gadget.c 96.4 KB
Newer Older
1
/**
2 3
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
15
 */
16 17 18 19 20 21 22 23

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/debugfs.h>
24
#include <linux/mutex.h>
25 26 27
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
28
#include <linux/slab.h>
29
#include <linux/clk.h>
30
#include <linux/regulator/consumer.h>
31
#include <linux/of_platform.h>
32
#include <linux/phy/phy.h>
33 34 35

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
36
#include <linux/usb/phy.h>
37
#include <linux/platform_data/s3c-hsotg.h>
38

39
#include "core.h"
40
#include "hw.h"
41 42 43 44 45 46 47 48 49 50 51 52

/* conversion functions */
static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
{
	return container_of(req, struct s3c_hsotg_req, req);
}

static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
{
	return container_of(ep, struct s3c_hsotg_ep, ep);
}

53
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
54
{
55
	return container_of(gadget, struct dwc2_hsotg, gadget);
56 57 58 59 60 61 62 63 64 65 66 67
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) | val, ptr);
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) & ~val, ptr);
}

68 69 70 71 72 73 74 75 76
static inline struct s3c_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
						u32 ep_index, u32 dir_in)
{
	if (dir_in)
		return hsotg->eps_in[ep_index];
	else
		return hsotg->eps_out[ep_index];
}

77
/* forward declaration of functions */
78
static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg);
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
97
 * g_using_dma is set depending on dts flag.
98
 */
99
static inline bool using_dma(struct dwc2_hsotg *hsotg)
100
{
101
	return hsotg->g_using_dma;
102 103 104 105 106 107 108
}

/**
 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
109
static void s3c_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
110
{
111
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
112 113 114 115 116 117
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
118
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
119 120 121 122 123 124 125 126
	}
}

/**
 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
127
static void s3c_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
128
{
129
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
130 131 132 133 134
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
135
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
136 137 138 139 140 141 142 143 144 145 146 147
}

/**
 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
148
static void s3c_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
149 150 151 152 153 154 155 156 157 158 159
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
160
	daint = readl(hsotg->regs + DAINTMSK);
161 162 163 164
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
165
	writel(daint, hsotg->regs + DAINTMSK);
166 167 168 169 170 171 172
	local_irq_restore(flags);
}

/**
 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
 * @hsotg: The device instance.
 */
173
static void s3c_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
174
{
175 176
	unsigned int ep;
	unsigned int addr;
177
	int timeout;
178 179
	u32 val;

180 181 182 183
	/* Reset fifo map if not correctly cleared during previous session */
	WARN_ON(hsotg->fifo_map);
	hsotg->fifo_map = 0;

184 185 186 187 188
	/* set RX/NPTX FIFO sizes */
	writel(hsotg->g_rx_fifo_sz, hsotg->regs + GRXFSIZ);
	writel((hsotg->g_rx_fifo_sz << FIFOSIZE_STARTADDR_SHIFT) |
		(hsotg->g_np_g_tx_fifo_sz << FIFOSIZE_DEPTH_SHIFT),
		hsotg->regs + GNPTXFSIZ);
189

190 191
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
192 193
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
194 195
	 * known values.
	 */
196 197

	/* start at the end of the GNPTXFSIZ, rounded up */
198
	addr = hsotg->g_rx_fifo_sz + hsotg->g_np_g_tx_fifo_sz;
199

200
	/*
201
	 * Configure fifos sizes from provided configuration and assign
202 203
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
204
	 */
205 206 207
	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
		if (!hsotg->g_tx_fifo_sz[ep])
			continue;
208
		val = addr;
209 210
		val |= hsotg->g_tx_fifo_sz[ep] << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + hsotg->g_tx_fifo_sz[ep] > hsotg->fifo_mem,
211
			  "insufficient fifo memory");
212
		addr += hsotg->g_tx_fifo_sz[ep];
213

214
		writel(val, hsotg->regs + DPTXFSIZN(ep));
215
	}
216

217 218 219 220
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
221

222 223
	writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
224 225 226 227

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
228
		val = readl(hsotg->regs + GRSTCTL);
229

230
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
231 232 233 234 235 236
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
237
			break;
238 239 240 241 242 243
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
244 245 246 247 248 249 250 251
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
252 253
static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
						      gfp_t flags)
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
{
	struct s3c_hsotg_req *req;

	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
{
	return hs_ep->periodic;
}

/**
 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
 * of a request to ensure the buffer is ready for access by the caller.
286
 */
287
static void s3c_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
288 289 290 291 292 293 294 295 296
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

297
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
}

/**
 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
315
 */
316
static int s3c_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
317 318 319 320
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	bool periodic = is_ep_periodic(hs_ep);
321
	u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
322 323 324 325 326
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
327
	int max_transfer;
328 329 330 331 332 333 334

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

335
	if (periodic && !hsotg->dedicated_fifos) {
336
		u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
337 338 339
		int size_left;
		int size_done;

340 341 342 343
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
344

345
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
346

347 348
		/*
		 * if shared fifo, we cannot write anything until the
349 350 351
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
352
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
353 354 355
			return -ENOSPC;
		}

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
373
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
374 375
			return -ENOSPC;
		}
376
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
377
		can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
378 379 380

		can_write &= 0xffff;
		can_write *= 4;
381
	} else {
382
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
383 384 385 386
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

387
			s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
388 389 390
			return -ENOSPC;
		}

391
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
392
		can_write *= 4;	/* fifo size is in 32bit quantities. */
393 394
	}

395 396 397 398
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
		 __func__, gnptxsts, can_write, to_write, max_transfer);
399

400 401
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
402 403 404
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
405
	if (can_write > 512 && !periodic)
406 407
		can_write = 512;

408 409
	/*
	 * limit the write to one max-packet size worth of data, but allow
410
	 * the transfer to return that it did not run out of fifo space
411 412
	 * doing it.
	 */
413 414
	if (to_write > max_transfer) {
		to_write = max_transfer;
415

416 417 418
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
419 420
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
421 422
	}

423 424 425 426
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
427
		pkt_round = to_write % max_transfer;
428

429 430
		/*
		 * Round the write down to an
431 432 433 434 435 436 437 438 439
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

440 441 442 443
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
444

445 446 447
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
448 449
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

467
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
486 487
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
488
	} else {
489
		maxsize = 64+64;
490
		if (hs_ep->dir_in)
491
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
492
		else
493 494 495 496 497 498 499
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

500 501 502 503
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

/**
 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
521
static void s3c_hsotg_start_req(struct dwc2_hsotg *hsotg,
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req,
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

550 551
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
552 553 554 555 556

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
		__func__, readl(hsotg->regs + epctrl_reg), index,
		hs_ep->dir_in ? "in" : "out");

557 558 559
	/* If endpoint is stalled, we will restart request later */
	ctrl = readl(hsotg->regs + epctrl_reg);

560
	if (ctrl & DXEPCTL_STALL) {
561 562 563 564
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

565
	length = ureq->length - ureq->actual;
566 567
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
568 569
	if (0)
		dev_dbg(hsotg->dev,
570
			"REQ buf %p len %d dma %pad noi=%d zp=%d snok=%d\n",
571
			ureq->buf, length, &ureq->dma,
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
			ureq->no_interrupt, ureq->zero, ureq->short_not_ok);

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

593 594 595 596 597
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

598
	if (dir_in && index != 0)
599
		if (hs_ep->isochronous)
600
			epsize = DXEPTSIZ_MC(packets);
601
		else
602
			epsize = DXEPTSIZ_MC(1);
603 604 605
	else
		epsize = 0;

606 607 608 609 610 611 612 613
	/*
	 * zero length packet should be programmed on its own and should not
	 * be counted in DIEPTSIZ.PktCnt with other packets.
	 */
	if (dir_in && ureq->zero && !continuing) {
		/* Test if zlp is actually required. */
		if ((ureq->length >= hs_ep->ep.maxpacket) &&
					!(ureq->length % hs_ep->ep.maxpacket))
614
			hs_ep->send_zlp = 1;
615 616
	}

617 618
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
619 620 621 622 623 624 625 626 627 628

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
	writel(epsize, hsotg->regs + epsize_reg);

629
	if (using_dma(hsotg) && !continuing) {
630 631
		unsigned int dma_reg;

632 633 634 635
		/*
		 * write DMA address to control register, buffer already
		 * synced by s3c_hsotg_ep_queue().
		 */
636

637
		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
638 639
		writel(ureq->dma, hsotg->regs + dma_reg);

640
		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
641
			__func__, &ureq->dma, dma_reg);
642 643
	}

644 645
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
646

647
	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
648 649

	/* For Setup request do not clear NAK */
650
	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
651
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
652

653 654 655
	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

656 657
	/*
	 * set these, it seems that DMA support increments past the end
658
	 * of the packet buffer so we need to calculate the length from
659 660
	 * this information.
	 */
661 662 663 664 665 666 667 668 669 670
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

671 672 673 674
	/*
	 * clear the INTknTXFEmpMsk when we start request, more as a aide
	 * to debugging to see what is going on.
	 */
675
	if (dir_in)
676
		writel(DIEPMSK_INTKNTXFEMPMSK,
677
		       hsotg->regs + DIEPINT(index));
678

679 680 681 682
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
683 684

	/* check ep is enabled */
685
	if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
686
		dev_dbg(hsotg->dev,
687
			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
688 689
			 index, readl(hsotg->regs + epctrl_reg));

690
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
691
		__func__, readl(hsotg->regs + epctrl_reg));
692 693 694

	/* enable ep interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
695 696 697 698 699 700 701 702 703 704 705 706 707
}

/**
 * s3c_hsotg_map_dma - map the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
708
 */
709
static int s3c_hsotg_map_dma(struct dwc2_hsotg *hsotg,
710 711 712 713
			     struct s3c_hsotg_ep *hs_ep,
			     struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
714
	int ret;
715 716 717 718 719

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

720 721 722
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
738
	struct dwc2_hsotg *hs = hs_ep->parent;
739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
	bool first;

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
		int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
		if (ret)
			return ret;
	}

