	 * limit the write to one max-packet size worth of data, but allow
410
	 * the transfer to return that it did not run out of fifo space
411 412
	 * doing it.
	 */
413 414
	if (to_write > max_transfer) {
		to_write = max_transfer;
415

416 417 418
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
419 420
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
421 422
	}

423 424 425 426
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
427
		pkt_round = to_write % max_transfer;
428

429 430
		/*
		 * Round the write down to an
431 432 433 434 435 436 437 438 439
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

440 441 442 443
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
444

445 446 447
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
448 449
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

467
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
486 487
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
488
	} else {
489
		maxsize = 64+64;
490
		if (hs_ep->dir_in)
491
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
492
		else
493 494 495 496 497 498 499
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

500 501 502 503
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

/**
 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
521
static void s3c_hsotg_start_req(struct dwc2_hsotg *hsotg,
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req,
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

550 551
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
552 553 554 555 556

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
		__func__, readl(hsotg->regs + epctrl_reg), index,
		hs_ep->dir_in ? "in" : "out");

557 558 559
	/* If endpoint is stalled, we will restart request later */
	ctrl = readl(hsotg->regs + epctrl_reg);

560
	if (ctrl & DXEPCTL_STALL) {
561 562 563 564
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

565
	length = ureq->length - ureq->actual;
566 567
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
568 569
	if (0)
		dev_dbg(hsotg->dev,
570
			"REQ buf %p len %d dma %pad noi=%d zp=%d snok=%d\n",
571
			ureq->buf, length, &ureq->dma,
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
			ureq->no_interrupt, ureq->zero, ureq->short_not_ok);

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

593 594 595 596 597
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

598
	if (dir_in && index != 0)
599
		if (hs_ep->isochronous)
600
			epsize = DXEPTSIZ_MC(packets);
601
		else
602
			epsize = DXEPTSIZ_MC(1);
603 604 605
	else
		epsize = 0;

606 607 608 609 610 611 612 613
	/*
	 * zero length packet should be programmed on its own and should not
	 * be counted in DIEPTSIZ.PktCnt with other packets.
	 */
	if (dir_in && ureq->zero && !continuing) {
		/* Test if zlp is actually required. */
		if ((ureq->length >= hs_ep->ep.maxpacket) &&
					!(ureq->length % hs_ep->ep.maxpacket))
614
			hs_ep->send_zlp = 1;
615 616
	}

617 618
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
619 620 621 622 623 624 625 626 627 628

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
	writel(epsize, hsotg->regs + epsize_reg);

629
	if (using_dma(hsotg) && !continuing) {
630 631
		unsigned int dma_reg;

632 633 634 635
		/*
		 * write DMA address to control register, buffer already
		 * synced by s3c_hsotg_ep_queue().
		 */
636

637
		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
638 639
		writel(ureq->dma, hsotg->regs + dma_reg);

640
		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
641
			__func__, &ureq->dma, dma_reg);
642 643
	}

644 645
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
646

647
	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
648 649

	/* For Setup request do not clear NAK */
650
	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
651
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
652

653 654 655
	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

656 657
	/*
	 * set these, it seems that DMA support increments past the end
658
	 * of the packet buffer so we need to calculate the length from
659 660
	 * this information.
	 */
661 662 663 664 665 666 667 668 669 670
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

671 672 673 674
	/*
	 * clear the INTknTXFEmpMsk when we start request, more as a aide
	 * to debugging to see what is going on.
	 */
675
	if (dir_in)
676
		writel(DIEPMSK_INTKNTXFEMPMSK,
677
		       hsotg->regs + DIEPINT(index));
678

679 680 681 682
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
683 684

	/* check ep is enabled */
685
	if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
686
		dev_dbg(hsotg->dev,
687
			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
688 689
			 index, readl(hsotg->regs + epctrl_reg));

690
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
691
		__func__, readl(hsotg->regs + epctrl_reg));
692 693 694

	/* enable ep interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
695 696 697 698 699 700 701 702 703 704 705 706 707
}

/**
 * s3c_hsotg_map_dma - map the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
708
 */
709
static int s3c_hsotg_map_dma(struct dwc2_hsotg *hsotg,
710 711 712 713
			     struct s3c_hsotg_ep *hs_ep,
			     struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
714
	int ret;
715 716 717 718 719

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

720 721 722
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
738
	struct dwc2_hsotg *hs = hs_ep->parent;
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
	bool first;

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
		int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
		if (ret)
			return ret;
	}

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

	if (first)
		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);

	return 0;
}

766 767 768 769
static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
770
	struct dwc2_hsotg *hs = hs_ep->parent;
771 772 773 774 775 776 777 778 779 780
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
				      struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);

	kfree(hs_req);
}

/**
 * s3c_hsotg_complete_oursetup - setup completion callback
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
					struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
801
	struct dwc2_hsotg *hsotg = hs_ep->parent;
802 803 804 805 806 807 808 809 810 811 812 813 814

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

	s3c_hsotg_ep_free_request(ep, req);
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
815
 */
816
static struct s3c_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
817 818
					   u32 windex)
{
819
	struct s3c_hsotg_ep *ep;
820 821 822 823 824 825
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

826
	if (idx > hsotg->num_of_eps)
827 828
		return NULL;

829 830
	ep = index_to_ep(hsotg, idx, dir);

831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

/**
 * s3c_hsotg_send_reply - send reply to control request
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
847
static int s3c_hsotg_send_reply(struct dwc2_hsotg *hsotg,
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
				struct s3c_hsotg_ep *ep,
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
866 867 868 869 870
	/*
	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
	 * STATUS stage.
	 */
	req->zero = 0;
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
	req->complete = s3c_hsotg_complete_oursetup;

	if (length)
		memcpy(req->buf, buff, length);

	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
 * s3c_hsotg_process_req_status - process request GET_STATUS
 * @hsotg: The device state
 * @ctrl: USB control request
 */
890
static int s3c_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
891 892
					struct usb_ctrlrequest *ctrl)
{
893
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
	struct s3c_hsotg_ep *ep;
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);

942 943 944 945 946 947 948 949 950 951 952 953 954 955
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
{
	if (list_empty(&hs_ep->queue))
		return NULL;

	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
}

956 957 958 959 960
/**
 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
 * @hsotg: The device state
 * @ctrl: USB control request
 */
961
static int s3c_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
962 963
					 struct usb_ctrlrequest *ctrl)
{
964
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
965 966
	struct s3c_hsotg_req *hs_req;
	bool restart;
967 968
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
	struct s3c_hsotg_ep *ep;
969
	int ret;
970
	bool halted;
971 972 973 974 975 976 977 978 979 980 981 982 983 984

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
				__func__, le16_to_cpu(ctrl->wIndex));
			return -ENOENT;
		}

		switch (le16_to_cpu(ctrl->wValue)) {
		case USB_ENDPOINT_HALT:
985 986
			halted = ep->halted;

987
			s3c_hsotg_ep_sethalt(&ep->ep, set);
988 989 990 991 992 993 994

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
995

996 997 998 999 1000 1001
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1002 1003 1004 1005 1006 1007 1008 1009
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1010 1011 1012 1013 1014 1015
					if (hs_req->req.complete) {
						spin_unlock(&hsotg->lock);
						usb_gadget_giveback_request(
							&ep->ep, &hs_req->req);
						spin_lock(&hsotg->lock);
					}
1016 1017 1018
				}

				/* If we have pending request, then start it */
1019 1020 1021 1022 1023 1024 1025
				if (!ep->req) {
					restart = !list_empty(&ep->queue);
					if (restart) {
						hs_req = get_ep_head(ep);
						s3c_hsotg_start_req(hsotg, ep,
								hs_req, false);
					}
1026 1027 1028
				}
			}

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
			break;

		default:
			return -ENOENT;
		}
	} else
		return -ENOENT;  /* currently only deal with endpoint */

	return 1;
}

1040
static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1041

1042 1043 1044 1045 1046 1047
/**
 * s3c_hsotg_stall_ep0 - stall ep0
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1048
static void s3c_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1049
{
1050
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

	ctrl = readl(hsotg->regs + reg);
1063 1064
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1065 1066 1067
	writel(ctrl, hsotg->regs + reg);

	dev_dbg(hsotg->dev,
1068
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1069 1070 1071 1072 1073 1074 1075 1076 1077
		ctrl, reg, readl(hsotg->regs + reg));

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
	 s3c_hsotg_enqueue_setup(hsotg);
}

1078 1079 1080 1081 1082 1083 1084 1085 1086
/**
 * s3c_hsotg_process_control - process a control request
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1087
static void s3c_hsotg_process_control(struct dwc2_hsotg *hsotg,
1088 1089
				      struct usb_ctrlrequest *ctrl)
{
1090
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
1091 1092 1093 1094 1095 1096 1097
	int ret = 0;
	u32 dcfg;

	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
		 ctrl->bRequest, ctrl->bRequestType,
		 ctrl->wValue, ctrl->wLength);

1098 1099 1100 1101
	if (ctrl->wLength == 0) {
		ep0->dir_in = 1;
		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
	} else if (ctrl->bRequestType & USB_DIR_IN) {
1102
		ep0->dir_in = 1;
1103 1104 1105 1106 1107
		hsotg->ep0_state = DWC2_EP0_DATA_IN;
	} else {
		ep0->dir_in = 0;
		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
	}
1108 1109 1110 1111

