gadget.c 90.6 KB
Newer Older
1 2
/**
 * linux/drivers/usb/gadget/s3c-hsotg.c
3 4 5
 *
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
6 7 8 9 10 11 12 13 14 15 16
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
17
 */
18 19 20 21 22 23 24 25 26 27 28

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
29
#include <linux/slab.h>
30
#include <linux/clk.h>
31
#include <linux/regulator/consumer.h>
32
#include <linux/of_platform.h>
33
#include <linux/phy/phy.h>
34 35 36

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
37
#include <linux/usb/phy.h>
38
#include <linux/platform_data/s3c-hsotg.h>
39

40
#include "core.h"
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

/* conversion functions */
static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
{
	return container_of(req, struct s3c_hsotg_req, req);
}

static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
{
	return container_of(ep, struct s3c_hsotg_ep, ep);
}

static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
{
	return container_of(gadget, struct s3c_hsotg, gadget);
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) | val, ptr);
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) & ~val, ptr);
}

/* forward decleration of functions */
static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
 * Until this issue is sorted out, we always return 'false'.
 */
static inline bool using_dma(struct s3c_hsotg *hsotg)
{
	return false;	/* support is not complete */
}

/**
 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
{
102
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
103 104 105 106 107 108
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
109
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
110 111 112 113 114 115 116 117 118 119
	}
}

/**
 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
{
120
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
121 122 123 124 125
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
126
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
}

/**
 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
151
	daint = readl(hsotg->regs + DAINTMSK);
152 153 154 155
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
156
	writel(daint, hsotg->regs + DAINTMSK);
157 158 159 160 161 162 163 164 165
	local_irq_restore(flags);
}

/**
 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
 * @hsotg: The device instance.
 */
static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
{
166 167 168
	unsigned int ep;
	unsigned int addr;
	unsigned int size;
169
	int timeout;
170 171
	u32 val;

172
	/* set FIFO sizes to 2048/1024 */
173

174
	writel(2048, hsotg->regs + GRXFSIZ);
175 176
	writel((2048 << FIFOSIZE_STARTADDR_SHIFT) |
		(1024 << FIFOSIZE_DEPTH_SHIFT), hsotg->regs + GNPTXFSIZ);
177

178 179
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
180 181
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
182 183
	 * known values.
	 */
184 185 186 187 188

	/* start at the end of the GNPTXFSIZ, rounded up */
	addr = 2048 + 1024;
	size = 768;

189 190 191 192
	/*
	 * currently we allocate TX FIFOs for all possible endpoints,
	 * and assume that they are all the same size.
	 */
193

194
	for (ep = 1; ep <= 15; ep++) {
195
		val = addr;
196
		val |= size << FIFOSIZE_DEPTH_SHIFT;
197 198
		addr += size;

199
		writel(val, hsotg->regs + DPTXFSIZN(ep));
200
	}
201

202 203 204 205
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
206

207 208
	writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
209 210 211 212

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
213
		val = readl(hsotg->regs + GRSTCTL);
214

215
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
216 217 218 219 220 221 222 223 224 225 226 227
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
228 229 230 231 232 233 234 235
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
236 237
static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
						      gfp_t flags)
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
{
	struct s3c_hsotg_req *req;

	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
{
	return hs_ep->periodic;
}

/**
 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
 * of a request to ensure the buffer is ready for access by the caller.
270
 */
271 272 273 274 275 276 277 278 279 280
static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

281
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
}

/**
 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
299
 */
300 301 302 303 304
static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	bool periodic = is_ep_periodic(hs_ep);
305
	u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
306 307 308 309 310
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
311
	int max_transfer;
312 313 314 315 316 317 318

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

319
	if (periodic && !hsotg->dedicated_fifos) {
320
		u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
321 322 323
		int size_left;
		int size_done;

324 325 326 327
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
328

329
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
330

331 332
		/*
		 * if shared fifo, we cannot write anything until the
333 334 335
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
336
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
337 338 339
			return -ENOSPC;
		}

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
357
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
358 359
			return -ENOSPC;
		}
360
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
361
		can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
362 363 364

		can_write &= 0xffff;
		can_write *= 4;
365
	} else {
366
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
367 368 369 370
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

371
			s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
372 373 374
			return -ENOSPC;
		}

375
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
376
		can_write *= 4;	/* fifo size is in 32bit quantities. */
377 378
	}

379 380 381 382
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
		 __func__, gnptxsts, can_write, to_write, max_transfer);
383

384 385
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
386 387 388
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
389
	if (can_write > 512 && !periodic)
390 391
		can_write = 512;

392 393
	/*
	 * limit the write to one max-packet size worth of data, but allow
394
	 * the transfer to return that it did not run out of fifo space
395 396
	 * doing it.
	 */
397 398
	if (to_write > max_transfer) {
		to_write = max_transfer;
399

400 401 402
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
403 404
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
405 406
	}

407 408 409 410
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
411
		pkt_round = to_write % max_transfer;
412

413 414
		/*
		 * Round the write down to an
415 416 417 418 419 420 421 422 423
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

424 425 426 427
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
428

429 430 431
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
432 433
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

451
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
470 471
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
472
	} else {
473
		maxsize = 64+64;
474
		if (hs_ep->dir_in)
475
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
476
		else
477 478 479 480 481 482 483
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

484 485 486 487
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

/**
 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req,
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

534 535
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
536 537 538 539 540

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
		__func__, readl(hsotg->regs + epctrl_reg), index,
		hs_ep->dir_in ? "in" : "out");

541 542 543
	/* If endpoint is stalled, we will restart request later */
	ctrl = readl(hsotg->regs + epctrl_reg);

544
	if (ctrl & DXEPCTL_STALL) {
545 546 547 548
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

549
	length = ureq->length - ureq->actual;
550 551
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
552 553
	if (0)
		dev_dbg(hsotg->dev,
554 555
			"REQ buf %p len %d dma 0x%pad noi=%d zp=%d snok=%d\n",
			ureq->buf, length, &ureq->dma,
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
			ureq->no_interrupt, ureq->zero, ureq->short_not_ok);

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

577 578 579 580 581
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

582
	if (dir_in && index != 0)
583
		if (hs_ep->isochronous)
584
			epsize = DXEPTSIZ_MC(packets);
585
		else
586
			epsize = DXEPTSIZ_MC(1);
587 588 589 590
	else
		epsize = 0;

	if (index != 0 && ureq->zero) {
591 592 593 594
		/*
		 * test for the packets being exactly right for the
		 * transfer
		 */
595 596 597 598 599

		if (length == (packets * hs_ep->ep.maxpacket))
			packets++;
	}

600 601
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
602 603 604 605 606 607 608 609 610 611

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
	writel(epsize, hsotg->regs + epsize_reg);

612
	if (using_dma(hsotg) && !continuing) {
613 614
		unsigned int dma_reg;

615 616 617 618
		/*
		 * write DMA address to control register, buffer already
		 * synced by s3c_hsotg_ep_queue().
		 */
619

620
		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
621 622
		writel(ureq->dma, hsotg->regs + dma_reg);

623 624
		dev_dbg(hsotg->dev, "%s: 0x%pad => 0x%08x\n",
			__func__, &ureq->dma, dma_reg);
625 626
	}

627 628
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
629 630 631 632 633 634 635

	dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup);

	/* For Setup request do not clear NAK */
	if (hsotg->setup && index == 0)
		hsotg->setup = 0;
	else
636
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
637

638 639 640 641

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

642 643
	/*
	 * set these, it seems that DMA support increments past the end
644
	 * of the packet buffer so we need to calculate the length from
645 646
	 * this information.
	 */
647 648 649 650 651 652 653 654 655 656
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

657 658 659 660
	/*
	 * clear the INTknTXFEmpMsk when we start request, more as a aide
	 * to debugging to see what is going on.
	 */
661
	if (dir_in)
662
		writel(DIEPMSK_INTKNTXFEMPMSK,
663
		       hsotg->regs + DIEPINT(index));
664

665 666 667 668
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
669 670

	/* check ep is enabled */
671
	if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
672
		dev_warn(hsotg->dev,
673
			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
674 675
			 index, readl(hsotg->regs + epctrl_reg));

676
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
677
		__func__, readl(hsotg->regs + epctrl_reg));
678 679 680

	/* enable ep interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
681 682 683 684 685 686 687 688 689 690 691 692 693
}

/**
 * s3c_hsotg_map_dma - map the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
694
 */
695 696 697 698 699
static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
			     struct s3c_hsotg_ep *hs_ep,
			     struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
700
	int ret;
701 702 703 704 705

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

706 707 708
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	bool first;

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
		int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
		if (ret)
			return ret;
	}

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

	if (first)
		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);

	return 0;
}

752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
				      struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);

	kfree(hs_req);
}

/**
 * s3c_hsotg_complete_oursetup - setup completion callback
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
					struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

	s3c_hsotg_ep_free_request(ep, req);
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
801
 */
802 803 804 805 806 807 808 809 810 811
static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
					   u32 windex)
{
	struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

812
	if (idx > hsotg->num_of_eps)
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
		return NULL;

