i915_gem.c 136.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/slab.h>
35
#include <linux/swap.h>
J
Jesse Barnes 已提交
36
#include <linux/pci.h>
37

38 39 40 41 42 43
struct change_domains {
	uint32_t invalidate_domains;
	uint32_t flush_domains;
	uint32_t flush_rings;
};

44 45
static uint32_t i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv);
static uint32_t i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv);
46 47 48

static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
						  bool pipelined);
49 50 51 52 53 54 55 56
static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
					     int write);
static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
						     uint64_t offset,
						     uint64_t size);
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
57 58
static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
					  bool interruptible);
59
static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
60
				       unsigned alignment,
61
				       bool map_and_fenceable);
62
static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
63 64 65
static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
				struct drm_i915_gem_pwrite *args,
				struct drm_file *file_priv);
66
static void i915_gem_free_object_tail(struct drm_gem_object *obj);
67

68 69 70 71
static int i915_gem_inactive_shrink(struct shrinker *shrinker,
				    int nr_to_scan,
				    gfp_t gfp_mask);

72

73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
89
				  struct drm_i915_gem_object *obj)
90 91
{
	dev_priv->mm.gtt_count++;
92 93
	dev_priv->mm.gtt_memory += obj->gtt_space->size;
	if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
94
		dev_priv->mm.mappable_gtt_used +=
95 96
			min_t(size_t, obj->gtt_space->size,
			      dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
97
	}
D
Daniel Vetter 已提交
98
	list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
99 100 101
}

static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
102
				     struct drm_i915_gem_object *obj)
103 104
{
	dev_priv->mm.gtt_count--;
105 106
	dev_priv->mm.gtt_memory -= obj->gtt_space->size;
	if (obj->gtt_offset < dev_priv->mm.gtt_mappable_end) {
107
		dev_priv->mm.mappable_gtt_used -=
108 109
			min_t(size_t, obj->gtt_space->size,
			      dev_priv->mm.gtt_mappable_end - obj->gtt_offset);
110
	}
D
Daniel Vetter 已提交
111
	list_del_init(&obj->gtt_list);
112 113 114 115 116 117 118 119 120
}

/**
 * Update the mappable working set counters. Call _only_ when there is a change
 * in one of (pin|fault)_mappable and update *_mappable _before_ calling.
 * @mappable: new state the changed mappable flag (either pin_ or fault_).
 */
static void
i915_gem_info_update_mappable(struct drm_i915_private *dev_priv,
121
			      struct drm_i915_gem_object *obj,
122 123 124
			      bool mappable)
{
	if (mappable) {
125
		if (obj->pin_mappable && obj->fault_mappable)
126 127 128
			/* Combined state was already mappable. */
			return;
		dev_priv->mm.gtt_mappable_count++;
129
		dev_priv->mm.gtt_mappable_memory += obj->gtt_space->size;
130
	} else {
131
		if (obj->pin_mappable || obj->fault_mappable)
132 133 134
			/* Combined state still mappable. */
			return;
		dev_priv->mm.gtt_mappable_count--;
135
		dev_priv->mm.gtt_mappable_memory -= obj->gtt_space->size;
136
	}
137 138 139
}

static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
140
				  struct drm_i915_gem_object *obj,
141
				  bool mappable)
142 143
{
	dev_priv->mm.pin_count++;
144
	dev_priv->mm.pin_memory += obj->gtt_space->size;
145
	if (mappable) {
146
		obj->pin_mappable = true;
147 148
		i915_gem_info_update_mappable(dev_priv, obj, true);
	}
149 150 151
}

static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
152
				     struct drm_i915_gem_object *obj)
153 154
{
	dev_priv->mm.pin_count--;
155 156 157
	dev_priv->mm.pin_memory -= obj->gtt_space->size;
	if (obj->pin_mappable) {
		obj->pin_mappable = false;
158 159
		i915_gem_info_update_mappable(dev_priv, obj, false);
	}
160 161
}

162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
int
i915_gem_check_is_wedged(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

	/* Success, we reset the GPU! */
	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	/* GPU is hung, bump the completion count to account for
	 * the token we just consumed so that we never hit zero and
	 * end up waiting upon a subsequent completion event that
	 * will never happen.
	 */
	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	spin_unlock_irqrestore(&x->wait.lock, flags);
	return -EIO;
}

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
static int i915_mutex_lock_interruptible(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = i915_gem_check_is_wedged(dev);
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	if (atomic_read(&dev_priv->mm.wedged)) {
		mutex_unlock(&dev->struct_mutex);
		return -EAGAIN;
	}

210
	WARN_ON(i915_verify_lists(dev));
211 212
	return 0;
}
213

214 215 216 217 218 219 220 221
static inline bool
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->gtt_space &&
		!obj_priv->active &&
		obj_priv->pin_count == 0;
}

222 223
int i915_gem_do_init(struct drm_device *dev,
		     unsigned long start,
D
Daniel Vetter 已提交
224
		     unsigned long mappable_end,
J
Jesse Barnes 已提交
225
		     unsigned long end)
226 227 228
{
	drm_i915_private_t *dev_priv = dev->dev_private;

J
Jesse Barnes 已提交
229 230 231
	if (start >= end ||
	    (start & (PAGE_SIZE - 1)) != 0 ||
	    (end & (PAGE_SIZE - 1)) != 0) {
232 233 234
		return -EINVAL;
	}

J
Jesse Barnes 已提交
235 236
	drm_mm_init(&dev_priv->mm.gtt_space, start,
		    end - start);
237

238
	dev_priv->mm.gtt_total = end - start;
239
	dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
D
Daniel Vetter 已提交
240
	dev_priv->mm.gtt_mappable_end = mappable_end;
J
Jesse Barnes 已提交
241 242 243

	return 0;
}
244

J
Jesse Barnes 已提交
245 246 247 248 249 250 251 252
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_init *args = data;
	int ret;

	mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
253
	ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
254 255
	mutex_unlock(&dev->struct_mutex);

J
Jesse Barnes 已提交
256
	return ret;
257 258
}

259 260 261 262
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
			    struct drm_file *file_priv)
{
263
	struct drm_i915_private *dev_priv = dev->dev_private;
264 265 266 267 268
	struct drm_i915_gem_get_aperture *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

269 270 271 272
	mutex_lock(&dev->struct_mutex);
	args->aper_size = dev_priv->mm.gtt_total;
	args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
	mutex_unlock(&dev->struct_mutex);
273 274 275 276

	return 0;
}

277 278 279 280 281 282 283 284 285 286

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_create *args = data;
	struct drm_gem_object *obj;
287 288
	int ret;
	u32 handle;
289 290 291 292

	args->size = roundup(args->size, PAGE_SIZE);

	/* Allocate the new object */
293
	obj = i915_gem_alloc_object(dev, args->size);
294 295 296 297
	if (obj == NULL)
		return -ENOMEM;

	ret = drm_gem_handle_create(file_priv, obj, &handle);
298
	if (ret) {
299 300 301
		drm_gem_object_release(obj);
		i915_gem_info_remove_obj(dev->dev_private, obj->size);
		kfree(obj);
302
		return ret;
303
	}
304

305 306 307 308
	/* drop reference from allocate - handle holds it now */
	drm_gem_object_unreference(obj);
	trace_i915_gem_object_create(obj);

309
	args->handle = handle;
310 311 312
	return 0;
}

313 314 315
static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
{
	drm_i915_private_t *dev_priv = obj->dev->dev_private;
316
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
317 318 319 320 321

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
		obj_priv->tiling_mode != I915_TILING_NONE;
}

322
static inline void
323 324 325 326 327 328 329 330
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

331 332
	dst_vaddr = kmap(dst_page);
	src_vaddr = kmap(src_page);
333 334 335

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

336 337
	kunmap(src_page);
	kunmap(dst_page);
338 339
}

340
static inline void
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

360 361
	gpu_vaddr = kmap(gpu_page);
	cpu_vaddr = kmap(cpu_page);
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

385 386
	kunmap(cpu_page);
	kunmap(gpu_page);
387 388
}

389 390 391 392 393 394 395 396 397 398
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
399
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
400
	struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
401
	ssize_t remain;
402
	loff_t offset;
403 404 405 406 407 408
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

409
	obj_priv = to_intel_bo(obj);
410 411 412
	offset = args->offset;

	while (remain > 0) {
413 414 415 416
		struct page *page;
		char *vaddr;
		int ret;

417 418 419 420 421 422 423 424 425 426
		/* Operation in this page
		 *
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

427 428 429 430 431 432 433 434 435 436 437 438 439 440
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);

		vaddr = kmap_atomic(page);
		ret = __copy_to_user_inatomic(user_data,
					      vaddr + page_offset,
					      page_length);
		kunmap_atomic(vaddr);

		mark_page_accessed(page);
		page_cache_release(page);
		if (ret)
441
			return -EFAULT;
442 443 444 445 446 447

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

448
	return 0;
449 450 451 452 453 454 455 456 457 458 459 460 461
}

/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
462
	struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
463
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
464 465 466 467 468
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
469 470
	int shmem_page_offset;
	int data_page_index, data_page_offset;
471 472 473
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
474
	int do_bit17_swizzling;
475 476 477 478 479 480 481 482 483 484 485

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

486
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
487 488 489
	if (user_pages == NULL)
		return -ENOMEM;

490
	mutex_unlock(&dev->struct_mutex);
491 492
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
493
				      num_pages, 1, 0, user_pages, NULL);
494
	up_read(&mm->mmap_sem);
495
	mutex_lock(&dev->struct_mutex);
496 497
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
498
		goto out;
499 500
	}

501 502 503
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
504
	if (ret)
505
		goto out;
506

507
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
508

509
	obj_priv = to_intel_bo(obj);
510 511 512
	offset = args->offset;

	while (remain > 0) {
513 514
		struct page *page;

515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

532 533 534 535 536
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);

537
		if (do_bit17_swizzling) {
538
			slow_shmem_bit17_copy(page,
539
					      shmem_page_offset,
540 541 542 543 544 545 546
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length,
					      1);
		} else {
			slow_shmem_copy(user_pages[data_page_index],
					data_page_offset,
547
					page,
548 549
					shmem_page_offset,
					page_length);
550
		}
551

552 553 554
		mark_page_accessed(page);
		page_cache_release(page);

555 556 557 558 559
		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

560
out:
561 562
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
563
		mark_page_accessed(user_pages[i]);
564 565
		page_cache_release(user_pages[i]);
	}
566
	drm_free_large(user_pages);
567 568 569 570

	return ret;
}

571 572 573 574 575 576 577 578 579 580 581 582
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pread *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
583
	int ret = 0;
584

585 586 587 588 589 590 591 592 593 594 595 596 597
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

	ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
				       args->size);
	if (ret)
		return -EFAULT;

598
	ret = i915_mutex_lock_interruptible(dev);
599
	if (ret)
600
		return ret;
601 602

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
603 604 605
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
606
	}
607
	obj_priv = to_intel_bo(obj);
608

609 610
	/* Bounds check source.  */
	if (args->offset > obj->size || args->size > obj->size - args->offset) {
C
Chris Wilson 已提交
611
		ret = -EINVAL;
612
		goto out;
C
Chris Wilson 已提交
613 614
	}

615 616 617 618
	ret = i915_gem_object_set_cpu_read_domain_range(obj,
							args->offset,
							args->size);
	if (ret)
619
		goto out;
620 621 622

	ret = -EFAULT;
	if (!i915_gem_object_needs_bit17_swizzle(obj))
623
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
624 625
	if (ret == -EFAULT)
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
626

627
out:
628
	drm_gem_object_unreference(obj);
629
unlock:
630
	mutex_unlock(&dev->struct_mutex);
631
	return ret;
632 633
}

634 635
/* This is the fast write path which cannot handle
 * page faults in the source data
636
 */
637 638 639 640 641 642

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
643 644
{
	char *vaddr_atomic;
645
	unsigned long unwritten;
646

P
Peter Zijlstra 已提交
647
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
648 649
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
P
Peter Zijlstra 已提交
650
	io_mapping_unmap_atomic(vaddr_atomic);
651
	return unwritten;
652 653 654 655 656 657
}

/* Here's the write path which can sleep for
 * page faults
 */

658
static inline void
659 660 661 662
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
663
{
664 665
	char __iomem *dst_vaddr;
	char *src_vaddr;
666

667 668 669 670 671 672 673 674 675
	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
	src_vaddr = kmap(user_page);

	memcpy_toio(dst_vaddr + gtt_offset,
		    src_vaddr + user_offset,
		    length);

	kunmap(user_page);
	io_mapping_unmap(dst_vaddr);
676 677
}

678 679 680 681
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
682
static int
683 684 685
i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
686
{
687
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
688
	drm_i915_private_t *dev_priv = dev->dev_private;
689
	ssize_t remain;
690
	loff_t offset, page_base;
691
	char __user *user_data;
692
	int page_offset, page_length;
693 694 695 696

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

697
	obj_priv = to_intel_bo(obj);
698 699 700 701 702
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
703 704 705
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
706
		 */
707 708 709 710 711 712 713
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		/* If we get a fault while copying data, then (presumably) our
714 715
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
716
		 */
717 718 719 720
		if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
				    page_offset, user_data, page_length))

			return -EFAULT;
721

722 723 724
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
725 726
	}

727
	return 0;
728 729
}

730 731 732 733 734 735 736
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
737
static int
738 739 740
i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
741
{
742
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
743 744 745 746 747 748 749 750
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
751
	int ret;
752 753 754 755 756 757 758 759 760 761 762 763
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

764
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
765 766 767
	if (user_pages == NULL)
		return -ENOMEM;

768
	mutex_unlock(&dev->struct_mutex);
769 770 771 772
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
773
	mutex_lock(&dev->struct_mutex);
774 775 776 777
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
778

779 780
	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
	if (ret)
781
		goto out_unpin_pages;
782

783
	obj_priv = to_intel_bo(obj);
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
		gtt_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

806 807 808 809 810
		slow_kernel_write(dev_priv->mm.gtt_mapping,
				  gtt_page_base, gtt_page_offset,
				  user_pages[data_page_index],
				  data_page_offset,
				  page_length);
811 812 813 814 815 816 817 818 819

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
820
	drm_free_large(user_pages);
821 822 823 824

	return ret;
}

825 826 827 828
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
829
static int
830 831 832
i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
833
{
834
	struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
835
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
836
	ssize_t remain;
837
	loff_t offset;
838 839 840 841 842
	char __user *user_data;
	int page_offset, page_length;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
843