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1112
			hsotg->connected = 1;
1113
			dcfg = readl(hsotg->regs + DCFG);
1114
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1115 1116
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1117
			writel(dcfg, hsotg->regs + DCFG);
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			return;

		case USB_REQ_GET_STATUS:
			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1138
		spin_unlock(&hsotg->lock);
1139
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1140
		spin_lock(&hsotg->lock);
1141 1142 1143 1144
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1145 1146
	/*
	 * the request is either unhandlable, or is not formatted correctly
1147 1148 1149
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1150 1151
	if (ret < 0)
		s3c_hsotg_stall_ep0(hsotg);
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
}

/**
 * s3c_hsotg_complete_setup - completion of a setup transfer
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
static void s3c_hsotg_complete_setup(struct usb_ep *ep,
				     struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1166
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1167 1168 1169 1170 1171 1172

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1173
	spin_lock(&hsotg->lock);
1174 1175 1176 1177
	if (req->actual == 0)
		s3c_hsotg_enqueue_setup(hsotg);
	else
		s3c_hsotg_process_control(hsotg, req->buf);
1178
	spin_unlock(&hsotg->lock);
1179 1180 1181 1182 1183 1184 1185 1186 1187
}

/**
 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1188
static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
{
	struct usb_request *req = hsotg->ctrl_req;
	struct s3c_hsotg_req *hs_req = our_req(req);
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
	req->complete = s3c_hsotg_complete_setup;

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

1206
	hsotg->eps_out[0]->dir_in = 0;
1207
	hsotg->eps_out[0]->send_zlp = 0;
1208
	hsotg->ep0_state = DWC2_EP0_SETUP;
1209

1210
	ret = s3c_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1211 1212
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1213 1214 1215 1216
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1217 1218 1219
	}
}

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
static void s3c_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
					struct s3c_hsotg_ep *hs_ep)
{
	u32 ctrl;
	u8 index = hs_ep->index;
	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);

	dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n", index);

	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
			DXEPTSIZ_XFERSIZE(0), hsotg->regs +
			epsiz_reg);

	ctrl = readl(hsotg->regs + epctl_reg);
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
	writel(ctrl, hsotg->regs + epctl_reg);
}

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
/**
 * s3c_hsotg_complete_request - complete a request given to us
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1253
 */
1254
static void s3c_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
				       struct s3c_hsotg_ep *hs_ep,
				       struct s3c_hsotg_req *hs_req,
				       int result)
{
	bool restart;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1269 1270 1271 1272
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

	if (using_dma(hsotg))
		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1283 1284 1285 1286
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1287 1288

	if (hs_req->req.complete) {
1289
		spin_unlock(&hsotg->lock);
1290
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1291
		spin_lock(&hsotg->lock);
1292 1293
	}

1294 1295
	/*
	 * Look to see if there is anything else to do. Note, the completion
1296
	 * of the previous request may have caused a new request to be started
1297 1298
	 * so be careful when doing this.
	 */
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318

	if (!hs_ep->req && result >= 0) {
		restart = !list_empty(&hs_ep->queue);
		if (restart) {
			hs_req = get_ep_head(hs_ep);
			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		}
	}
}

/**
 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
1319
static void s3c_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1320
{
1321
	struct s3c_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
1322
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1323
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1324 1325 1326 1327
	int to_read;
	int max_req;
	int read_ptr;

1328

1329
	if (!hs_req) {
1330
		u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1331 1332
		int ptr;

1333
		dev_dbg(hsotg->dev,
1334
			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
			(void)readl(fifo);

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1348 1349 1350
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1351
	if (to_read > max_req) {
1352 1353
		/*
		 * more data appeared than we where willing
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1365 1366 1367 1368
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1369
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1370 1371 1372
}

/**
1373
 * s3c_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
1374
 * @hsotg: The device instance
1375
 * @dir_in: If IN zlp
1376 1377 1378 1379 1380
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1381
 * currently believed that we do not need to wait for any space in
1382 1383
 * the TxFIFO.
 */
1384
static void s3c_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
1385
{
1386
	/* eps_out[0] is used in both directions */
1387 1388
	hsotg->eps_out[0]->dir_in = dir_in;
	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
1389

1390
	s3c_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
}

/**
 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1401
 */
1402
static void s3c_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
1403
{
1404
	u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1405
	struct s3c_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
1406 1407
	struct s3c_hsotg_req *hs_req = hs_ep->req;
	struct usb_request *req = &hs_req->req;
1408
	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1409 1410 1411 1412 1413 1414 1415
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

1416 1417 1418 1419 1420 1421 1422
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
		s3c_hsotg_enqueue_setup(hsotg);
		return;
	}

1423 1424 1425
	if (using_dma(hsotg)) {
		unsigned size_done;

1426 1427
		/*
		 * Calculate the size of the transfer by checking how much
1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1441 1442 1443 1444 1445 1446
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
		return;
	}

1447 1448 1449 1450
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1451 1452 1453 1454
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1455 1456
	}

1457 1458 1459 1460
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
		/* Move to STATUS IN */
		s3c_hsotg_ep0_zlp(hsotg, true);
		return;
1461 1462
	}

1463
	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1464 1465 1466 1467 1468 1469 1470
}

/**
 * s3c_hsotg_read_frameno - read current frame number
 * @hsotg: The device instance
 *
 * Return the current frame number
1471
 */
1472
static u32 s3c_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1473 1474 1475
{
	u32 dsts;

1476 1477 1478
	dsts = readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490

	return dsts;
}

/**
 * s3c_hsotg_handle_rx - RX FIFO has data
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1491
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1492 1493 1494 1495 1496 1497 1498
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1499
static void s3c_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1500
{
1501
	u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1502 1503 1504 1505
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

1506 1507
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
1508

1509 1510
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
1511 1512 1513 1514 1515

	if (1)
		dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
			__func__, grxstsr, size, epnum);

1516 1517 1518
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1519 1520
		break;

1521
	case GRXSTS_PKTSTS_OUTDONE:
1522 1523 1524 1525
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg));

		if (!using_dma(hsotg))
1526
			s3c_hsotg_handle_outdone(hsotg, epnum);
1527 1528
		break;

1529
	case GRXSTS_PKTSTS_SETUPDONE:
1530 1531 1532
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1533
			readl(hsotg->regs + DOEPCTL(0)));
1534 1535 1536 1537 1538 1539 1540
		/*
		 * Call s3c_hsotg_handle_outdone here if it was not called from
		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
		 */
		if (hsotg->ep0_state == DWC2_EP0_SETUP)
			s3c_hsotg_handle_outdone(hsotg, epnum);
1541 1542
		break;

1543
	case GRXSTS_PKTSTS_OUTRX:
1544 1545 1546
		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

1547
	case GRXSTS_PKTSTS_SETUPRX:
1548 1549 1550
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1551
			readl(hsotg->regs + DOEPCTL(0)));
1552

1553 1554
		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

		s3c_hsotg_dump(hsotg);
		break;
	}
}

/**
 * s3c_hsotg_ep0_mps - turn max packet size into register setting
 * @mps: The maximum packet size in bytes.
1570
 */
1571 1572 1573 1574
static u32 s3c_hsotg_ep0_mps(unsigned int mps)
{
	switch (mps) {
	case 64:
1575
		return D0EPCTL_MPS_64;
1576
	case 32:
1577
		return D0EPCTL_MPS_32;
1578
	case 16:
1579
		return D0EPCTL_MPS_16;
1580
	case 8:
1581
		return D0EPCTL_MPS_8;
1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
1598
static void s3c_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1599
			unsigned int ep, unsigned int mps, unsigned int dir_in)
1600
{
1601
	struct s3c_hsotg_ep *hs_ep;
1602 1603
	void __iomem *regs = hsotg->regs;
	u32 mpsval;
1604
	u32 mcval;
1605 1606
	u32 reg;

1607 1608 1609 1610
	hs_ep = index_to_ep(hsotg, ep, dir_in);
	if (!hs_ep)
		return;

1611 1612 1613 1614 1615
	if (ep == 0) {
		/* EP0 is a special case */
		mpsval = s3c_hsotg_ep0_mps(mps);
		if (mpsval > 3)
			goto bad_mps;
1616
		hs_ep->ep.maxpacket = mps;
1617
		hs_ep->mc = 1;
1618
	} else {
1619
		mpsval = mps & DXEPCTL_MPS_MASK;
1620
		if (mpsval > 1024)
1621
			goto bad_mps;
1622 1623 1624 1625
		mcval = ((mps >> 11) & 0x3) + 1;
		hs_ep->mc = mcval;
		if (mcval > 3)
			goto bad_mps;
1626
		hs_ep->ep.maxpacket = mpsval;
1627 1628
	}

1629 1630 1631 1632 1633 1634
	if (dir_in) {
		reg = readl(regs + DIEPCTL(ep));
		reg &= ~DXEPCTL_MPS_MASK;
		reg |= mpsval;
		writel(reg, regs + DIEPCTL(ep));
	} else {
1635
		reg = readl(regs + DOEPCTL(ep));
1636
		reg &= ~DXEPCTL_MPS_MASK;
1637
		reg |= mpsval;
1638
		writel(reg, regs + DOEPCTL(ep));
1639
	}
1640 1641 1642 1643 1644 1645 1646

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1647 1648 1649 1650 1651
/**
 * s3c_hsotg_txfifo_flush - flush Tx FIFO
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
1652
static void s3c_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1653 1654 1655 1656
{
	int timeout;
	int val;

1657
	writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1658
		hsotg->regs + GRSTCTL);
1659 1660 1661 1662 1663

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
1664
		val = readl(hsotg->regs + GRSTCTL);
1665