	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

/**
 * s3c_hsotg_send_reply - send reply to control request
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
				struct s3c_hsotg_ep *ep,
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
	req->zero = 1; /* always do zero-length final transfer */
	req->complete = s3c_hsotg_complete_oursetup;

	if (length)
		memcpy(req->buf, buff, length);
	else
		ep->sent_zlp = 1;

	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
 * s3c_hsotg_process_req_status - process request GET_STATUS
 * @hsotg: The device state
 * @ctrl: USB control request
 */
static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
					struct usb_ctrlrequest *ctrl)
{
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	struct s3c_hsotg_ep *ep;
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);

924 925 926 927 928 929 930 931 932 933 934 935 936 937
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
{
	if (list_empty(&hs_ep->queue))
		return NULL;

	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
}

938 939 940 941 942 943 944 945
/**
 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
 * @hsotg: The device state
 * @ctrl: USB control request
 */
static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
					 struct usb_ctrlrequest *ctrl)
{
946
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
947 948
	struct s3c_hsotg_req *hs_req;
	bool restart;
949 950
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
	struct s3c_hsotg_ep *ep;
951
	int ret;
952
	bool halted;
953 954 955 956 957 958 959 960 961 962 963 964 965 966

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
				__func__, le16_to_cpu(ctrl->wIndex));
			return -ENOENT;
		}

		switch (le16_to_cpu(ctrl->wValue)) {
		case USB_ENDPOINT_HALT:
967 968
			halted = ep->halted;

969
			s3c_hsotg_ep_sethalt(&ep->ep, set);
970 971 972 973 974 975 976

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
977

978 979 980 981 982 983
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
					hs_req->req.complete(&ep->ep,
							     &hs_req->req);
				}

				/* If we have pending request, then start it */
				restart = !list_empty(&ep->queue);
				if (restart) {
					hs_req = get_ep_head(ep);
					s3c_hsotg_start_req(hsotg, ep,
							    hs_req, false);
				}
			}

1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
			break;

		default:
			return -ENOENT;
		}
	} else
		return -ENOENT;  /* currently only deal with endpoint */

	return 1;
}

1016
static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
1017
static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg);
1018

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
/**
 * s3c_hsotg_stall_ep0 - stall ep0
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
static void s3c_hsotg_stall_ep0(struct s3c_hsotg *hsotg) {
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

	ctrl = readl(hsotg->regs + reg);
1039 1040
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1041 1042 1043
	writel(ctrl, hsotg->regs + reg);

	dev_dbg(hsotg->dev,
1044
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1045 1046 1047 1048 1049 1050 1051 1052 1053
		ctrl, reg, readl(hsotg->regs + reg));

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
	 s3c_hsotg_enqueue_setup(hsotg);
}

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
/**
 * s3c_hsotg_process_control - process a control request
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
				      struct usb_ctrlrequest *ctrl)
{
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	int ret = 0;
	u32 dcfg;

	ep0->sent_zlp = 0;

	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
		 ctrl->bRequest, ctrl->bRequestType,
		 ctrl->wValue, ctrl->wLength);

1076 1077 1078 1079
	/*
	 * record the direction of the request, for later use when enquing
	 * packets onto EP0.
	 */
1080 1081 1082 1083

	ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
	dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);

1084 1085 1086 1087
	/*
	 * if we've no data with this request, then the last part of the
	 * transaction is going to implicitly be IN.
	 */
1088 1089 1090 1091 1092 1093
	if (ctrl->wLength == 0)
		ep0->dir_in = 1;

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1094
			s3c_hsotg_disconnect(hsotg);
1095
			dcfg = readl(hsotg->regs + DCFG);
1096 1097
			dcfg &= ~DCFG_DEVADDR_MASK;
			dcfg |= ctrl->wValue << DCFG_DEVADDR_SHIFT;
1098
			writel(dcfg, hsotg->regs + DCFG);
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			return;

		case USB_REQ_GET_STATUS:
			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1119
		spin_unlock(&hsotg->lock);
1120
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1121
		spin_lock(&hsotg->lock);
1122 1123 1124 1125
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1126 1127
	/*
	 * the request is either unhandlable, or is not formatted correctly
1128 1129 1130
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1131 1132
	if (ret < 0)
		s3c_hsotg_stall_ep0(hsotg);
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
}

/**
 * s3c_hsotg_complete_setup - completion of a setup transfer
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
static void s3c_hsotg_complete_setup(struct usb_ep *ep,
				     struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1154
	spin_lock(&hsotg->lock);
1155 1156 1157 1158
	if (req->actual == 0)
		s3c_hsotg_enqueue_setup(hsotg);
	else
		s3c_hsotg_process_control(hsotg, req->buf);
1159
	spin_unlock(&hsotg->lock);
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
}

/**
 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
{
	struct usb_request *req = hsotg->ctrl_req;
	struct s3c_hsotg_req *hs_req = our_req(req);
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
	req->complete = s3c_hsotg_complete_setup;

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

	hsotg->eps[0].dir_in = 0;

	ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1192 1193 1194 1195
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
	}
}

/**
 * s3c_hsotg_complete_request - complete a request given to us
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1211
 */
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
				       struct s3c_hsotg_ep *hs_ep,
				       struct s3c_hsotg_req *hs_req,
				       int result)
{
	bool restart;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1227 1228 1229 1230
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

	if (using_dma(hsotg))
		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1241 1242 1243 1244
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1245 1246

	if (hs_req->req.complete) {
1247
		spin_unlock(&hsotg->lock);
1248
		hs_req->req.complete(&hs_ep->ep, &hs_req->req);
1249
		spin_lock(&hsotg->lock);
1250 1251
	}

1252 1253
	/*
	 * Look to see if there is anything else to do. Note, the completion
1254
	 * of the previous request may have caused a new request to be started
1255 1256
	 * so be careful when doing this.
	 */
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280

	if (!hs_ep->req && result >= 0) {
		restart = !list_empty(&hs_ep->queue);
		if (restart) {
			hs_req = get_ep_head(hs_ep);
			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		}
	}
}

/**
 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1281
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1282 1283 1284 1285
	int to_read;
	int max_req;
	int read_ptr;

1286

1287
	if (!hs_req) {
1288
		u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1289 1290 1291
		int ptr;

		dev_warn(hsotg->dev,
1292
			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
			(void)readl(fifo);

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1306 1307 1308
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1309
	if (to_read > max_req) {
1310 1311
		/*
		 * more data appeared than we where willing
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1323 1324 1325 1326
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1327
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
}

/**
 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
 * @hsotg: The device instance
 * @req: The request currently on this endpoint
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1339
 * currently believed that we do not need to wait for any space in
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
 * the TxFIFO.
 */
static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
			       struct s3c_hsotg_req *req)
{
	u32 ctrl;

	if (!req) {
		dev_warn(hsotg->dev, "%s: no request?\n", __func__);
		return;
	}

	if (req->req.length == 0) {
		hsotg->eps[0].sent_zlp = 1;
		s3c_hsotg_enqueue_setup(hsotg);
		return;
	}

	hsotg->eps[0].dir_in = 1;
	hsotg->eps[0].sent_zlp = 1;

	dev_dbg(hsotg->dev, "sending zero-length packet\n");

	/* issue a zero-sized packet to terminate this */
1364 1365
	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
	       DXEPTSIZ_XFERSIZE(0), hsotg->regs + DIEPTSIZ(0));
1366

1367
	ctrl = readl(hsotg->regs + DIEPCTL0);
1368 1369 1370
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
1371
	writel(ctrl, hsotg->regs + DIEPCTL0);
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
}

/**
 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 * @was_setup: Set if processing a SetupDone event.
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1383
 */
1384 1385 1386
static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
				     int epnum, bool was_setup)
{
1387
	u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1388 1389 1390
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
	struct s3c_hsotg_req *hs_req = hs_ep->req;
	struct usb_request *req = &hs_req->req;
1391
	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

	if (using_dma(hsotg)) {
		unsigned size_done;

1402 1403
		/*
		 * Calculate the size of the transfer by checking how much
1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1417 1418 1419 1420
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
		return;
1421 1422 1423 1424 1425 1426
	} else if (epnum == 0) {
		/*
		 * After was_setup = 1 =>
		 * set CNAK for non Setup requests
		 */
		hsotg->setup = was_setup ? 0 : 1;
1427 1428
	}

1429 1430 1431 1432
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1433 1434 1435 1436
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1437 1438 1439
	}

	if (epnum == 0) {
1440 1441 1442 1443
		/*
		 * Condition req->complete != s3c_hsotg_complete_setup says:
		 * send ZLP when we have an asynchronous request from gadget
		 */
1444 1445 1446 1447
		if (!was_setup && req->complete != s3c_hsotg_complete_setup)
			s3c_hsotg_send_zlp(hsotg, hs_req);
	}

1448
	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1449 1450 1451 1452 1453 1454 1455
}

/**
 * s3c_hsotg_read_frameno - read current frame number
 * @hsotg: The device instance
 *
 * Return the current frame number
1456
 */
1457 1458 1459 1460
static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
{
	u32 dsts;