844
	obj_priv = to_intel_bo(obj);
845 846 847 848
	offset = args->offset;
	obj_priv->dirty = 1;

	while (remain > 0) {
849 850 851 852
		struct page *page;
		char *vaddr;
		int ret;

853 854 855 856 857 858 859 860 861 862
		/* Operation in this page
		 *
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);

		vaddr = kmap_atomic(page, KM_USER0);
		ret = __copy_from_user_inatomic(vaddr + page_offset,
						user_data,
						page_length);
		kunmap_atomic(vaddr, KM_USER0);

		set_page_dirty(page);
		mark_page_accessed(page);
		page_cache_release(page);

		/* If we get a fault while copying data, then (presumably) our
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
		 */
		if (ret)
883
			return -EFAULT;
884 885 886 887 888 889

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

890
	return 0;
891 892 893 894 895 896 897 898 899 900 901 902 903 904
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
{
905
	struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
906
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
907 908 909 910 911
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
912
	int shmem_page_offset;
913 914 915 916
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
917
	int do_bit17_swizzling;
918 919 920 921 922 923 924 925 926 927 928

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

929
	user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
930 931 932
	if (user_pages == NULL)
		return -ENOMEM;

933
	mutex_unlock(&dev->struct_mutex);
934 935 936 937
	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
938
	mutex_lock(&dev->struct_mutex);
939 940
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
941
		goto out;
942 943
	}

944
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
945
	if (ret)
946
		goto out;
947

948
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
949

950
	obj_priv = to_intel_bo(obj);
951
	offset = args->offset;
952
	obj_priv->dirty = 1;
953

954
	while (remain > 0) {
955 956
		struct page *page;

957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

974 975 976 977 978 979 980
		page = read_cache_page_gfp(mapping, offset >> PAGE_SHIFT,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page)) {
			ret = PTR_ERR(page);
			goto out;
		}

981
		if (do_bit17_swizzling) {
982
			slow_shmem_bit17_copy(page,
983 984 985
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
986 987 988
					      page_length,
					      0);
		} else {
989
			slow_shmem_copy(page,
990 991 992 993
					shmem_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);
994
		}
995

996 997 998 999
		set_page_dirty(page);
		mark_page_accessed(page);
		page_cache_release(page);

1000 1001 1002
		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
1003 1004
	}

1005
out:
1006 1007
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
1008
	drm_free_large(user_pages);
1009

1010
	return ret;
1011 1012 1013 1014 1015 1016 1017 1018 1019
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1020
		      struct drm_file *file)
1021 1022 1023 1024
{
	struct drm_i915_gem_pwrite *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
		       (char __user *)(uintptr_t)args->data_ptr,
		       args->size))
		return -EFAULT;

	ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
				      args->size);
	if (ret)
		return -EFAULT;
1039

1040
	ret = i915_mutex_lock_interruptible(dev);
1041
	if (ret)
1042
		return ret;
1043 1044 1045 1046 1047

	obj = drm_gem_object_lookup(dev, file, args->handle);
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
1048
	}
1049
	obj_priv = to_intel_bo(obj);
1050

1051 1052
	/* Bounds check destination. */
	if (args->offset > obj->size || args->size > obj->size - args->offset) {
C
Chris Wilson 已提交
1053
		ret = -EINVAL;
1054
		goto out;
C
Chris Wilson 已提交
1055 1056
	}

1057 1058 1059 1060 1061 1062
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1063
	if (obj_priv->phys_obj)
1064
		ret = i915_gem_phys_pwrite(dev, obj, args, file);
1065
	else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1066
		 obj_priv->gtt_space &&
1067
		 obj->write_domain != I915_GEM_DOMAIN_CPU) {
1068
		ret = i915_gem_object_pin(obj, 0, true);
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
		if (ret)
			goto out;

		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret)
			goto out_unpin;

		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);

out_unpin:
		i915_gem_object_unpin(obj);
1082
	} else {
1083 1084
		ret = i915_gem_object_set_to_cpu_domain(obj, 1);
		if (ret)
1085
			goto out;
1086

1087 1088 1089 1090 1091 1092
		ret = -EFAULT;
		if (!i915_gem_object_needs_bit17_swizzle(obj))
			ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
		if (ret == -EFAULT)
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
	}
1093

1094
out:
1095
	drm_gem_object_unreference(obj);
1096
unlock:
1097
	mutex_unlock(&dev->struct_mutex);
1098 1099 1100 1101
	return ret;
}

/**
1102 1103
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1104 1105 1106 1107 1108
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file_priv)
{
1109
	struct drm_i915_private *dev_priv = dev->dev_private;
1110 1111
	struct drm_i915_gem_set_domain *args = data;
	struct drm_gem_object *obj;
1112
	struct drm_i915_gem_object *obj_priv;
1113 1114
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1115 1116 1117 1118 1119
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1120
	/* Only handle setting domains to types used by the CPU. */
1121
	if (write_domain & I915_GEM_GPU_DOMAINS)
1122 1123
		return -EINVAL;

1124
	if (read_domains & I915_GEM_GPU_DOMAINS)
1125 1126 1127 1128 1129 1130 1131 1132
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1133
	ret = i915_mutex_lock_interruptible(dev);
1134
	if (ret)
1135
		return ret;
1136

1137
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1138 1139 1140
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
1141
	}
1142
	obj_priv = to_intel_bo(obj);
1143

1144 1145
	intel_mark_busy(dev, obj);

1146 1147
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1148

1149 1150 1151 1152
		/* Update the LRU on the fence for the CPU access that's
		 * about to occur.
		 */
		if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1153 1154 1155
			struct drm_i915_fence_reg *reg =
				&dev_priv->fence_regs[obj_priv->fence_reg];
			list_move_tail(&reg->lru_list,
1156 1157 1158
				       &dev_priv->mm.fence_list);
		}

1159 1160 1161 1162 1163 1164
		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1165
	} else {
1166
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1167 1168
	}

1169 1170
	/* Maintain LRU order of "inactive" objects */
	if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
1171
		list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1172

1173
	drm_gem_object_unreference(obj);
1174
unlock:
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_sw_finish *args = data;
	struct drm_gem_object *obj;
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1193
	ret = i915_mutex_lock_interruptible(dev);
1194
	if (ret)
1195
		return ret;
1196

1197 1198
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
1199 1200
		ret = -ENOENT;
		goto unlock;
1201 1202 1203
	}

	/* Pinned buffers may be scanout, so flush the cache */
1204
	if (to_intel_bo(obj)->pin_count)
1205 1206
		i915_gem_object_flush_cpu_write_domain(obj);

1207
	drm_gem_object_unreference(obj);
1208
unlock:
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
1224
	struct drm_i915_private *dev_priv = dev->dev_private;
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	loff_t offset;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1235
		return -ENOENT;
1236

1237 1238 1239 1240 1241
	if (obj->size > dev_priv->mm.gtt_mappable_end) {
		drm_gem_object_unreference_unlocked(obj);
		return -E2BIG;
	}

1242 1243 1244 1245 1246 1247 1248
	offset = args->offset;

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1249
	drm_gem_object_unreference_unlocked(obj);
1250 1251 1252 1253 1254 1255 1256 1257
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct drm_gem_object *obj = vma->vm_private_data;
	struct drm_device *dev = obj->dev;
1278
	drm_i915_private_t *dev_priv = dev->dev_private;
1279
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1280 1281 1282
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1283
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1284 1285 1286 1287 1288 1289 1290

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

	/* Now bind it into the GTT if needed */
	mutex_lock(&dev->struct_mutex);
1291
	BUG_ON(obj_priv->pin_count && !obj_priv->pin_mappable);
1292 1293

	if (obj_priv->gtt_space) {
1294
		if (!obj_priv->map_and_fenceable) {
1295 1296 1297 1298 1299
			ret = i915_gem_object_unbind(obj);
			if (ret)
				goto unlock;
		}
	}
1300

1301
	if (!obj_priv->gtt_space) {
1302
		ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1303 1304
		if (ret)
			goto unlock;
1305 1306
	}

1307 1308 1309 1310
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
		goto unlock;

1311 1312
	if (!obj_priv->fault_mappable) {
		obj_priv->fault_mappable = true;
1313
		i915_gem_info_update_mappable(dev_priv, obj_priv, true);
1314 1315
	}

1316
	/* Need a new fence register? */
1317
	if (obj_priv->tiling_mode != I915_TILING_NONE) {
1318
		ret = i915_gem_object_get_fence_reg(obj, true);
1319 1320
		if (ret)
			goto unlock;
1321
	}
1322

1323
	if (i915_gem_object_is_inactive(obj_priv))
1324
		list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
1325

1326 1327 1328 1329 1330
	pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1331
unlock:
1332 1333 1334
	mutex_unlock(&dev->struct_mutex);

	switch (ret) {
1335 1336
	case -EAGAIN:
		set_need_resched();
1337 1338 1339
	case 0:
	case -ERESTARTSYS:
		return VM_FAULT_NOPAGE;
1340 1341 1342
	case -ENOMEM:
		return VM_FAULT_OOM;
	default:
1343
		return VM_FAULT_SIGBUS;
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
i915_gem_create_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;
1364
	struct drm_local_map *map;
1365 1366 1367 1368
	int ret = 0;

	/* Set the object up for mmap'ing */
	list = &obj->map_list;
1369
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
	map->size = obj->size;
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
						    obj->size / PAGE_SIZE, 0, 0);
	if (!list->file_offset_node) {
		DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1383
		ret = -ENOSPC;
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
						  obj->size / PAGE_SIZE, 0);
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
1395 1396
	ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
	if (ret) {
1397 1398 1399 1400 1401 1402 1403 1404 1405
		DRM_ERROR("failed to add to map hash\n");
		goto out_free_mm;
	}

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1406
	kfree(list->map);
C
Chris Wilson 已提交
1407
	list->map = NULL;
1408 1409 1410 1411

	return ret;
}

1412 1413 1414 1415
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1416
 * Preserve the reservation of the mmapping with the DRM core code, but
1417 1418 1419 1420 1421 1422 1423 1424 1425
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1426
void
1427 1428 1429
i915_gem_release_mmap(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1430
	struct drm_i915_private *dev_priv = dev->dev_private;
1431
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1432

C
Chris Wilson 已提交
1433
	if (unlikely(obj->map_list.map && dev->dev_mapping))
1434
		unmap_mapping_range(dev->dev_mapping,
C
Chris Wilson 已提交
1435 1436
				    (loff_t)obj->map_list.hash.key<<PAGE_SHIFT,
				    obj->size, 1);
1437 1438 1439

	if (obj_priv->fault_mappable) {
		obj_priv->fault_mappable = false;
1440
		i915_gem_info_update_mappable(dev_priv, obj_priv, false);
1441
	}
1442 1443
}

1444 1445 1446 1447 1448
static void
i915_gem_free_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_gem_mm *mm = dev->mm_private;
C
Chris Wilson 已提交
1449
	struct drm_map_list *list = &obj->map_list;
1450 1451

	drm_ht_remove_item(&mm->offset_hash, &list->hash);
C
Chris Wilson 已提交
1452 1453 1454
	drm_mm_put_block(list->file_offset_node);
	kfree(list->map);
	list->map = NULL;
1455 1456
}

1457 1458 1459 1460 1461
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
1462
 * potential fence register mapping.
1463 1464
 */
static uint32_t
1465
i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj_priv)
1466
{
1467
	struct drm_device *dev = obj_priv->base.dev;
1468 1469 1470 1471 1472

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1473 1474
	if (INTEL_INFO(dev)->gen >= 4 ||
	    obj_priv->tiling_mode == I915_TILING_NONE)
1475 1476
		return 4096;

1477 1478 1479 1480 1481 1482 1483
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
	return i915_gem_get_gtt_size(obj_priv);
}

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518
/**
 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
 *					 unfenced object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, only taking into account
 * unfenced tiled surface requirements.
 */
static uint32_t
i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj_priv)
{
	struct drm_device *dev = obj_priv->base.dev;
	int tile_height;

	/*
	 * Minimum alignment is 4k (GTT page size) for sane hw.
	 */
	if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
	    obj_priv->tiling_mode == I915_TILING_NONE)
		return 4096;

	/*
	 * Older chips need unfenced tiled buffers to be aligned to the left
	 * edge of an even tile row (where tile rows are counted as if the bo is
	 * placed in a fenced gtt region).
	 */
	if (IS_GEN2(dev) ||
	    (obj_priv->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
		tile_height = 32;
	else
		tile_height = 8;

	return tile_height * obj_priv->stride * 2;
}

1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
static uint32_t
i915_gem_get_gtt_size(struct drm_i915_gem_object *obj_priv)
{
	struct drm_device *dev = obj_priv->base.dev;
	uint32_t size;

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
	if (INTEL_INFO(dev)->gen >= 4)
		return obj_priv->base.size;

1532 1533 1534 1535
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1536
	if (INTEL_INFO(dev)->gen == 3)
1537
		size = 1024*1024;
1538
	else
1539
		size = 512*1024;
1540

1541 1542
	while (size < obj_priv->base.size)
		size <<= 1;
1543

1544
	return size;
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
}

/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file_priv: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
1566
	struct drm_i915_private *dev_priv = dev->dev_private;
1567 1568 1569 1570 1571 1572 1573 1574
	struct drm_i915_gem_mmap_gtt *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1575
	ret = i915_mutex_lock_interruptible(dev);
1576
	if (ret)
1577
		return ret;
1578

1579 1580 1581 1582 1583
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		ret = -ENOENT;
		goto unlock;
	}
1584
	obj_priv = to_intel_bo(obj);
1585

1586 1587 1588 1589 1590
	if (obj->size > dev_priv->mm.gtt_mappable_end) {
		ret = -E2BIG;
		goto unlock;
	}

1591 1592
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1593 1594
		ret = -EINVAL;
		goto out;
1595 1596
	}

C
Chris Wilson 已提交
1597
	if (!obj->map_list.map) {
1598
		ret = i915_gem_create_mmap_offset(obj);
1599 1600
		if (ret)
			goto out;
1601 1602
	}

C
Chris Wilson 已提交
1603
	args->offset = (u64)obj->map_list.hash.key << PAGE_SHIFT;
1604

1605
out:
1606
	drm_gem_object_unreference(obj);
1607
unlock:
1608
	mutex_unlock(&dev->struct_mutex);
1609
	return ret;
1610 1611
}