1666
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1667 1668 1669 1670 1671 1672
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
1673
			break;
1674 1675 1676 1677 1678
		}

		udelay(1);
	}
}
1679 1680 1681 1682 1683 1684 1685 1686 1687

/**
 * s3c_hsotg_trytx - check to see if anything needs transmitting
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
1688
static int s3c_hsotg_trytx(struct dwc2_hsotg *hsotg,
1689 1690 1691 1692
			   struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;

1693 1694 1695 1696 1697 1698 1699 1700
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
			s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
					     hs_ep->dir_in, 0);
1701
		return 0;
1702
	}
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

	return 0;
}

/**
 * s3c_hsotg_complete_in - complete IN transfer
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
1721
static void s3c_hsotg_complete_in(struct dwc2_hsotg *hsotg,
1722 1723 1724
				  struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1725
	u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1726 1727 1728 1729 1730 1731 1732
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

1733
	/* Finish ZLP handling for IN EP0 transactions */
1734 1735
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
		dev_dbg(hsotg->dev, "zlp packet sent\n");
1736
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1737
		s3c_hsotg_enqueue_setup(hsotg);
1738 1739 1740
		return;
	}

1741 1742
	/*
	 * Calculate the size of the transfer by checking how much is left
1743 1744 1745 1746 1747 1748 1749 1750
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

1751
	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1752 1753 1754 1755 1756 1757 1758 1759 1760

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
1761 1762 1763
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

1764 1765 1766
	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1767 1768 1769
		return;
	}

1770
	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
1771
	if (hs_ep->send_zlp) {
1772
		s3c_hsotg_program_zlp(hsotg, hs_ep);
1773
		hs_ep->send_zlp = 0;
1774 1775 1776 1777
		/* transfer will be completed on next complete interrupt */
		return;
	}

1778 1779 1780 1781 1782 1783 1784
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
		/* Move to STATUS OUT */
		s3c_hsotg_ep0_zlp(hsotg, false);
		return;
	}

	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1785 1786 1787 1788 1789 1790 1791 1792 1793
}

/**
 * s3c_hsotg_epint - handle an in/out endpoint interrupt
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
1794
 */
1795
static void s3c_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
1796 1797
			    int dir_in)
{
1798
	struct s3c_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
1799 1800 1801
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1802
	u32 ints;
1803
	u32 ctrl;
1804 1805

	ints = readl(hsotg->regs + epint_reg);
1806
	ctrl = readl(hsotg->regs + epctl_reg);
1807

1808 1809 1810
	/* Clear endpoint interrupts */
	writel(ints, hsotg->regs + epint_reg);

1811 1812 1813 1814 1815 1816
	if (!hs_ep) {
		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
					__func__, idx, dir_in ? "in" : "out");
		return;
	}

1817 1818 1819
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

1820 1821 1822 1823
	/* Don't process XferCompl interrupt if it is a setup packet */
	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
		ints &= ~DXEPINT_XFERCOMPL;

1824
	if (ints & DXEPINT_XFERCOMPL) {
1825
		if (hs_ep->isochronous && hs_ep->interval == 1) {
1826 1827
			if (ctrl & DXEPCTL_EOFRNUM)
				ctrl |= DXEPCTL_SETEVENFR;
1828
			else
1829
				ctrl |= DXEPCTL_SETODDFR;
1830 1831 1832
			writel(ctrl, hsotg->regs + epctl_reg);
		}

1833
		dev_dbg(hsotg->dev,
1834
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1835 1836 1837
			__func__, readl(hsotg->regs + epctl_reg),
			readl(hsotg->regs + epsiz_reg));

1838 1839 1840 1841
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
1842 1843 1844
		if (dir_in) {
			s3c_hsotg_complete_in(hsotg, hs_ep);

1845
			if (idx == 0 && !hs_ep->req)
1846 1847
				s3c_hsotg_enqueue_setup(hsotg);
		} else if (using_dma(hsotg)) {
1848 1849 1850 1851
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
1852

1853
			s3c_hsotg_handle_outdone(hsotg, idx);
1854 1855 1856
		}
	}

1857
	if (ints & DXEPINT_EPDISBLD) {
1858 1859
		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

1860 1861 1862
		if (dir_in) {
			int epctl = readl(hsotg->regs + epctl_reg);

1863
			s3c_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
1864

1865 1866
			if ((epctl & DXEPCTL_STALL) &&
				(epctl & DXEPCTL_EPTYPE_BULK)) {
1867
				int dctl = readl(hsotg->regs + DCTL);
1868

1869
				dctl |= DCTL_CGNPINNAK;
1870
				writel(dctl, hsotg->regs + DCTL);
1871 1872 1873 1874
			}
		}
	}

1875
	if (ints & DXEPINT_AHBERR)
1876 1877
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

1878
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
1879 1880 1881
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
1882 1883
			/*
			 * this is the notification we've received a
1884 1885
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
1886 1887
			 * the setup here.
			 */
1888 1889 1890 1891

			if (dir_in)
				WARN_ON_ONCE(1);
			else
1892
				s3c_hsotg_handle_outdone(hsotg, 0);
1893 1894 1895
		}
	}

1896
	if (ints & DXEPINT_BACK2BACKSETUP)
1897 1898
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

1899
	if (dir_in && !hs_ep->isochronous) {
1900
		/* not sure if this is important, but we'll clear it anyway */
1901
		if (ints & DIEPMSK_INTKNTXFEMPMSK) {
1902 1903 1904 1905 1906
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
1907
		if (ints & DIEPMSK_INTKNEPMISMSK) {
1908 1909 1910
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
1911 1912 1913

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
1914
		    ints & DIEPMSK_TXFIFOEMPTY) {
1915 1916
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
1917 1918
			if (!using_dma(hsotg))
				s3c_hsotg_trytx(hsotg, hs_ep);
1919
		}
1920 1921 1922 1923 1924 1925 1926 1927 1928
	}
}

/**
 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
1929
 */
1930
static void s3c_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
1931
{
1932
	u32 dsts = readl(hsotg->regs + DSTS);
1933
	int ep0_mps = 0, ep_mps = 8;
1934

1935 1936
	/*
	 * This should signal the finish of the enumeration phase
1937
	 * of the USB handshaking, so we should now know what rate
1938 1939
	 * we connected at.
	 */
1940 1941 1942

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

1943 1944
	/*
	 * note, since we're limited by the size of transfer on EP0, and
1945
	 * it seems IN transfers must be a even number of packets we do
1946 1947
	 * not advertise a 64byte MPS on EP0.
	 */
1948 1949

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
1950 1951 1952
	switch (dsts & DSTS_ENUMSPD_MASK) {
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
1953 1954
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
1955
		ep_mps = 1023;
1956 1957
		break;

1958
	case DSTS_ENUMSPD_HS:
1959 1960
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
1961
		ep_mps = 1024;
1962 1963
		break;

1964
	case DSTS_ENUMSPD_LS:
1965
		hsotg->gadget.speed = USB_SPEED_LOW;
1966 1967
		/*
		 * note, we don't actually support LS in this driver at the
1968 1969 1970 1971 1972
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
1973 1974
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
1975

1976 1977 1978 1979
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
1980 1981 1982

	if (ep0_mps) {
		int i;
1983 1984 1985 1986 1987 1988 1989 1990 1991
		/* Initialize ep0 for both in and out directions */
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 1);
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0);
		for (i = 1; i < hsotg->num_of_eps; i++) {
			if (hsotg->eps_in[i])
				s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 1);
			if (hsotg->eps_out[i])
				s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0);
		}
1992 1993 1994 1995 1996 1997 1998
	}

	/* ensure after enumeration our EP0 is active */

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1999 2000
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
2012
static void kill_all_requests(struct dwc2_hsotg *hsotg,
2013
			      struct s3c_hsotg_ep *ep,
2014
			      int result)
2015 2016
{
	struct s3c_hsotg_req *req, *treq;
2017
	unsigned size;
2018

2019
	ep->req = NULL;
2020

2021
	list_for_each_entry_safe(req, treq, &ep->queue, queue)
2022 2023
		s3c_hsotg_complete_request(hsotg, ep, req,
					   result);
2024

2025 2026 2027 2028 2029
	if (!hsotg->dedicated_fifos)
		return;
	size = (readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
	if (size < ep->fifo_size)
		s3c_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2030 2031 2032
}

/**
2033
 * s3c_hsotg_disconnect - disconnect service
2034 2035
 * @hsotg: The device state.
 *
2036 2037 2038
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2039
 */
2040
void s3c_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2041 2042 2043
{
	unsigned ep;

2044 2045 2046 2047
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
2048 2049 2050 2051 2052 2053 2054 2055 2056

	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			kill_all_requests(hsotg, hsotg->eps_in[ep],
								-ESHUTDOWN);
		if (hsotg->eps_out[ep])
			kill_all_requests(hsotg, hsotg->eps_out[ep],
								-ESHUTDOWN);
	}
2057 2058 2059

	call_gadget(hsotg, disconnect);
}
2060
EXPORT_SYMBOL_GPL(s3c_hsotg_disconnect);
2061 2062 2063 2064 2065 2066

/**
 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
2067
static void s3c_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2068 2069 2070 2071 2072
{
	struct s3c_hsotg_ep *ep;
	int epno, ret;

	/* look through for any more data to transmit */
2073
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2074 2075 2076 2077
		ep = index_to_ep(hsotg, epno, 1);

		if (!ep)
			continue;
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

		ret = s3c_hsotg_trytx(hsotg, ep);
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2093 2094 2095
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
2096