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

	if (first)
		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);

	return 0;
}

766 767 768 769
static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
770
	struct dwc2_hsotg *hs = hs_ep->parent;
771 772 773 774 775 776 777 778 779 780
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
				      struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);

	kfree(hs_req);
}

/**
 * s3c_hsotg_complete_oursetup - setup completion callback
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
					struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
801
	struct dwc2_hsotg *hsotg = hs_ep->parent;
802 803 804 805 806 807 808 809 810 811 812 813 814

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

	s3c_hsotg_ep_free_request(ep, req);
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
815
 */
816
static struct s3c_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
817 818
					   u32 windex)
{
819
	struct s3c_hsotg_ep *ep;
820 821 822 823 824 825
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

826
	if (idx > hsotg->num_of_eps)
827 828
		return NULL;

829 830
	ep = index_to_ep(hsotg, idx, dir);

831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

/**
 * s3c_hsotg_send_reply - send reply to control request
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
847
static int s3c_hsotg_send_reply(struct dwc2_hsotg *hsotg,
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
				struct s3c_hsotg_ep *ep,
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
866 867 868 869 870
	/*
	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
	 * STATUS stage.
	 */
	req->zero = 0;
871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
	req->complete = s3c_hsotg_complete_oursetup;

	if (length)
		memcpy(req->buf, buff, length);

	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
 * s3c_hsotg_process_req_status - process request GET_STATUS
 * @hsotg: The device state
 * @ctrl: USB control request
 */
890
static int s3c_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
891 892
					struct usb_ctrlrequest *ctrl)
{
893
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
	struct s3c_hsotg_ep *ep;
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);

942 943 944 945 946 947 948 949 950 951 952 953 954 955
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
{
	if (list_empty(&hs_ep->queue))
		return NULL;

	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
}

956 957 958 959 960
/**
 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
 * @hsotg: The device state
 * @ctrl: USB control request
 */
961
static int s3c_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
962 963
					 struct usb_ctrlrequest *ctrl)
{
964
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
965 966
	struct s3c_hsotg_req *hs_req;
	bool restart;
967 968
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
	struct s3c_hsotg_ep *ep;
969
	int ret;
970
	bool halted;
971 972 973 974 975 976 977 978 979 980 981 982 983 984

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
				__func__, le16_to_cpu(ctrl->wIndex));
			return -ENOENT;
		}

		switch (le16_to_cpu(ctrl->wValue)) {
		case USB_ENDPOINT_HALT:
985 986
			halted = ep->halted;

987
			s3c_hsotg_ep_sethalt(&ep->ep, set);
988 989 990 991 992 993 994

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
995

996 997 998 999 1000 1001
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1002 1003 1004 1005 1006 1007 1008 1009
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1010 1011
					usb_gadget_giveback_request(&ep->ep,
								    &hs_req->req);
1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
				}

				/* If we have pending request, then start it */
				restart = !list_empty(&ep->queue);
				if (restart) {
					hs_req = get_ep_head(ep);
					s3c_hsotg_start_req(hsotg, ep,
							    hs_req, false);
				}
			}

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
			break;

		default:
			return -ENOENT;
		}
	} else
		return -ENOENT;  /* currently only deal with endpoint */

	return 1;
}

1034
static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1035

1036 1037 1038 1039 1040 1041
/**
 * s3c_hsotg_stall_ep0 - stall ep0
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1042
static void s3c_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1043
{
1044
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

	ctrl = readl(hsotg->regs + reg);
1057 1058
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1059 1060 1061
	writel(ctrl, hsotg->regs + reg);

	dev_dbg(hsotg->dev,
1062
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1063 1064 1065 1066 1067 1068 1069 1070 1071
		ctrl, reg, readl(hsotg->regs + reg));

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
	 s3c_hsotg_enqueue_setup(hsotg);
}

1072 1073 1074 1075 1076 1077 1078 1079 1080
/**
 * s3c_hsotg_process_control - process a control request
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1081
static void s3c_hsotg_process_control(struct dwc2_hsotg *hsotg,
1082 1083
				      struct usb_ctrlrequest *ctrl)
{
1084
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
1085 1086 1087 1088 1089 1090 1091
	int ret = 0;
	u32 dcfg;

	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
		 ctrl->bRequest, ctrl->bRequestType,
		 ctrl->wValue, ctrl->wLength);

1092 1093 1094 1095
	if (ctrl->wLength == 0) {
		ep0->dir_in = 1;
		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
	} else if (ctrl->bRequestType & USB_DIR_IN) {
1096
		ep0->dir_in = 1;
1097 1098 1099 1100 1101
		hsotg->ep0_state = DWC2_EP0_DATA_IN;
	} else {
		ep0->dir_in = 0;
		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
	}
1102 1103 1104 1105

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1106
			dcfg = readl(hsotg->regs + DCFG);
1107
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1108 1109
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1110
			writel(dcfg, hsotg->regs + DCFG);
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			return;

		case USB_REQ_GET_STATUS:
			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1131
		spin_unlock(&hsotg->lock);
1132
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1133
		spin_lock(&hsotg->lock);
1134 1135 1136 1137
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1138 1139
	/*
	 * the request is either unhandlable, or is not formatted correctly
1140 1141 1142
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1143 1144
	if (ret < 0)
		s3c_hsotg_stall_ep0(hsotg);
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
}

/**
 * s3c_hsotg_complete_setup - completion of a setup transfer
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
static void s3c_hsotg_complete_setup(struct usb_ep *ep,
				     struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1159
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1160 1161 1162 1163 1164 1165

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1166
	spin_lock(&hsotg->lock);
1167 1168 1169 1170
	if (req->actual == 0)
		s3c_hsotg_enqueue_setup(hsotg);
	else
		s3c_hsotg_process_control(hsotg, req->buf);
1171
	spin_unlock(&hsotg->lock);
1172 1173 1174 1175 1176 1177 1178 1179 1180
}

/**
 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1181
static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
{
	struct usb_request *req = hsotg->ctrl_req;
	struct s3c_hsotg_req *hs_req = our_req(req);
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
	req->complete = s3c_hsotg_complete_setup;

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

1199
	hsotg->eps_out[0]->dir_in = 0;
1200
	hsotg->eps_out[0]->send_zlp = 0;
1201
	hsotg->ep0_state = DWC2_EP0_SETUP;
1202

1203
	ret = s3c_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1204 1205
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1206 1207 1208 1209
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1210 1211 1212
	}
}

1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
static void s3c_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
					struct s3c_hsotg_ep *hs_ep)
{
	u32 ctrl;
	u8 index = hs_ep->index;
	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);

	dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n", index);

	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
			DXEPTSIZ_XFERSIZE(0), hsotg->regs +
			epsiz_reg);

	ctrl = readl(hsotg->regs + epctl_reg);
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
	writel(ctrl, hsotg->regs + epctl_reg);
}

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
/**
 * s3c_hsotg_complete_request - complete a request given to us
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1246
 */
1247
static void s3c_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
				       struct s3c_hsotg_ep *hs_ep,
				       struct s3c_hsotg_req *hs_req,
				       int result)
{
	bool restart;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1262 1263 1264 1265
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

	if (using_dma(hsotg))
		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1276 1277 1278 1279
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1280 1281

	if (hs_req->req.complete) {
1282
		spin_unlock(&hsotg->lock);
1283
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1284
		spin_lock(&hsotg->lock);
1285 1286
	}

1287 1288
	/*
	 * Look to see if there is anything else to do. Note, the completion
1289
	 * of the previous request may have caused a new request to be started
1290 1291
	 * so be careful when doing this.
	 */
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311

	if (!hs_ep->req && result >= 0) {
		restart = !list_empty(&hs_ep->queue);
		if (restart) {
			hs_req = get_ep_head(hs_ep);
			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		}
	}
}

/**
 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
1312
static void s3c_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1313
{
1314
	struct s3c_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
1315
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1316
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1317 1318 1319 1320
	int to_read;
	int max_req;
	int read_ptr;

1321

1322
	if (!hs_req) {
1323
		u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1324 1325
		int ptr;

1326
		dev_dbg(hsotg->dev,
1327
			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
			(void)readl(fifo);

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1341 1342 1343
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1344
	if (to_read > max_req) {
1345 1346
		/*
		 * more data appeared than we where willing
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1358 1359 1360 1361
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1362
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1363 1364 1365
}

/**
1366
 * s3c_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
1367
 * @hsotg: The device instance
1368
 * @dir_in: If IN zlp
1369 1370 1371 1372 1373
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1374
 * currently believed that we do not need to wait for any space in
1375 1376
 * the TxFIFO.
 */
1377
static void s3c_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
1378
{
1379
	/* eps_out[0] is used in both directions */
1380 1381
	hsotg->eps_out[0]->dir_in = dir_in;
	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
1382

1383
	s3c_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
}

/**
 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1394
 */
1395
static void s3c_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
1396
{
1397
	u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1398
	struct s3c_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
1399 1400
	struct s3c_hsotg_req *hs_req = hs_ep->req;
	struct usb_request *req = &hs_req->req;
1401
	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1402 1403 1404 1405 1406 1407 1408
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

1409 1410 1411 1412 1413 1414 1415
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
		s3c_hsotg_enqueue_setup(hsotg);
		return;
	}

1416 1417 1418
	if (using_dma(hsotg)) {
		unsigned size_done;

1419 1420
		/*
		 * Calculate the size of the transfer by checking how much
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1434 1435 1436 1437 1438 1439
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
		return;
	}

1440 1441 1442 1443
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1444 1445 1446 1447
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1448 1449
	}

1450 1451 1452 1453
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
		/* Move to STATUS IN */
		s3c_hsotg_ep0_zlp(hsotg, true);
		return;
1454 1455
	}

1456
	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1457 1458 1459 1460 1461 1462 1463
}

/**
 * s3c_hsotg_read_frameno - read current frame number
 * @hsotg: The device instance
 *
 * Return the current frame number
1464
 */
1465
static u32 s3c_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1466 1467 1468
{
	u32 dsts;

1469 1470 1471
	dsts = readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483

	return dsts;
}

/**
 * s3c_hsotg_handle_rx - RX FIFO has data
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1484
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1485 1486 1487 1488 1489 1490 1491
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1492
static void s3c_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1493
{
1494
	u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1495 1496 1497 1498
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