1461 1462 1463
	dsts = readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475

	return dsts;
}

/**
 * s3c_hsotg_handle_rx - RX FIFO has data
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1476
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1477 1478 1479 1480 1481 1482 1483
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1484
static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
1485
{
1486
	u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1487 1488 1489 1490
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

1491 1492
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
1493

1494 1495
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
1496 1497 1498 1499 1500

	if (1)
		dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
			__func__, grxstsr, size, epnum);

1501 1502 1503
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1504 1505
		break;

1506
	case GRXSTS_PKTSTS_OUTDONE:
1507 1508 1509 1510 1511 1512 1513
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg));

		if (!using_dma(hsotg))
			s3c_hsotg_handle_outdone(hsotg, epnum, false);
		break;

1514
	case GRXSTS_PKTSTS_SETUPDONE:
1515 1516 1517
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1518
			readl(hsotg->regs + DOEPCTL(0)));
1519 1520 1521 1522

		s3c_hsotg_handle_outdone(hsotg, epnum, true);
		break;

1523
	case GRXSTS_PKTSTS_OUTRX:
1524 1525 1526
		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

1527
	case GRXSTS_PKTSTS_SETUPRX:
1528 1529 1530
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1531
			readl(hsotg->regs + DOEPCTL(0)));
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547

		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

		s3c_hsotg_dump(hsotg);
		break;
	}
}

/**
 * s3c_hsotg_ep0_mps - turn max packet size into register setting
 * @mps: The maximum packet size in bytes.
1548
 */
1549 1550 1551 1552
static u32 s3c_hsotg_ep0_mps(unsigned int mps)
{
	switch (mps) {
	case 64:
1553
		return D0EPCTL_MPS_64;
1554
	case 32:
1555
		return D0EPCTL_MPS_32;
1556
	case 16:
1557
		return D0EPCTL_MPS_16;
1558
	case 8:
1559
		return D0EPCTL_MPS_8;
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
				       unsigned int ep, unsigned int mps)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
	void __iomem *regs = hsotg->regs;
	u32 mpsval;
1582
	u32 mcval;
1583 1584 1585 1586 1587 1588 1589
	u32 reg;

	if (ep == 0) {
		/* EP0 is a special case */
		mpsval = s3c_hsotg_ep0_mps(mps);
		if (mpsval > 3)
			goto bad_mps;
1590
		hs_ep->ep.maxpacket = mps;
1591
		hs_ep->mc = 1;
1592
	} else {
1593
		mpsval = mps & DXEPCTL_MPS_MASK;
1594
		if (mpsval > 1024)
1595
			goto bad_mps;
1596 1597 1598 1599
		mcval = ((mps >> 11) & 0x3) + 1;
		hs_ep->mc = mcval;
		if (mcval > 3)
			goto bad_mps;
1600
		hs_ep->ep.maxpacket = mpsval;
1601 1602
	}

1603 1604 1605 1606
	/*
	 * update both the in and out endpoint controldir_ registers, even
	 * if one of the directions may not be in use.
	 */
1607

1608
	reg = readl(regs + DIEPCTL(ep));
1609
	reg &= ~DXEPCTL_MPS_MASK;
1610
	reg |= mpsval;
1611
	writel(reg, regs + DIEPCTL(ep));
1612

1613
	if (ep) {
1614
		reg = readl(regs + DOEPCTL(ep));
1615
		reg &= ~DXEPCTL_MPS_MASK;
1616
		reg |= mpsval;
1617
		writel(reg, regs + DOEPCTL(ep));
1618
	}
1619 1620 1621 1622 1623 1624 1625

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
/**
 * s3c_hsotg_txfifo_flush - flush Tx FIFO
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
static void s3c_hsotg_txfifo_flush(struct s3c_hsotg *hsotg, unsigned int idx)
{
	int timeout;
	int val;

1636
	writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1637
		hsotg->regs + GRSTCTL);
1638 1639 1640 1641 1642

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
1643
		val = readl(hsotg->regs + GRSTCTL);
1644

1645
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
		}

		udelay(1);
	}
}
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670

/**
 * s3c_hsotg_trytx - check to see if anything needs transmitting
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
			   struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;

1671 1672 1673 1674 1675 1676 1677 1678
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
			s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
					     hs_ep->dir_in, 0);
1679
		return 0;
1680
	}
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

	return 0;
}

/**
 * s3c_hsotg_complete_in - complete IN transfer
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
				  struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1703
	u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1704 1705 1706 1707 1708 1709 1710
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

1711 1712 1713
	/* Finish ZLP handling for IN EP0 transactions */
	if (hsotg->eps[0].sent_zlp) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
1714
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1715 1716 1717
		return;
	}

1718 1719
	/*
	 * Calculate the size of the transfer by checking how much is left
1720 1721 1722 1723 1724 1725 1726 1727
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

1728
	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1729 1730 1731 1732 1733 1734 1735 1736 1737

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

	/*
	 * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0
	 * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B
	 * ,256B ... ), after last MPS sized packet send IN ZLP packet to
	 * inform the host that no more data is available.
	 * The state of req.zero member is checked to be sure that the value to
	 * send is smaller than wValue expected from host.
	 * Check req.length to NOT send another ZLP when the current one is
	 * under completion (the one for which this completion has been called).
	 */
	if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero &&
	    hs_req->req.length == hs_req->req.actual &&
	    !(hs_req->req.length % hs_ep->ep.maxpacket)) {

		dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n");
		s3c_hsotg_send_zlp(hsotg, hs_req);
1757

1758 1759
		return;
	}
1760 1761 1762 1763 1764

	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
	} else
1765
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1766 1767 1768 1769 1770 1771 1772 1773 1774
}

/**
 * s3c_hsotg_epint - handle an in/out endpoint interrupt
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
1775
 */
1776 1777 1778 1779
static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
			    int dir_in)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1780 1781 1782
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1783
	u32 ints;
1784
	u32 ctrl;
1785 1786

	ints = readl(hsotg->regs + epint_reg);
1787
	ctrl = readl(hsotg->regs + epctl_reg);
1788

1789 1790 1791
	/* Clear endpoint interrupts */
	writel(ints, hsotg->regs + epint_reg);

1792 1793 1794
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

1795
	if (ints & DXEPINT_XFERCOMPL) {
1796
		if (hs_ep->isochronous && hs_ep->interval == 1) {
1797 1798
			if (ctrl & DXEPCTL_EOFRNUM)
				ctrl |= DXEPCTL_SETEVENFR;
1799
			else
1800
				ctrl |= DXEPCTL_SETODDFR;
1801 1802 1803
			writel(ctrl, hsotg->regs + epctl_reg);
		}

1804
		dev_dbg(hsotg->dev,
1805
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1806 1807 1808
			__func__, readl(hsotg->regs + epctl_reg),
			readl(hsotg->regs + epsiz_reg));

1809 1810 1811 1812
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
1813 1814 1815
		if (dir_in) {
			s3c_hsotg_complete_in(hsotg, hs_ep);

1816
			if (idx == 0 && !hs_ep->req)
1817 1818
				s3c_hsotg_enqueue_setup(hsotg);
		} else if (using_dma(hsotg)) {
1819 1820 1821 1822
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
1823 1824 1825 1826 1827

			s3c_hsotg_handle_outdone(hsotg, idx, false);
		}
	}

1828
	if (ints & DXEPINT_EPDISBLD) {
1829 1830
		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

1831 1832 1833 1834 1835
		if (dir_in) {
			int epctl = readl(hsotg->regs + epctl_reg);

			s3c_hsotg_txfifo_flush(hsotg, idx);

1836 1837
			if ((epctl & DXEPCTL_STALL) &&
				(epctl & DXEPCTL_EPTYPE_BULK)) {
1838
				int dctl = readl(hsotg->regs + DCTL);
1839

1840
				dctl |= DCTL_CGNPINNAK;
1841
				writel(dctl, hsotg->regs + DCTL);
1842 1843 1844 1845
			}
		}
	}

1846
	if (ints & DXEPINT_AHBERR)
1847 1848
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

1849
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
1850 1851 1852
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
1853 1854
			/*
			 * this is the notification we've received a
1855 1856
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
1857 1858
			 * the setup here.
			 */
1859 1860 1861 1862 1863 1864 1865 1866

			if (dir_in)
				WARN_ON_ONCE(1);
			else
				s3c_hsotg_handle_outdone(hsotg, 0, true);
		}
	}

1867
	if (ints & DXEPINT_BACK2BACKSETUP)
1868 1869
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

1870
	if (dir_in && !hs_ep->isochronous) {
1871
		/* not sure if this is important, but we'll clear it anyway */
1872
		if (ints & DIEPMSK_INTKNTXFEMPMSK) {
1873 1874 1875 1876 1877
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
1878
		if (ints & DIEPMSK_INTKNEPMISMSK) {
1879 1880 1881
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
1882 1883 1884

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
1885
		    ints & DIEPMSK_TXFIFOEMPTY) {
1886 1887
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
1888 1889
			if (!using_dma(hsotg))
				s3c_hsotg_trytx(hsotg, hs_ep);
1890
		}
1891 1892 1893 1894 1895 1896 1897 1898 1899
	}
}