2097 2098 2099 2100 2101
/**
 * s3c_hsotg_corereset - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
2102
 */
2103
static int s3c_hsotg_corereset(struct dwc2_hsotg *hsotg)
2104 2105 2106 2107 2108 2109 2110
{
	int timeout;
	u32 grstctl;

	dev_dbg(hsotg->dev, "resetting core\n");

	/* issue soft reset */
2111
	writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2112

2113
	timeout = 10000;
2114
	do {
2115
		grstctl = readl(hsotg->regs + GRSTCTL);
2116
	} while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2117

2118
	if (grstctl & GRSTCTL_CSFTRST) {
2119 2120 2121 2122
		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
		return -EINVAL;
	}

2123
	timeout = 10000;
2124 2125

	while (1) {
2126
		u32 grstctl = readl(hsotg->regs + GRSTCTL);
2127 2128 2129 2130 2131 2132 2133 2134

		if (timeout-- < 0) {
			dev_info(hsotg->dev,
				 "%s: reset failed, GRSTCTL=%08x\n",
				 __func__, grstctl);
			return -ETIMEDOUT;
		}

2135
		if (!(grstctl & GRSTCTL_AHBIDLE))
2136 2137 2138 2139 2140 2141 2142 2143 2144
			continue;

		break;		/* reset done */
	}

	dev_dbg(hsotg->dev, "reset successful\n");
	return 0;
}

2145 2146 2147 2148 2149 2150
/**
 * s3c_hsotg_core_init - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2151
void s3c_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg)
2152 2153 2154 2155 2156 2157 2158 2159 2160
{
	s3c_hsotg_corereset(hsotg);

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2161
	writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2162
	       (0x5 << 10), hsotg->regs + GUSBCFG);
2163 2164 2165

	s3c_hsotg_init_fifo(hsotg);

2166
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2167

2168
	writel(1 << 18 | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2169 2170

	/* Clear any pending OTG interrupts */
2171
	writel(0xffffffff, hsotg->regs + GOTGINT);
2172 2173

	/* Clear any pending interrupts */
2174
	writel(0xffffffff, hsotg->regs + GINTSTS);
2175

2176 2177 2178 2179 2180 2181
	writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
		GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
		GINTSTS_USBSUSP | GINTSTS_WKUPINT,
		hsotg->regs + GINTMSK);
2182 2183

	if (using_dma(hsotg))
2184
		writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
2185
		       (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
2186
		       hsotg->regs + GAHBCFG);
2187
	else
2188 2189 2190
		writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL |
						    GAHBCFG_P_TXF_EMP_LVL) : 0) |
		       GAHBCFG_GLBL_INTR_EN,
2191
		       hsotg->regs + GAHBCFG);
2192 2193

	/*
2194 2195 2196
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
2197 2198
	 */

2199 2200
	writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2201 2202 2203 2204
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_INTKNEPMISMSK,
		hsotg->regs + DIEPMSK);
2205 2206 2207 2208 2209

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2210 2211 2212 2213 2214
	writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
				    DIEPMSK_TIMEOUTMSK) : 0) |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_SETUPMSK,
		hsotg->regs + DOEPMSK);
2215

2216
	writel(0, hsotg->regs + DAINTMSK);
2217 2218

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2219 2220
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2221 2222

	/* enable in and out endpoint interrupts */
2223
	s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2224 2225 2226 2227 2228 2229 2230

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2231
		s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2232 2233 2234 2235 2236

	/* Enable interrupts for EP0 in and out */
	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);

2237
	__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2238
	udelay(10);  /* see openiboot */
2239
	__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2240

2241
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2242 2243

	/*
2244
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2245 2246 2247 2248
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2249 2250
	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2251

2252
	writel(s3c_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2253 2254
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
2255
	       hsotg->regs + DOEPCTL0);
2256 2257

	/* enable, but don't activate EP0in */
2258
	writel(s3c_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2259
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2260 2261 2262 2263

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2264 2265
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2266 2267

	/* clear global NAKs */
2268
	writel(DCTL_CGOUTNAK | DCTL_CGNPINNAK | DCTL_SFTDISCON,
2269
	       hsotg->regs + DCTL);
2270 2271 2272 2273

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

2274
	hsotg->last_rst = jiffies;
2275 2276
}

2277
static void s3c_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2278 2279 2280 2281
{
	/* set the soft-disconnect bit */
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
2282

2283
void s3c_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2284
{
2285
	/* remove the soft-disconnect and let's go */
2286
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2287 2288
}

2289 2290 2291 2292 2293 2294 2295
/**
 * s3c_hsotg_irq - handle device interrupt
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
{
2296
	struct dwc2_hsotg *hsotg = pw;
2297 2298 2299 2300
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

2301
	spin_lock(&hsotg->lock);
2302
irq_retry:
2303 2304
	gintsts = readl(hsotg->regs + GINTSTS);
	gintmsk = readl(hsotg->regs + GINTMSK);
2305 2306 2307 2308 2309 2310

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

2311 2312
	if (gintsts & GINTSTS_ENUMDONE) {
		writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2313 2314

		s3c_hsotg_irq_enumdone(hsotg);
2315 2316
	}

2317
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2318
		u32 daint = readl(hsotg->regs + DAINT);
2319 2320
		u32 daintmsk = readl(hsotg->regs + DAINTMSK);
		u32 daint_out, daint_in;
2321 2322
		int ep;

2323
		daint &= daintmsk;
2324 2325
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2326

2327 2328
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

2329 2330
		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
						ep++, daint_out >>= 1) {
2331 2332 2333 2334
			if (daint_out & 1)
				s3c_hsotg_epint(hsotg, ep, 0);
		}

2335 2336
		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
						ep++, daint_in >>= 1) {
2337 2338 2339 2340 2341
			if (daint_in & 1)
				s3c_hsotg_epint(hsotg, ep, 1);
		}
	}

2342
	if (gintsts & GINTSTS_USBRST) {
2343

2344
		u32 usb_status = readl(hsotg->regs + GOTGCTL);
2345

2346
		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
2347
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2348
			readl(hsotg->regs + GNPTXSTS));
2349

2350
		writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2351

2352 2353 2354
		/* Report disconnection if it is not already done. */
		s3c_hsotg_disconnect(hsotg);

2355
		if (usb_status & GOTGCTL_BSESVLD) {
2356 2357
			if (time_after(jiffies, hsotg->last_rst +
				       msecs_to_jiffies(200))) {
2358

2359
				kill_all_requests(hsotg, hsotg->eps_out[0],
2360
							  -ECONNRESET);
2361

2362 2363
				s3c_hsotg_core_init_disconnected(hsotg);
				s3c_hsotg_core_connect(hsotg);
2364 2365
			}
		}
2366 2367 2368 2369
	}

	/* check both FIFOs */

2370
	if (gintsts & GINTSTS_NPTXFEMP) {
2371 2372
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

2373 2374
		/*
		 * Disable the interrupt to stop it happening again
2375
		 * unless one of these endpoint routines decides that
2376 2377
		 * it needs re-enabling
		 */
2378

2379
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2380 2381 2382
		s3c_hsotg_irq_fifoempty(hsotg, false);
	}

2383
	if (gintsts & GINTSTS_PTXFEMP) {
2384 2385
		dev_dbg(hsotg->dev, "PTxFEmp\n");

2386
		/* See note in GINTSTS_NPTxFEmp */
2387

2388
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2389 2390 2391
		s3c_hsotg_irq_fifoempty(hsotg, true);
	}

2392
	if (gintsts & GINTSTS_RXFLVL) {
2393 2394
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2395
		 * we need to retry s3c_hsotg_handle_rx if this is still
2396 2397
		 * set.
		 */
2398 2399 2400 2401

		s3c_hsotg_handle_rx(hsotg);
	}

2402
	if (gintsts & GINTSTS_ERLYSUSP) {
2403
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2404
		writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2405 2406
	}

2407 2408
	/*
	 * these next two seem to crop-up occasionally causing the core
2409
	 * to shutdown the USB transfer, so try clearing them and logging
2410 2411
	 * the occurrence.
	 */
2412

2413
	if (gintsts & GINTSTS_GOUTNAKEFF) {
2414 2415
		dev_info(hsotg->dev, "GOUTNakEff triggered\n");

2416
		writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2417 2418

		s3c_hsotg_dump(hsotg);
2419 2420
	}

2421
	if (gintsts & GINTSTS_GINNAKEFF) {
2422 2423
		dev_info(hsotg->dev, "GINNakEff triggered\n");

2424
		writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2425 2426

		s3c_hsotg_dump(hsotg);
2427 2428
	}

2429 2430 2431 2432
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
2433 2434 2435 2436

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

2437 2438
	spin_unlock(&hsotg->lock);

2439 2440 2441 2442 2443 2444 2445 2446 2447
	return IRQ_HANDLED;
}

/**
 * s3c_hsotg_ep_enable - enable the given endpoint
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
2448
 */
2449 2450 2451 2452
static int s3c_hsotg_ep_enable(struct usb_ep *ep,
			       const struct usb_endpoint_descriptor *desc)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2453
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2454
	unsigned long flags;
2455
	unsigned int index = hs_ep->index;
2456 2457 2458
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
2459 2460
	unsigned int dir_in;
	unsigned int i, val, size;
2461
	int ret = 0;
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
	WARN_ON(index == 0);

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

2477
	mps = usb_endpoint_maxp(desc);
2478 2479 2480

	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */

2481
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2482 2483 2484 2485 2486
	epctrl = readl(hsotg->regs + epctrl_reg);

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

2487
	spin_lock_irqsave(&hsotg->lock, flags);
2488

2489 2490
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
2491

2492 2493 2494 2495
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
2496
	epctrl |= DXEPCTL_USBACTEP;
2497