1499 1500
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
1501

1502 1503
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
1504 1505 1506 1507 1508

	if (1)
		dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
			__func__, grxstsr, size, epnum);

1509 1510 1511
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1512 1513
		break;

1514
	case GRXSTS_PKTSTS_OUTDONE:
1515 1516 1517 1518
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg));

		if (!using_dma(hsotg))
1519
			s3c_hsotg_handle_outdone(hsotg, epnum);
1520 1521
		break;

1522
	case GRXSTS_PKTSTS_SETUPDONE:
1523 1524 1525
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1526
			readl(hsotg->regs + DOEPCTL(0)));
1527 1528 1529 1530 1531 1532 1533
		/*
		 * Call s3c_hsotg_handle_outdone here if it was not called from
		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
		 */
		if (hsotg->ep0_state == DWC2_EP0_SETUP)
			s3c_hsotg_handle_outdone(hsotg, epnum);
1534 1535
		break;

1536
	case GRXSTS_PKTSTS_OUTRX:
1537 1538 1539
		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

1540
	case GRXSTS_PKTSTS_SETUPRX:
1541 1542 1543
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1544
			readl(hsotg->regs + DOEPCTL(0)));
1545

1546 1547
		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);

1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

		s3c_hsotg_dump(hsotg);
		break;
	}
}

/**
 * s3c_hsotg_ep0_mps - turn max packet size into register setting
 * @mps: The maximum packet size in bytes.
1563
 */
1564 1565 1566 1567
static u32 s3c_hsotg_ep0_mps(unsigned int mps)
{
	switch (mps) {
	case 64:
1568
		return D0EPCTL_MPS_64;
1569
	case 32:
1570
		return D0EPCTL_MPS_32;
1571
	case 16:
1572
		return D0EPCTL_MPS_16;
1573
	case 8:
1574
		return D0EPCTL_MPS_8;
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
1591
static void s3c_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1592
			unsigned int ep, unsigned int mps, unsigned int dir_in)
1593
{
1594
	struct s3c_hsotg_ep *hs_ep;
1595 1596
	void __iomem *regs = hsotg->regs;
	u32 mpsval;
1597
	u32 mcval;
1598 1599
	u32 reg;

1600 1601 1602 1603
	hs_ep = index_to_ep(hsotg, ep, dir_in);
	if (!hs_ep)
		return;

1604 1605 1606 1607 1608
	if (ep == 0) {
		/* EP0 is a special case */
		mpsval = s3c_hsotg_ep0_mps(mps);
		if (mpsval > 3)
			goto bad_mps;
1609
		hs_ep->ep.maxpacket = mps;
1610
		hs_ep->mc = 1;
1611
	} else {
1612
		mpsval = mps & DXEPCTL_MPS_MASK;
1613
		if (mpsval > 1024)
1614
			goto bad_mps;
1615 1616 1617 1618
		mcval = ((mps >> 11) & 0x3) + 1;
		hs_ep->mc = mcval;
		if (mcval > 3)
			goto bad_mps;
1619
		hs_ep->ep.maxpacket = mpsval;
1620 1621
	}

1622 1623 1624 1625 1626 1627
	if (dir_in) {
		reg = readl(regs + DIEPCTL(ep));
		reg &= ~DXEPCTL_MPS_MASK;
		reg |= mpsval;
		writel(reg, regs + DIEPCTL(ep));
	} else {
1628
		reg = readl(regs + DOEPCTL(ep));
1629
		reg &= ~DXEPCTL_MPS_MASK;
1630
		reg |= mpsval;
1631
		writel(reg, regs + DOEPCTL(ep));
1632
	}
1633 1634 1635 1636 1637 1638 1639

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1640 1641 1642 1643 1644
/**
 * s3c_hsotg_txfifo_flush - flush Tx FIFO
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
1645
static void s3c_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1646 1647 1648 1649
{
	int timeout;
	int val;

1650
	writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1651
		hsotg->regs + GRSTCTL);
1652 1653 1654 1655 1656

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
1657
		val = readl(hsotg->regs + GRSTCTL);
1658

1659
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1660 1661 1662 1663 1664 1665
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
1666
			break;
1667 1668 1669 1670 1671
		}

		udelay(1);
	}
}
1672 1673 1674 1675 1676 1677 1678 1679 1680

/**
 * s3c_hsotg_trytx - check to see if anything needs transmitting
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
1681
static int s3c_hsotg_trytx(struct dwc2_hsotg *hsotg,
1682 1683 1684 1685
			   struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;

1686 1687 1688 1689 1690 1691 1692 1693
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
			s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
					     hs_ep->dir_in, 0);
1694
		return 0;
1695
	}
1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

	return 0;
}

/**
 * s3c_hsotg_complete_in - complete IN transfer
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
1714
static void s3c_hsotg_complete_in(struct dwc2_hsotg *hsotg,
1715 1716 1717
				  struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1718
	u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1719 1720 1721 1722 1723 1724 1725
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

1726
	/* Finish ZLP handling for IN EP0 transactions */
1727 1728
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
		dev_dbg(hsotg->dev, "zlp packet sent\n");
1729
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1730
		s3c_hsotg_enqueue_setup(hsotg);
1731 1732 1733
		return;
	}

1734 1735
	/*
	 * Calculate the size of the transfer by checking how much is left
1736 1737 1738 1739 1740 1741 1742 1743
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

1744
	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1745 1746 1747 1748 1749 1750 1751 1752 1753

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
1754 1755 1756
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

1757 1758 1759
	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1760 1761 1762
		return;
	}

1763
	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
1764
	if (hs_ep->send_zlp) {
1765
		s3c_hsotg_program_zlp(hsotg, hs_ep);
1766
		hs_ep->send_zlp = 0;
1767 1768 1769 1770
		/* transfer will be completed on next complete interrupt */
		return;
	}

1771 1772 1773 1774 1775 1776 1777
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
		/* Move to STATUS OUT */
		s3c_hsotg_ep0_zlp(hsotg, false);
		return;
	}

	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1778 1779 1780 1781 1782 1783 1784 1785 1786
}

/**
 * s3c_hsotg_epint - handle an in/out endpoint interrupt
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
1787
 */
1788
static void s3c_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
1789 1790
			    int dir_in)
{
1791
	struct s3c_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
1792 1793 1794
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1795
	u32 ints;
1796
	u32 ctrl;
1797 1798

	ints = readl(hsotg->regs + epint_reg);
1799
	ctrl = readl(hsotg->regs + epctl_reg);
1800

1801 1802 1803
	/* Clear endpoint interrupts */
	writel(ints, hsotg->regs + epint_reg);

1804 1805 1806 1807 1808 1809
	if (!hs_ep) {
		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
					__func__, idx, dir_in ? "in" : "out");
		return;
	}

1810 1811 1812
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

1813 1814 1815 1816
	/* Don't process XferCompl interrupt if it is a setup packet */
	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
		ints &= ~DXEPINT_XFERCOMPL;

1817
	if (ints & DXEPINT_XFERCOMPL) {
1818
		if (hs_ep->isochronous && hs_ep->interval == 1) {
1819 1820
			if (ctrl & DXEPCTL_EOFRNUM)
				ctrl |= DXEPCTL_SETEVENFR;
1821
			else
1822
				ctrl |= DXEPCTL_SETODDFR;
1823 1824 1825
			writel(ctrl, hsotg->regs + epctl_reg);
		}

1826
		dev_dbg(hsotg->dev,
1827
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1828 1829 1830
			__func__, readl(hsotg->regs + epctl_reg),
			readl(hsotg->regs + epsiz_reg));

1831 1832 1833 1834
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
1835 1836 1837
		if (dir_in) {
			s3c_hsotg_complete_in(hsotg, hs_ep);

1838
			if (idx == 0 && !hs_ep->req)
1839 1840
				s3c_hsotg_enqueue_setup(hsotg);
		} else if (using_dma(hsotg)) {
1841 1842 1843 1844
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
1845

1846
			s3c_hsotg_handle_outdone(hsotg, idx);
1847 1848 1849
		}
	}

1850
	if (ints & DXEPINT_EPDISBLD) {
1851 1852
		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

1853 1854 1855
		if (dir_in) {
			int epctl = readl(hsotg->regs + epctl_reg);

1856
			s3c_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
1857

1858 1859
			if ((epctl & DXEPCTL_STALL) &&
				(epctl & DXEPCTL_EPTYPE_BULK)) {
1860
				int dctl = readl(hsotg->regs + DCTL);
1861

1862
				dctl |= DCTL_CGNPINNAK;
1863
				writel(dctl, hsotg->regs + DCTL);
1864 1865 1866 1867
			}
		}
	}

1868
	if (ints & DXEPINT_AHBERR)
1869 1870
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

1871
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
1872 1873 1874
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
1875 1876
			/*
			 * this is the notification we've received a
1877 1878
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
1879 1880
			 * the setup here.
			 */
1881 1882 1883 1884

			if (dir_in)
				WARN_ON_ONCE(1);
			else
1885
				s3c_hsotg_handle_outdone(hsotg, 0);
1886 1887 1888
		}
	}

1889
	if (ints & DXEPINT_BACK2BACKSETUP)
1890 1891
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

1892
	if (dir_in && !hs_ep->isochronous) {
1893
		/* not sure if this is important, but we'll clear it anyway */
1894
		if (ints & DIEPMSK_INTKNTXFEMPMSK) {
1895 1896 1897 1898 1899
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
1900
		if (ints & DIEPMSK_INTKNEPMISMSK) {
1901 1902 1903
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
1904 1905 1906

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
1907
		    ints & DIEPMSK_TXFIFOEMPTY) {
1908 1909
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
1910 1911
			if (!using_dma(hsotg))
				s3c_hsotg_trytx(hsotg, hs_ep);
1912
		}
1913 1914 1915 1916 1917 1918 1919 1920 1921
	}
}

/**
 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
1922
 */
1923
static void s3c_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
1924
{
1925
	u32 dsts = readl(hsotg->regs + DSTS);
1926
	int ep0_mps = 0, ep_mps = 8;
1927

1928 1929
	/*
	 * This should signal the finish of the enumeration phase
1930
	 * of the USB handshaking, so we should now know what rate
1931 1932
	 * we connected at.
	 */
1933 1934 1935