/**
 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
1900
 */
1901 1902
static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
{
1903
	u32 dsts = readl(hsotg->regs + DSTS);
1904 1905
	int ep0_mps = 0, ep_mps;

1906 1907
	/*
	 * This should signal the finish of the enumeration phase
1908
	 * of the USB handshaking, so we should now know what rate
1909 1910
	 * we connected at.
	 */
1911 1912 1913

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

1914 1915
	/*
	 * note, since we're limited by the size of transfer on EP0, and
1916
	 * it seems IN transfers must be a even number of packets we do
1917 1918
	 * not advertise a 64byte MPS on EP0.
	 */
1919 1920

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
1921 1922 1923
	switch (dsts & DSTS_ENUMSPD_MASK) {
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
1924 1925
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
1926
		ep_mps = 1023;
1927 1928
		break;

1929
	case DSTS_ENUMSPD_HS:
1930 1931
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
1932
		ep_mps = 1024;
1933 1934
		break;

1935
	case DSTS_ENUMSPD_LS:
1936
		hsotg->gadget.speed = USB_SPEED_LOW;
1937 1938
		/*
		 * note, we don't actually support LS in this driver at the
1939 1940 1941 1942 1943
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
1944 1945
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
1946

1947 1948 1949 1950
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
1951 1952 1953 1954

	if (ep0_mps) {
		int i;
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
1955
		for (i = 1; i < hsotg->num_of_eps; i++)
1956 1957 1958 1959 1960 1961 1962 1963
			s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
	}

	/* ensure after enumeration our EP0 is active */

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1964 1965
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 * @force: Force removal of any current requests
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
static void kill_all_requests(struct s3c_hsotg *hsotg,
			      struct s3c_hsotg_ep *ep,
			      int result, bool force)
{
	struct s3c_hsotg_req *req, *treq;

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
1985 1986 1987 1988
		/*
		 * currently, we can't do much about an already
		 * running request on an in endpoint
		 */
1989 1990 1991 1992 1993 1994 1995

		if (ep->req == req && ep->dir_in && !force)
			continue;

		s3c_hsotg_complete_request(hsotg, ep, req,
					   result);
	}
1996 1997 1998
	if(hsotg->dedicated_fifos)
		if ((readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4 < 3072)
			s3c_hsotg_txfifo_flush(hsotg, ep->index);
1999 2000 2001
}

/**
2002
 * s3c_hsotg_disconnect - disconnect service
2003 2004
 * @hsotg: The device state.
 *
2005 2006 2007
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2008
 */
2009
static void s3c_hsotg_disconnect(struct s3c_hsotg *hsotg)
2010 2011 2012
{
	unsigned ep;

2013
	for (ep = 0; ep < hsotg->num_of_eps; ep++)
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
		kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);

	call_gadget(hsotg, disconnect);
}

/**
 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
{
	struct s3c_hsotg_ep *ep;
	int epno, ret;

	/* look through for any more data to transmit */

2031
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
		ep = &hsotg->eps[epno];

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

		ret = s3c_hsotg_trytx(hsotg, ep);
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2048 2049 2050
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
2051

2052 2053 2054 2055 2056
/**
 * s3c_hsotg_corereset - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
2057
 */
2058 2059 2060 2061 2062 2063 2064 2065
static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
{
	int timeout;
	u32 grstctl;

	dev_dbg(hsotg->dev, "resetting core\n");

	/* issue soft reset */
2066
	writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2067

2068
	timeout = 10000;
2069
	do {
2070
		grstctl = readl(hsotg->regs + GRSTCTL);
2071
	} while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2072

2073
	if (grstctl & GRSTCTL_CSFTRST) {
2074 2075 2076 2077
		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
		return -EINVAL;
	}

2078
	timeout = 10000;
2079 2080

	while (1) {
2081
		u32 grstctl = readl(hsotg->regs + GRSTCTL);
2082 2083 2084 2085 2086 2087 2088 2089

		if (timeout-- < 0) {
			dev_info(hsotg->dev,
				 "%s: reset failed, GRSTCTL=%08x\n",
				 __func__, grstctl);
			return -ETIMEDOUT;
		}

2090
		if (!(grstctl & GRSTCTL_AHBIDLE))
2091 2092 2093 2094 2095 2096 2097 2098 2099
			continue;

		break;		/* reset done */
	}

	dev_dbg(hsotg->dev, "reset successful\n");
	return 0;
}

2100 2101 2102 2103 2104 2105
/**
 * s3c_hsotg_core_init - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
static void s3c_hsotg_core_init(struct s3c_hsotg *hsotg)
{
	s3c_hsotg_corereset(hsotg);

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2116
	writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2117
	       (0x5 << 10), hsotg->regs + GUSBCFG);
2118 2119 2120

	s3c_hsotg_init_fifo(hsotg);

2121
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2122

2123
	writel(1 << 18 | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2124 2125

	/* Clear any pending OTG interrupts */
2126
	writel(0xffffffff, hsotg->regs + GOTGINT);
2127 2128

	/* Clear any pending interrupts */
2129
	writel(0xffffffff, hsotg->regs + GINTSTS);
2130

2131 2132 2133 2134 2135 2136
	writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
		GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
		GINTSTS_USBSUSP | GINTSTS_WKUPINT,
		hsotg->regs + GINTMSK);
2137 2138

	if (using_dma(hsotg))
2139 2140
		writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
		       GAHBCFG_HBSTLEN_INCR4,
2141
		       hsotg->regs + GAHBCFG);
2142
	else
2143 2144 2145
		writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL |
						    GAHBCFG_P_TXF_EMP_LVL) : 0) |
		       GAHBCFG_GLBL_INTR_EN,
2146
		       hsotg->regs + GAHBCFG);
2147 2148

	/*
2149 2150 2151
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
2152 2153
	 */

2154 2155 2156 2157 2158 2159
	writel(((hsotg->dedicated_fifos) ? DIEPMSK_TXFIFOEMPTY |
		DIEPMSK_INTKNTXFEMPMSK : 0) |
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_INTKNEPMISMSK,
		hsotg->regs + DIEPMSK);
2160 2161 2162 2163 2164

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2165 2166 2167 2168 2169
	writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
				    DIEPMSK_TIMEOUTMSK) : 0) |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_SETUPMSK,
		hsotg->regs + DOEPMSK);
2170

2171
	writel(0, hsotg->regs + DAINTMSK);
2172 2173

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2174 2175
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2176 2177

	/* enable in and out endpoint interrupts */
2178
	s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2179 2180 2181 2182 2183 2184 2185

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2186
		s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2187 2188 2189 2190 2191

	/* Enable interrupts for EP0 in and out */
	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);

2192
	__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2193
	udelay(10);  /* see openiboot */
2194
	__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2195

2196
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2197 2198

	/*
2199
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2200 2201 2202 2203
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2204 2205
	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2206 2207

	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2208 2209
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
2210
	       hsotg->regs + DOEPCTL0);
2211 2212 2213

	/* enable, but don't activate EP0in */
	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2214
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2215 2216 2217 2218

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2219 2220
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2221 2222

	/* clear global NAKs */
2223
	writel(DCTL_CGOUTNAK | DCTL_CGNPINNAK,
2224
	       hsotg->regs + DCTL);
2225 2226 2227 2228 2229

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

	/* remove the soft-disconnect and let's go */
2230
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2231 2232
}

2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
/**
 * s3c_hsotg_irq - handle device interrupt
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
{
	struct s3c_hsotg *hsotg = pw;
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

2245
	spin_lock(&hsotg->lock);
2246
irq_retry:
2247 2248
	gintsts = readl(hsotg->regs + GINTSTS);
	gintmsk = readl(hsotg->regs + GINTMSK);
2249 2250 2251 2252 2253 2254

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

2255
	if (gintsts & GINTSTS_OTGINT) {
2256
		u32 otgint = readl(hsotg->regs + GOTGINT);
2257 2258 2259

		dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);

2260
		writel(otgint, hsotg->regs + GOTGINT);
2261 2262
	}

2263
	if (gintsts & GINTSTS_SESSREQINT) {
2264
		dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
2265
		writel(GINTSTS_SESSREQINT, hsotg->regs + GINTSTS);
2266 2267
	}

2268 2269
	if (gintsts & GINTSTS_ENUMDONE) {
		writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2270 2271

		s3c_hsotg_irq_enumdone(hsotg);
2272 2273
	}

2274
	if (gintsts & GINTSTS_CONIDSTSCHNG) {
2275
		dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
2276 2277
			readl(hsotg->regs + DSTS),
			readl(hsotg->regs + GOTGCTL));
2278

2279
		writel(GINTSTS_CONIDSTSCHNG, hsotg->regs + GINTSTS);
2280 2281
	}

2282
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2283
		u32 daint = readl(hsotg->regs + DAINT);
2284 2285
		u32 daintmsk = readl(hsotg->regs + DAINTMSK);
		u32 daint_out, daint_in;
2286 2287
		int ep;