2498 2499
	/*
	 * set the NAK status on the endpoint, otherwise we might try and
2500 2501 2502 2503 2504
	 * do something with data that we've yet got a request to process
	 * since the RXFIFO will take data for an endpoint even if the
	 * size register hasn't been set.
	 */

2505
	epctrl |= DXEPCTL_SNAK;
2506 2507

	/* update the endpoint state */
2508
	s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, dir_in);
2509 2510

	/* default, set to non-periodic */
2511
	hs_ep->isochronous = 0;
2512
	hs_ep->periodic = 0;
2513
	hs_ep->halted = 0;
2514
	hs_ep->interval = desc->bInterval;
2515

2516 2517 2518
	if (hs_ep->interval > 1 && hs_ep->mc > 1)
		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");

2519 2520
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
2521 2522
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
2523 2524 2525 2526
		hs_ep->isochronous = 1;
		if (dir_in)
			hs_ep->periodic = 1;
		break;
2527 2528

	case USB_ENDPOINT_XFER_BULK:
2529
		epctrl |= DXEPCTL_EPTYPE_BULK;
2530 2531 2532
		break;

	case USB_ENDPOINT_XFER_INT:
2533
		if (dir_in)
2534 2535
			hs_ep->periodic = 1;

2536
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2537 2538 2539
		break;

	case USB_ENDPOINT_XFER_CONTROL:
2540
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2541 2542 2543
		break;
	}

2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554
	/* If fifo is already allocated for this ep */
	if (hs_ep->fifo_index) {
		size =  hs_ep->ep.maxpacket * hs_ep->mc;
		/* If bigger fifo is required deallocate current one */
		if (size > hs_ep->fifo_size) {
			hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
			hs_ep->fifo_index = 0;
			hs_ep->fifo_size = 0;
		}
	}

2555 2556
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
2557 2558
	 * a unique tx-fifo even if it is non-periodic.
	 */
2559
	if (dir_in && hsotg->dedicated_fifos && !hs_ep->fifo_index) {
2560 2561
		u32 fifo_index = 0;
		u32 fifo_size = UINT_MAX;
2562
		size = hs_ep->ep.maxpacket*hs_ep->mc;
2563
		for (i = 1; i < hsotg->num_of_eps; ++i) {
2564 2565 2566 2567 2568 2569
			if (hsotg->fifo_map & (1<<i))
				continue;
			val = readl(hsotg->regs + DPTXFSIZN(i));
			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
			if (val < size)
				continue;
2570 2571 2572 2573 2574
			/* Search for smallest acceptable fifo */
			if (val < fifo_size) {
				fifo_size = val;
				fifo_index = i;
			}
2575
		}
2576
		if (!fifo_index) {
2577 2578
			dev_err(hsotg->dev,
				"%s: No suitable fifo found\n", __func__);
2579 2580 2581
			ret = -ENOMEM;
			goto error;
		}
2582 2583 2584 2585
		hsotg->fifo_map |= 1 << fifo_index;
		epctrl |= DXEPCTL_TXFNUM(fifo_index);
		hs_ep->fifo_index = fifo_index;
		hs_ep->fifo_size = fifo_size;
2586
	}
2587

2588 2589
	/* for non control endpoints, set PID to D0 */
	if (index)
2590
		epctrl |= DXEPCTL_SETD0PID;
2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

	writel(epctrl, hsotg->regs + epctrl_reg);
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
		__func__, readl(hsotg->regs + epctrl_reg));

	/* enable the endpoint interrupt */
	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);

2602
error:
2603
	spin_unlock_irqrestore(&hsotg->lock, flags);
2604
	return ret;
2605 2606
}

2607 2608 2609 2610
/**
 * s3c_hsotg_ep_disable - disable given endpoint
 * @ep: The endpoint to disable.
 */
2611
static int s3c_hsotg_ep_disable_force(struct usb_ep *ep, bool force)
2612 2613
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2614
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2615 2616 2617 2618 2619 2620
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

2621
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2622

2623
	if (ep == &hsotg->eps_out[0]->ep) {
2624 2625 2626 2627
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

2628
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2629

2630
	spin_lock_irqsave(&hsotg->lock, flags);
2631

2632 2633 2634
	hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;
2635 2636

	ctrl = readl(hsotg->regs + epctrl_reg);
2637 2638 2639
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
2640 2641 2642 2643 2644 2645 2646

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

	/* disable endpoint interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);

2647 2648 2649
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);

2650
	spin_unlock_irqrestore(&hsotg->lock, flags);
2651 2652 2653
	return 0;
}

2654 2655 2656 2657
static int s3c_hsotg_ep_disable(struct usb_ep *ep)
{
	return s3c_hsotg_ep_disable_force(ep, false);
}
2658 2659 2660 2661
/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
2662
 */
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674
static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
{
	struct s3c_hsotg_req *req, *treq;

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

2675 2676 2677 2678 2679
/**
 * s3c_hsotg_ep_dequeue - dequeue given endpoint
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
2680 2681 2682 2683
static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2684
	struct dwc2_hsotg *hs = hs_ep->parent;
2685 2686
	unsigned long flags;

2687
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2688

2689
	spin_lock_irqsave(&hs->lock, flags);
2690 2691

	if (!on_list(hs_ep, hs_req)) {
2692
		spin_unlock_irqrestore(&hs->lock, flags);
2693 2694 2695 2696
		return -EINVAL;
	}

	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2697
	spin_unlock_irqrestore(&hs->lock, flags);
2698 2699 2700 2701

	return 0;
}

2702 2703 2704 2705 2706
/**
 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
2707 2708 2709
static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2710
	struct dwc2_hsotg *hs = hs_ep->parent;
2711 2712 2713
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
2714
	u32 xfertype;
2715 2716 2717

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

2718 2719 2720 2721 2722 2723 2724 2725 2726
	if (index == 0) {
		if (value)
			s3c_hsotg_stall_ep0(hs);
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
	if (hs_ep->dir_in) {
		epreg = DIEPCTL(index);
		epctl = readl(hs->regs + epreg);

		if (value) {
			epctl |= DXEPCTL_STALL + DXEPCTL_SNAK;
			if (epctl & DXEPCTL_EPENA)
				epctl |= DXEPCTL_EPDIS;
		} else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
		writel(epctl, hs->regs + epreg);
2743
	} else {
2744

2745 2746
		epreg = DOEPCTL(index);
		epctl = readl(hs->regs + epreg);
2747

2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
		if (value)
			epctl |= DXEPCTL_STALL;
		else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
		writel(epctl, hs->regs + epreg);
2758
	}
2759

2760 2761
	hs_ep->halted = value;

2762 2763 2764
	return 0;
}

2765 2766 2767 2768 2769 2770 2771 2772
/**
 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2773
	struct dwc2_hsotg *hs = hs_ep->parent;
2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_sethalt(ep, value);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

2784 2785 2786 2787 2788
static struct usb_ep_ops s3c_hsotg_ep_ops = {
	.enable		= s3c_hsotg_ep_enable,
	.disable	= s3c_hsotg_ep_disable,
	.alloc_request	= s3c_hsotg_ep_alloc_request,
	.free_request	= s3c_hsotg_ep_free_request,
2789
	.queue		= s3c_hsotg_ep_queue_lock,
2790
	.dequeue	= s3c_hsotg_ep_dequeue,
2791
	.set_halt	= s3c_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
2792
	/* note, don't believe we have any call for the fifo routines */
2793 2794
};

2795 2796
/**
 * s3c_hsotg_phy_enable - enable platform phy dev
2797
 * @hsotg: The driver state
2798 2799 2800 2801
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
2802
static void s3c_hsotg_phy_enable(struct dwc2_hsotg *hsotg)
2803 2804 2805 2806
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

	dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2807

2808
	if (hsotg->uphy)
2809
		usb_phy_init(hsotg->uphy);
2810
	else if (hsotg->plat && hsotg->plat->phy_init)
2811
		hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2812 2813 2814 2815
	else {
		phy_init(hsotg->phy);
		phy_power_on(hsotg->phy);
	}
2816 2817 2818 2819
}

/**
 * s3c_hsotg_phy_disable - disable platform phy dev
2820
 * @hsotg: The driver state
2821 2822 2823 2824
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
2825
static void s3c_hsotg_phy_disable(struct dwc2_hsotg *hsotg)
2826 2827 2828
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

2829
	if (hsotg->uphy)
2830
		usb_phy_shutdown(hsotg->uphy);
2831
	else if (hsotg->plat && hsotg->plat->phy_exit)
2832
		hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2833 2834 2835 2836
	else {
		phy_power_off(hsotg->phy);
		phy_exit(hsotg->phy);
	}
2837 2838
}

2839 2840 2841 2842
/**
 * s3c_hsotg_init - initalize the usb core
 * @hsotg: The driver state
 */
2843
static void s3c_hsotg_init(struct dwc2_hsotg *hsotg)
2844 2845 2846
{
	/* unmask subset of endpoint interrupts */

2847 2848 2849
	writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		hsotg->regs + DIEPMSK);
2850

2851 2852 2853
	writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		hsotg->regs + DOEPMSK);
2854

2855
	writel(0, hsotg->regs + DAINTMSK);
2856 2857

	/* Be in disconnected state until gadget is registered */
2858
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2859 2860 2861

	if (0) {
		/* post global nak until we're ready */
2862
		writel(DCTL_SGNPINNAK | DCTL_SGOUTNAK,
2863
		       hsotg->regs + DCTL);
2864 2865 2866 2867 2868
	}