1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
static int
i915_gem_object_get_pages_gtt(struct drm_gem_object *obj,
			      gfp_t gfpmask)
{
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
	page_count = obj->size / PAGE_SIZE;
	BUG_ON(obj_priv->pages != NULL);
	obj_priv->pages = drm_malloc_ab(page_count, sizeof(struct page *));
	if (obj_priv->pages == NULL)
		return -ENOMEM;

	inode = obj->filp->f_path.dentry->d_inode;
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
		page = read_cache_page_gfp(mapping, i,
					   GFP_HIGHUSER |
					   __GFP_COLD |
					   __GFP_RECLAIMABLE |
					   gfpmask);
		if (IS_ERR(page))
			goto err_pages;

		obj_priv->pages[i] = page;
	}

	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_do_bit_17_swizzle(obj);

	return 0;

err_pages:
	while (i--)
		page_cache_release(obj_priv->pages[i]);

	drm_free_large(obj_priv->pages);
	obj_priv->pages = NULL;
	return PTR_ERR(page);
}

1659
static void
1660
i915_gem_object_put_pages_gtt(struct drm_gem_object *obj)
1661
{
1662
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1663 1664 1665
	int page_count = obj->size / PAGE_SIZE;
	int i;

C
Chris Wilson 已提交
1666
	BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1667

1668 1669 1670
	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_save_bit_17_swizzle(obj);

1671
	if (obj_priv->madv == I915_MADV_DONTNEED)
1672
		obj_priv->dirty = 0;
1673 1674 1675 1676 1677 1678

	for (i = 0; i < page_count; i++) {
		if (obj_priv->dirty)
			set_page_dirty(obj_priv->pages[i]);

		if (obj_priv->madv == I915_MADV_WILLNEED)
1679
			mark_page_accessed(obj_priv->pages[i]);
1680 1681 1682

		page_cache_release(obj_priv->pages[i]);
	}
1683 1684
	obj_priv->dirty = 0;

1685
	drm_free_large(obj_priv->pages);
1686
	obj_priv->pages = NULL;
1687 1688
}

1689 1690 1691 1692 1693
static uint32_t
i915_gem_next_request_seqno(struct drm_device *dev,
			    struct intel_ring_buffer *ring)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1694
	return ring->outstanding_lazy_request = dev_priv->next_seqno;
1695 1696
}

1697
static void
1698
i915_gem_object_move_to_active(struct drm_gem_object *obj,
1699
			       struct intel_ring_buffer *ring)
1700 1701
{
	struct drm_device *dev = obj->dev;
1702
	struct drm_i915_private *dev_priv = dev->dev_private;
1703
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1704
	uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1705

1706 1707
	BUG_ON(ring == NULL);
	obj_priv->ring = ring;
1708 1709 1710 1711 1712 1713

	/* Add a reference if we're newly entering the active list. */
	if (!obj_priv->active) {
		drm_gem_object_reference(obj);
		obj_priv->active = 1;
	}
1714

1715
	/* Move from whatever list we were on to the tail of execution. */
1716 1717
	list_move_tail(&obj_priv->mm_list, &dev_priv->mm.active_list);
	list_move_tail(&obj_priv->ring_list, &ring->active_list);
1718
	obj_priv->last_rendering_seqno = seqno;
1719 1720
}

1721 1722 1723 1724 1725
static void
i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1726
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1727 1728

	BUG_ON(!obj_priv->active);
1729 1730
	list_move_tail(&obj_priv->mm_list, &dev_priv->mm.flushing_list);
	list_del_init(&obj_priv->ring_list);
1731 1732
	obj_priv->last_rendering_seqno = 0;
}
1733

1734 1735 1736 1737
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_gem_object *obj)
{
1738
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
1739
	struct inode *inode;
1740

1741 1742 1743 1744 1745 1746
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*. Here we mirror the actions taken
	 * when by shmem_delete_inode() to release the backing store.
	 */
C
Chris Wilson 已提交
1747
	inode = obj->filp->f_path.dentry->d_inode;
1748 1749 1750
	truncate_inode_pages(inode->i_mapping, 0);
	if (inode->i_op->truncate_range)
		inode->i_op->truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1751 1752

	obj_priv->madv = __I915_MADV_PURGED;
1753 1754 1755 1756 1757 1758 1759 1760
}

static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->madv == I915_MADV_DONTNEED;
}

1761 1762 1763 1764 1765
static void
i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1766
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1767 1768

	if (obj_priv->pin_count != 0)
1769
		list_move_tail(&obj_priv->mm_list, &dev_priv->mm.pinned_list);
1770
	else
1771 1772
		list_move_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
	list_del_init(&obj_priv->ring_list);
1773

1774 1775
	BUG_ON(!list_empty(&obj_priv->gpu_write_list));

1776
	obj_priv->last_rendering_seqno = 0;
1777
	obj_priv->ring = NULL;
1778 1779 1780 1781
	if (obj_priv->active) {
		obj_priv->active = 0;
		drm_gem_object_unreference(obj);
	}
1782
	WARN_ON(i915_verify_lists(dev));
1783 1784
}

1785 1786
static void
i915_gem_process_flushing_list(struct drm_device *dev,
1787
			       uint32_t flush_domains,
1788
			       struct intel_ring_buffer *ring)
1789 1790 1791 1792 1793
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv, *next;

	list_for_each_entry_safe(obj_priv, next,
1794
				 &ring->gpu_write_list,
1795
				 gpu_write_list) {
1796
		struct drm_gem_object *obj = &obj_priv->base;
1797

1798
		if (obj->write_domain & flush_domains) {
1799 1800 1801 1802
			uint32_t old_write_domain = obj->write_domain;

			obj->write_domain = 0;
			list_del_init(&obj_priv->gpu_write_list);
1803
			i915_gem_object_move_to_active(obj, ring);
1804 1805

			/* update the fence lru list */
1806 1807 1808 1809
			if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
				struct drm_i915_fence_reg *reg =
					&dev_priv->fence_regs[obj_priv->fence_reg];
				list_move_tail(&reg->lru_list,
1810
						&dev_priv->mm.fence_list);
1811
			}
1812 1813 1814 1815 1816 1817 1818

			trace_i915_gem_object_change_domain(obj,
							    obj->read_domains,
							    old_write_domain);
		}
	}
}
1819

1820
int
1821
i915_add_request(struct drm_device *dev,
1822
		 struct drm_file *file,
C
Chris Wilson 已提交
1823
		 struct drm_i915_gem_request *request,
1824
		 struct intel_ring_buffer *ring)
1825 1826
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1827
	struct drm_i915_file_private *file_priv = NULL;
1828 1829
	uint32_t seqno;
	int was_empty;
1830 1831 1832
	int ret;

	BUG_ON(request == NULL);
1833

1834 1835
	if (file != NULL)
		file_priv = file->driver_priv;
1836

1837 1838 1839
	ret = ring->add_request(ring, &seqno);
	if (ret)
	    return ret;
1840

1841
	ring->outstanding_lazy_request = false;
1842 1843

	request->seqno = seqno;
1844
	request->ring = ring;
1845
	request->emitted_jiffies = jiffies;
1846 1847 1848
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

1849
	if (file_priv) {
1850
		spin_lock(&file_priv->mm.lock);
1851
		request->file_priv = file_priv;
1852
		list_add_tail(&request->client_list,
1853
			      &file_priv->mm.request_list);
1854
		spin_unlock(&file_priv->mm.lock);
1855
	}
1856

B
Ben Gamari 已提交
1857
	if (!dev_priv->mm.suspended) {
1858 1859
		mod_timer(&dev_priv->hangcheck_timer,
			  jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
B
Ben Gamari 已提交
1860
		if (was_empty)
1861 1862
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1863
	}
1864
	return 0;
1865 1866 1867 1868 1869 1870 1871 1872
}

/**
 * Command execution barrier
 *
 * Ensures that all commands in the ring are finished
 * before signalling the CPU
 */
1873
static void
1874
i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1875 1876 1877 1878
{
	uint32_t flush_domains = 0;

	/* The sampler always gets flushed on i965 (sigh) */
1879
	if (INTEL_INFO(dev)->gen >= 4)
1880
		flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1881

1882
	ring->flush(ring, I915_GEM_DOMAIN_COMMAND, flush_domains);
1883 1884
}

1885 1886
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1887
{
1888
	struct drm_i915_file_private *file_priv = request->file_priv;
1889

1890 1891
	if (!file_priv)
		return;
C
Chris Wilson 已提交
1892

1893 1894 1895 1896
	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1897 1898
}

1899 1900
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1901
{
1902 1903
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1904

1905 1906 1907
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);
1908

1909
		list_del(&request->list);
1910
		i915_gem_request_remove_from_client(request);
1911 1912
		kfree(request);
	}
1913

1914
	while (!list_empty(&ring->active_list)) {
1915 1916
		struct drm_i915_gem_object *obj_priv;

1917
		obj_priv = list_first_entry(&ring->active_list,
1918
					    struct drm_i915_gem_object,
1919
					    ring_list);
1920 1921

		obj_priv->base.write_domain = 0;
1922
		list_del_init(&obj_priv->gpu_write_list);
1923
		i915_gem_object_move_to_inactive(&obj_priv->base);
1924 1925 1926
	}
}

1927
void i915_gem_reset(struct drm_device *dev)
1928
{
1929 1930
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
1931
	int i;
1932

1933
	i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
1934
	i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);
1935
	i915_gem_reset_ring_lists(dev_priv, &dev_priv->blt_ring);
1936 1937 1938 1939 1940 1941 1942 1943

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
		obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
					    struct drm_i915_gem_object,
1944
					    mm_list);
1945 1946 1947 1948 1949 1950 1951 1952 1953

		obj_priv->base.write_domain = 0;
		list_del_init(&obj_priv->gpu_write_list);
		i915_gem_object_move_to_inactive(&obj_priv->base);
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1954 1955
	list_for_each_entry(obj_priv,
			    &dev_priv->mm.inactive_list,
1956
			    mm_list)
1957 1958 1959
	{
		obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
	}
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970

	/* The fence registers are invalidated so clear them out */
	for (i = 0; i < 16; i++) {
		struct drm_i915_fence_reg *reg;

		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			continue;

		i915_gem_clear_fence_reg(reg->obj);
	}
1971 1972 1973 1974 1975
}

/**
 * This function clears the request list as sequence numbers are passed.
 */
1976 1977 1978
static void
i915_gem_retire_requests_ring(struct drm_device *dev,
			      struct intel_ring_buffer *ring)
1979 1980 1981 1982
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;

1983 1984
	if (!ring->status_page.page_addr ||
	    list_empty(&ring->request_list))
1985 1986
		return;

1987
	WARN_ON(i915_verify_lists(dev));
1988

1989
	seqno = ring->get_seqno(ring);
1990
	while (!list_empty(&ring->request_list)) {
1991 1992
		struct drm_i915_gem_request *request;

1993
		request = list_first_entry(&ring->request_list,
1994 1995 1996
					   struct drm_i915_gem_request,
					   list);

1997
		if (!i915_seqno_passed(seqno, request->seqno))
1998 1999 2000 2001 2002
			break;

		trace_i915_gem_request_retire(dev, request->seqno);

		list_del(&request->list);
2003
		i915_gem_request_remove_from_client(request);
2004 2005
		kfree(request);
	}
2006

2007 2008 2009 2010 2011 2012 2013 2014 2015
	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_gem_object *obj;
		struct drm_i915_gem_object *obj_priv;

		obj_priv = list_first_entry(&ring->active_list,
					    struct drm_i915_gem_object,
2016
					    ring_list);
2017

2018
		if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
2019
			break;
2020 2021 2022 2023 2024 2025

		obj = &obj_priv->base;
		if (obj->write_domain != 0)
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
2026
	}
2027 2028 2029

	if (unlikely (dev_priv->trace_irq_seqno &&
		      i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
2030
		ring->user_irq_put(ring);
2031 2032
		dev_priv->trace_irq_seqno = 0;
	}
2033 2034

	WARN_ON(i915_verify_lists(dev));
2035 2036
}

2037 2038 2039 2040 2041
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
	    struct drm_i915_gem_object *obj_priv, *tmp;

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
	    list_for_each_entry_safe(obj_priv, tmp,
				     &dev_priv->mm.deferred_free_list,
2052
				     mm_list)
2053 2054 2055
		    i915_gem_free_object_tail(&obj_priv->base);
	}

2056
	i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
2057
	i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
2058
	i915_gem_retire_requests_ring(dev, &dev_priv->blt_ring);
2059 2060
}

2061
static void
2062 2063 2064 2065 2066 2067 2068 2069 2070
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

2071 2072 2073 2074 2075 2076
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

2077
	i915_gem_retire_requests(dev);
2078

2079
	if (!dev_priv->mm.suspended &&
2080
		(!list_empty(&dev_priv->render_ring.request_list) ||
2081 2082
		 !list_empty(&dev_priv->bsd_ring.request_list) ||
		 !list_empty(&dev_priv->blt_ring.request_list)))
2083
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2084 2085 2086
	mutex_unlock(&dev->struct_mutex);
}

2087
int
2088
i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
2089
		     bool interruptible, struct intel_ring_buffer *ring)
2090 2091
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2092
	u32 ier;
2093 2094 2095 2096
	int ret = 0;

	BUG_ON(seqno == 0);

2097
	if (atomic_read(&dev_priv->mm.wedged))
2098 2099
		return -EAGAIN;

2100
	if (seqno == ring->outstanding_lazy_request) {
2101 2102 2103 2104
		struct drm_i915_gem_request *request;

		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
2105
			return -ENOMEM;
2106 2107 2108 2109 2110 2111 2112 2113

		ret = i915_add_request(dev, NULL, request, ring);
		if (ret) {
			kfree(request);
			return ret;
		}

		seqno = request->seqno;
2114
	}
2115

2116
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
2117
		if (HAS_PCH_SPLIT(dev))
2118 2119 2120
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
2121 2122 2123 2124 2125 2126 2127
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
			i915_driver_irq_preinstall(dev);
			i915_driver_irq_postinstall(dev);
		}

C
Chris Wilson 已提交
2128 2129
		trace_i915_gem_request_wait_begin(dev, seqno);

2130
		ring->waiting_seqno = seqno;
2131
		ring->user_irq_get(ring);
2132
		if (interruptible)
2133
			ret = wait_event_interruptible(ring->irq_queue,
2134
				i915_seqno_passed(ring->get_seqno(ring), seqno)
2135
				|| atomic_read(&dev_priv->mm.wedged));
2136
		else
2137
			wait_event(ring->irq_queue,
2138
				i915_seqno_passed(ring->get_seqno(ring), seqno)
2139
				|| atomic_read(&dev_priv->mm.wedged));
2140