2288
		daint &= daintmsk;
2289 2290
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2291

2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

		for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
			if (daint_out & 1)
				s3c_hsotg_epint(hsotg, ep, 0);
		}

		for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
			if (daint_in & 1)
				s3c_hsotg_epint(hsotg, ep, 1);
		}
	}

2305
	if (gintsts & GINTSTS_USBRST) {
2306

2307
		u32 usb_status = readl(hsotg->regs + GOTGCTL);
2308

2309 2310
		dev_info(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2311
			readl(hsotg->regs + GNPTXSTS));
2312

2313
		writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2314

2315
		if (usb_status & GOTGCTL_BSESVLD) {
2316 2317
			if (time_after(jiffies, hsotg->last_rst +
				       msecs_to_jiffies(200))) {
2318

2319 2320
				kill_all_requests(hsotg, &hsotg->eps[0],
							  -ECONNRESET, true);
2321

2322 2323 2324 2325
				s3c_hsotg_core_init(hsotg);
				hsotg->last_rst = jiffies;
			}
		}
2326 2327 2328 2329
	}

	/* check both FIFOs */

2330
	if (gintsts & GINTSTS_NPTXFEMP) {
2331 2332
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

2333 2334
		/*
		 * Disable the interrupt to stop it happening again
2335
		 * unless one of these endpoint routines decides that
2336 2337
		 * it needs re-enabling
		 */
2338

2339
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2340 2341 2342
		s3c_hsotg_irq_fifoempty(hsotg, false);
	}

2343
	if (gintsts & GINTSTS_PTXFEMP) {
2344 2345
		dev_dbg(hsotg->dev, "PTxFEmp\n");

2346
		/* See note in GINTSTS_NPTxFEmp */
2347

2348
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2349 2350 2351
		s3c_hsotg_irq_fifoempty(hsotg, true);
	}

2352
	if (gintsts & GINTSTS_RXFLVL) {
2353 2354
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2355
		 * we need to retry s3c_hsotg_handle_rx if this is still
2356 2357
		 * set.
		 */
2358 2359 2360 2361

		s3c_hsotg_handle_rx(hsotg);
	}

2362
	if (gintsts & GINTSTS_MODEMIS) {
2363
		dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
2364
		writel(GINTSTS_MODEMIS, hsotg->regs + GINTSTS);
2365 2366
	}

2367
	if (gintsts & GINTSTS_USBSUSP) {
2368
		dev_info(hsotg->dev, "GINTSTS_USBSusp\n");
2369
		writel(GINTSTS_USBSUSP, hsotg->regs + GINTSTS);
2370 2371 2372 2373

		call_gadget(hsotg, suspend);
	}

2374
	if (gintsts & GINTSTS_WKUPINT) {
2375
		dev_info(hsotg->dev, "GINTSTS_WkUpIn\n");
2376
		writel(GINTSTS_WKUPINT, hsotg->regs + GINTSTS);
2377 2378 2379 2380

		call_gadget(hsotg, resume);
	}

2381
	if (gintsts & GINTSTS_ERLYSUSP) {
2382
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2383
		writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2384 2385
	}

2386 2387
	/*
	 * these next two seem to crop-up occasionally causing the core
2388
	 * to shutdown the USB transfer, so try clearing them and logging
2389 2390
	 * the occurrence.
	 */
2391

2392
	if (gintsts & GINTSTS_GOUTNAKEFF) {
2393 2394
		dev_info(hsotg->dev, "GOUTNakEff triggered\n");

2395
		writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2396 2397

		s3c_hsotg_dump(hsotg);
2398 2399
	}

2400
	if (gintsts & GINTSTS_GINNAKEFF) {
2401 2402
		dev_info(hsotg->dev, "GINNakEff triggered\n");

2403
		writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2404 2405

		s3c_hsotg_dump(hsotg);
2406 2407
	}

2408 2409 2410 2411
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
2412 2413 2414 2415

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

2416 2417
	spin_unlock(&hsotg->lock);

2418 2419 2420 2421 2422 2423 2424 2425 2426
	return IRQ_HANDLED;
}

/**
 * s3c_hsotg_ep_enable - enable the given endpoint
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
2427
 */
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438
static int s3c_hsotg_ep_enable(struct usb_ep *ep,
			       const struct usb_endpoint_descriptor *desc)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;
	unsigned long flags;
	int index = hs_ep->index;
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
	int dir_in;
2439
	int ret = 0;
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
	WARN_ON(index == 0);

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

2455
	mps = usb_endpoint_maxp(desc);
2456 2457 2458

	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */

2459
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2460 2461 2462 2463 2464
	epctrl = readl(hsotg->regs + epctrl_reg);

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

2465
	spin_lock_irqsave(&hsotg->lock, flags);
2466

2467 2468
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
2469

2470 2471 2472 2473
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
2474
	epctrl |= DXEPCTL_USBACTEP;
2475

2476 2477
	/*
	 * set the NAK status on the endpoint, otherwise we might try and
2478 2479 2480 2481 2482
	 * do something with data that we've yet got a request to process
	 * since the RXFIFO will take data for an endpoint even if the
	 * size register hasn't been set.
	 */

2483
	epctrl |= DXEPCTL_SNAK;
2484 2485

	/* update the endpoint state */
2486
	s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps);
2487 2488

	/* default, set to non-periodic */
2489
	hs_ep->isochronous = 0;
2490
	hs_ep->periodic = 0;
2491
	hs_ep->halted = 0;
2492
	hs_ep->interval = desc->bInterval;
2493

2494 2495 2496
	if (hs_ep->interval > 1 && hs_ep->mc > 1)
		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");

2497 2498
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
2499 2500
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
2501 2502 2503 2504
		hs_ep->isochronous = 1;
		if (dir_in)
			hs_ep->periodic = 1;
		break;
2505 2506

	case USB_ENDPOINT_XFER_BULK:
2507
		epctrl |= DXEPCTL_EPTYPE_BULK;
2508 2509 2510 2511
		break;

	case USB_ENDPOINT_XFER_INT:
		if (dir_in) {
2512 2513
			/*
			 * Allocate our TxFNum by simply using the index
2514 2515
			 * of the endpoint for the moment. We could do
			 * something better if the host indicates how
2516 2517
			 * many FIFOs we are expecting to use.
			 */
2518 2519

			hs_ep->periodic = 1;
2520
			epctrl |= DXEPCTL_TXFNUM(index);
2521 2522
		}

2523
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2524 2525 2526
		break;

	case USB_ENDPOINT_XFER_CONTROL:
2527
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2528 2529 2530
		break;
	}

2531 2532
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
2533 2534 2535
	 * a unique tx-fifo even if it is non-periodic.
	 */
	if (dir_in && hsotg->dedicated_fifos)
2536
		epctrl |= DXEPCTL_TXFNUM(index);
2537

2538 2539
	/* for non control endpoints, set PID to D0 */
	if (index)
2540
		epctrl |= DXEPCTL_SETD0PID;
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

	writel(epctrl, hsotg->regs + epctrl_reg);
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
		__func__, readl(hsotg->regs + epctrl_reg));

	/* enable the endpoint interrupt */
	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);

2552
	spin_unlock_irqrestore(&hsotg->lock, flags);
2553
	return ret;
2554 2555
}

2556 2557 2558 2559
/**
 * s3c_hsotg_ep_disable - disable given endpoint
 * @ep: The endpoint to disable.
 */
2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576
static int s3c_hsotg_ep_disable(struct usb_ep *ep)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

	dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);

	if (ep == &hsotg->eps[0].ep) {
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

2577
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2578

2579
	spin_lock_irqsave(&hsotg->lock, flags);
2580 2581 2582 2583 2584
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);


	ctrl = readl(hsotg->regs + epctrl_reg);
2585 2586 2587
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
2588 2589 2590 2591 2592 2593 2594

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

	/* disable endpoint interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);

2595
	spin_unlock_irqrestore(&hsotg->lock, flags);
2596 2597 2598 2599 2600 2601 2602
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
2603
 */
2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615
static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
{
	struct s3c_hsotg_req *req, *treq;

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

2616 2617 2618 2619 2620
/**
 * s3c_hsotg_ep_dequeue - dequeue given endpoint
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
2621 2622 2623 2624 2625 2626 2627 2628 2629
static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	unsigned long flags;

	dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);

2630
	spin_lock_irqsave(&hs->lock, flags);
2631 2632

	if (!on_list(hs_ep, hs_req)) {
2633
		spin_unlock_irqrestore(&hs->lock, flags);
2634 2635 2636 2637
		return -EINVAL;
	}

	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2638
	spin_unlock_irqrestore(&hs->lock, flags);
2639 2640 2641 2642

	return 0;
}

2643 2644 2645 2646 2647
/**
 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
2648 2649 2650 2651 2652 2653 2654
static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
2655
	u32 xfertype;
2656 2657 2658

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

2659 2660 2661 2662 2663 2664 2665 2666 2667
	if (index == 0) {
		if (value)
			s3c_hsotg_stall_ep0(hs);
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