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2869 2870
		readl(hsotg->regs + GRXFSIZ),
		readl(hsotg->regs + GNPTXFSIZ));
2871 2872 2873 2874

	s3c_hsotg_init_fifo(hsotg);

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2875
	writel(GUSBCFG_PHYIF16 | GUSBCFG_TOUTCAL(7) | (0x5 << 10),
2876
	       hsotg->regs + GUSBCFG);
2877

2878 2879
	if (using_dma(hsotg))
		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
2880 2881
}

2882 2883 2884 2885 2886 2887 2888 2889
/**
 * s3c_hsotg_udc_start - prepare the udc for work
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
2890 2891
static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
			   struct usb_gadget_driver *driver)
2892
{
2893
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2894
	unsigned long flags;
2895 2896 2897
	int ret;

	if (!hsotg) {
2898
		pr_err("%s: called with no device\n", __func__);
2899 2900 2901 2902 2903 2904 2905 2906
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

2907
	if (driver->max_speed < USB_SPEED_FULL)
2908 2909
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

2910
	if (!driver->setup) {
2911 2912 2913 2914
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

2915
	mutex_lock(&hsotg->init_mutex);
2916 2917 2918 2919
	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
2920
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
2921 2922
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

2923 2924
	clk_enable(hsotg->clk);

2925 2926
	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
2927
	if (ret) {
2928
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
2929 2930 2931
		goto err;
	}

2932
	s3c_hsotg_phy_enable(hsotg);
2933 2934
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
2935

2936 2937 2938
	spin_lock_irqsave(&hsotg->lock, flags);
	s3c_hsotg_init(hsotg);
	s3c_hsotg_core_init_disconnected(hsotg);
2939
	hsotg->enabled = 0;
2940 2941
	spin_unlock_irqrestore(&hsotg->lock, flags);

2942
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
2943

2944 2945
	mutex_unlock(&hsotg->init_mutex);

2946 2947 2948
	return 0;

err:
2949
	mutex_unlock(&hsotg->init_mutex);
2950 2951 2952 2953
	hsotg->driver = NULL;
	return ret;
}

2954 2955 2956 2957 2958 2959 2960
/**
 * s3c_hsotg_udc_stop - stop the udc
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
2961
static int s3c_hsotg_udc_stop(struct usb_gadget *gadget)
2962
{
2963
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2964
	unsigned long flags = 0;
2965 2966 2967 2968 2969
	int ep;

	if (!hsotg)
		return -ENODEV;

2970 2971
	mutex_lock(&hsotg->init_mutex);

2972
	/* all endpoints should be shutdown */
2973 2974 2975 2976 2977 2978
	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			s3c_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
		if (hsotg->eps_out[ep])
			s3c_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
	}
2979

2980 2981
	spin_lock_irqsave(&hsotg->lock, flags);

2982
	hsotg->driver = NULL;
2983
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2984
	hsotg->enabled = 0;
2985

2986 2987
	spin_unlock_irqrestore(&hsotg->lock, flags);

2988 2989
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, NULL);
2990 2991
	s3c_hsotg_phy_disable(hsotg);

2992
	regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
2993

2994 2995
	clk_disable(hsotg->clk);

2996 2997
	mutex_unlock(&hsotg->init_mutex);

2998 2999 3000
	return 0;
}

3001 3002 3003 3004 3005 3006
/**
 * s3c_hsotg_gadget_getframe - read the frame number
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
3007 3008 3009 3010 3011
static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
{
	return s3c_hsotg_read_frameno(to_hsotg(gadget));
}

3012 3013 3014 3015 3016 3017 3018 3019 3020
/**
 * s3c_hsotg_pullup - connect/disconnect the USB PHY
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
{
3021
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3022 3023
	unsigned long flags = 0;

3024
	dev_dbg(hsotg->dev, "%s: is_on: %d\n", __func__, is_on);
3025

3026
	mutex_lock(&hsotg->init_mutex);
3027 3028
	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
3029
		clk_enable(hsotg->clk);
3030
		hsotg->enabled = 1;
3031
		s3c_hsotg_core_connect(hsotg);
3032
	} else {
3033
		s3c_hsotg_core_disconnect(hsotg);
3034
		s3c_hsotg_disconnect(hsotg);
3035
		hsotg->enabled = 0;
3036
		clk_disable(hsotg->clk);
3037 3038 3039 3040
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);
3041
	mutex_unlock(&hsotg->init_mutex);
3042 3043 3044 3045

	return 0;
}

3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
static int s3c_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags;

	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
	spin_lock_irqsave(&hsotg->lock, flags);

	if (is_active) {
		/* Kill any ep0 requests as controller will be reinitialized */
		kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
		s3c_hsotg_core_init_disconnected(hsotg);
		if (hsotg->enabled)
			s3c_hsotg_core_connect(hsotg);
	} else {
		s3c_hsotg_core_disconnect(hsotg);
		s3c_hsotg_disconnect(hsotg);
	}

	spin_unlock_irqrestore(&hsotg->lock, flags);
	return 0;
}

3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084
/**
 * s3c_hsotg_vbus_draw - report bMaxPower field
 * @gadget: The usb gadget state
 * @mA: Amount of current
 *
 * Report how much power the device may consume to the phy.
 */
static int s3c_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);

	if (IS_ERR_OR_NULL(hsotg->uphy))
		return -ENOTSUPP;
	return usb_phy_set_power(hsotg->uphy, mA);
}

3085
static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
3086
	.get_frame	= s3c_hsotg_gadget_getframe,
3087 3088
	.udc_start		= s3c_hsotg_udc_start,
	.udc_stop		= s3c_hsotg_udc_stop,
3089
	.pullup                 = s3c_hsotg_pullup,
3090
	.vbus_session		= s3c_hsotg_vbus_session,
3091
	.vbus_draw		= s3c_hsotg_vbus_draw,
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
};

/**
 * s3c_hsotg_initep - initialise a single endpoint
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
3104
static void s3c_hsotg_initep(struct dwc2_hsotg *hsotg,
3105
				       struct s3c_hsotg_ep *hs_ep,
3106 3107
				       int epnum,
				       bool dir_in)
3108 3109 3110 3111 3112
{
	char *dir;

	if (epnum == 0)
		dir = "";
3113
	else if (dir_in)
3114
		dir = "in";
3115 3116
	else
		dir = "out";
3117

3118
	hs_ep->dir_in = dir_in;
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
3132
	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3133 3134
	hs_ep->ep.ops = &s3c_hsotg_ep_ops;

3135 3136
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
3137 3138 3139 3140
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
3141
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3142 3143 3144 3145
		if (dir_in)
			writel(next, hsotg->regs + DIEPCTL(epnum));
		else
			writel(next, hsotg->regs + DOEPCTL(epnum));
3146 3147 3148
	}
}

3149 3150 3151 3152 3153 3154
/**
 * s3c_hsotg_hw_cfg - read HW configuration registers
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
3155
static int s3c_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3156
{
3157 3158 3159 3160
	u32 cfg;
	u32 ep_type;
	u32 i;

3161
	/* check hardware configuration */
3162

3163 3164 3165 3166
	cfg = readl(hsotg->regs + GHWCFG2);
	hsotg->num_of_eps = (cfg >> 10) & 0xF;
	/* Add ep0 */
	hsotg->num_of_eps++;
3167

3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct s3c_hsotg_ep),
								GFP_KERNEL);
	if (!hsotg->eps_in[0])
		return -ENOMEM;
	/* Same s3c_hsotg_ep is used in both directions for ep0 */
	hsotg->eps_out[0] = hsotg->eps_in[0];

	cfg = readl(hsotg->regs + GHWCFG1);
	for (i = 1; i < hsotg->num_of_eps; i++, cfg >>= 2) {
		ep_type = cfg & 3;
		/* Direction in or both */
		if (!(ep_type & 2)) {
			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
				sizeof(struct s3c_hsotg_ep), GFP_KERNEL);
			if (!hsotg->eps_in[i])
				return -ENOMEM;
		}
		/* Direction out or both */
		if (!(ep_type & 1)) {
			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
				sizeof(struct s3c_hsotg_ep), GFP_KERNEL);
			if (!hsotg->eps_out[i])
				return -ENOMEM;
		}
	}

	cfg = readl(hsotg->regs + GHWCFG3);
	hsotg->fifo_mem = (cfg >> 16);
3196

3197 3198
	cfg = readl(hsotg->regs + GHWCFG4);
	hsotg->dedicated_fifos = (cfg >> 25) & 1;
3199

3200 3201 3202 3203
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
3204
	return 0;
3205 3206
}

3207 3208 3209 3210
/**
 * s3c_hsotg_dump - dump state of the udc
 * @param: The device state
 */
3211
static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg)
3212
{
M
Mark Brown 已提交
3213
#ifdef DEBUG
3214 3215 3216 3217 3218 3219
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3220 3221
		 readl(regs + DCFG), readl(regs + DCTL),
		 readl(regs + DIEPMSK));
3222 3223

	dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3224
		 readl(regs + GAHBCFG), readl(regs + 0x44));
3225 3226

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3227
		 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3228 3229 3230

	/* show periodic fifo settings */

3231
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3232
		val = readl(regs + DPTXFSIZN(idx));
3233
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3234 3235
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
3236 3237
	}

3238
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3239 3240
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3241 3242 3243
			 readl(regs + DIEPCTL(idx)),
			 readl(regs + DIEPTSIZ(idx)),
			 readl(regs + DIEPDMA(idx)));
3244