2141
		ring->user_irq_put(ring);
2142
		ring->waiting_seqno = 0;
C
Chris Wilson 已提交
2143 2144

		trace_i915_gem_request_wait_end(dev, seqno);
2145
	}
2146
	if (atomic_read(&dev_priv->mm.wedged))
2147
		ret = -EAGAIN;
2148 2149

	if (ret && ret != -ERESTARTSYS)
2150
		DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2151
			  __func__, ret, seqno, ring->get_seqno(ring),
2152
			  dev_priv->next_seqno);
2153 2154 2155 2156 2157 2158 2159

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
2160
		i915_gem_retire_requests_ring(dev, ring);
2161 2162 2163 2164

	return ret;
}

2165 2166 2167 2168 2169
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
static int
2170
i915_wait_request(struct drm_device *dev, uint32_t seqno,
2171
		  struct intel_ring_buffer *ring)
2172
{
2173
	return i915_do_wait_request(dev, seqno, 1, ring);
2174 2175
}

2176
static void
2177
i915_gem_flush_ring(struct drm_device *dev,
2178
		    struct drm_file *file_priv,
2179 2180 2181 2182
		    struct intel_ring_buffer *ring,
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
2183
	ring->flush(ring, invalidate_domains, flush_domains);
2184 2185 2186
	i915_gem_process_flushing_list(dev, flush_domains, ring);
}

2187 2188
static void
i915_gem_flush(struct drm_device *dev,
2189
	       struct drm_file *file_priv,
2190
	       uint32_t invalidate_domains,
2191 2192
	       uint32_t flush_domains,
	       uint32_t flush_rings)
2193 2194
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2195

2196
	if (flush_domains & I915_GEM_DOMAIN_CPU)
2197
		intel_gtt_chipset_flush();
2198

2199 2200
	if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
		if (flush_rings & RING_RENDER)
2201
			i915_gem_flush_ring(dev, file_priv,
2202 2203 2204
					    &dev_priv->render_ring,
					    invalidate_domains, flush_domains);
		if (flush_rings & RING_BSD)
2205
			i915_gem_flush_ring(dev, file_priv,
2206 2207
					    &dev_priv->bsd_ring,
					    invalidate_domains, flush_domains);
2208 2209 2210 2211
		if (flush_rings & RING_BLT)
			i915_gem_flush_ring(dev, file_priv,
					    &dev_priv->blt_ring,
					    invalidate_domains, flush_domains);
2212
	}
2213 2214
}

2215 2216 2217 2218 2219
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static int
2220 2221
i915_gem_object_wait_rendering(struct drm_gem_object *obj,
			       bool interruptible)
2222 2223
{
	struct drm_device *dev = obj->dev;
2224
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2225 2226
	int ret;

2227 2228
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
2229
	 */
2230
	BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2231 2232 2233 2234 2235

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
	if (obj_priv->active) {
2236 2237 2238 2239 2240
		ret = i915_do_wait_request(dev,
					   obj_priv->last_rendering_seqno,
					   interruptible,
					   obj_priv->ring);
		if (ret)
2241 2242 2243 2244 2245 2246 2247 2248 2249
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
2250
int
2251 2252 2253
i915_gem_object_unbind(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
2254
	struct drm_i915_private *dev_priv = dev->dev_private;
2255
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
	int ret = 0;

	if (obj_priv->gtt_space == NULL)
		return 0;

	if (obj_priv->pin_count != 0) {
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2266 2267 2268
	/* blow away mappings if mapped through GTT */
	i915_gem_release_mmap(obj);

2269 2270 2271 2272 2273 2274
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
2275
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2276
	if (ret == -ERESTARTSYS)
2277
		return ret;
2278 2279 2280 2281
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */
2282 2283 2284 2285
	if (ret) {
		i915_gem_clflush_object(obj);
		obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
2286

2287 2288 2289 2290
	/* release the fence reg _after_ flushing */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
		i915_gem_clear_fence_reg(obj);

2291 2292
	drm_unbind_agp(obj_priv->agp_mem);
	drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2293

2294
	i915_gem_object_put_pages_gtt(obj);
2295

2296
	i915_gem_info_remove_gtt(dev_priv, obj_priv);
2297
	list_del_init(&obj_priv->mm_list);
2298 2299
	/* Avoid an unnecessary call to unbind on rebind. */
	obj_priv->map_and_fenceable = true;
2300

2301 2302
	drm_mm_put_block(obj_priv->gtt_space);
	obj_priv->gtt_space = NULL;
2303
	obj_priv->gtt_offset = 0;
2304

2305 2306 2307
	if (i915_gem_object_is_purgeable(obj_priv))
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
2308 2309
	trace_i915_gem_object_unbind(obj);

2310
	return ret;
2311 2312
}

2313 2314 2315
static int i915_ring_idle(struct drm_device *dev,
			  struct intel_ring_buffer *ring)
{
2316
	if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2317 2318
		return 0;

2319 2320 2321 2322 2323 2324 2325
	i915_gem_flush_ring(dev, NULL, ring,
			    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
	return i915_wait_request(dev,
				 i915_gem_next_request_seqno(dev, ring),
				 ring);
}

2326
int
2327 2328 2329 2330
i915_gpu_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	bool lists_empty;
2331
	int ret;
2332

2333
	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2334
		       list_empty(&dev_priv->mm.active_list));
2335 2336 2337 2338
	if (lists_empty)
		return 0;

	/* Flush everything onto the inactive list. */
2339
	ret = i915_ring_idle(dev, &dev_priv->render_ring);
2340 2341
	if (ret)
		return ret;
2342

2343 2344 2345
	ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
	if (ret)
		return ret;
2346

2347 2348 2349
	ret = i915_ring_idle(dev, &dev_priv->blt_ring);
	if (ret)
		return ret;
2350

2351
	return 0;
2352 2353
}

2354
static void sandybridge_write_fence_reg(struct drm_gem_object *obj)
2355 2356 2357
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2358
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2359
	u32 size = i915_gem_get_gtt_size(obj_priv);
2360 2361 2362
	int regnum = obj_priv->fence_reg;
	uint64_t val;

2363
	val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
}

2376
static void i965_write_fence_reg(struct drm_gem_object *obj)
2377 2378 2379
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2380
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2381
	u32 size = i915_gem_get_gtt_size(obj_priv);
2382 2383 2384
	int regnum = obj_priv->fence_reg;
	uint64_t val;

2385
	val = (uint64_t)((obj_priv->gtt_offset + size - 4096) &
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
}

2396
static void i915_write_fence_reg(struct drm_gem_object *obj)
2397 2398 2399
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2400
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2401 2402
	u32 size = i915_gem_get_gtt_size(obj_priv);
	uint32_t fence_reg, val, pitch_val;
2403
	int tile_width;
2404 2405

	if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2406 2407
	    (obj_priv->gtt_offset & (size - 1))) {
		WARN(1, "%s: object 0x%08x [fenceable? %d] not 1M or size (0x%08x) aligned [gtt_space offset=%lx, size=%lx]\n",
2408
		     __func__, obj_priv->gtt_offset, obj_priv->map_and_fenceable, size,
2409
		     obj_priv->gtt_space->start, obj_priv->gtt_space->size);
2410 2411 2412
		return;
	}

2413 2414 2415
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		tile_width = 128;
2416
	else
2417 2418 2419 2420 2421
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
	pitch_val = obj_priv->stride / tile_width;
	pitch_val = ffs(pitch_val) - 1;
2422

2423 2424 2425 2426 2427 2428
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
	else
		WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);

2429 2430 2431
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2432
	val |= I915_FENCE_SIZE_BITS(size);
2433 2434 2435
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2436 2437 2438
	fence_reg = obj_priv->fence_reg;
	if (fence_reg < 8)
		fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2439
	else
2440
		fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2441
	I915_WRITE(fence_reg, val);
2442 2443
}

2444
static void i830_write_fence_reg(struct drm_gem_object *obj)
2445 2446 2447
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2448
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2449
	u32 size = i915_gem_get_gtt_size(obj_priv);
2450 2451 2452
	int regnum = obj_priv->fence_reg;
	uint32_t val;
	uint32_t pitch_val;
2453
	uint32_t fence_size_bits;
2454

2455
	if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2456
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2457
		WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2458
		     __func__, obj_priv->gtt_offset);
2459 2460 2461
		return;
	}

2462 2463 2464 2465
	pitch_val = obj_priv->stride / 128;
	pitch_val = ffs(pitch_val) - 1;
	WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);

2466 2467 2468
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2469
	fence_size_bits = I830_FENCE_SIZE_BITS(size);
2470 2471
	WARN_ON(fence_size_bits & ~0x00000f00);
	val |= fence_size_bits;
2472 2473 2474 2475 2476 2477
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

	I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
}

2478 2479
static int i915_find_fence_reg(struct drm_device *dev,
			       bool interruptible)
2480 2481
{
	struct drm_i915_private *dev_priv = dev->dev_private;
2482 2483
	struct drm_i915_fence_reg *reg;
	struct drm_i915_gem_object *obj_priv = NULL;
2484 2485 2486 2487 2488 2489 2490 2491 2492
	int i, avail, ret;

	/* First try to find a free reg */
	avail = 0;
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			return i;

2493
		obj_priv = to_intel_bo(reg->obj);
2494 2495 2496 2497 2498 2499 2500 2501
		if (!obj_priv->pin_count)
		    avail++;
	}

	if (avail == 0)
		return -ENOSPC;

	/* None available, try to steal one or wait for a user to finish */
2502
	avail = I915_FENCE_REG_NONE;
2503 2504
	list_for_each_entry(reg, &dev_priv->mm.fence_list,
			    lru_list) {
2505
		obj_priv = to_intel_bo(reg->obj);
2506 2507 2508 2509
		if (obj_priv->pin_count)
			continue;

		/* found one! */
2510
		avail = obj_priv->fence_reg;
2511 2512 2513
		break;
	}

2514
	BUG_ON(avail == I915_FENCE_REG_NONE);
2515 2516 2517 2518 2519

	/* We only have a reference on obj from the active list. put_fence_reg
	 * might drop that one, causing a use-after-free in it. So hold a
	 * private reference to obj like the other callers of put_fence_reg
	 * (set_tiling ioctl) do. */
2520 2521 2522
	drm_gem_object_reference(&obj_priv->base);
	ret = i915_gem_object_put_fence_reg(&obj_priv->base, interruptible);
	drm_gem_object_unreference(&obj_priv->base);
2523 2524 2525
	if (ret != 0)
		return ret;

2526
	return avail;
2527 2528
}

2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
/**
 * i915_gem_object_get_fence_reg - set up a fence reg for an object
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2542
int
2543 2544
i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
			      bool interruptible)
2545 2546
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2547
	struct drm_i915_private *dev_priv = dev->dev_private;
2548
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2549
	struct drm_i915_fence_reg *reg = NULL;
2550
	int ret;
2551

2552 2553
	/* Just update our place in the LRU if our fence is getting used. */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2554 2555
		reg = &dev_priv->fence_regs[obj_priv->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2556 2557 2558
		return 0;
	}

2559 2560 2561 2562 2563
	switch (obj_priv->tiling_mode) {
	case I915_TILING_NONE:
		WARN(1, "allocating a fence for non-tiled object?\n");
		break;
	case I915_TILING_X:
2564 2565 2566 2567 2568
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (512 - 1)),
		     "object 0x%08x is X tiled but has non-512B pitch\n",
		     obj_priv->gtt_offset);
2569 2570
		break;
	case I915_TILING_Y:
2571 2572 2573 2574 2575
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (128 - 1)),
		     "object 0x%08x is Y tiled but has non-128B pitch\n",
		     obj_priv->gtt_offset);
2576 2577 2578
		break;
	}

2579
	ret = i915_find_fence_reg(dev, interruptible);
2580 2581
	if (ret < 0)
		return ret;
2582

2583 2584
	obj_priv->fence_reg = ret;
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2585
	list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2586

2587 2588
	reg->obj = obj;

2589 2590
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2591
		sandybridge_write_fence_reg(obj);
2592 2593 2594
		break;
	case 5:
	case 4:
2595
		i965_write_fence_reg(obj);
2596 2597
		break;
	case 3:
2598
		i915_write_fence_reg(obj);
2599 2600
		break;
	case 2:
2601
		i830_write_fence_reg(obj);
2602 2603
		break;
	}
2604

2605 2606 2607
	trace_i915_gem_object_get_fence(obj,
					obj_priv->fence_reg,
					obj_priv->tiling_mode);
C
Chris Wilson 已提交
2608

2609
	return 0;
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
static void
i915_gem_clear_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2623
	drm_i915_private_t *dev_priv = dev->dev_private;
2624
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2625 2626
	struct drm_i915_fence_reg *reg =
		&dev_priv->fence_regs[obj_priv->fence_reg];
2627
	uint32_t fence_reg;
2628

2629 2630
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2631 2632
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
			     (obj_priv->fence_reg * 8), 0);
2633 2634 2635
		break;
	case 5:
	case 4:
2636
		I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2637 2638
		break;
	case 3:
2639
		if (obj_priv->fence_reg >= 8)
2640
			fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2641
		else
2642 2643
	case 2:
			fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2644 2645

		I915_WRITE(fence_reg, 0);
2646
		break;
2647
	}
2648

2649
	reg->obj = NULL;
2650
	obj_priv->fence_reg = I915_FENCE_REG_NONE;
2651
	list_del_init(&reg->lru_list);
2652 2653
}

2654 2655 2656 2657
/**
 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
 * to the buffer to finish, and then resets the fence register.
 * @obj: tiled object holding a fence register.
2658
 * @bool: whether the wait upon the fence is interruptible
2659 2660 2661 2662 2663
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
int
2664 2665
i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
			      bool interruptible)
2666 2667
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2668
	struct drm_i915_private *dev_priv = dev->dev_private;
2669
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2670
	struct drm_i915_fence_reg *reg;
2671 2672 2673 2674

	if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
		return 0;

2675 2676 2677 2678 2679 2680
	/* If we've changed tiling, GTT-mappings of the object
	 * need to re-fault to ensure that the correct fence register
	 * setup is in place.
	 */
	i915_gem_release_mmap(obj);