2668 2669
	/* write both IN and OUT control registers */

2670
	epreg = DIEPCTL(index);
2671 2672
	epctl = readl(hs->regs + epreg);

2673
	if (value) {
2674 2675 2676
		epctl |= DXEPCTL_STALL + DXEPCTL_SNAK;
		if (epctl & DXEPCTL_EPENA)
			epctl |= DXEPCTL_EPDIS;
2677
	} else {
2678 2679 2680 2681 2682
		epctl &= ~DXEPCTL_STALL;
		xfertype = epctl & DXEPCTL_EPTYPE_MASK;
		if (xfertype == DXEPCTL_EPTYPE_BULK ||
			xfertype == DXEPCTL_EPTYPE_INTERRUPT)
				epctl |= DXEPCTL_SETD0PID;
2683
	}
2684 2685 2686

	writel(epctl, hs->regs + epreg);

2687
	epreg = DOEPCTL(index);
2688 2689 2690
	epctl = readl(hs->regs + epreg);

	if (value)
2691
		epctl |= DXEPCTL_STALL;
2692
	else {
2693 2694 2695 2696 2697
		epctl &= ~DXEPCTL_STALL;
		xfertype = epctl & DXEPCTL_EPTYPE_MASK;
		if (xfertype == DXEPCTL_EPTYPE_BULK ||
			xfertype == DXEPCTL_EPTYPE_INTERRUPT)
				epctl |= DXEPCTL_SETD0PID;
2698
	}
2699 2700 2701

	writel(epctl, hs->regs + epreg);

2702 2703
	hs_ep->halted = value;

2704 2705 2706
	return 0;
}

2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
/**
 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
	struct s3c_hsotg *hs = hs_ep->parent;
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_sethalt(ep, value);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

2726 2727 2728 2729 2730
static struct usb_ep_ops s3c_hsotg_ep_ops = {
	.enable		= s3c_hsotg_ep_enable,
	.disable	= s3c_hsotg_ep_disable,
	.alloc_request	= s3c_hsotg_ep_alloc_request,
	.free_request	= s3c_hsotg_ep_free_request,
2731
	.queue		= s3c_hsotg_ep_queue_lock,
2732
	.dequeue	= s3c_hsotg_ep_dequeue,
2733
	.set_halt	= s3c_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
2734
	/* note, don't believe we have any call for the fifo routines */
2735 2736
};

2737 2738
/**
 * s3c_hsotg_phy_enable - enable platform phy dev
2739
 * @hsotg: The driver state
2740 2741 2742 2743 2744 2745 2746 2747 2748
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
static void s3c_hsotg_phy_enable(struct s3c_hsotg *hsotg)
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

	dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2749

2750 2751 2752 2753 2754
	if (hsotg->phy) {
		phy_init(hsotg->phy);
		phy_power_on(hsotg->phy);
	} else if (hsotg->uphy)
		usb_phy_init(hsotg->uphy);
2755
	else if (hsotg->plat->phy_init)
2756 2757 2758 2759 2760
		hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
}

/**
 * s3c_hsotg_phy_disable - disable platform phy dev
2761
 * @hsotg: The driver state
2762 2763 2764 2765 2766 2767 2768 2769
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
static void s3c_hsotg_phy_disable(struct s3c_hsotg *hsotg)
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

2770 2771 2772 2773 2774
	if (hsotg->phy) {
		phy_power_off(hsotg->phy);
		phy_exit(hsotg->phy);
	} else if (hsotg->uphy)
		usb_phy_shutdown(hsotg->uphy);
2775
	else if (hsotg->plat->phy_exit)
2776 2777 2778
		hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
}

2779 2780 2781 2782
/**
 * s3c_hsotg_init - initalize the usb core
 * @hsotg: The driver state
 */
2783 2784 2785 2786
static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
{
	/* unmask subset of endpoint interrupts */

2787 2788 2789
	writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		hsotg->regs + DIEPMSK);
2790

2791 2792 2793
	writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		hsotg->regs + DOEPMSK);
2794

2795
	writel(0, hsotg->regs + DAINTMSK);
2796 2797

	/* Be in disconnected state until gadget is registered */
2798
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2799 2800 2801

	if (0) {
		/* post global nak until we're ready */
2802
		writel(DCTL_SGNPINNAK | DCTL_SGOUTNAK,
2803
		       hsotg->regs + DCTL);
2804 2805 2806 2807 2808
	}

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2809 2810
		readl(hsotg->regs + GRXFSIZ),
		readl(hsotg->regs + GNPTXFSIZ));
2811 2812 2813 2814

	s3c_hsotg_init_fifo(hsotg);

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2815
	writel(GUSBCFG_PHYIF16 | GUSBCFG_TOUTCAL(7) | (0x5 << 10),
2816
	       hsotg->regs + GUSBCFG);
2817

2818
	writel(using_dma(hsotg) ? GAHBCFG_DMA_EN : 0x0,
2819
	       hsotg->regs + GAHBCFG);
2820 2821
}

2822 2823 2824 2825 2826 2827 2828 2829
/**
 * s3c_hsotg_udc_start - prepare the udc for work
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
2830 2831
static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
			   struct usb_gadget_driver *driver)
2832
{
2833
	struct s3c_hsotg *hsotg = to_hsotg(gadget);
2834 2835 2836
	int ret;

	if (!hsotg) {
2837
		pr_err("%s: called with no device\n", __func__);
2838 2839 2840 2841 2842 2843 2844 2845
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

2846
	if (driver->max_speed < USB_SPEED_FULL)
2847 2848
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

2849
	if (!driver->setup) {
2850 2851 2852 2853 2854 2855 2856 2857
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
2858
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
2859 2860
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

2861 2862
	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
2863
	if (ret) {
2864
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
2865 2866 2867
		goto err;
	}

2868
	hsotg->last_rst = jiffies;
2869 2870 2871 2872 2873 2874 2875 2876
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
	return 0;

err:
	hsotg->driver = NULL;
	return ret;
}

2877 2878 2879 2880 2881 2882 2883
/**
 * s3c_hsotg_udc_stop - stop the udc
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
2884 2885
static int s3c_hsotg_udc_stop(struct usb_gadget *gadget,
			  struct usb_gadget_driver *driver)
2886
{
2887
	struct s3c_hsotg *hsotg = to_hsotg(gadget);
2888
	unsigned long flags = 0;
2889 2890 2891 2892 2893 2894
	int ep;

	if (!hsotg)
		return -ENODEV;

	/* all endpoints should be shutdown */
2895
	for (ep = 0; ep < hsotg->num_of_eps; ep++)
2896 2897
		s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);

2898 2899
	spin_lock_irqsave(&hsotg->lock, flags);

2900
	s3c_hsotg_phy_disable(hsotg);
2901

2902 2903 2904
	if (!driver)
		hsotg->driver = NULL;

2905 2906
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

2907 2908
	spin_unlock_irqrestore(&hsotg->lock, flags);

2909
	regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
2910 2911 2912 2913

	return 0;
}

2914 2915 2916 2917 2918 2919
/**
 * s3c_hsotg_gadget_getframe - read the frame number
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
2920 2921 2922 2923 2924
static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
{
	return s3c_hsotg_read_frameno(to_hsotg(gadget));
}

2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
/**
 * s3c_hsotg_pullup - connect/disconnect the USB PHY
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
{
	struct s3c_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags = 0;

	dev_dbg(hsotg->dev, "%s: is_in: %d\n", __func__, is_on);

	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
		s3c_hsotg_phy_enable(hsotg);
		s3c_hsotg_core_init(hsotg);
	} else {
		s3c_hsotg_disconnect(hsotg);
		s3c_hsotg_phy_disable(hsotg);
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return 0;
}

2954
static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
2955
	.get_frame	= s3c_hsotg_gadget_getframe,
2956 2957
	.udc_start		= s3c_hsotg_udc_start,
	.udc_stop		= s3c_hsotg_udc_stop,
2958
	.pullup                 = s3c_hsotg_pullup,
2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
};

/**
 * s3c_hsotg_initep - initialise a single endpoint
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
B
Bill Pemberton 已提交
2971
static void s3c_hsotg_initep(struct s3c_hsotg *hsotg,
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
				       struct s3c_hsotg_ep *hs_ep,
				       int epnum)
{
	u32 ptxfifo;
	char *dir;

	if (epnum == 0)
		dir = "";
	else if ((epnum % 2) == 0) {
		dir = "out";
	} else {
		dir = "in";
		hs_ep->dir_in = 1;
	}

	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
3000
	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3001 3002
	hs_ep->ep.ops = &s3c_hsotg_ep_ops;

3003 3004
	/*
	 * Read the FIFO size for the Periodic TX FIFO, even if we're
3005 3006 3007 3008
	 * an OUT endpoint, we may as well do this if in future the
	 * code is changed to make each endpoint's direction changeable.
	 */

3009 3010
	ptxfifo = readl(hsotg->regs + DPTXFSIZN(epnum));
	hs_ep->fifo_size = FIFOSIZE_DEPTH_GET(ptxfifo) * 4;
3011