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

1936 1937
	/*
	 * note, since we're limited by the size of transfer on EP0, and
1938
	 * it seems IN transfers must be a even number of packets we do
1939 1940
	 * not advertise a 64byte MPS on EP0.
	 */
1941 1942

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
1943 1944 1945
	switch (dsts & DSTS_ENUMSPD_MASK) {
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
1946 1947
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
1948
		ep_mps = 1023;
1949 1950
		break;

1951
	case DSTS_ENUMSPD_HS:
1952 1953
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
1954
		ep_mps = 1024;
1955 1956
		break;

1957
	case DSTS_ENUMSPD_LS:
1958
		hsotg->gadget.speed = USB_SPEED_LOW;
1959 1960
		/*
		 * note, we don't actually support LS in this driver at the
1961 1962 1963 1964 1965
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
1966 1967
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
1968

1969 1970 1971 1972
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
1973 1974 1975

	if (ep0_mps) {
		int i;
1976 1977 1978 1979 1980 1981 1982 1983 1984
		/* Initialize ep0 for both in and out directions */
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 1);
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0);
		for (i = 1; i < hsotg->num_of_eps; i++) {
			if (hsotg->eps_in[i])
				s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 1);
			if (hsotg->eps_out[i])
				s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0);
		}
1985 1986 1987 1988 1989 1990 1991
	}

	/* ensure after enumeration our EP0 is active */

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1992 1993
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
2005
static void kill_all_requests(struct dwc2_hsotg *hsotg,
2006
			      struct s3c_hsotg_ep *ep,
2007
			      int result)
2008 2009
{
	struct s3c_hsotg_req *req, *treq;
2010
	unsigned size;
2011

2012
	ep->req = NULL;
2013

2014
	list_for_each_entry_safe(req, treq, &ep->queue, queue)
2015 2016
		s3c_hsotg_complete_request(hsotg, ep, req,
					   result);
2017

2018 2019 2020 2021 2022
	if (!hsotg->dedicated_fifos)
		return;
	size = (readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
	if (size < ep->fifo_size)
		s3c_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2023 2024 2025
}

/**
2026
 * s3c_hsotg_disconnect - disconnect service
2027 2028
 * @hsotg: The device state.
 *
2029 2030 2031
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2032
 */
2033
void s3c_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2034 2035 2036
{
	unsigned ep;

2037 2038 2039 2040
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
2041 2042 2043 2044 2045 2046 2047 2048 2049

	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			kill_all_requests(hsotg, hsotg->eps_in[ep],
								-ESHUTDOWN);
		if (hsotg->eps_out[ep])
			kill_all_requests(hsotg, hsotg->eps_out[ep],
								-ESHUTDOWN);
	}
2050 2051 2052

	call_gadget(hsotg, disconnect);
}
2053
EXPORT_SYMBOL_GPL(s3c_hsotg_disconnect);
2054 2055 2056 2057 2058 2059

/**
 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
2060
static void s3c_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2061 2062 2063 2064 2065
{
	struct s3c_hsotg_ep *ep;
	int epno, ret;

	/* look through for any more data to transmit */
2066
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2067 2068 2069 2070
		ep = index_to_ep(hsotg, epno, 1);

		if (!ep)
			continue;
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

		ret = s3c_hsotg_trytx(hsotg, ep);
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2086 2087 2088
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
2089

2090 2091 2092 2093 2094
/**
 * s3c_hsotg_corereset - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
2095
 */
2096
static int s3c_hsotg_corereset(struct dwc2_hsotg *hsotg)
2097 2098 2099 2100 2101 2102 2103
{
	int timeout;
	u32 grstctl;

	dev_dbg(hsotg->dev, "resetting core\n");

	/* issue soft reset */
2104
	writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2105

2106
	timeout = 10000;
2107
	do {
2108
		grstctl = readl(hsotg->regs + GRSTCTL);
2109
	} while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2110

2111
	if (grstctl & GRSTCTL_CSFTRST) {
2112 2113 2114 2115
		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
		return -EINVAL;
	}

2116
	timeout = 10000;
2117 2118

	while (1) {
2119
		u32 grstctl = readl(hsotg->regs + GRSTCTL);
2120 2121 2122 2123 2124 2125 2126 2127

		if (timeout-- < 0) {
			dev_info(hsotg->dev,
				 "%s: reset failed, GRSTCTL=%08x\n",
				 __func__, grstctl);
			return -ETIMEDOUT;
		}

2128
		if (!(grstctl & GRSTCTL_AHBIDLE))
2129 2130 2131 2132 2133 2134 2135 2136 2137
			continue;

		break;		/* reset done */
	}

	dev_dbg(hsotg->dev, "reset successful\n");
	return 0;
}

2138 2139 2140 2141 2142 2143
/**
 * s3c_hsotg_core_init - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2144
void s3c_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg)
2145 2146 2147 2148 2149 2150 2151 2152 2153
{
	s3c_hsotg_corereset(hsotg);

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2154
	writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2155
	       (0x5 << 10), hsotg->regs + GUSBCFG);
2156 2157 2158

	s3c_hsotg_init_fifo(hsotg);

2159
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2160

2161
	writel(1 << 18 | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2162 2163

	/* Clear any pending OTG interrupts */
2164
	writel(0xffffffff, hsotg->regs + GOTGINT);
2165 2166

	/* Clear any pending interrupts */
2167
	writel(0xffffffff, hsotg->regs + GINTSTS);
2168

2169 2170 2171 2172 2173 2174
	writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
		GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
		GINTSTS_USBSUSP | GINTSTS_WKUPINT,
		hsotg->regs + GINTMSK);
2175 2176

	if (using_dma(hsotg))
2177
		writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
2178
		       (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
2179
		       hsotg->regs + GAHBCFG);
2180
	else
2181 2182 2183
		writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL |
						    GAHBCFG_P_TXF_EMP_LVL) : 0) |
		       GAHBCFG_GLBL_INTR_EN,
2184
		       hsotg->regs + GAHBCFG);
2185 2186

	/*
2187 2188 2189
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
2190 2191
	 */

2192 2193
	writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2194 2195 2196 2197
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_INTKNEPMISMSK,
		hsotg->regs + DIEPMSK);
2198 2199 2200 2201 2202

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2203 2204 2205 2206 2207
	writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
				    DIEPMSK_TIMEOUTMSK) : 0) |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_SETUPMSK,
		hsotg->regs + DOEPMSK);
2208

2209
	writel(0, hsotg->regs + DAINTMSK);
2210 2211

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2212 2213
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2214 2215

	/* enable in and out endpoint interrupts */
2216
	s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2217 2218 2219 2220 2221 2222 2223

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2224
		s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2225 2226 2227 2228 2229

	/* Enable interrupts for EP0 in and out */
	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);

2230
	__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2231
	udelay(10);  /* see openiboot */
2232
	__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2233

2234
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2235 2236

	/*
2237
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2238 2239 2240 2241
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2242 2243
	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2244

2245
	writel(s3c_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2246 2247
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
2248
	       hsotg->regs + DOEPCTL0);
2249 2250

	/* enable, but don't activate EP0in */
2251
	writel(s3c_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2252
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2253 2254 2255 2256

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2257 2258
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2259 2260

	/* clear global NAKs */
2261
	writel(DCTL_CGOUTNAK | DCTL_CGNPINNAK | DCTL_SFTDISCON,
2262
	       hsotg->regs + DCTL);
2263 2264 2265 2266

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

2267
	hsotg->last_rst = jiffies;
2268 2269
}

2270
static void s3c_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2271 2272 2273 2274
{
	/* set the soft-disconnect bit */
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
2275

2276
void s3c_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2277
{
2278
	/* remove the soft-disconnect and let's go */
2279
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2280 2281
}

2282 2283 2284 2285 2286 2287 2288
/**
 * s3c_hsotg_irq - handle device interrupt
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
{
2289
	struct dwc2_hsotg *hsotg = pw;
2290 2291 2292 2293
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

2294
	spin_lock(&hsotg->lock);
2295
irq_retry:
2296 2297
	gintsts = readl(hsotg->regs + GINTSTS);
	gintmsk = readl(hsotg->regs + GINTMSK);
2298 2299 2300 2301 2302 2303

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

2304 2305
	if (gintsts & GINTSTS_ENUMDONE) {
		writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2306 2307

		s3c_hsotg_irq_enumdone(hsotg);
2308
		hsotg->connected = 1;
2309 2310
	}

2311
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2312
		u32 daint = readl(hsotg->regs + DAINT);
2313 2314
		u32 daintmsk = readl(hsotg->regs + DAINTMSK);
		u32 daint_out, daint_in;
2315 2316
		int ep;

2317
		daint &= daintmsk;
2318 2319
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2320

2321 2322
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

2323 2324
		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
						ep++, daint_out >>= 1) {
2325 2326 2327 2328
			if (daint_out & 1)
				s3c_hsotg_epint(hsotg, ep, 0);
		}

2329 2330
		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
						ep++, daint_in >>= 1) {
2331 2332 2333 2334 2335
			if (daint_in & 1)
				s3c_hsotg_epint(hsotg, ep, 1);
		}
	}

2336
	if (gintsts & GINTSTS_USBRST) {
2337

2338
		u32 usb_status = readl(hsotg->regs + GOTGCTL);
2339

2340
		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
2341
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2342
			readl(hsotg->regs + GNPTXSTS));
2343

2344
		writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2345

2346
		if (usb_status & GOTGCTL_BSESVLD) {
2347 2348
			if (time_after(jiffies, hsotg->last_rst +
				       msecs_to_jiffies(200))) {
2349

2350
				kill_all_requests(hsotg, hsotg->eps_out[0],
2351
							  -ECONNRESET);
2352

2353 2354
				s3c_hsotg_core_init_disconnected(hsotg);
				s3c_hsotg_core_connect(hsotg);
2355 2356
			}
		}
2357 2358 2359 2360
	}

	/* check both FIFOs */

2361
	if (gintsts & GINTSTS_NPTXFEMP) {
2362 2363
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

2364 2365
		/*
		 * Disable the interrupt to stop it happening again
2366
		 * unless one of these endpoint routines decides that
2367 2368
		 * it needs re-enabling
		 */
2369