2681 2682 2683 2684
	/* On the i915, GPU access to tiled buffers is via a fence,
	 * therefore we must wait for any outstanding access to complete
	 * before clearing the fence.
	 */
C
Chris Wilson 已提交
2685 2686
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
	if (reg->gpu) {
2687 2688
		int ret;

2689
		ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2690
		if (ret)
2691 2692
			return ret;

2693
		ret = i915_gem_object_wait_rendering(obj, interruptible);
2694
		if (ret)
2695
			return ret;
C
Chris Wilson 已提交
2696 2697

		reg->gpu = false;
2698 2699
	}

2700
	i915_gem_object_flush_gtt_write_domain(obj);
2701
	i915_gem_clear_fence_reg(obj);
2702 2703 2704 2705

	return 0;
}

2706 2707 2708 2709
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
2710 2711
i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
			    unsigned alignment,
2712
			    bool map_and_fenceable)
2713 2714 2715
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2716
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2717
	struct drm_mm_node *free_space;
2718
	gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2719
	u32 size, fence_size, fence_alignment, unfenced_alignment;
2720
	bool mappable, fenceable;
2721
	int ret;
2722

C
Chris Wilson 已提交
2723
	if (obj_priv->madv != I915_MADV_WILLNEED) {
2724 2725 2726 2727
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2728 2729
	fence_size = i915_gem_get_gtt_size(obj_priv);
	fence_alignment = i915_gem_get_gtt_alignment(obj_priv);
2730
	unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj_priv);
2731

2732
	if (alignment == 0)
2733 2734
		alignment = map_and_fenceable ? fence_alignment :
						unfenced_alignment;
2735
	if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2736 2737 2738 2739
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2740
	size = map_and_fenceable ? fence_size : obj->size;
2741

2742 2743 2744
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2745
	if (obj->size >
2746
	    (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2747 2748 2749 2750
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2751
 search_free:
2752
	if (map_and_fenceable)
2753 2754
		free_space =
			drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2755
						    size, alignment, 0,
2756 2757 2758 2759
						    dev_priv->mm.gtt_mappable_end,
						    0);
	else
		free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2760
						size, alignment, 0);
2761 2762

	if (free_space != NULL) {
2763
		if (map_and_fenceable)
2764 2765
			obj_priv->gtt_space =
				drm_mm_get_block_range_generic(free_space,
2766
							       size, alignment, 0,
2767 2768 2769 2770
							       dev_priv->mm.gtt_mappable_end,
							       0);
		else
			obj_priv->gtt_space =
2771
				drm_mm_get_block(free_space, size, alignment);
2772
	}
2773 2774 2775 2776
	if (obj_priv->gtt_space == NULL) {
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2777 2778
		ret = i915_gem_evict_something(dev, size, alignment,
					       map_and_fenceable);
2779
		if (ret)
2780
			return ret;
2781

2782 2783 2784
		goto search_free;
	}

2785
	ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2786 2787 2788
	if (ret) {
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2789 2790 2791

		if (ret == -ENOMEM) {
			/* first try to clear up some space from the GTT */
2792
			ret = i915_gem_evict_something(dev, size,
2793 2794
						       alignment,
						       map_and_fenceable);
2795 2796
			if (ret) {
				/* now try to shrink everyone else */
2797 2798 2799
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2800 2801 2802 2803 2804 2805 2806 2807
				}

				return ret;
			}

			goto search_free;
		}

2808 2809 2810 2811 2812 2813 2814
		return ret;
	}

	/* Create an AGP memory structure pointing at our pages, and bind it
	 * into the GTT.
	 */
	obj_priv->agp_mem = drm_agp_bind_pages(dev,
2815
					       obj_priv->pages,
2816
					       obj->size >> PAGE_SHIFT,
2817
					       obj_priv->gtt_space->start,
2818
					       obj_priv->agp_type);
2819
	if (obj_priv->agp_mem == NULL) {
2820
		i915_gem_object_put_pages_gtt(obj);
2821 2822
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2823

2824
		ret = i915_gem_evict_something(dev, size,
2825
					       alignment, map_and_fenceable);
2826
		if (ret)
2827 2828 2829
			return ret;

		goto search_free;
2830 2831
	}

2832 2833
	obj_priv->gtt_offset = obj_priv->gtt_space->start;

2834
	/* keep track of bounds object by adding it to the inactive list */
2835
	list_add_tail(&obj_priv->mm_list, &dev_priv->mm.inactive_list);
2836
	i915_gem_info_add_gtt(dev_priv, obj_priv);
2837

2838 2839 2840 2841
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2842 2843
	BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2844

2845
	trace_i915_gem_object_bind(obj, obj_priv->gtt_offset, map_and_fenceable);
C
Chris Wilson 已提交
2846

2847
	fenceable =
2848 2849 2850
		obj_priv->gtt_space->size == fence_size &&
		(obj_priv->gtt_space->start & (fence_alignment -1)) == 0;

2851
	mappable =
2852 2853
		obj_priv->gtt_offset + obj->size <= dev_priv->mm.gtt_mappable_end;

2854 2855
	obj_priv->map_and_fenceable = mappable && fenceable;

2856 2857 2858 2859 2860 2861
	return 0;
}

void
i915_gem_clflush_object(struct drm_gem_object *obj)
{
2862
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
2863 2864 2865 2866 2867

	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2868
	if (obj_priv->pages == NULL)
2869 2870
		return;

C
Chris Wilson 已提交
2871
	trace_i915_gem_object_clflush(obj);
2872

2873
	drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2874 2875
}

2876
/** Flushes any GPU write domain for the object if it's dirty. */
2877
static int
2878 2879
i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
				       bool pipelined)
2880 2881 2882 2883
{
	struct drm_device *dev = obj->dev;

	if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2884
		return 0;
2885 2886

	/* Queue the GPU write cache flushing we need. */
2887
	i915_gem_flush_ring(dev, NULL,
2888 2889
			    to_intel_bo(obj)->ring,
			    0, obj->write_domain);
2890
	BUG_ON(obj->write_domain);
C
Chris Wilson 已提交
2891

2892 2893 2894
	if (pipelined)
		return 0;

2895
	return i915_gem_object_wait_rendering(obj, true);
2896 2897 2898 2899 2900 2901
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
{
C
Chris Wilson 已提交
2902 2903
	uint32_t old_write_domain;

2904 2905 2906 2907 2908 2909 2910
	if (obj->write_domain != I915_GEM_DOMAIN_GTT)
		return;

	/* No actual flushing is required for the GTT write domain.   Writes
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 */
2911 2912
	i915_gem_release_mmap(obj);

C
Chris Wilson 已提交
2913
	old_write_domain = obj->write_domain;
2914
	obj->write_domain = 0;
C
Chris Wilson 已提交
2915 2916 2917 2918

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2919 2920 2921 2922 2923 2924
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
{
C
Chris Wilson 已提交
2925
	uint32_t old_write_domain;
2926 2927 2928 2929 2930

	if (obj->write_domain != I915_GEM_DOMAIN_CPU)
		return;

	i915_gem_clflush_object(obj);
2931
	intel_gtt_chipset_flush();
C
Chris Wilson 已提交
2932
	old_write_domain = obj->write_domain;
2933
	obj->write_domain = 0;
C
Chris Wilson 已提交
2934 2935 2936 2937

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2938 2939
}

2940 2941 2942 2943 2944 2945
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2946
int
2947 2948
i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
{
2949
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2950
	uint32_t old_write_domain, old_read_domains;
2951
	int ret;
2952

2953 2954 2955 2956
	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2957
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2958 2959 2960
	if (ret != 0)
		return ret;

2961
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2962

2963
	if (write) {
2964
		ret = i915_gem_object_wait_rendering(obj, true);
2965 2966 2967
		if (ret)
			return ret;
	}
2968

C
Chris Wilson 已提交
2969 2970 2971
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2972 2973 2974 2975 2976 2977
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
	if (write) {
2978
		obj->read_domains = I915_GEM_DOMAIN_GTT;
2979 2980
		obj->write_domain = I915_GEM_DOMAIN_GTT;
		obj_priv->dirty = 1;
2981 2982
	}

C
Chris Wilson 已提交
2983 2984 2985 2986
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2987 2988 2989
	return 0;
}

2990 2991 2992 2993 2994
/*
 * Prepare buffer for display plane. Use uninterruptible for possible flush
 * wait, as in modesetting process we're not supposed to be interrupted.
 */
int
2995 2996
i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
				     bool pipelined)
2997
{
2998
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2999
	uint32_t old_read_domains;
3000 3001 3002 3003 3004 3005
	int ret;

	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

3006
	ret = i915_gem_object_flush_gpu_write_domain(obj, true);
3007 3008
	if (ret)
		return ret;
3009

3010 3011 3012 3013
	/* Currently, we are always called from an non-interruptible context. */
	if (!pipelined) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
3014 3015 3016
			return ret;
	}

3017 3018
	i915_gem_object_flush_cpu_write_domain(obj);

3019
	old_read_domains = obj->read_domains;
3020
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
3021 3022 3023

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3024
					    obj->write_domain);
3025 3026 3027 3028

	return 0;
}

3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042
int
i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj,
			  bool interruptible)
{
	if (!obj->active)
		return 0;

	if (obj->base.write_domain & I915_GEM_GPU_DOMAINS)
		i915_gem_flush_ring(obj->base.dev, NULL, obj->ring,
				    0, obj->base.write_domain);

	return i915_gem_object_wait_rendering(&obj->base, interruptible);
}

3043 3044 3045 3046 3047 3048 3049 3050 3051
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
{
C
Chris Wilson 已提交
3052
	uint32_t old_write_domain, old_read_domains;
3053 3054
	int ret;

3055
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3056 3057
	if (ret != 0)
		return ret;
3058

3059
	i915_gem_object_flush_gtt_write_domain(obj);
3060

3061 3062
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
3063
	 */
3064
	i915_gem_object_set_to_full_cpu_read_domain(obj);
3065

3066
	if (write) {
3067
		ret = i915_gem_object_wait_rendering(obj, true);
3068 3069 3070 3071
		if (ret)
			return ret;
	}

C
Chris Wilson 已提交
3072 3073 3074
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

3075 3076
	/* Flush the CPU cache if it's still invalid. */
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3077 3078
		i915_gem_clflush_object(obj);

3079
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
3080 3081 3082 3083 3084
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3085 3086 3087 3088 3089 3090
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3091
		obj->read_domains = I915_GEM_DOMAIN_CPU;
3092 3093
		obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
3094

C
Chris Wilson 已提交
3095 3096 3097 3098
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3099 3100 3101
	return 0;
}

3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
3213
static void
3214
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj,
3215 3216
				  struct intel_ring_buffer *ring,
				  struct change_domains *cd)
3217
{
3218
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
3219 3220
	uint32_t			invalidate_domains = 0;
	uint32_t			flush_domains = 0;
3221

3222 3223 3224 3225
	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
3226 3227
	if (obj->pending_write_domain == 0)
		obj->pending_read_domains |= obj->read_domains;
3228 3229 3230 3231 3232 3233 3234

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
3235
	if (obj->write_domain &&
3236 3237
	    (obj->write_domain != obj->pending_read_domains ||
	     obj_priv->ring != ring)) {
3238
		flush_domains |= obj->write_domain;
3239 3240
		invalidate_domains |=
			obj->pending_read_domains & ~obj->write_domain;
3241 3242 3243 3244 3245
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
3246
	invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3247
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3248 3249
		i915_gem_clflush_object(obj);

3250 3251 3252 3253
	/* blow away mappings if mapped through GTT */
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_GTT)
		i915_gem_release_mmap(obj);

3254 3255 3256 3257 3258 3259 3260 3261
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->pending_write_domain == 0)
		obj->pending_write_domain = obj->write_domain;
3262

3263 3264
	cd->invalidate_domains |= invalidate_domains;
	cd->flush_domains |= flush_domains;
3265
	if (flush_domains & I915_GEM_GPU_DOMAINS)
3266
		cd->flush_rings |= obj_priv->ring->id;
3267
	if (invalidate_domains & I915_GEM_GPU_DOMAINS)
3268
		cd->flush_rings |= ring->id;
3269 3270 3271
}

/**
3272
 * Moves the object from a partially CPU read to a full one.
3273
 *
3274 3275
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3276
 */
3277 3278
static void
i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3279
{
3280
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3281

3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
	if (!obj_priv->page_cpu_valid)
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
	if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
		int i;

		for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
			if (obj_priv->page_cpu_valid[i])
				continue;
3293
			drm_clflush_pages(obj_priv->pages + i, 1);
3294 3295 3296 3297 3298 3299
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3300
	kfree(obj_priv->page_cpu_valid);
3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
	obj_priv->page_cpu_valid = NULL;
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
					  uint64_t offset, uint64_t size)
{
3320
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3321
	uint32_t old_read_domains;
3322
	int i, ret;
3323

3324 3325
	if (offset == 0 && size == obj->size)
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3326

3327
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3328
	if (ret != 0)
3329
		return ret;
3330 3331 3332 3333 3334 3335
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
	if (obj_priv->page_cpu_valid == NULL &&
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
		return 0;
3336

3337 3338 3339
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3340
	if (obj_priv->page_cpu_valid == NULL) {
3341 3342
		obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
						   GFP_KERNEL);
3343 3344 3345 3346
		if (obj_priv->page_cpu_valid == NULL)
			return -ENOMEM;
	} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3347 3348 3349 3350

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3351 3352
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3353 3354 3355
		if (obj_priv->page_cpu_valid[i])
			continue;

3356
		drm_clflush_pages(obj_priv->pages + i, 1);
3357 3358 3359 3360

		obj_priv->page_cpu_valid[i] = 1;
	}

3361 3362 3363 3364 3365
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

C
Chris Wilson 已提交
3366
	old_read_domains = obj->read_domains;
3367 3368
	obj->read_domains |= I915_GEM_DOMAIN_CPU;

C
Chris Wilson 已提交
3369 3370 3371 3372
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);

3373 3374 3375 3376
	return 0;
}

static int
3377 3378 3379 3380
i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
				   struct drm_file *file_priv,
				   struct drm_i915_gem_exec_object2 *entry,
				   struct drm_i915_gem_relocation_entry *reloc)
3381
{
3382
	struct drm_device *dev = obj->base.dev;
3383 3384 3385
	struct drm_gem_object *target_obj;
	uint32_t target_offset;
	int ret = -EINVAL;
3386