3012 3013
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
3014 3015 3016 3017
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
3018
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3019 3020
		writel(next, hsotg->regs + DIEPCTL(epnum));
		writel(next, hsotg->regs + DOEPCTL(epnum));
3021 3022 3023
	}
}

3024 3025 3026 3027 3028 3029 3030
/**
 * s3c_hsotg_hw_cfg - read HW configuration registers
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
static void s3c_hsotg_hw_cfg(struct s3c_hsotg *hsotg)
3031
{
3032 3033
	u32 cfg2, cfg4;
	/* check hardware configuration */
3034

3035 3036
	cfg2 = readl(hsotg->regs + 0x48);
	hsotg->num_of_eps = (cfg2 >> 10) & 0xF;
3037

3038
	dev_info(hsotg->dev, "EPs:%d\n", hsotg->num_of_eps);
3039 3040 3041 3042 3043 3044

	cfg4 = readl(hsotg->regs + 0x50);
	hsotg->dedicated_fifos = (cfg4 >> 25) & 1;

	dev_info(hsotg->dev, "%s fifos\n",
		 hsotg->dedicated_fifos ? "dedicated" : "shared");
3045 3046
}

3047 3048 3049 3050
/**
 * s3c_hsotg_dump - dump state of the udc
 * @param: The device state
 */
3051 3052
static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
{
M
Mark Brown 已提交
3053
#ifdef DEBUG
3054 3055 3056 3057 3058 3059
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3060 3061
		 readl(regs + DCFG), readl(regs + DCTL),
		 readl(regs + DIEPMSK));
3062 3063

	dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3064
		 readl(regs + GAHBCFG), readl(regs + 0x44));
3065 3066

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3067
		 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3068 3069 3070 3071

	/* show periodic fifo settings */

	for (idx = 1; idx <= 15; idx++) {
3072
		val = readl(regs + DPTXFSIZN(idx));
3073
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3074 3075
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
3076 3077 3078 3079 3080
	}

	for (idx = 0; idx < 15; idx++) {
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3081 3082 3083
			 readl(regs + DIEPCTL(idx)),
			 readl(regs + DIEPTSIZ(idx)),
			 readl(regs + DIEPDMA(idx)));
3084

3085
		val = readl(regs + DOEPCTL(idx));
3086 3087
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3088 3089 3090
			 idx, readl(regs + DOEPCTL(idx)),
			 readl(regs + DOEPTSIZ(idx)),
			 readl(regs + DOEPDMA(idx)));
3091 3092 3093 3094

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3095
		 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
3096
#endif
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
}

/**
 * state_show - debugfs: show overall driver and device state.
 * @seq: The seq file to write to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the overall state of the hardware and
 * some general information about each of the endpoints available
 * to the system.
 */
static int state_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg *hsotg = seq->private;
	void __iomem *regs = hsotg->regs;
	int idx;

	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3115 3116 3117
		 readl(regs + DCFG),
		 readl(regs + DCTL),
		 readl(regs + DSTS));
3118 3119

	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3120
		   readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3121 3122

	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3123 3124
		   readl(regs + GINTMSK),
		   readl(regs + GINTSTS));
3125 3126

	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3127 3128
		   readl(regs + DAINTMSK),
		   readl(regs + DAINT));
3129 3130

	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3131 3132
		   readl(regs + GNPTXSTS),
		   readl(regs + GRXSTSR));
3133

3134
	seq_puts(seq, "\nEndpoint status:\n");
3135 3136 3137 3138

	for (idx = 0; idx < 15; idx++) {
		u32 in, out;

3139 3140
		in = readl(regs + DIEPCTL(idx));
		out = readl(regs + DOEPCTL(idx));
3141 3142 3143 3144

		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
			   idx, in, out);

3145 3146
		in = readl(regs + DIEPTSIZ(idx));
		out = readl(regs + DOEPTSIZ(idx));
3147 3148 3149 3150

		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
			   in, out);

3151
		seq_puts(seq, "\n");
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176
	}

	return 0;
}

static int state_open(struct inode *inode, struct file *file)
{
	return single_open(file, state_show, inode->i_private);
}

static const struct file_operations state_fops = {
	.owner		= THIS_MODULE,
	.open		= state_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * fifo_show - debugfs: show the fifo information
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * Show the FIFO information for the overall fifo and all the
 * periodic transmission FIFOs.
3177
 */
3178 3179 3180 3181 3182 3183 3184
static int fifo_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg *hsotg = seq->private;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

3185
	seq_puts(seq, "Non-periodic FIFOs:\n");
3186
	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3187

3188
	val = readl(regs + GNPTXFSIZ);
3189
	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3190 3191
		   val >> FIFOSIZE_DEPTH_SHIFT,
		   val & FIFOSIZE_DEPTH_MASK);
3192

3193
	seq_puts(seq, "\nPeriodic TXFIFOs:\n");
3194 3195

	for (idx = 1; idx <= 15; idx++) {
3196
		val = readl(regs + DPTXFSIZN(idx));
3197 3198

		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3199 3200
			   val >> FIFOSIZE_DEPTH_SHIFT,
			   val & FIFOSIZE_STARTADDR_MASK);
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
	}

	return 0;
}

static int fifo_open(struct inode *inode, struct file *file)
{
	return single_open(file, fifo_show, inode->i_private);
}

static const struct file_operations fifo_fops = {
	.owner		= THIS_MODULE,
	.open		= fifo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};


static const char *decode_direction(int is_in)
{
	return is_in ? "in" : "out";
}

/**
 * ep_show - debugfs: show the state of an endpoint.
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the state of the given endpoint (one is
 * registered for each available).
3232
 */
3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
static int ep_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg_ep *ep = seq->private;
	struct s3c_hsotg *hsotg = ep->parent;
	struct s3c_hsotg_req *req;
	void __iomem *regs = hsotg->regs;
	int index = ep->index;
	int show_limit = 15;
	unsigned long flags;

	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
		   ep->index, ep->ep.name, decode_direction(ep->dir_in));

	/* first show the register state */

	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3249 3250
		   readl(regs + DIEPCTL(index)),
		   readl(regs + DOEPCTL(index)));
3251 3252

	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3253 3254
		   readl(regs + DIEPDMA(index)),
		   readl(regs + DOEPDMA(index)));
3255 3256

	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3257 3258
		   readl(regs + DIEPINT(index)),
		   readl(regs + DOEPINT(index)));
3259 3260

	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3261 3262
		   readl(regs + DIEPTSIZ(index)),
		   readl(regs + DOEPTSIZ(index)));
3263

3264
	seq_puts(seq, "\n");
3265 3266 3267 3268 3269 3270
	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
	seq_printf(seq, "total_data=%ld\n", ep->total_data);

	seq_printf(seq, "request list (%p,%p):\n",
		   ep->queue.next, ep->queue.prev);

3271
	spin_lock_irqsave(&hsotg->lock, flags);
3272 3273 3274

	list_for_each_entry(req, &ep->queue, queue) {
		if (--show_limit < 0) {
3275
			seq_puts(seq, "not showing more requests...\n");
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285
			break;
		}

		seq_printf(seq, "%c req %p: %d bytes @%p, ",
			   req == ep->req ? '*' : ' ',
			   req, req->req.length, req->req.buf);
		seq_printf(seq, "%d done, res %d\n",
			   req->req.actual, req->req.status);
	}

3286
	spin_unlock_irqrestore(&hsotg->lock, flags);
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311

	return 0;
}

static int ep_open(struct inode *inode, struct file *file)
{
	return single_open(file, ep_show, inode->i_private);
}

static const struct file_operations ep_fops = {
	.owner		= THIS_MODULE,
	.open		= ep_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * s3c_hsotg_create_debug - create debugfs directory and files
 * @hsotg: The driver state
 *
 * Create the debugfs files to allow the user to get information
 * about the state of the system. The directory name is created
 * with the same name as the device itself, in case we end up
 * with multiple blocks in future systems.
3312
 */
B
Bill Pemberton 已提交
3313
static void s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
{
	struct dentry *root;
	unsigned epidx;

	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
	hsotg->debug_root = root;
	if (IS_ERR(root)) {
		dev_err(hsotg->dev, "cannot create debug root\n");
		return;
	}

	/* create general state file */

	hsotg->debug_file = debugfs_create_file("state", 0444, root,
						hsotg, &state_fops);

	if (IS_ERR(hsotg->debug_file))
		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);

	hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
						hsotg, &fifo_fops);

	if (IS_ERR(hsotg->debug_fifo))
		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);

	/* create one file for each endpoint */

3341
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];

		ep->debugfs = debugfs_create_file(ep->name, 0444,
						  root, ep, &ep_fops);

		if (IS_ERR(ep->debugfs))
			dev_err(hsotg->dev, "failed to create %s debug file\n",
				ep->name);
	}
}

/**
 * s3c_hsotg_delete_debug - cleanup debugfs entries
 * @hsotg: The driver state
 *
 * Cleanup (remove) the debugfs files for use on module exit.
3358
 */
B
Bill Pemberton 已提交
3359
static void s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
3360 3361 3362
{
	unsigned epidx;