2370
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2371 2372 2373
		s3c_hsotg_irq_fifoempty(hsotg, false);
	}

2374
	if (gintsts & GINTSTS_PTXFEMP) {
2375 2376
		dev_dbg(hsotg->dev, "PTxFEmp\n");

2377
		/* See note in GINTSTS_NPTxFEmp */
2378

2379
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2380 2381 2382
		s3c_hsotg_irq_fifoempty(hsotg, true);
	}

2383
	if (gintsts & GINTSTS_RXFLVL) {
2384 2385
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2386
		 * we need to retry s3c_hsotg_handle_rx if this is still
2387 2388
		 * set.
		 */
2389 2390 2391 2392

		s3c_hsotg_handle_rx(hsotg);
	}

2393
	if (gintsts & GINTSTS_ERLYSUSP) {
2394
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2395
		writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2396 2397
	}

2398 2399
	/*
	 * these next two seem to crop-up occasionally causing the core
2400
	 * to shutdown the USB transfer, so try clearing them and logging
2401 2402
	 * the occurrence.
	 */
2403

2404
	if (gintsts & GINTSTS_GOUTNAKEFF) {
2405 2406
		dev_info(hsotg->dev, "GOUTNakEff triggered\n");

2407
		writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2408 2409

		s3c_hsotg_dump(hsotg);
2410 2411
	}

2412
	if (gintsts & GINTSTS_GINNAKEFF) {
2413 2414
		dev_info(hsotg->dev, "GINNakEff triggered\n");

2415
		writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2416 2417

		s3c_hsotg_dump(hsotg);
2418 2419
	}

2420 2421 2422 2423
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
2424 2425 2426 2427

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

2428 2429
	spin_unlock(&hsotg->lock);

2430 2431 2432 2433 2434 2435 2436 2437 2438
	return IRQ_HANDLED;
}

/**
 * s3c_hsotg_ep_enable - enable the given endpoint
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
2439
 */
2440 2441 2442 2443
static int s3c_hsotg_ep_enable(struct usb_ep *ep,
			       const struct usb_endpoint_descriptor *desc)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2444
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2445
	unsigned long flags;
2446
	unsigned int index = hs_ep->index;
2447 2448 2449
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
2450 2451
	unsigned int dir_in;
	unsigned int i, val, size;
2452
	int ret = 0;
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
	WARN_ON(index == 0);

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

2468
	mps = usb_endpoint_maxp(desc);
2469 2470 2471

	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */

2472
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2473 2474 2475 2476 2477
	epctrl = readl(hsotg->regs + epctrl_reg);

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

2478
	spin_lock_irqsave(&hsotg->lock, flags);
2479

2480 2481
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
2482

2483 2484 2485 2486
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
2487
	epctrl |= DXEPCTL_USBACTEP;
2488

2489 2490
	/*
	 * set the NAK status on the endpoint, otherwise we might try and
2491 2492 2493 2494 2495
	 * do something with data that we've yet got a request to process
	 * since the RXFIFO will take data for an endpoint even if the
	 * size register hasn't been set.
	 */

2496
	epctrl |= DXEPCTL_SNAK;
2497 2498

	/* update the endpoint state */
2499
	s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, dir_in);
2500 2501

	/* default, set to non-periodic */
2502
	hs_ep->isochronous = 0;
2503
	hs_ep->periodic = 0;
2504
	hs_ep->halted = 0;
2505
	hs_ep->interval = desc->bInterval;
2506

2507 2508 2509
	if (hs_ep->interval > 1 && hs_ep->mc > 1)
		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");

2510 2511
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
2512 2513
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
2514 2515 2516 2517
		hs_ep->isochronous = 1;
		if (dir_in)
			hs_ep->periodic = 1;
		break;
2518 2519

	case USB_ENDPOINT_XFER_BULK:
2520
		epctrl |= DXEPCTL_EPTYPE_BULK;
2521 2522 2523
		break;

	case USB_ENDPOINT_XFER_INT:
2524
		if (dir_in)
2525 2526
			hs_ep->periodic = 1;

2527
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2528 2529 2530
		break;

	case USB_ENDPOINT_XFER_CONTROL:
2531
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2532 2533 2534
		break;
	}

2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
	/* If fifo is already allocated for this ep */
	if (hs_ep->fifo_index) {
		size =  hs_ep->ep.maxpacket * hs_ep->mc;
		/* If bigger fifo is required deallocate current one */
		if (size > hs_ep->fifo_size) {
			hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
			hs_ep->fifo_index = 0;
			hs_ep->fifo_size = 0;
		}
	}

2546 2547
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
2548 2549
	 * a unique tx-fifo even if it is non-periodic.
	 */
2550
	if (dir_in && hsotg->dedicated_fifos && !hs_ep->fifo_index) {
2551 2552
		u32 fifo_index = 0;
		u32 fifo_size = UINT_MAX;
2553
		size = hs_ep->ep.maxpacket*hs_ep->mc;
2554
		for (i = 1; i < hsotg->num_of_eps; ++i) {
2555 2556 2557 2558 2559 2560
			if (hsotg->fifo_map & (1<<i))
				continue;
			val = readl(hsotg->regs + DPTXFSIZN(i));
			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
			if (val < size)
				continue;
2561 2562 2563 2564 2565
			/* Search for smallest acceptable fifo */
			if (val < fifo_size) {
				fifo_size = val;
				fifo_index = i;
			}
2566
		}
2567
		if (!fifo_index) {
2568 2569
			dev_err(hsotg->dev,
				"%s: No suitable fifo found\n", __func__);
2570 2571 2572
			ret = -ENOMEM;
			goto error;
		}
2573 2574 2575 2576
		hsotg->fifo_map |= 1 << fifo_index;
		epctrl |= DXEPCTL_TXFNUM(fifo_index);
		hs_ep->fifo_index = fifo_index;
		hs_ep->fifo_size = fifo_size;
2577
	}
2578

2579 2580
	/* for non control endpoints, set PID to D0 */
	if (index)
2581
		epctrl |= DXEPCTL_SETD0PID;
2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

	writel(epctrl, hsotg->regs + epctrl_reg);
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
		__func__, readl(hsotg->regs + epctrl_reg));

	/* enable the endpoint interrupt */
	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);

2593
error:
2594
	spin_unlock_irqrestore(&hsotg->lock, flags);
2595
	return ret;
2596 2597
}

2598 2599 2600 2601
/**
 * s3c_hsotg_ep_disable - disable given endpoint
 * @ep: The endpoint to disable.
 */
2602 2603 2604
static int s3c_hsotg_ep_disable(struct usb_ep *ep)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2605
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2606 2607 2608 2609 2610 2611
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

2612
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2613

2614
	if (ep == &hsotg->eps_out[0]->ep) {
2615 2616 2617 2618
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

2619
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2620

2621
	spin_lock_irqsave(&hsotg->lock, flags);
2622

2623 2624 2625
	hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;
2626 2627

	ctrl = readl(hsotg->regs + epctrl_reg);
2628 2629 2630
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
2631 2632 2633 2634 2635 2636 2637

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

	/* disable endpoint interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);

2638 2639 2640
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);

2641
	spin_unlock_irqrestore(&hsotg->lock, flags);
2642 2643 2644 2645 2646 2647 2648
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
2649
 */
2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
{
	struct s3c_hsotg_req *req, *treq;

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

2662 2663 2664 2665 2666
/**
 * s3c_hsotg_ep_dequeue - dequeue given endpoint
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
2667 2668 2669 2670
static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2671
	struct dwc2_hsotg *hs = hs_ep->parent;
2672 2673
	unsigned long flags;

2674
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2675

2676
	spin_lock_irqsave(&hs->lock, flags);
2677 2678

	if (!on_list(hs_ep, hs_req)) {
2679
		spin_unlock_irqrestore(&hs->lock, flags);
2680 2681 2682 2683
		return -EINVAL;
	}

	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2684
	spin_unlock_irqrestore(&hs->lock, flags);
2685 2686 2687 2688

	return 0;
}

2689 2690 2691 2692 2693
/**
 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
2694 2695 2696
static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2697
	struct dwc2_hsotg *hs = hs_ep->parent;
2698 2699 2700
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
2701
	u32 xfertype;
2702 2703 2704

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

2705 2706 2707 2708 2709 2710 2711 2712 2713
	if (index == 0) {
		if (value)
			s3c_hsotg_stall_ep0(hs);
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
	if (hs_ep->dir_in) {
		epreg = DIEPCTL(index);
		epctl = readl(hs->regs + epreg);

		if (value) {
			epctl |= DXEPCTL_STALL + DXEPCTL_SNAK;
			if (epctl & DXEPCTL_EPENA)
				epctl |= DXEPCTL_EPDIS;
		} else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
		writel(epctl, hs->regs + epreg);
2730
	} else {
2731

2732 2733
		epreg = DOEPCTL(index);
		epctl = readl(hs->regs + epreg);
2734

2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
		if (value)
			epctl |= DXEPCTL_STALL;
		else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
		writel(epctl, hs->regs + epreg);
2745
	}
2746

2747 2748
	hs_ep->halted = value;

2749 2750 2751
	return 0;
}

2752 2753 2754 2755 2756 2757 2758 2759
/**
 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2760
	struct dwc2_hsotg *hs = hs_ep->parent;
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_sethalt(ep, value);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

2771 2772 2773 2774 2775
static struct usb_ep_ops s3c_hsotg_ep_ops = {
	.enable		= s3c_hsotg_ep_enable,
	.disable	= s3c_hsotg_ep_disable,
	.alloc_request	= s3c_hsotg_ep_alloc_request,
	.free_request	= s3c_hsotg_ep_free_request,
2776
	.queue		= s3c_hsotg_ep_queue_lock,
2777
	.dequeue	= s3c_hsotg_ep_dequeue,
2778
	.set_halt	= s3c_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
2779
	/* note, don't believe we have any call for the fifo routines */
2780 2781
};