3387 3388 3389 3390
	target_obj = drm_gem_object_lookup(dev, file_priv,
					   reloc->target_handle);
	if (target_obj == NULL)
		return -ENOENT;
3391

3392
	target_offset = to_intel_bo(target_obj)->gtt_offset;
J
Jesse Barnes 已提交
3393

3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
#if WATCH_RELOC
	DRM_INFO("%s: obj %p offset %08x target %d "
		 "read %08x write %08x gtt %08x "
		 "presumed %08x delta %08x\n",
		 __func__,
		 obj,
		 (int) reloc->offset,
		 (int) reloc->target_handle,
		 (int) reloc->read_domains,
		 (int) reloc->write_domain,
		 (int) target_offset,
		 (int) reloc->presumed_offset,
		 reloc->delta);
#endif
3408

3409 3410 3411 3412 3413 3414 3415 3416
	/* The target buffer should have appeared before us in the
	 * exec_object list, so it should have a GTT space bound by now.
	 */
	if (target_offset == 0) {
		DRM_ERROR("No GTT space found for object %d\n",
			  reloc->target_handle);
		goto err;
	}
3417

3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
	/* Validate that the target is in a valid r/w GPU domain */
	if (reloc->write_domain & (reloc->write_domain - 1)) {
		DRM_ERROR("reloc with multiple write domains: "
			  "obj %p target %d offset %d "
			  "read %08x write %08x",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
		goto err;
	}
	if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
	    reloc->read_domains & I915_GEM_DOMAIN_CPU) {
		DRM_ERROR("reloc with read/write CPU domains: "
			  "obj %p target %d offset %d "
			  "read %08x write %08x",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->read_domains,
			  reloc->write_domain);
		goto err;
	}
	if (reloc->write_domain && target_obj->pending_write_domain &&
	    reloc->write_domain != target_obj->pending_write_domain) {
		DRM_ERROR("Write domain conflict: "
			  "obj %p target %d offset %d "
			  "new %08x old %08x\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  reloc->write_domain,
			  target_obj->pending_write_domain);
		goto err;
	}
3451

3452 3453
	target_obj->pending_read_domains |= reloc->read_domains;
	target_obj->pending_write_domain |= reloc->write_domain;
3454

3455 3456 3457 3458 3459
	/* If the relocation already has the right value in it, no
	 * more work needs to be done.
	 */
	if (target_offset == reloc->presumed_offset)
		goto out;
3460

3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476
	/* Check that the relocation address is valid... */
	if (reloc->offset > obj->base.size - 4) {
		DRM_ERROR("Relocation beyond object bounds: "
			  "obj %p target %d offset %d size %d.\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset,
			  (int) obj->base.size);
		goto err;
	}
	if (reloc->offset & 3) {
		DRM_ERROR("Relocation not 4-byte aligned: "
			  "obj %p target %d offset %d.\n",
			  obj, reloc->target_handle,
			  (int) reloc->offset);
		goto err;
	}
3477

3478 3479 3480 3481 3482 3483 3484 3485 3486
	/* and points to somewhere within the target object. */
	if (reloc->delta >= target_obj->size) {
		DRM_ERROR("Relocation beyond target object bounds: "
			  "obj %p target %d delta %d size %d.\n",
			  obj, reloc->target_handle,
			  (int) reloc->delta,
			  (int) target_obj->size);
		goto err;
	}
3487

3488 3489 3490 3491
	reloc->delta += target_offset;
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
		uint32_t page_offset = reloc->offset & ~PAGE_MASK;
		char *vaddr;
3492

3493 3494 3495 3496 3497 3498 3499
		vaddr = kmap_atomic(obj->pages[reloc->offset >> PAGE_SHIFT]);
		*(uint32_t *)(vaddr + page_offset) = reloc->delta;
		kunmap_atomic(vaddr);
	} else {
		struct drm_i915_private *dev_priv = dev->dev_private;
		uint32_t __iomem *reloc_entry;
		void __iomem *reloc_page;
3500

3501 3502 3503
		ret = i915_gem_object_set_to_gtt_domain(&obj->base, 1);
		if (ret)
			goto err;
3504

3505 3506 3507 3508 3509 3510 3511 3512 3513
		/* Map the page containing the relocation we're going to perform.  */
		reloc->offset += obj->gtt_offset;
		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
						      reloc->offset & PAGE_MASK);
		reloc_entry = (uint32_t __iomem *)
			(reloc_page + (reloc->offset & ~PAGE_MASK));
		iowrite32(reloc->delta, reloc_entry);
		io_mapping_unmap_atomic(reloc_page);
	}
3514

3515 3516
	/* and update the user's relocation entry */
	reloc->presumed_offset = target_offset;
3517

3518 3519 3520 3521 3522 3523
out:
	ret = 0;
err:
	drm_gem_object_unreference(target_obj);
	return ret;
}
3524

3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
static int
i915_gem_execbuffer_relocate_object(struct drm_i915_gem_object *obj,
				    struct drm_file *file_priv,
				    struct drm_i915_gem_exec_object2 *entry)
{
	struct drm_i915_gem_relocation_entry __user *user_relocs;
	int i, ret;

	user_relocs = (void __user *)(uintptr_t)entry->relocs_ptr;
	for (i = 0; i < entry->relocation_count; i++) {
		struct drm_i915_gem_relocation_entry reloc;

		if (__copy_from_user_inatomic(&reloc,
					      user_relocs+i,
					      sizeof(reloc)))
			return -EFAULT;

		ret = i915_gem_execbuffer_relocate_entry(obj, file_priv, entry, &reloc);
		if (ret)
			return ret;
3545

3546
		if (__copy_to_user_inatomic(&user_relocs[i].presumed_offset,
3547 3548 3549
					    &reloc.presumed_offset,
					    sizeof(reloc.presumed_offset)))
			return -EFAULT;
3550 3551
	}

3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569
	return 0;
}

static int
i915_gem_execbuffer_relocate_object_slow(struct drm_i915_gem_object *obj,
					 struct drm_file *file_priv,
					 struct drm_i915_gem_exec_object2 *entry,
					 struct drm_i915_gem_relocation_entry *relocs)
{
	int i, ret;

	for (i = 0; i < entry->relocation_count; i++) {
		ret = i915_gem_execbuffer_relocate_entry(obj, file_priv, entry, &relocs[i]);
		if (ret)
			return ret;
	}

	return 0;
3570 3571
}

3572
static int
3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
i915_gem_execbuffer_relocate(struct drm_device *dev,
			     struct drm_file *file,
			     struct drm_gem_object **object_list,
			     struct drm_i915_gem_exec_object2 *exec_list,
			     int count)
{
	int i, ret;

	for (i = 0; i < count; i++) {
		struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
		obj->base.pending_read_domains = 0;
		obj->base.pending_write_domain = 0;
		ret = i915_gem_execbuffer_relocate_object(obj, file,
							  &exec_list[i]);
		if (ret)
			return ret;
	}

	return 0;
3592 3593
}

3594
static int
3595 3596 3597 3598 3599
i915_gem_execbuffer_reserve(struct drm_device *dev,
			    struct drm_file *file,
			    struct drm_gem_object **object_list,
			    struct drm_i915_gem_exec_object2 *exec_list,
			    int count)
3600
{
3601 3602
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret, i, retry;
3603

3604
	/* attempt to pin all of the buffers into the GTT */
3605 3606
	retry = 0;
	do {
3607 3608 3609
		ret = 0;
		for (i = 0; i < count; i++) {
			struct drm_i915_gem_exec_object2 *entry = &exec_list[i];
3610
			struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
3611 3612 3613 3614
			bool need_fence =
				entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
				obj->tiling_mode != I915_TILING_NONE;

3615 3616 3617 3618
			/* g33/pnv can't fence buffers in the unmappable part */
			bool need_mappable =
				entry->relocation_count ? true : need_fence;

3619
			/* Check fence reg constraints and rebind if necessary */
3620
			if (need_mappable && !obj->map_and_fenceable) {
3621 3622 3623 3624
				ret = i915_gem_object_unbind(&obj->base);
				if (ret)
					break;
			}
3625

3626
			ret = i915_gem_object_pin(&obj->base,
3627
						  entry->alignment,
3628
						  need_mappable);
3629 3630
			if (ret)
				break;
3631

3632 3633 3634 3635 3636 3637 3638 3639 3640 3641
			/*
			 * Pre-965 chips need a fence register set up in order
			 * to properly handle blits to/from tiled surfaces.
			 */
			if (need_fence) {
				ret = i915_gem_object_get_fence_reg(&obj->base, true);
				if (ret) {
					i915_gem_object_unpin(&obj->base);
					break;
				}
3642

3643 3644
				dev_priv->fence_regs[obj->fence_reg].gpu = true;
			}
3645

3646
			entry->offset = obj->gtt_offset;
3647 3648
		}

3649 3650 3651
		while (i--)
			i915_gem_object_unpin(object_list[i]);

3652
		if (ret != -ENOSPC || retry > 1)
3653 3654
			return ret;

3655 3656 3657 3658
		/* First attempt, just clear anything that is purgeable.
		 * Second attempt, clear the entire GTT.
		 */
		ret = i915_gem_evict_everything(dev, retry == 0);
3659 3660
		if (ret)
			return ret;
3661

3662 3663
		retry++;
	} while (1);
3664 3665
}

3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
static int
i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
				  struct drm_file *file,
				  struct drm_gem_object **object_list,
				  struct drm_i915_gem_exec_object2 *exec_list,
				  int count)
{
	struct drm_i915_gem_relocation_entry *reloc;
	int i, total, ret;

	for (i = 0; i < count; i++) {
		struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
		obj->in_execbuffer = false;
	}

	mutex_unlock(&dev->struct_mutex);

	total = 0;
	for (i = 0; i < count; i++)
		total += exec_list[i].relocation_count;

	reloc = drm_malloc_ab(total, sizeof(*reloc));
	if (reloc == NULL) {
		mutex_lock(&dev->struct_mutex);
		return -ENOMEM;
	}

	total = 0;
	for (i = 0; i < count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

		if (copy_from_user(reloc+total, user_relocs,
				   exec_list[i].relocation_count *
				   sizeof(*reloc))) {
			ret = -EFAULT;
			mutex_lock(&dev->struct_mutex);
			goto err;
		}

		total += exec_list[i].relocation_count;
	}

	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		mutex_lock(&dev->struct_mutex);
		goto err;
	}

	ret = i915_gem_execbuffer_reserve(dev, file,
					  object_list, exec_list,
					  count);
	if (ret)
		goto err;

	total = 0;
	for (i = 0; i < count; i++) {
		struct drm_i915_gem_object *obj = to_intel_bo(object_list[i]);
		obj->base.pending_read_domains = 0;
		obj->base.pending_write_domain = 0;
		ret = i915_gem_execbuffer_relocate_object_slow(obj, file,
							       &exec_list[i],
							       reloc + total);
		if (ret)
			goto err;

		total += exec_list[i].relocation_count;
	}

	/* Leave the user relocations as are, this is the painfully slow path,
	 * and we want to avoid the complication of dropping the lock whilst
	 * having buffers reserved in the aperture and so causing spurious
	 * ENOSPC for random operations.
	 */

err:
	drm_free_large(reloc);
	return ret;
}

3747 3748 3749 3750 3751 3752 3753
static int
i915_gem_execbuffer_move_to_gpu(struct drm_device *dev,
				struct drm_file *file,
				struct intel_ring_buffer *ring,
				struct drm_gem_object **objects,
				int count)
{
3754
	struct change_domains cd;
3755 3756
	int ret, i;

3757 3758 3759
	cd.invalidate_domains = 0;
	cd.flush_domains = 0;
	cd.flush_rings = 0;
3760
	for (i = 0; i < count; i++)
3761
		i915_gem_object_set_to_gpu_domain(objects[i], ring, &cd);
3762

3763
	if (cd.invalidate_domains | cd.flush_domains) {
3764 3765 3766
#if WATCH_EXEC
		DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
			  __func__,
3767 3768
			 cd.invalidate_domains,
			 cd.flush_domains);
3769 3770
#endif
		i915_gem_flush(dev, file,
3771 3772 3773
			       cd.invalidate_domains,
			       cd.flush_domains,
			       cd.flush_rings);
3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788
	}

	for (i = 0; i < count; i++) {
		struct drm_i915_gem_object *obj = to_intel_bo(objects[i]);
		/* XXX replace with semaphores */
		if (obj->ring && ring != obj->ring) {
			ret = i915_gem_object_wait_rendering(&obj->base, true);
			if (ret)
				return ret;
		}
	}

	return 0;
}

3789 3790 3791
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3792 3793 3794 3795
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3796 3797 3798
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3799
static int
3800
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3801
{
3802 3803
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3804
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3805 3806 3807 3808
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3809

3810
	spin_lock(&file_priv->mm.lock);
3811
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3812 3813
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3814

3815 3816
		ring = request->ring;
		seqno = request->seqno;
3817
	}
3818
	spin_unlock(&file_priv->mm.lock);
3819

3820 3821
	if (seqno == 0)
		return 0;
3822

3823
	ret = 0;
3824
	if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3825 3826 3827 3828 3829
		/* And wait for the seqno passing without holding any locks and
		 * causing extra latency for others. This is safe as the irq
		 * generation is designed to be run atomically and so is
		 * lockless.
		 */
3830
		ring->user_irq_get(ring);
3831
		ret = wait_event_interruptible(ring->irq_queue,
3832
					       i915_seqno_passed(ring->get_seqno(ring), seqno)
3833
					       || atomic_read(&dev_priv->mm.wedged));
3834
		ring->user_irq_put(ring);
3835

3836 3837
		if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
			ret = -EIO;
3838 3839
	}

3840 3841
	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3842 3843 3844 3845

	return ret;
}

3846
static int
3847 3848
i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec,
			  uint64_t exec_offset)
3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863
{
	uint32_t exec_start, exec_len;

	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
	exec_len = (uint32_t) exec->batch_len;

	if ((exec_start | exec_len) & 0x7)
		return -EINVAL;

	if (!exec_start)
		return -EINVAL;

	return 0;
}

3864
static int
3865 3866
validate_exec_list(struct drm_i915_gem_exec_object2 *exec,
		   int count)
3867
{
3868
	int i;
3869

3870 3871
	for (i = 0; i < count; i++) {
		char __user *ptr = (char __user *)(uintptr_t)exec[i].relocs_ptr;
3872
		int length; /* limited by fault_in_pages_readable() */
3873