3245
		val = readl(regs + DOEPCTL(idx));
3246 3247
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3248 3249 3250
			 idx, readl(regs + DOEPCTL(idx)),
			 readl(regs + DOEPTSIZ(idx)),
			 readl(regs + DOEPDMA(idx)));
3251 3252 3253 3254

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3255
		 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
3256
#endif
3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
}

/**
 * state_show - debugfs: show overall driver and device state.
 * @seq: The seq file to write to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the overall state of the hardware and
 * some general information about each of the endpoints available
 * to the system.
 */
static int state_show(struct seq_file *seq, void *v)
{
3270
	struct dwc2_hsotg *hsotg = seq->private;
3271 3272 3273 3274
	void __iomem *regs = hsotg->regs;
	int idx;

	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3275 3276 3277
		 readl(regs + DCFG),
		 readl(regs + DCTL),
		 readl(regs + DSTS));
3278 3279

	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3280
		   readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3281 3282

	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3283 3284
		   readl(regs + GINTMSK),
		   readl(regs + GINTSTS));
3285 3286

	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3287 3288
		   readl(regs + DAINTMSK),
		   readl(regs + DAINT));
3289 3290

	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3291 3292
		   readl(regs + GNPTXSTS),
		   readl(regs + GRXSTSR));
3293

3294
	seq_puts(seq, "\nEndpoint status:\n");
3295

3296
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3297 3298
		u32 in, out;

3299 3300
		in = readl(regs + DIEPCTL(idx));
		out = readl(regs + DOEPCTL(idx));
3301 3302 3303 3304

		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
			   idx, in, out);

3305 3306
		in = readl(regs + DIEPTSIZ(idx));
		out = readl(regs + DOEPTSIZ(idx));
3307 3308 3309 3310

		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
			   in, out);

3311
		seq_puts(seq, "\n");
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
	}

	return 0;
}

static int state_open(struct inode *inode, struct file *file)
{
	return single_open(file, state_show, inode->i_private);
}

static const struct file_operations state_fops = {
	.owner		= THIS_MODULE,
	.open		= state_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * fifo_show - debugfs: show the fifo information
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * Show the FIFO information for the overall fifo and all the
 * periodic transmission FIFOs.
3337
 */
3338 3339
static int fifo_show(struct seq_file *seq, void *v)
{
3340
	struct dwc2_hsotg *hsotg = seq->private;
3341 3342 3343 3344
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

3345
	seq_puts(seq, "Non-periodic FIFOs:\n");
3346
	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3347

3348
	val = readl(regs + GNPTXFSIZ);
3349
	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3350 3351
		   val >> FIFOSIZE_DEPTH_SHIFT,
		   val & FIFOSIZE_DEPTH_MASK);
3352

3353
	seq_puts(seq, "\nPeriodic TXFIFOs:\n");
3354

3355
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3356
		val = readl(regs + DPTXFSIZN(idx));
3357 3358

		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3359 3360
			   val >> FIFOSIZE_DEPTH_SHIFT,
			   val & FIFOSIZE_STARTADDR_MASK);
3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
	}

	return 0;
}

static int fifo_open(struct inode *inode, struct file *file)
{
	return single_open(file, fifo_show, inode->i_private);
}

static const struct file_operations fifo_fops = {
	.owner		= THIS_MODULE,
	.open		= fifo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};


static const char *decode_direction(int is_in)
{
	return is_in ? "in" : "out";
}

/**
 * ep_show - debugfs: show the state of an endpoint.
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the state of the given endpoint (one is
 * registered for each available).
3392
 */
3393 3394 3395
static int ep_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg_ep *ep = seq->private;
3396
	struct dwc2_hsotg *hsotg = ep->parent;
3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408
	struct s3c_hsotg_req *req;
	void __iomem *regs = hsotg->regs;
	int index = ep->index;
	int show_limit = 15;
	unsigned long flags;

	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
		   ep->index, ep->ep.name, decode_direction(ep->dir_in));

	/* first show the register state */

	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3409 3410
		   readl(regs + DIEPCTL(index)),
		   readl(regs + DOEPCTL(index)));
3411 3412

	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3413 3414
		   readl(regs + DIEPDMA(index)),
		   readl(regs + DOEPDMA(index)));
3415 3416

	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3417 3418
		   readl(regs + DIEPINT(index)),
		   readl(regs + DOEPINT(index)));
3419 3420

	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3421 3422
		   readl(regs + DIEPTSIZ(index)),
		   readl(regs + DOEPTSIZ(index)));
3423

3424
	seq_puts(seq, "\n");
3425 3426 3427 3428 3429 3430
	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
	seq_printf(seq, "total_data=%ld\n", ep->total_data);

	seq_printf(seq, "request list (%p,%p):\n",
		   ep->queue.next, ep->queue.prev);

3431
	spin_lock_irqsave(&hsotg->lock, flags);
3432 3433 3434

	list_for_each_entry(req, &ep->queue, queue) {
		if (--show_limit < 0) {
3435
			seq_puts(seq, "not showing more requests...\n");
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445
			break;
		}

		seq_printf(seq, "%c req %p: %d bytes @%p, ",
			   req == ep->req ? '*' : ' ',
			   req, req->req.length, req->req.buf);
		seq_printf(seq, "%d done, res %d\n",
			   req->req.actual, req->req.status);
	}

3446
	spin_unlock_irqrestore(&hsotg->lock, flags);
3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471

	return 0;
}

static int ep_open(struct inode *inode, struct file *file)
{
	return single_open(file, ep_show, inode->i_private);
}

static const struct file_operations ep_fops = {
	.owner		= THIS_MODULE,
	.open		= ep_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * s3c_hsotg_create_debug - create debugfs directory and files
 * @hsotg: The driver state
 *
 * Create the debugfs files to allow the user to get information
 * about the state of the system. The directory name is created
 * with the same name as the device itself, in case we end up
 * with multiple blocks in future systems.
3472
 */
3473
static void s3c_hsotg_create_debug(struct dwc2_hsotg *hsotg)
3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
{
	struct dentry *root;
	unsigned epidx;

	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
	hsotg->debug_root = root;
	if (IS_ERR(root)) {
		dev_err(hsotg->dev, "cannot create debug root\n");
		return;
	}

	/* create general state file */

	hsotg->debug_file = debugfs_create_file("state", 0444, root,
						hsotg, &state_fops);

	if (IS_ERR(hsotg->debug_file))
		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);

	hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
						hsotg, &fifo_fops);

	if (IS_ERR(hsotg->debug_fifo))
		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);

3499
	/* Create one file for each out endpoint */
3500
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3501
		struct s3c_hsotg_ep *ep;
3502

3503 3504 3505 3506
		ep = hsotg->eps_out[epidx];
		if (ep) {
			ep->debugfs = debugfs_create_file(ep->name, 0444,
							  root, ep, &ep_fops);
3507

3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
			if (IS_ERR(ep->debugfs))
				dev_err(hsotg->dev, "failed to create %s debug file\n",
					ep->name);
		}
	}
	/* Create one file for each in endpoint. EP0 is handled with out eps */
	for (epidx = 1; epidx < hsotg->num_of_eps; epidx++) {
		struct s3c_hsotg_ep *ep;

		ep = hsotg->eps_in[epidx];
		if (ep) {
			ep->debugfs = debugfs_create_file(ep->name, 0444,
							  root, ep, &ep_fops);

			if (IS_ERR(ep->debugfs))
				dev_err(hsotg->dev, "failed to create %s debug file\n",
					ep->name);
		}
3526 3527 3528 3529 3530 3531 3532 3533
	}
}

/**
 * s3c_hsotg_delete_debug - cleanup debugfs entries
 * @hsotg: The driver state
 *
 * Cleanup (remove) the debugfs files for use on module exit.
3534
 */
3535
static void s3c_hsotg_delete_debug(struct dwc2_hsotg *hsotg)
3536 3537 3538
{
	unsigned epidx;

3539
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3540 3541 3542 3543
		if (hsotg->eps_in[epidx])
			debugfs_remove(hsotg->eps_in[epidx]->debugfs);
		if (hsotg->eps_out[epidx])
			debugfs_remove(hsotg->eps_out[epidx]->debugfs);
3544 3545 3546 3547 3548 3549 3550
	}

	debugfs_remove(hsotg->debug_file);
	debugfs_remove(hsotg->debug_fifo);
	debugfs_remove(hsotg->debug_root);
}

3551 3552 3553 3554
#ifdef CONFIG_OF
static void s3c_hsotg_of_probe(struct dwc2_hsotg *hsotg)
{
	struct device_node *np = hsotg->dev->of_node;
3555 3556
	u32 len = 0;
	u32 i = 0;
3557 3558 3559

	/* Enable dma if requested in device tree */
	hsotg->g_using_dma = of_property_read_bool(np, "g-use-dma");
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590

	/*
	* Register TX periodic fifo size per endpoint.
	* EP0 is excluded since it has no fifo configuration.
	*/
	if (!of_find_property(np, "g-tx-fifo-size", &len))
		goto rx_fifo;

	len /= sizeof(u32);

	/* Read tx fifo sizes other than ep0 */
	if (of_property_read_u32_array(np, "g-tx-fifo-size",
						&hsotg->g_tx_fifo_sz[1], len))
		goto rx_fifo;

	/* Add ep0 */
	len++;

	/* Make remaining TX fifos unavailable */
	if (len < MAX_EPS_CHANNELS) {
		for (i = len; i < MAX_EPS_CHANNELS; i++)
			hsotg->g_tx_fifo_sz[i] = 0;
	}

rx_fifo:
	/* Register RX fifo size */
	of_property_read_u32(np, "g-rx-fifo-size", &hsotg->g_rx_fifo_sz);