2782 2783
/**
 * s3c_hsotg_phy_enable - enable platform phy dev
2784
 * @hsotg: The driver state
2785 2786 2787 2788
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
2789
static void s3c_hsotg_phy_enable(struct dwc2_hsotg *hsotg)
2790 2791 2792 2793
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

	dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2794

2795
	if (hsotg->uphy)
2796
		usb_phy_init(hsotg->uphy);
2797
	else if (hsotg->plat && hsotg->plat->phy_init)
2798
		hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2799 2800 2801 2802
	else {
		phy_init(hsotg->phy);
		phy_power_on(hsotg->phy);
	}
2803 2804 2805 2806
}

/**
 * s3c_hsotg_phy_disable - disable platform phy dev
2807
 * @hsotg: The driver state
2808 2809 2810 2811
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
2812
static void s3c_hsotg_phy_disable(struct dwc2_hsotg *hsotg)
2813 2814 2815
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

2816
	if (hsotg->uphy)
2817
		usb_phy_shutdown(hsotg->uphy);
2818
	else if (hsotg->plat && hsotg->plat->phy_exit)
2819
		hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2820 2821 2822 2823
	else {
		phy_power_off(hsotg->phy);
		phy_exit(hsotg->phy);
	}
2824 2825
}

2826 2827 2828 2829
/**
 * s3c_hsotg_init - initalize the usb core
 * @hsotg: The driver state
 */
2830
static void s3c_hsotg_init(struct dwc2_hsotg *hsotg)
2831 2832 2833
{
	/* unmask subset of endpoint interrupts */

2834 2835 2836
	writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		hsotg->regs + DIEPMSK);
2837

2838 2839 2840
	writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		hsotg->regs + DOEPMSK);
2841

2842
	writel(0, hsotg->regs + DAINTMSK);
2843 2844

	/* Be in disconnected state until gadget is registered */
2845
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2846 2847 2848

	if (0) {
		/* post global nak until we're ready */
2849
		writel(DCTL_SGNPINNAK | DCTL_SGOUTNAK,
2850
		       hsotg->regs + DCTL);
2851 2852 2853 2854 2855
	}

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2856 2857
		readl(hsotg->regs + GRXFSIZ),
		readl(hsotg->regs + GNPTXFSIZ));
2858 2859 2860 2861

	s3c_hsotg_init_fifo(hsotg);

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2862
	writel(GUSBCFG_PHYIF16 | GUSBCFG_TOUTCAL(7) | (0x5 << 10),
2863
	       hsotg->regs + GUSBCFG);
2864

2865 2866
	if (using_dma(hsotg))
		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
2867 2868
}

2869 2870 2871 2872 2873 2874 2875 2876
/**
 * s3c_hsotg_udc_start - prepare the udc for work
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
2877 2878
static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
			   struct usb_gadget_driver *driver)
2879
{
2880
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2881
	unsigned long flags;
2882 2883 2884
	int ret;

	if (!hsotg) {
2885
		pr_err("%s: called with no device\n", __func__);
2886 2887 2888 2889 2890 2891 2892 2893
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

2894
	if (driver->max_speed < USB_SPEED_FULL)
2895 2896
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

2897
	if (!driver->setup) {
2898 2899 2900 2901
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

2902
	mutex_lock(&hsotg->init_mutex);
2903 2904 2905 2906
	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
2907
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
2908 2909
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

2910 2911
	clk_enable(hsotg->clk);

2912 2913
	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
2914
	if (ret) {
2915
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
2916 2917 2918
		goto err;
	}

2919
	s3c_hsotg_phy_enable(hsotg);
2920 2921
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
2922

2923 2924 2925
	spin_lock_irqsave(&hsotg->lock, flags);
	s3c_hsotg_init(hsotg);
	s3c_hsotg_core_init_disconnected(hsotg);
2926
	hsotg->enabled = 0;
2927 2928
	spin_unlock_irqrestore(&hsotg->lock, flags);

2929
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
2930

2931 2932
	mutex_unlock(&hsotg->init_mutex);

2933 2934 2935
	return 0;

err:
2936
	mutex_unlock(&hsotg->init_mutex);
2937 2938 2939 2940
	hsotg->driver = NULL;
	return ret;
}

2941 2942 2943 2944 2945 2946 2947
/**
 * s3c_hsotg_udc_stop - stop the udc
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
2948
static int s3c_hsotg_udc_stop(struct usb_gadget *gadget)
2949
{
2950
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2951
	unsigned long flags = 0;
2952 2953 2954 2955 2956
	int ep;

	if (!hsotg)
		return -ENODEV;

2957 2958
	mutex_lock(&hsotg->init_mutex);

2959
	/* all endpoints should be shutdown */
2960 2961 2962 2963 2964 2965
	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			s3c_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
		if (hsotg->eps_out[ep])
			s3c_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
	}
2966

2967 2968
	spin_lock_irqsave(&hsotg->lock, flags);

2969
	hsotg->driver = NULL;
2970
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2971
	hsotg->enabled = 0;
2972

2973 2974
	spin_unlock_irqrestore(&hsotg->lock, flags);

2975 2976
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, NULL);
2977 2978
	s3c_hsotg_phy_disable(hsotg);

2979
	regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
2980

2981 2982
	clk_disable(hsotg->clk);

2983 2984
	mutex_unlock(&hsotg->init_mutex);

2985 2986 2987
	return 0;
}

2988 2989 2990 2991 2992 2993
/**
 * s3c_hsotg_gadget_getframe - read the frame number
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
2994 2995 2996 2997 2998
static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
{
	return s3c_hsotg_read_frameno(to_hsotg(gadget));
}

2999 3000 3001 3002 3003 3004 3005 3006 3007
/**
 * s3c_hsotg_pullup - connect/disconnect the USB PHY
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
{
3008
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3009 3010
	unsigned long flags = 0;

3011
	dev_dbg(hsotg->dev, "%s: is_on: %d\n", __func__, is_on);
3012

3013
	mutex_lock(&hsotg->init_mutex);
3014 3015
	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
3016
		clk_enable(hsotg->clk);
3017
		hsotg->enabled = 1;
3018
		s3c_hsotg_core_connect(hsotg);
3019
	} else {
3020
		s3c_hsotg_core_disconnect(hsotg);
3021
		s3c_hsotg_disconnect(hsotg);
3022
		hsotg->enabled = 0;
3023
		clk_disable(hsotg->clk);
3024 3025 3026 3027
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);
3028
	mutex_unlock(&hsotg->init_mutex);
3029 3030 3031 3032

	return 0;
}

3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
static int s3c_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags;

	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
	spin_lock_irqsave(&hsotg->lock, flags);

	if (is_active) {
		/* Kill any ep0 requests as controller will be reinitialized */
		kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
		s3c_hsotg_core_init_disconnected(hsotg);
		if (hsotg->enabled)
			s3c_hsotg_core_connect(hsotg);
	} else {
		s3c_hsotg_core_disconnect(hsotg);
		s3c_hsotg_disconnect(hsotg);
	}

	spin_unlock_irqrestore(&hsotg->lock, flags);
	return 0;
}

3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
/**
 * s3c_hsotg_vbus_draw - report bMaxPower field
 * @gadget: The usb gadget state
 * @mA: Amount of current
 *
 * Report how much power the device may consume to the phy.
 */
static int s3c_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);

	if (IS_ERR_OR_NULL(hsotg->uphy))
		return -ENOTSUPP;
	return usb_phy_set_power(hsotg->uphy, mA);
}

3072
static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
3073
	.get_frame	= s3c_hsotg_gadget_getframe,
3074 3075
	.udc_start		= s3c_hsotg_udc_start,
	.udc_stop		= s3c_hsotg_udc_stop,
3076
	.pullup                 = s3c_hsotg_pullup,
3077
	.vbus_session		= s3c_hsotg_vbus_session,
3078
	.vbus_draw		= s3c_hsotg_vbus_draw,
3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
};

/**
 * s3c_hsotg_initep - initialise a single endpoint
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
3091
static void s3c_hsotg_initep(struct dwc2_hsotg *hsotg,
3092
				       struct s3c_hsotg_ep *hs_ep,
3093 3094
				       int epnum,
				       bool dir_in)
3095 3096 3097 3098 3099
{
	char *dir;

	if (epnum == 0)
		dir = "";
3100
	else if (dir_in)
3101
		dir = "in";
3102 3103
	else
		dir = "out";
3104

3105
	hs_ep->dir_in = dir_in;
3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
3119
	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3120 3121
	hs_ep->ep.ops = &s3c_hsotg_ep_ops;

3122 3123
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
3124 3125 3126 3127
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
3128
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3129 3130 3131 3132
		if (dir_in)
			writel(next, hsotg->regs + DIEPCTL(epnum));
		else
			writel(next, hsotg->regs + DOEPCTL(epnum));
3133 3134 3135
	}
}

3136 3137 3138 3139 3140 3141
/**
 * s3c_hsotg_hw_cfg - read HW configuration registers
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
3142
static int s3c_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3143
{
3144 3145 3146 3147
	u32 cfg;
	u32 ep_type;
	u32 i;

3148
	/* check hardware configuration */
3149

3150 3151 3152 3153
	cfg = readl(hsotg->regs + GHWCFG2);
	hsotg->num_of_eps = (cfg >> 10) & 0xF;
	/* Add ep0 */
	hsotg->num_of_eps++;
3154

3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182
	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct s3c_hsotg_ep),
								GFP_KERNEL);
	if (!hsotg->eps_in[0])
		return -ENOMEM;
	/* Same s3c_hsotg_ep is used in both directions for ep0 */
	hsotg->eps_out[0] = hsotg->eps_in[0];

	cfg = readl(hsotg->regs + GHWCFG1);
	for (i = 1; i < hsotg->num_of_eps; i++, cfg >>= 2) {
		ep_type = cfg & 3;
		/* Direction in or both */
		if (!(ep_type & 2)) {
			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
				sizeof(struct s3c_hsotg_ep), GFP_KERNEL);
			if (!hsotg->eps_in[i])
				return -ENOMEM;
		}
		/* Direction out or both */
		if (!(ep_type & 1)) {
			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
				sizeof(struct s3c_hsotg_ep), GFP_KERNEL);
			if (!hsotg->eps_out[i])
				return -ENOMEM;
		}
	}

	cfg = readl(hsotg->regs + GHWCFG3);
	hsotg->fifo_mem = (cfg >> 16);
3183

3184 3185
	cfg = readl(hsotg->regs + GHWCFG4);
	hsotg->dedicated_fifos = (cfg >> 25) & 1;
3186