3874 3875 3876 3877
		/* First check for malicious input causing overflow */
		if (exec[i].relocation_count >
		    INT_MAX / sizeof(struct drm_i915_gem_relocation_entry))
			return -EINVAL;
3878

3879 3880
		length = exec[i].relocation_count *
			sizeof(struct drm_i915_gem_relocation_entry);
3881 3882
		if (!access_ok(VERIFY_READ, ptr, length))
			return -EFAULT;
3883

3884 3885 3886 3887
		/* we may also need to update the presumed offsets */
		if (!access_ok(VERIFY_WRITE, ptr, length))
			return -EFAULT;

3888 3889
		if (fault_in_pages_readable(ptr, length))
			return -EFAULT;
3890 3891
	}

3892
	return 0;
3893 3894
}

C
Chris Wilson 已提交
3895
static int
J
Jesse Barnes 已提交
3896
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3897
		       struct drm_file *file,
J
Jesse Barnes 已提交
3898 3899
		       struct drm_i915_gem_execbuffer2 *args,
		       struct drm_i915_gem_exec_object2 *exec_list)
3900 3901 3902 3903
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object **object_list = NULL;
	struct drm_gem_object *batch_obj;
3904
	struct drm_clip_rect *cliprects = NULL;
C
Chris Wilson 已提交
3905
	struct drm_i915_gem_request *request = NULL;
3906
	int ret, i, flips;
3907 3908
	uint64_t exec_offset;

3909 3910
	struct intel_ring_buffer *ring = NULL;

3911 3912 3913 3914
	ret = i915_gem_check_is_wedged(dev);
	if (ret)
		return ret;

3915 3916 3917 3918
	ret = validate_exec_list(exec_list, args->buffer_count);
	if (ret)
		return ret;

3919 3920 3921 3922
#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif
3923 3924 3925 3926 3927 3928
	switch (args->flags & I915_EXEC_RING_MASK) {
	case I915_EXEC_DEFAULT:
	case I915_EXEC_RENDER:
		ring = &dev_priv->render_ring;
		break;
	case I915_EXEC_BSD:
3929
		if (!HAS_BSD(dev)) {
3930
			DRM_ERROR("execbuf with invalid ring (BSD)\n");
3931 3932 3933
			return -EINVAL;
		}
		ring = &dev_priv->bsd_ring;
3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945
		break;
	case I915_EXEC_BLT:
		if (!HAS_BLT(dev)) {
			DRM_ERROR("execbuf with invalid ring (BLT)\n");
			return -EINVAL;
		}
		ring = &dev_priv->blt_ring;
		break;
	default:
		DRM_ERROR("execbuf with unknown ring: %d\n",
			  (int)(args->flags & I915_EXEC_RING_MASK));
		return -EINVAL;
3946 3947
	}

3948 3949 3950 3951
	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}
3952
	object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
J
Jesse Barnes 已提交
3953 3954
	if (object_list == NULL) {
		DRM_ERROR("Failed to allocate object list for %d buffers\n",
3955 3956 3957 3958 3959
			  args->buffer_count);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3960
	if (args->num_cliprects != 0) {
3961 3962
		cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
				    GFP_KERNEL);
3963 3964
		if (cliprects == NULL) {
			ret = -ENOMEM;
3965
			goto pre_mutex_err;
3966
		}
3967 3968 3969 3970 3971 3972 3973 3974

		ret = copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)
				     (uintptr_t) args->cliprects_ptr,
				     sizeof(*cliprects) * args->num_cliprects);
		if (ret != 0) {
			DRM_ERROR("copy %d cliprects failed: %d\n",
				  args->num_cliprects, ret);
3975
			ret = -EFAULT;
3976 3977 3978 3979
			goto pre_mutex_err;
		}
	}

C
Chris Wilson 已提交
3980 3981 3982
	request = kzalloc(sizeof(*request), GFP_KERNEL);
	if (request == NULL) {
		ret = -ENOMEM;
3983
		goto pre_mutex_err;
C
Chris Wilson 已提交
3984
	}
3985

3986 3987
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3988
		goto pre_mutex_err;
3989 3990 3991

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
3992 3993
		ret = -EBUSY;
		goto pre_mutex_err;
3994 3995
	}

3996
	/* Look up object handles */
3997
	for (i = 0; i < args->buffer_count; i++) {
3998 3999
		struct drm_i915_gem_object *obj_priv;

4000
		object_list[i] = drm_gem_object_lookup(dev, file,
4001 4002 4003 4004
						       exec_list[i].handle);
		if (object_list[i] == NULL) {
			DRM_ERROR("Invalid object handle %d at index %d\n",
				   exec_list[i].handle, i);
4005 4006
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
4007
			ret = -ENOENT;
4008 4009
			goto err;
		}
4010

4011
		obj_priv = to_intel_bo(object_list[i]);
4012 4013 4014
		if (obj_priv->in_execbuffer) {
			DRM_ERROR("Object %p appears more than once in object list\n",
				   object_list[i]);
4015 4016
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
4017
			ret = -EINVAL;
4018 4019 4020
			goto err;
		}
		obj_priv->in_execbuffer = true;
4021
	}
4022

4023
	/* Move the objects en-masse into the GTT, evicting if necessary. */
4024 4025 4026
	ret = i915_gem_execbuffer_reserve(dev, file,
					  object_list, exec_list,
					  args->buffer_count);
4027 4028
	if (ret)
		goto err;
4029

4030
	/* The objects are in their final locations, apply the relocations. */
4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041
	ret = i915_gem_execbuffer_relocate(dev, file,
					   object_list, exec_list,
					   args->buffer_count);
	if (ret) {
		if (ret == -EFAULT) {
			ret = i915_gem_execbuffer_relocate_slow(dev, file,
								object_list,
								exec_list,
								args->buffer_count);
			BUG_ON(!mutex_is_locked(&dev->struct_mutex));
		}
4042
		if (ret)
4043
			goto err;
4044 4045 4046 4047
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	batch_obj = object_list[args->buffer_count-1];
4048 4049 4050 4051 4052 4053
	if (batch_obj->pending_write_domain) {
		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
		ret = -EINVAL;
		goto err;
	}
	batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
4054

4055 4056 4057
	/* Sanity check the batch buffer */
	exec_offset = to_intel_bo(batch_obj)->gtt_offset;
	ret = i915_gem_check_execbuffer(args, exec_offset);
4058 4059 4060 4061 4062
	if (ret != 0) {
		DRM_ERROR("execbuf with invalid offset/length\n");
		goto err;
	}

4063 4064 4065 4066
	ret = i915_gem_execbuffer_move_to_gpu(dev, file, ring,
					      object_list, args->buffer_count);
	if (ret)
		goto err;
4067 4068 4069 4070 4071 4072 4073 4074 4075

#if WATCH_COHERENCY
	for (i = 0; i < args->buffer_count; i++) {
		i915_gem_object_check_coherency(object_list[i],
						exec_list[i].handle);
	}
#endif

#if WATCH_EXEC
4076
	i915_gem_dump_object(batch_obj,
4077 4078 4079 4080 4081
			      args->batch_len,
			      __func__,
			      ~0);
#endif

4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102
	/* Check for any pending flips. As we only maintain a flip queue depth
	 * of 1, we can simply insert a WAIT for the next display flip prior
	 * to executing the batch and avoid stalling the CPU.
	 */
	flips = 0;
	for (i = 0; i < args->buffer_count; i++) {
		if (object_list[i]->write_domain)
			flips |= atomic_read(&to_intel_bo(object_list[i])->pending_flip);
	}
	if (flips) {
		int plane, flip_mask;

		for (plane = 0; flips >> plane; plane++) {
			if (((flips >> plane) & 1) == 0)
				continue;

			if (plane)
				flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
			else
				flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;

4103 4104 4105 4106
			ret = intel_ring_begin(ring, 2);
			if (ret)
				goto err;

4107 4108 4109
			intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
			intel_ring_emit(ring, MI_NOOP);
			intel_ring_advance(ring);
4110 4111 4112
		}
	}

4113
	/* Exec the batchbuffer */
4114
	ret = ring->dispatch_execbuffer(ring, args, cliprects, exec_offset);
4115 4116 4117 4118 4119 4120 4121 4122
	if (ret) {
		DRM_ERROR("dispatch failed %d\n", ret);
		goto err;
	}

	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

4123 4124 4125
		obj->read_domains = obj->pending_read_domains;
		obj->write_domain = obj->pending_write_domain;

4126
		i915_gem_object_move_to_active(obj, ring);
4127 4128 4129 4130
		if (obj->write_domain) {
			struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
			obj_priv->dirty = 1;
			list_move_tail(&obj_priv->gpu_write_list,
4131
				       &ring->gpu_write_list);
4132 4133 4134 4135 4136 4137
			intel_mark_busy(dev, obj);
		}

		trace_i915_gem_object_change_domain(obj,
						    obj->read_domains,
						    obj->write_domain);
4138 4139
	}

4140 4141 4142 4143 4144 4145
	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires
	 */
	i915_retire_commands(dev, ring);

4146
	if (i915_add_request(dev, file, request, ring))
4147
		i915_gem_next_request_seqno(dev, ring);
4148 4149
	else
		request = NULL;
4150 4151

err:
4152
	for (i = 0; i < args->buffer_count; i++) {
4153 4154 4155 4156
		if (object_list[i] == NULL)
		    break;

		to_intel_bo(object_list[i])->in_execbuffer = false;
4157
		drm_gem_object_unreference(object_list[i]);
4158
	}
4159 4160 4161

	mutex_unlock(&dev->struct_mutex);

4162
pre_mutex_err:
4163
	drm_free_large(object_list);
4164
	kfree(cliprects);
C
Chris Wilson 已提交
4165
	kfree(request);
4166 4167 4168 4169

	return ret;
}

J
Jesse Barnes 已提交
4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
4222
		if (INTEL_INFO(dev)->gen < 4)
J
Jesse Barnes 已提交
4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
4236
	exec2.flags = I915_EXEC_RENDER;
J
Jesse Barnes 已提交
4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314

	ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}

4315
int
4316
i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment,
4317
		    bool map_and_fenceable)
4318 4319
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
4320
	struct drm_i915_private *dev_priv = dev->dev_private;
4321
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4322 4323
	int ret;

4324
	BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4325
	BUG_ON(map_and_fenceable && !map_and_fenceable);
4326
	WARN_ON(i915_verify_lists(dev));
4327 4328

	if (obj_priv->gtt_space != NULL) {
4329
		if ((alignment && obj_priv->gtt_offset & (alignment - 1)) ||
4330
		    (map_and_fenceable && !obj_priv->map_and_fenceable)) {
4331 4332
			WARN(obj_priv->pin_count,
			     "bo is already pinned with incorrect alignment:"
4333 4334
			     " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
			     " obj->map_and_fenceable=%d\n",
4335
			     obj_priv->gtt_offset, alignment,
4336 4337
			     map_and_fenceable,
			     obj_priv->map_and_fenceable);
4338 4339 4340 4341 4342 4343
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

4344
	if (obj_priv->gtt_space == NULL) {
4345
		ret = i915_gem_object_bind_to_gtt(obj, alignment,
4346
						  map_and_fenceable);
4347
		if (ret)
4348
			return ret;
4349
	}
J
Jesse Barnes 已提交
4350

4351
	if (obj_priv->pin_count++ == 0) {
4352
		i915_gem_info_add_pin(dev_priv, obj_priv, map_and_fenceable);
C
Chris Wilson 已提交
4353
		if (!obj_priv->active)
4354
			list_move_tail(&obj_priv->mm_list,
C
Chris Wilson 已提交
4355
				       &dev_priv->mm.pinned_list);
4356
	}
4357
	BUG_ON(!obj_priv->pin_mappable && map_and_fenceable);
4358

4359
	WARN_ON(i915_verify_lists(dev));
4360 4361 4362 4363 4364 4365 4366 4367
	return 0;
}

void
i915_gem_object_unpin(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
4368
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4369

4370
	WARN_ON(i915_verify_lists(dev));
4371
	BUG_ON(obj_priv->pin_count == 0);
4372 4373
	BUG_ON(obj_priv->gtt_space == NULL);

4374
	if (--obj_priv->pin_count == 0) {
C
Chris Wilson 已提交
4375
		if (!obj_priv->active)
4376
			list_move_tail(&obj_priv->mm_list,
4377
				       &dev_priv->mm.inactive_list);
4378
		i915_gem_info_remove_pin(dev_priv, obj_priv);
4379
	}
4380
	WARN_ON(i915_verify_lists(dev));
4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

4392 4393 4394
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
4395 4396 4397

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
4398 4399
		ret = -ENOENT;
		goto unlock;
4400
	}
4401
	obj_priv = to_intel_bo(obj);
4402

C
Chris Wilson 已提交
4403 4404
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
4405 4406
		ret = -EINVAL;
		goto out;
4407 4408
	}

J
Jesse Barnes 已提交
4409 4410 4411
	if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4412 4413
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
4414 4415 4416 4417 4418
	}

	obj_priv->user_pin_count++;
	obj_priv->pin_filp = file_priv;
	if (obj_priv->user_pin_count == 1) {
4419
		ret = i915_gem_object_pin(obj, args->alignment, true);
4420 4421
		if (ret)
			goto out;
4422 4423 4424 4425 4426
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
4427
	i915_gem_object_flush_cpu_write_domain(obj);
4428
	args->offset = obj_priv->gtt_offset;
4429
out:
4430
	drm_gem_object_unreference(obj);
4431
unlock:
4432
	mutex_unlock(&dev->struct_mutex);
4433
	return ret;
4434 4435 4436 4437 4438 4439 4440 4441
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
J
Jesse Barnes 已提交
4442
	struct drm_i915_gem_object *obj_priv;
4443
	int ret;
4444

4445 4446 4447
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
4448 4449 4450

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
4451 4452
		ret = -ENOENT;
		goto unlock;
4453
	}
4454
	obj_priv = to_intel_bo(obj);
4455

J
Jesse Barnes 已提交
4456 4457 4458
	if (obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4459 4460
		ret = -EINVAL;
		goto out;
J
Jesse Barnes 已提交
4461 4462 4463 4464 4465 4466
	}
	obj_priv->user_pin_count--;
	if (obj_priv->user_pin_count == 0) {
		obj_priv->pin_filp = NULL;
		i915_gem_object_unpin(obj);
	}
4467