3363
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3364 3365 3366 3367 3368 3369 3370 3371 3372
		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
		debugfs_remove(ep->debugfs);
	}

	debugfs_remove(hsotg->debug_file);
	debugfs_remove(hsotg->debug_fifo);
	debugfs_remove(hsotg->debug_root);
}

3373 3374 3375 3376
/**
 * s3c_hsotg_probe - probe function for hsotg driver
 * @pdev: The platform information for the driver
 */
3377

B
Bill Pemberton 已提交
3378
static int s3c_hsotg_probe(struct platform_device *pdev)
3379
{
J
Jingoo Han 已提交
3380
	struct s3c_hsotg_plat *plat = dev_get_platdata(&pdev->dev);
3381 3382
	struct phy *phy;
	struct usb_phy *uphy;
3383
	struct device *dev = &pdev->dev;
3384
	struct s3c_hsotg_ep *eps;
3385 3386 3387 3388
	struct s3c_hsotg *hsotg;
	struct resource *res;
	int epnum;
	int ret;
3389
	int i;
3390

3391
	hsotg = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsotg), GFP_KERNEL);
3392 3393 3394 3395 3396
	if (!hsotg) {
		dev_err(dev, "cannot get memory\n");
		return -ENOMEM;
	}

3397 3398 3399 3400 3401
	/*
	 * Attempt to find a generic PHY, then look for an old style
	 * USB PHY, finally fall back to pdata
	 */
	phy = devm_phy_get(&pdev->dev, "usb2-phy");
3402
	if (IS_ERR(phy)) {
3403 3404 3405 3406 3407 3408 3409 3410 3411
		uphy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2);
		if (IS_ERR(uphy)) {
			/* Fallback for pdata */
			plat = dev_get_platdata(&pdev->dev);
			if (!plat) {
				dev_err(&pdev->dev,
				"no platform data or transceiver defined\n");
				return -EPROBE_DEFER;
			}
3412
			hsotg->plat = plat;
3413 3414 3415
		} else
			hsotg->uphy = uphy;
	} else
3416 3417
		hsotg->phy = phy;

3418 3419
	hsotg->dev = dev;

3420
	hsotg->clk = devm_clk_get(&pdev->dev, "otg");
3421 3422
	if (IS_ERR(hsotg->clk)) {
		dev_err(dev, "cannot get otg clock\n");
3423
		return PTR_ERR(hsotg->clk);
3424 3425
	}

3426 3427 3428 3429
	platform_set_drvdata(pdev, hsotg);

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);

3430 3431 3432
	hsotg->regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(hsotg->regs)) {
		ret = PTR_ERR(hsotg->regs);
3433
		goto err_clk;
3434 3435 3436 3437 3438
	}

	ret = platform_get_irq(pdev, 0);
	if (ret < 0) {
		dev_err(dev, "cannot find IRQ\n");
3439
		goto err_clk;
3440 3441
	}

3442 3443
	spin_lock_init(&hsotg->lock);

3444 3445
	hsotg->irq = ret;

3446 3447
	ret = devm_request_irq(&pdev->dev, hsotg->irq, s3c_hsotg_irq, 0,
				dev_name(dev), hsotg);
3448 3449
	if (ret < 0) {
		dev_err(dev, "cannot claim IRQ\n");
3450
		goto err_clk;
3451 3452 3453 3454
	}

	dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);

3455
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3456 3457 3458 3459 3460
	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
	hsotg->gadget.name = dev_name(dev);

	/* reset the system */

3461
	clk_prepare_enable(hsotg->clk);
3462

3463 3464 3465 3466 3467
	/* regulators */

	for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
		hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];

3468
	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3469 3470 3471
				 hsotg->supplies);
	if (ret) {
		dev_err(dev, "failed to request supplies: %d\n", ret);
3472
		goto err_clk;
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
	}

	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);

	if (ret) {
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
		goto err_supplies;
	}

3483
	/* Set default UTMI width */
3484
	hsotg->phyif = GUSBCFG_PHYIF16;
3485 3486 3487 3488 3489 3490

	/*
	 * If using the generic PHY framework, check if the PHY bus
	 * width is 8-bit and set the phyif appropriately.
	 */
	if (hsotg->phy && (phy_get_bus_width(phy) == 8))
3491
		hsotg->phyif = GUSBCFG_PHYIF8;
3492

3493 3494 3495
	if (hsotg->phy)
		phy_init(hsotg->phy);

3496 3497
	/* usb phy enable */
	s3c_hsotg_phy_enable(hsotg);
3498 3499 3500

	s3c_hsotg_corereset(hsotg);
	s3c_hsotg_init(hsotg);
3501 3502 3503 3504 3505 3506
	s3c_hsotg_hw_cfg(hsotg);

	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
3507
		ret = -EINVAL;
3508 3509 3510 3511 3512 3513 3514
		goto err_supplies;
	}

	eps = kcalloc(hsotg->num_of_eps + 1, sizeof(struct s3c_hsotg_ep),
		      GFP_KERNEL);
	if (!eps) {
		dev_err(dev, "cannot get memory\n");
3515
		ret = -ENOMEM;
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531
		goto err_supplies;
	}

	hsotg->eps = eps;

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
	hsotg->gadget.ep0 = &hsotg->eps[0].ep;

	/* allocate EP0 request */

	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
3532
		ret = -ENOMEM;
3533 3534
		goto err_ep_mem;
	}
3535 3536

	/* initialise the endpoints now the core has been initialised */
3537
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++)
3538 3539
		s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);

3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550
	/* disable power and clock */

	ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
	if (ret) {
		dev_err(hsotg->dev, "failed to disable supplies: %d\n", ret);
		goto err_ep_mem;
	}

	s3c_hsotg_phy_disable(hsotg);

3551 3552
	ret = usb_add_gadget_udc(&pdev->dev, &hsotg->gadget);
	if (ret)
3553
		goto err_ep_mem;
3554

3555 3556 3557 3558 3559 3560
	s3c_hsotg_create_debug(hsotg);

	s3c_hsotg_dump(hsotg);

	return 0;

3561
err_ep_mem:
3562
	kfree(eps);
3563
err_supplies:
3564
	s3c_hsotg_phy_disable(hsotg);
3565
err_clk:
3566
	clk_disable_unprepare(hsotg->clk);
3567

3568 3569 3570
	return ret;
}

3571 3572 3573 3574
/**
 * s3c_hsotg_remove - remove function for hsotg driver
 * @pdev: The platform information for the driver
 */
B
Bill Pemberton 已提交
3575
static int s3c_hsotg_remove(struct platform_device *pdev)
3576 3577 3578
{
	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);

3579 3580
	usb_del_gadget_udc(&hsotg->gadget);

3581 3582
	s3c_hsotg_delete_debug(hsotg);

3583 3584 3585 3586
	if (hsotg->driver) {
		/* should have been done already by driver model core */
		usb_gadget_unregister_driver(hsotg->driver);
	}
3587

3588
	s3c_hsotg_phy_disable(hsotg);
3589 3590
	if (hsotg->phy)
		phy_exit(hsotg->phy);
3591
	clk_disable_unprepare(hsotg->clk);
3592

3593 3594 3595
	return 0;
}

3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
static int s3c_hsotg_suspend(struct platform_device *pdev, pm_message_t state)
{
	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
	unsigned long flags;
	int ret = 0;

	if (hsotg->driver)
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

	spin_lock_irqsave(&hsotg->lock, flags);
	s3c_hsotg_disconnect(hsotg);
	s3c_hsotg_phy_disable(hsotg);
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	if (hsotg->driver) {
		int ep;
		for (ep = 0; ep < hsotg->num_of_eps; ep++)
			s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);

		ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
					     hsotg->supplies);
	}

	return ret;
}

static int s3c_hsotg_resume(struct platform_device *pdev)
{
	struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
	unsigned long flags;
	int ret = 0;

	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
		ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				      hsotg->supplies);
	}

	spin_lock_irqsave(&hsotg->lock, flags);
	hsotg->last_rst = jiffies;
	s3c_hsotg_phy_enable(hsotg);
	s3c_hsotg_core_init(hsotg);
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return ret;
}
3645

3646 3647 3648
#ifdef CONFIG_OF
static const struct of_device_id s3c_hsotg_of_ids[] = {
	{ .compatible = "samsung,s3c6400-hsotg", },
3649
	{ .compatible = "snps,dwc2", },
3650 3651 3652 3653 3654
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, s3c_hsotg_of_ids);
#endif

3655 3656 3657 3658
static struct platform_driver s3c_hsotg_driver = {
	.driver		= {
		.name	= "s3c-hsotg",
		.owner	= THIS_MODULE,
3659
		.of_match_table = of_match_ptr(s3c_hsotg_of_ids),
3660 3661
	},
	.probe		= s3c_hsotg_probe,
B
Bill Pemberton 已提交
3662
	.remove		= s3c_hsotg_remove,
3663 3664 3665 3666
	.suspend	= s3c_hsotg_suspend,
	.resume		= s3c_hsotg_resume,
};

3667
module_platform_driver(s3c_hsotg_driver);
3668 3669 3670 3671 3672

MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:s3c-hsotg");