3187 3188 3189 3190
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
3191
	return 0;
3192 3193
}

3194 3195 3196 3197
/**
 * s3c_hsotg_dump - dump state of the udc
 * @param: The device state
 */
3198
static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg)
3199
{
M
Mark Brown 已提交
3200
#ifdef DEBUG
3201 3202 3203 3204 3205 3206
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3207 3208
		 readl(regs + DCFG), readl(regs + DCTL),
		 readl(regs + DIEPMSK));
3209 3210

	dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3211
		 readl(regs + GAHBCFG), readl(regs + 0x44));
3212 3213

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3214
		 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3215 3216 3217

	/* show periodic fifo settings */

3218
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3219
		val = readl(regs + DPTXFSIZN(idx));
3220
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3221 3222
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
3223 3224
	}

3225
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3226 3227
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3228 3229 3230
			 readl(regs + DIEPCTL(idx)),
			 readl(regs + DIEPTSIZ(idx)),
			 readl(regs + DIEPDMA(idx)));
3231

3232
		val = readl(regs + DOEPCTL(idx));
3233 3234
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3235 3236 3237
			 idx, readl(regs + DOEPCTL(idx)),
			 readl(regs + DOEPTSIZ(idx)),
			 readl(regs + DOEPDMA(idx)));
3238 3239 3240 3241

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3242
		 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
3243
#endif
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
}

/**
 * state_show - debugfs: show overall driver and device state.
 * @seq: The seq file to write to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the overall state of the hardware and
 * some general information about each of the endpoints available
 * to the system.
 */
static int state_show(struct seq_file *seq, void *v)
{
3257
	struct dwc2_hsotg *hsotg = seq->private;
3258 3259 3260 3261
	void __iomem *regs = hsotg->regs;
	int idx;

	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3262 3263 3264
		 readl(regs + DCFG),
		 readl(regs + DCTL),
		 readl(regs + DSTS));
3265 3266

	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3267
		   readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3268 3269

	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3270 3271
		   readl(regs + GINTMSK),
		   readl(regs + GINTSTS));
3272 3273

	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3274 3275
		   readl(regs + DAINTMSK),
		   readl(regs + DAINT));
3276 3277

	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3278 3279
		   readl(regs + GNPTXSTS),
		   readl(regs + GRXSTSR));
3280

3281
	seq_puts(seq, "\nEndpoint status:\n");
3282

3283
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3284 3285
		u32 in, out;

3286 3287
		in = readl(regs + DIEPCTL(idx));
		out = readl(regs + DOEPCTL(idx));
3288 3289 3290 3291

		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
			   idx, in, out);

3292 3293
		in = readl(regs + DIEPTSIZ(idx));
		out = readl(regs + DOEPTSIZ(idx));
3294 3295 3296 3297

		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
			   in, out);

3298
		seq_puts(seq, "\n");
3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
	}

	return 0;
}

static int state_open(struct inode *inode, struct file *file)
{
	return single_open(file, state_show, inode->i_private);
}

static const struct file_operations state_fops = {
	.owner		= THIS_MODULE,
	.open		= state_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * fifo_show - debugfs: show the fifo information
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * Show the FIFO information for the overall fifo and all the
 * periodic transmission FIFOs.
3324
 */
3325 3326
static int fifo_show(struct seq_file *seq, void *v)
{
3327
	struct dwc2_hsotg *hsotg = seq->private;
3328 3329 3330 3331
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

3332
	seq_puts(seq, "Non-periodic FIFOs:\n");
3333
	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3334

3335
	val = readl(regs + GNPTXFSIZ);
3336
	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3337 3338
		   val >> FIFOSIZE_DEPTH_SHIFT,
		   val & FIFOSIZE_DEPTH_MASK);
3339

3340
	seq_puts(seq, "\nPeriodic TXFIFOs:\n");
3341

3342
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3343
		val = readl(regs + DPTXFSIZN(idx));
3344 3345

		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3346 3347
			   val >> FIFOSIZE_DEPTH_SHIFT,
			   val & FIFOSIZE_STARTADDR_MASK);
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378
	}

	return 0;
}

static int fifo_open(struct inode *inode, struct file *file)
{
	return single_open(file, fifo_show, inode->i_private);
}

static const struct file_operations fifo_fops = {
	.owner		= THIS_MODULE,
	.open		= fifo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};


static const char *decode_direction(int is_in)
{
	return is_in ? "in" : "out";
}

/**
 * ep_show - debugfs: show the state of an endpoint.
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the state of the given endpoint (one is
 * registered for each available).
3379
 */
3380 3381 3382
static int ep_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg_ep *ep = seq->private;
3383
	struct dwc2_hsotg *hsotg = ep->parent;
3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
	struct s3c_hsotg_req *req;
	void __iomem *regs = hsotg->regs;
	int index = ep->index;
	int show_limit = 15;
	unsigned long flags;

	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
		   ep->index, ep->ep.name, decode_direction(ep->dir_in));

	/* first show the register state */

	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3396 3397
		   readl(regs + DIEPCTL(index)),
		   readl(regs + DOEPCTL(index)));
3398 3399

	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3400 3401
		   readl(regs + DIEPDMA(index)),
		   readl(regs + DOEPDMA(index)));
3402 3403

	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3404 3405
		   readl(regs + DIEPINT(index)),
		   readl(regs + DOEPINT(index)));
3406 3407

	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3408 3409
		   readl(regs + DIEPTSIZ(index)),
		   readl(regs + DOEPTSIZ(index)));
3410

3411
	seq_puts(seq, "\n");
3412 3413 3414 3415 3416 3417
	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
	seq_printf(seq, "total_data=%ld\n", ep->total_data);

	seq_printf(seq, "request list (%p,%p):\n",
		   ep->queue.next, ep->queue.prev);

3418
	spin_lock_irqsave(&hsotg->lock, flags);
3419 3420 3421

	list_for_each_entry(req, &ep->queue, queue) {
		if (--show_limit < 0) {
3422
			seq_puts(seq, "not showing more requests...\n");
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
			break;
		}

		seq_printf(seq, "%c req %p: %d bytes @%p, ",
			   req == ep->req ? '*' : ' ',
			   req, req->req.length, req->req.buf);
		seq_printf(seq, "%d done, res %d\n",
			   req->req.actual, req->req.status);
	}

3433
	spin_unlock_irqrestore(&hsotg->lock, flags);
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458

	return 0;
}

static int ep_open(struct inode *inode, struct file *file)
{
	return single_open(file, ep_show, inode->i_private);
}

static const struct file_operations ep_fops = {
	.owner		= THIS_MODULE,
	.open		= ep_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * s3c_hsotg_create_debug - create debugfs directory and files
 * @hsotg: The driver state
 *
 * Create the debugfs files to allow the user to get information
 * about the state of the system. The directory name is created
 * with the same name as the device itself, in case we end up
 * with multiple blocks in future systems.
3459
 */
3460
static void s3c_hsotg_create_debug(struct dwc2_hsotg *hsotg)
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
{
	struct dentry *root;
	unsigned epidx;

	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
	hsotg->debug_root = root;
	if (IS_ERR(root)) {
		dev_err(hsotg->dev, "cannot create debug root\n");
		return;
	}

	/* create general state file */

	hsotg->debug_file = debugfs_create_file("state", 0444, root,
						hsotg, &state_fops);

	if (IS_ERR(hsotg->debug_file))
		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);

	hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
						hsotg, &fifo_fops);

	if (IS_ERR(hsotg->debug_fifo))
		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);

3486
	/* Create one file for each out endpoint */
3487
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3488
		struct s3c_hsotg_ep *ep;
3489

3490 3491 3492 3493
		ep = hsotg->eps_out[epidx];
		if (ep) {
			ep->debugfs = debugfs_create_file(ep->name, 0444,
							  root, ep, &ep_fops);
3494

3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512
			if (IS_ERR(ep->debugfs))
				dev_err(hsotg->dev, "failed to create %s debug file\n",
					ep->name);
		}
	}
	/* Create one file for each in endpoint. EP0 is handled with out eps */
	for (epidx = 1; epidx < hsotg->num_of_eps; epidx++) {
		struct s3c_hsotg_ep *ep;

		ep = hsotg->eps_in[epidx];
		if (ep) {
			ep->debugfs = debugfs_create_file(ep->name, 0444,
							  root, ep, &ep_fops);

			if (IS_ERR(ep->debugfs))
				dev_err(hsotg->dev, "failed to create %s debug file\n",
					ep->name);
		}
3513 3514 3515 3516 3517 3518 3519 3520
	}
}

/**
 * s3c_hsotg_delete_debug - cleanup debugfs entries
 * @hsotg: The driver state
 *
 * Cleanup (remove) the debugfs files for use on module exit.
3521
 */
3522
static void s3c_hsotg_delete_debug(struct dwc2_hsotg *hsotg)
3523 3524 3525
{
	unsigned epidx;

3526
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3527 3528 3529 3530
		if (hsotg->eps_in[epidx])
			debugfs_remove(hsotg->eps_in[epidx]->debugfs);
		if (hsotg->eps_out[epidx])
			debugfs_remove(hsotg->eps_out[epidx]->debugfs);
3531 3532 3533 3534 3535 3536 3537
	}

	debugfs_remove(hsotg->debug_file);
	debugfs_remove(hsotg->debug_fifo);
	debugfs_remove(hsotg->debug_root);
}

3538 3539 3540 3541
#ifdef CONFIG_OF
static void s3c_hsotg_of_probe(struct dwc2_hsotg *hsotg)
{
	struct device_node *np = hsotg->dev->of_node;
3542 3543
	u32 len = 0;
	u32 i = 0;
3544 3545 3546

	/* Enable dma if requested in device tree */
	hsotg->g_using_dma = of_property_read_bool(np, "g-use-dma");
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577

	/*
	* Register TX periodic fifo size per endpoint.
	* EP0 is excluded since it has no fifo configuration.
	*/
	if (!of_find_property(np, "g-tx-fifo-size", &len))
		goto rx_fifo;

	len /= sizeof(u32);