	/* Register NPTX fifo size */
	of_property_read_u32(np, "g-np-tx-fifo-size",
						&hsotg->g_np_g_tx_fifo_sz);
3591 3592 3593 3594 3595
}
#else
static inline void s3c_hsotg_of_probe(struct dwc2_hsotg *hsotg) { }
#endif

3596
/**
3597 3598 3599
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
 * @irq: The IRQ number for the controller.
3600
 */
3601
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3602
{
3603 3604
	struct device *dev = hsotg->dev;
	struct s3c_hsotg_plat *plat = dev->platform_data;
3605 3606
	int epnum;
	int ret;
3607
	int i;
3608
	u32 p_tx_fifo[] = DWC2_G_P_LEGACY_TX_FIFO_SIZE;
3609

3610 3611 3612
	/* Set default UTMI width */
	hsotg->phyif = GUSBCFG_PHYIF16;

3613 3614
	s3c_hsotg_of_probe(hsotg);

3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
	/* Initialize to legacy fifo configuration values */
	hsotg->g_rx_fifo_sz = 2048;
	hsotg->g_np_g_tx_fifo_sz = 1024;
	memcpy(&hsotg->g_tx_fifo_sz[1], p_tx_fifo, sizeof(p_tx_fifo));
	/* Device tree specific probe */
	s3c_hsotg_of_probe(hsotg);
	/* Dump fifo information */
	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
						hsotg->g_np_g_tx_fifo_sz);
	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->g_rx_fifo_sz);
	for (i = 0; i < MAX_EPS_CHANNELS; i++)
		dev_dbg(dev, "Periodic TXFIFO%2d size: %d\n", i,
						hsotg->g_tx_fifo_sz[i]);
3628
	/*
3629 3630
	 * If platform probe couldn't find a generic PHY or an old style
	 * USB PHY, fall back to pdata
3631
	 */
3632 3633 3634 3635 3636 3637 3638 3639 3640
	if (IS_ERR_OR_NULL(hsotg->phy) && IS_ERR_OR_NULL(hsotg->uphy)) {
		plat = dev_get_platdata(dev);
		if (!plat) {
			dev_err(dev,
			"no platform data or transceiver defined\n");
			return -EPROBE_DEFER;
		}
		hsotg->plat = plat;
	} else if (hsotg->phy) {
3641 3642 3643 3644
		/*
		 * If using the generic PHY framework, check if the PHY bus
		 * width is 8-bit and set the phyif appropriately.
		 */
3645
		if (phy_get_bus_width(hsotg->phy) == 8)
3646 3647
			hsotg->phyif = GUSBCFG_PHYIF8;
	}
3648

3649
	hsotg->clk = devm_clk_get(dev, "otg");
3650
	if (IS_ERR(hsotg->clk)) {
3651
		hsotg->clk = NULL;
3652
		dev_dbg(dev, "cannot get otg clock\n");
3653 3654
	}

3655
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3656 3657 3658 3659 3660
	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
	hsotg->gadget.name = dev_name(dev);

	/* reset the system */

3661 3662 3663 3664 3665 3666
	ret = clk_prepare_enable(hsotg->clk);
	if (ret) {
		dev_err(dev, "failed to enable otg clk\n");
		goto err_clk;
	}

3667

3668 3669 3670 3671 3672
	/* regulators */

	for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
		hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];

3673
	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3674 3675 3676
				 hsotg->supplies);
	if (ret) {
		dev_err(dev, "failed to request supplies: %d\n", ret);
3677
		goto err_clk;
3678 3679 3680 3681 3682 3683
	}

	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);

	if (ret) {
3684
		dev_err(dev, "failed to enable supplies: %d\n", ret);
3685
		goto err_clk;
3686 3687
	}

3688 3689
	/* usb phy enable */
	s3c_hsotg_phy_enable(hsotg);
3690

3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
	/*
	 * Force Device mode before initialization.
	 * This allows correctly configuring fifo for device mode.
	 */
	__bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEHOSTMODE);
	__orr32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);

	/*
	 * According to Synopsys databook, this sleep is needed for the force
	 * device mode to take effect.
	 */
	msleep(25);

3704
	s3c_hsotg_corereset(hsotg);
3705 3706 3707 3708 3709 3710
	ret = s3c_hsotg_hw_cfg(hsotg);
	if (ret) {
		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
		goto err_clk;
	}

3711
	s3c_hsotg_init(hsotg);
3712

3713 3714 3715
	/* Switch back to default configuration */
	__bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);

3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
	if (!hsotg->ctrl_buff) {
		dev_err(dev, "failed to allocate ctrl request buff\n");
		ret = -ENOMEM;
		goto err_supplies;
	}

	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
	if (!hsotg->ep0_buff) {
		dev_err(dev, "failed to allocate ctrl reply buff\n");
		ret = -ENOMEM;
		goto err_supplies;
	}

3732 3733
	ret = devm_request_irq(hsotg->dev, irq, s3c_hsotg_irq, IRQF_SHARED,
				dev_name(hsotg->dev), hsotg);
3734 3735 3736 3737 3738
	if (ret < 0) {
		s3c_hsotg_phy_disable(hsotg);
		clk_disable_unprepare(hsotg->clk);
		regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				       hsotg->supplies);
3739
		dev_err(dev, "cannot claim IRQ for gadget\n");
3740
		goto err_supplies;
3741 3742
	}

3743 3744 3745 3746
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
3747
		ret = -EINVAL;
3748 3749 3750 3751 3752 3753
		goto err_supplies;
	}

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3754
	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
3755 3756 3757

	/* allocate EP0 request */

3758
	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
3759 3760 3761
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
3762
		ret = -ENOMEM;
3763
		goto err_supplies;
3764
	}
3765 3766

	/* initialise the endpoints now the core has been initialised */
3767 3768 3769 3770 3771 3772 3773 3774
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
		if (hsotg->eps_in[epnum])
			s3c_hsotg_initep(hsotg, hsotg->eps_in[epnum],
								epnum, 1);
		if (hsotg->eps_out[epnum])
			s3c_hsotg_initep(hsotg, hsotg->eps_out[epnum],
								epnum, 0);
	}
3775

3776
	/* disable power and clock */
3777
	s3c_hsotg_phy_disable(hsotg);
3778 3779 3780 3781

	ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
	if (ret) {
3782
		dev_err(dev, "failed to disable supplies: %d\n", ret);
3783
		goto err_supplies;
3784 3785
	}

3786
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3787
	if (ret)
3788
		goto err_supplies;
3789

3790 3791 3792 3793 3794 3795
	s3c_hsotg_create_debug(hsotg);

	s3c_hsotg_dump(hsotg);

	return 0;

3796
err_supplies:
3797
	s3c_hsotg_phy_disable(hsotg);
3798
err_clk:
3799
	clk_disable_unprepare(hsotg->clk);
3800

3801 3802
	return ret;
}
3803
EXPORT_SYMBOL_GPL(dwc2_gadget_init);
3804

3805 3806 3807 3808
/**
 * s3c_hsotg_remove - remove function for hsotg driver
 * @pdev: The platform information for the driver
 */
3809
int s3c_hsotg_remove(struct dwc2_hsotg *hsotg)
3810
{
3811
	usb_del_gadget_udc(&hsotg->gadget);
3812
	s3c_hsotg_delete_debug(hsotg);
3813
	clk_disable_unprepare(hsotg->clk);
3814

3815 3816
	return 0;
}
3817
EXPORT_SYMBOL_GPL(s3c_hsotg_remove);
3818

3819
int s3c_hsotg_suspend(struct dwc2_hsotg *hsotg)
3820 3821 3822 3823
{
	unsigned long flags;
	int ret = 0;

3824 3825
	mutex_lock(&hsotg->init_mutex);

3826 3827 3828
	if (hsotg->driver) {
		int ep;

3829 3830 3831
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

3832 3833 3834 3835 3836 3837
		spin_lock_irqsave(&hsotg->lock, flags);
		if (hsotg->enabled)
			s3c_hsotg_core_disconnect(hsotg);
		s3c_hsotg_disconnect(hsotg);
		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
		spin_unlock_irqrestore(&hsotg->lock, flags);
3838

3839
		s3c_hsotg_phy_disable(hsotg);
3840

3841 3842 3843 3844 3845 3846
		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
			if (hsotg->eps_in[ep])
				s3c_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
			if (hsotg->eps_out[ep])
				s3c_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
		}
3847 3848 3849

		ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
					     hsotg->supplies);
3850
		clk_disable(hsotg->clk);
3851 3852
	}

3853 3854
	mutex_unlock(&hsotg->init_mutex);

3855 3856
	return ret;
}
3857
EXPORT_SYMBOL_GPL(s3c_hsotg_suspend);
3858

3859
int s3c_hsotg_resume(struct dwc2_hsotg *hsotg)
3860 3861 3862 3863
{
	unsigned long flags;
	int ret = 0;

3864 3865
	mutex_lock(&hsotg->init_mutex);

3866 3867 3868
	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
3869 3870

		clk_enable(hsotg->clk);
3871
		ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3872
					    hsotg->supplies);
3873

3874
		s3c_hsotg_phy_enable(hsotg);
3875

3876 3877 3878 3879 3880 3881
		spin_lock_irqsave(&hsotg->lock, flags);
		s3c_hsotg_core_init_disconnected(hsotg);
		if (hsotg->enabled)
			s3c_hsotg_core_connect(hsotg);
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
3882
	mutex_unlock(&hsotg->init_mutex);
3883 3884 3885

	return ret;
}
3886
EXPORT_SYMBOL_GPL(s3c_hsotg_resume);