	/* Read tx fifo sizes other than ep0 */
	if (of_property_read_u32_array(np, "g-tx-fifo-size",
						&hsotg->g_tx_fifo_sz[1], len))
		goto rx_fifo;

	/* Add ep0 */
	len++;

	/* Make remaining TX fifos unavailable */
	if (len < MAX_EPS_CHANNELS) {
		for (i = len; i < MAX_EPS_CHANNELS; i++)
			hsotg->g_tx_fifo_sz[i] = 0;
	}

rx_fifo:
	/* Register RX fifo size */
	of_property_read_u32(np, "g-rx-fifo-size", &hsotg->g_rx_fifo_sz);

	/* Register NPTX fifo size */
	of_property_read_u32(np, "g-np-tx-fifo-size",
						&hsotg->g_np_g_tx_fifo_sz);
3578 3579 3580 3581 3582
}
#else
static inline void s3c_hsotg_of_probe(struct dwc2_hsotg *hsotg) { }
#endif

3583
/**
3584 3585 3586
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
 * @irq: The IRQ number for the controller.
3587
 */
3588
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3589
{
3590 3591
	struct device *dev = hsotg->dev;
	struct s3c_hsotg_plat *plat = dev->platform_data;
3592 3593
	int epnum;
	int ret;
3594
	int i;
3595
	u32 p_tx_fifo[] = DWC2_G_P_LEGACY_TX_FIFO_SIZE;
3596

3597 3598 3599
	/* Set default UTMI width */
	hsotg->phyif = GUSBCFG_PHYIF16;

3600 3601
	s3c_hsotg_of_probe(hsotg);

3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614
	/* Initialize to legacy fifo configuration values */
	hsotg->g_rx_fifo_sz = 2048;
	hsotg->g_np_g_tx_fifo_sz = 1024;
	memcpy(&hsotg->g_tx_fifo_sz[1], p_tx_fifo, sizeof(p_tx_fifo));
	/* Device tree specific probe */
	s3c_hsotg_of_probe(hsotg);
	/* Dump fifo information */
	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
						hsotg->g_np_g_tx_fifo_sz);
	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->g_rx_fifo_sz);
	for (i = 0; i < MAX_EPS_CHANNELS; i++)
		dev_dbg(dev, "Periodic TXFIFO%2d size: %d\n", i,
						hsotg->g_tx_fifo_sz[i]);
3615
	/*
3616 3617
	 * If platform probe couldn't find a generic PHY or an old style
	 * USB PHY, fall back to pdata
3618
	 */
3619 3620 3621 3622 3623 3624 3625 3626 3627
	if (IS_ERR_OR_NULL(hsotg->phy) && IS_ERR_OR_NULL(hsotg->uphy)) {
		plat = dev_get_platdata(dev);
		if (!plat) {
			dev_err(dev,
			"no platform data or transceiver defined\n");
			return -EPROBE_DEFER;
		}
		hsotg->plat = plat;
	} else if (hsotg->phy) {
3628 3629 3630 3631
		/*
		 * If using the generic PHY framework, check if the PHY bus
		 * width is 8-bit and set the phyif appropriately.
		 */
3632
		if (phy_get_bus_width(hsotg->phy) == 8)
3633 3634
			hsotg->phyif = GUSBCFG_PHYIF8;
	}
3635

3636
	hsotg->clk = devm_clk_get(dev, "otg");
3637
	if (IS_ERR(hsotg->clk)) {
3638
		hsotg->clk = NULL;
3639
		dev_dbg(dev, "cannot get otg clock\n");
3640 3641
	}

3642
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3643 3644 3645 3646 3647
	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
	hsotg->gadget.name = dev_name(dev);

	/* reset the system */

3648 3649 3650 3651 3652 3653
	ret = clk_prepare_enable(hsotg->clk);
	if (ret) {
		dev_err(dev, "failed to enable otg clk\n");
		goto err_clk;
	}

3654

3655 3656 3657 3658 3659
	/* regulators */

	for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
		hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];

3660
	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3661 3662 3663
				 hsotg->supplies);
	if (ret) {
		dev_err(dev, "failed to request supplies: %d\n", ret);
3664
		goto err_clk;
3665 3666 3667 3668 3669 3670
	}

	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);

	if (ret) {
3671
		dev_err(dev, "failed to enable supplies: %d\n", ret);
3672
		goto err_clk;
3673 3674
	}

3675 3676
	/* usb phy enable */
	s3c_hsotg_phy_enable(hsotg);
3677

3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690
	/*
	 * Force Device mode before initialization.
	 * This allows correctly configuring fifo for device mode.
	 */
	__bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEHOSTMODE);
	__orr32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);

	/*
	 * According to Synopsys databook, this sleep is needed for the force
	 * device mode to take effect.
	 */
	msleep(25);

3691
	s3c_hsotg_corereset(hsotg);
3692 3693 3694 3695 3696 3697
	ret = s3c_hsotg_hw_cfg(hsotg);
	if (ret) {
		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
		goto err_clk;
	}

3698
	s3c_hsotg_init(hsotg);
3699

3700 3701 3702
	/* Switch back to default configuration */
	__bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);

3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718
	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
	if (!hsotg->ctrl_buff) {
		dev_err(dev, "failed to allocate ctrl request buff\n");
		ret = -ENOMEM;
		goto err_supplies;
	}

	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
	if (!hsotg->ep0_buff) {
		dev_err(dev, "failed to allocate ctrl reply buff\n");
		ret = -ENOMEM;
		goto err_supplies;
	}

3719 3720
	ret = devm_request_irq(hsotg->dev, irq, s3c_hsotg_irq, IRQF_SHARED,
				dev_name(hsotg->dev), hsotg);
3721 3722 3723 3724 3725
	if (ret < 0) {
		s3c_hsotg_phy_disable(hsotg);
		clk_disable_unprepare(hsotg->clk);
		regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				       hsotg->supplies);
3726
		dev_err(dev, "cannot claim IRQ for gadget\n");
3727
		goto err_supplies;
3728 3729
	}

3730 3731 3732 3733
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
3734
		ret = -EINVAL;
3735 3736 3737 3738 3739 3740
		goto err_supplies;
	}

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3741
	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
3742 3743 3744

	/* allocate EP0 request */

3745
	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
3746 3747 3748
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
3749
		ret = -ENOMEM;
3750
		goto err_supplies;
3751
	}
3752 3753

	/* initialise the endpoints now the core has been initialised */
3754 3755 3756 3757 3758 3759 3760 3761
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
		if (hsotg->eps_in[epnum])
			s3c_hsotg_initep(hsotg, hsotg->eps_in[epnum],
								epnum, 1);
		if (hsotg->eps_out[epnum])
			s3c_hsotg_initep(hsotg, hsotg->eps_out[epnum],
								epnum, 0);
	}
3762

3763
	/* disable power and clock */
3764
	s3c_hsotg_phy_disable(hsotg);
3765 3766 3767 3768

	ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
	if (ret) {
3769
		dev_err(dev, "failed to disable supplies: %d\n", ret);
3770
		goto err_supplies;
3771 3772
	}

3773
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3774
	if (ret)
3775
		goto err_supplies;
3776

3777 3778 3779 3780 3781 3782
	s3c_hsotg_create_debug(hsotg);

	s3c_hsotg_dump(hsotg);

	return 0;

3783
err_supplies:
3784
	s3c_hsotg_phy_disable(hsotg);
3785
err_clk:
3786
	clk_disable_unprepare(hsotg->clk);
3787

3788 3789
	return ret;
}
3790
EXPORT_SYMBOL_GPL(dwc2_gadget_init);
3791

3792 3793 3794 3795
/**
 * s3c_hsotg_remove - remove function for hsotg driver
 * @pdev: The platform information for the driver
 */
3796
int s3c_hsotg_remove(struct dwc2_hsotg *hsotg)
3797
{
3798
	usb_del_gadget_udc(&hsotg->gadget);
3799
	s3c_hsotg_delete_debug(hsotg);
3800
	clk_disable_unprepare(hsotg->clk);
3801

3802 3803
	return 0;
}
3804
EXPORT_SYMBOL_GPL(s3c_hsotg_remove);
3805

3806
int s3c_hsotg_suspend(struct dwc2_hsotg *hsotg)
3807 3808 3809 3810
{
	unsigned long flags;
	int ret = 0;

3811 3812
	mutex_lock(&hsotg->init_mutex);

3813 3814 3815
	if (hsotg->driver) {
		int ep;

3816 3817 3818
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

3819 3820 3821 3822 3823 3824
		spin_lock_irqsave(&hsotg->lock, flags);
		if (hsotg->enabled)
			s3c_hsotg_core_disconnect(hsotg);
		s3c_hsotg_disconnect(hsotg);
		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
		spin_unlock_irqrestore(&hsotg->lock, flags);
3825

3826
		s3c_hsotg_phy_disable(hsotg);
3827

3828 3829 3830 3831 3832 3833
		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
			if (hsotg->eps_in[ep])
				s3c_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
			if (hsotg->eps_out[ep])
				s3c_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
		}
3834 3835 3836

		ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
					     hsotg->supplies);
3837
		clk_disable(hsotg->clk);
3838 3839
	}

3840 3841
	mutex_unlock(&hsotg->init_mutex);

3842 3843
	return ret;
}
3844
EXPORT_SYMBOL_GPL(s3c_hsotg_suspend);
3845

3846
int s3c_hsotg_resume(struct dwc2_hsotg *hsotg)
3847 3848 3849 3850
{
	unsigned long flags;
	int ret = 0;

3851 3852
	mutex_lock(&hsotg->init_mutex);

3853 3854 3855
	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
3856 3857

		clk_enable(hsotg->clk);
3858
		ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3859
					    hsotg->supplies);
3860

3861
		s3c_hsotg_phy_enable(hsotg);
3862

3863 3864 3865 3866 3867 3868
		spin_lock_irqsave(&hsotg->lock, flags);
		s3c_hsotg_core_init_disconnected(hsotg);
		if (hsotg->enabled)
			s3c_hsotg_core_connect(hsotg);
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
3869
	mutex_unlock(&hsotg->init_mutex);
3870 3871 3872

	return ret;
}
3873
EXPORT_SYMBOL_GPL(s3c_hsotg_resume);