4468
out:
4469
	drm_gem_object_unreference(obj);
4470
unlock:
4471
	mutex_unlock(&dev->struct_mutex);
4472
	return ret;
4473 4474 4475 4476 4477 4478 4479 4480 4481
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_busy *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4482 4483
	int ret;

4484
	ret = i915_mutex_lock_interruptible(dev);
4485
	if (ret)
4486
		return ret;
4487 4488 4489

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
4490 4491
		ret = -ENOENT;
		goto unlock;
4492
	}
4493
	obj_priv = to_intel_bo(obj);
4494

4495 4496 4497 4498
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4499
	 */
4500 4501 4502 4503 4504 4505 4506
	args->busy = obj_priv->active;
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
4507 4508
		if (obj->write_domain & I915_GEM_GPU_DOMAINS)
			i915_gem_flush_ring(dev, file_priv,
4509 4510
					    obj_priv->ring,
					    0, obj->write_domain);
4511 4512 4513 4514 4515 4516 4517 4518 4519 4520

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
		i915_gem_retire_requests_ring(dev, obj_priv->ring);

		args->busy = obj_priv->active;
	}
4521 4522

	drm_gem_object_unreference(obj);
4523
unlock:
4524
	mutex_unlock(&dev->struct_mutex);
4525
	return ret;
4526 4527 4528 4529 4530 4531 4532 4533 4534
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

4535 4536 4537 4538 4539 4540 4541
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4542
	int ret;
4543 4544 4545 4546 4547 4548 4549 4550 4551

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4552 4553 4554 4555
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4556 4557
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
4558 4559
		ret = -ENOENT;
		goto unlock;
4560
	}
4561
	obj_priv = to_intel_bo(obj);
4562 4563

	if (obj_priv->pin_count) {
4564 4565
		ret = -EINVAL;
		goto out;
4566 4567
	}

C
Chris Wilson 已提交
4568 4569
	if (obj_priv->madv != __I915_MADV_PURGED)
		obj_priv->madv = args->madv;
4570

4571 4572 4573 4574 4575
	/* if the object is no longer bound, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj_priv) &&
	    obj_priv->gtt_space == NULL)
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4576 4577
	args->retained = obj_priv->madv != __I915_MADV_PURGED;

4578
out:
4579
	drm_gem_object_unreference(obj);
4580
unlock:
4581
	mutex_unlock(&dev->struct_mutex);
4582
	return ret;
4583 4584
}

4585 4586 4587
struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
					      size_t size)
{
4588
	struct drm_i915_private *dev_priv = dev->dev_private;
4589
	struct drm_i915_gem_object *obj;
4590

4591 4592 4593
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
4594

4595 4596 4597 4598
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
4599

4600 4601
	i915_gem_info_add_obj(dev_priv, size);

4602 4603
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4604

4605
	obj->agp_type = AGP_USER_MEMORY;
4606
	obj->base.driver_private = NULL;
4607
	obj->fence_reg = I915_FENCE_REG_NONE;
4608
	INIT_LIST_HEAD(&obj->mm_list);
D
Daniel Vetter 已提交
4609
	INIT_LIST_HEAD(&obj->gtt_list);
4610
	INIT_LIST_HEAD(&obj->ring_list);
4611 4612
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
4613 4614
	/* Avoid an unnecessary call to unbind on the first bind. */
	obj->map_and_fenceable = true;
4615

4616 4617 4618 4619 4620 4621
	return &obj->base;
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
4622

4623 4624 4625
	return 0;
}

4626
static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4627
{
4628
	struct drm_device *dev = obj->dev;
4629
	drm_i915_private_t *dev_priv = dev->dev_private;
4630
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4631
	int ret;
4632

4633 4634
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
4635
		list_move(&obj_priv->mm_list,
4636 4637 4638
			  &dev_priv->mm.deferred_free_list);
		return;
	}
4639

C
Chris Wilson 已提交
4640
	if (obj->map_list.map)
4641
		i915_gem_free_mmap_offset(obj);
4642

4643
	drm_gem_object_release(obj);
4644
	i915_gem_info_remove_obj(dev_priv, obj->size);
4645

4646
	kfree(obj_priv->page_cpu_valid);
4647
	kfree(obj_priv->bit_17);
4648
	kfree(obj_priv);
4649 4650
}

4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666
void i915_gem_free_object(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);

	trace_i915_gem_object_destroy(obj);

	while (obj_priv->pin_count > 0)
		i915_gem_object_unpin(obj);

	if (obj_priv->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

4667 4668 4669 4670 4671
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4672

4673
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
4674

4675
	if (dev_priv->mm.suspended) {
4676 4677
		mutex_unlock(&dev->struct_mutex);
		return 0;
4678 4679
	}

4680
	ret = i915_gpu_idle(dev);
4681 4682
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4683
		return ret;
4684
	}
4685

4686 4687
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4688
		ret = i915_gem_evict_inactive(dev, false);
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
4700
	del_timer_sync(&dev_priv->hangcheck_timer);
4701 4702

	i915_kernel_lost_context(dev);
4703
	i915_gem_cleanup_ringbuffer(dev);
4704

4705 4706
	mutex_unlock(&dev->struct_mutex);

4707 4708 4709
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

4710 4711 4712
	return 0;
}

4713 4714 4715 4716
/*
 * 965+ support PIPE_CONTROL commands, which provide finer grained control
 * over cache flushing.
 */
4717
static int
4718 4719 4720 4721 4722 4723 4724
i915_gem_init_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

4725
	obj = i915_gem_alloc_object(dev, 4096);
4726 4727 4728 4729 4730 4731 4732 4733
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate seqno page\n");
		ret = -ENOMEM;
		goto err;
	}
	obj_priv = to_intel_bo(obj);
	obj_priv->agp_type = AGP_USER_CACHED_MEMORY;

4734
	ret = i915_gem_object_pin(obj, 4096, true);
4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755
	if (ret)
		goto err_unref;

	dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
	dev_priv->seqno_page =  kmap(obj_priv->pages[0]);
	if (dev_priv->seqno_page == NULL)
		goto err_unpin;

	dev_priv->seqno_obj = obj;
	memset(dev_priv->seqno_page, 0, PAGE_SIZE);

	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
	drm_gem_object_unreference(obj);
err:
	return ret;
}

4756 4757

static void
4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771
i915_gem_cleanup_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = dev_priv->seqno_obj;
	obj_priv = to_intel_bo(obj);
	kunmap(obj_priv->pages[0]);
	i915_gem_object_unpin(obj);
	drm_gem_object_unreference(obj);
	dev_priv->seqno_obj = NULL;

	dev_priv->seqno_page = NULL;
4772 4773
}

4774 4775 4776 4777 4778
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4779

4780 4781 4782 4783 4784
	if (HAS_PIPE_CONTROL(dev)) {
		ret = i915_gem_init_pipe_control(dev);
		if (ret)
			return ret;
	}
4785

4786
	ret = intel_init_render_ring_buffer(dev);
4787 4788 4789 4790
	if (ret)
		goto cleanup_pipe_control;

	if (HAS_BSD(dev)) {
4791
		ret = intel_init_bsd_ring_buffer(dev);
4792 4793
		if (ret)
			goto cleanup_render_ring;
4794
	}
4795

4796 4797 4798 4799 4800 4801
	if (HAS_BLT(dev)) {
		ret = intel_init_blt_ring_buffer(dev);
		if (ret)
			goto cleanup_bsd_ring;
	}

4802 4803
	dev_priv->next_seqno = 1;

4804 4805
	return 0;

4806
cleanup_bsd_ring:
4807
	intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
4808
cleanup_render_ring:
4809
	intel_cleanup_ring_buffer(&dev_priv->render_ring);
4810 4811 4812
cleanup_pipe_control:
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
4813 4814 4815 4816 4817 4818 4819 4820
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

4821 4822 4823
	intel_cleanup_ring_buffer(&dev_priv->render_ring);
	intel_cleanup_ring_buffer(&dev_priv->bsd_ring);
	intel_cleanup_ring_buffer(&dev_priv->blt_ring);
4824 4825 4826 4827
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
}

4828 4829 4830 4831 4832 4833 4834
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;

J
Jesse Barnes 已提交
4835 4836 4837
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4838
	if (atomic_read(&dev_priv->mm.wedged)) {
4839
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4840
		atomic_set(&dev_priv->mm.wedged, 0);
4841 4842 4843
	}

	mutex_lock(&dev->struct_mutex);
4844 4845 4846
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
4847 4848
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4849
		return ret;
4850
	}
4851

4852
	BUG_ON(!list_empty(&dev_priv->mm.active_list));
4853
	BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4854
	BUG_ON(!list_empty(&dev_priv->bsd_ring.active_list));
4855
	BUG_ON(!list_empty(&dev_priv->blt_ring.active_list));
4856 4857
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4858
	BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4859
	BUG_ON(!list_empty(&dev_priv->bsd_ring.request_list));
4860
	BUG_ON(!list_empty(&dev_priv->blt_ring.request_list));
4861
	mutex_unlock(&dev->struct_mutex);
4862

4863 4864 4865
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
4866

4867
	return 0;
4868 4869 4870 4871 4872 4873 4874 4875

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
4876 4877 4878 4879 4880 4881
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
4882 4883 4884
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4885
	drm_irq_uninstall(dev);
4886
	return i915_gem_idle(dev);
4887 4888 4889 4890 4891 4892 4893
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4894 4895 4896
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4897 4898 4899
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4900 4901
}

4902 4903 4904 4905 4906 4907 4908 4909
static void
init_ring_lists(struct intel_ring_buffer *ring)
{
	INIT_LIST_HEAD(&ring->active_list);
	INIT_LIST_HEAD(&ring->request_list);
	INIT_LIST_HEAD(&ring->gpu_write_list);
}

4910 4911 4912
void
i915_gem_load(struct drm_device *dev)
{
4913
	int i;
4914 4915
	drm_i915_private_t *dev_priv = dev->dev_private;

4916
	INIT_LIST_HEAD(&dev_priv->mm.active_list);
4917 4918
	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
C
Chris Wilson 已提交
4919
	INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4920
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4921
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
D
Daniel Vetter 已提交
4922
	INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
4923 4924 4925
	init_ring_lists(&dev_priv->render_ring);
	init_ring_lists(&dev_priv->bsd_ring);
	init_ring_lists(&dev_priv->blt_ring);
4926 4927
	for (i = 0; i < 16; i++)
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4928 4929
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4930
	init_completion(&dev_priv->error_completion);
4931

4932 4933 4934 4935 4936 4937 4938 4939 4940 4941
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

4942
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4943 4944
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4945

4946
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4947 4948 4949 4950
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4951
	/* Initialize fence registers to zero */
4952 4953 4954 4955 4956 4957 4958
	switch (INTEL_INFO(dev)->gen) {
	case 6:
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
		break;
	case 5:
	case 4:
4959 4960
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4961 4962
		break;
	case 3:
4963 4964 4965
		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
			for (i = 0; i < 8; i++)
				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4966 4967 4968 4969
	case 2:
		for (i = 0; i < 8; i++)
			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
		break;
4970
	}
4971
	i915_gem_detect_bit_6_swizzle(dev);
4972
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4973 4974 4975 4976

	dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
	dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
	register_shrinker(&dev_priv->mm.inactive_shrinker);
4977
}
4978 4979 4980 4981 4982

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
4983 4984
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
4985 4986 4987 4988 4989 4990 4991 4992
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4993
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4994 4995 4996 4997 4998
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

4999
	phys_obj->handle = drm_pci_alloc(dev, size, align);
5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
5012
	kfree(phys_obj);
5013 5014 5015
	return ret;
}

5016
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

5041
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
5042 5043 5044 5045 5046 5047
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
				 struct drm_gem_object *obj)
{
5048 5049 5050
	struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
	char *vaddr;
5051 5052 5053 5054 5055
	int i;
	int page_count;

	if (!obj_priv->phys_obj)
		return;
5056
	vaddr = obj_priv->phys_obj->handle->vaddr;
5057 5058 5059 5060

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073
		struct page *page = read_cache_page_gfp(mapping, i,
							GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (!IS_ERR(page)) {
			char *dst = kmap_atomic(page);
			memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
			kunmap_atomic(dst);

			drm_clflush_pages(&page, 1);

			set_page_dirty(page);
			mark_page_accessed(page);
			page_cache_release(page);
		}
5074
	}
5075
	intel_gtt_chipset_flush();
5076

5077 5078 5079 5080 5081 5082
	obj_priv->phys_obj->cur_obj = NULL;
	obj_priv->phys_obj = NULL;
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
5083 5084 5085
			    struct drm_gem_object *obj,
			    int id,
			    int align)
5086
{
5087
	struct address_space *mapping = obj->filp->f_path.dentry->d_inode->i_mapping;
5088 5089 5090 5091 5092 5093 5094 5095 5096
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

5097
	obj_priv = to_intel_bo(obj);
5098 5099 5100 5101 5102 5103 5104 5105 5106 5107

	if (obj_priv->phys_obj) {
		if (obj_priv->phys_obj->id == id)
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
5108
						obj->size, align);
5109
		if (ret) {
5110
			DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
5111
			return ret;
5112 5113 5114 5115 5116 5117 5118 5119 5120 5121
		}
	}

	/* bind to the object */
	obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj_priv->phys_obj->cur_obj = obj;

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
5122 5123 5124 5125 5126 5127 5128
		struct page *page;
		char *dst, *src;

		page = read_cache_page_gfp(mapping, i,
					   GFP_HIGHUSER | __GFP_RECLAIMABLE);
		if (IS_ERR(page))
			return PTR_ERR(page);
5129

5130
		src = kmap_atomic(page);
5131
		dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
5132
		memcpy(dst, src, PAGE_SIZE);
P
Peter Zijlstra 已提交
5133
		kunmap_atomic(src);
5134

5135 5136 5137
		mark_page_accessed(page);
		page_cache_release(page);
	}
5138

5139 5140 5141 5142 5143 5144 5145 5146
	return 0;
}

static int
i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
5147
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
5148 5149
	void *vaddr = obj_priv->phys_obj->handle->vaddr + args->offset;
	char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
5150

5151
	DRM_DEBUG_DRIVER("vaddr %p, %lld\n", vaddr, args->size);
5152

5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
		if (unwritten)
			return -EFAULT;
	}
5166

5167
	intel_gtt_chipset_flush();
5168 5169
	return 0;
}
5170

5171
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5172
{
5173
	struct drm_i915_file_private *file_priv = file->driver_priv;
5174 5175 5176 5177 5178

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5179
	spin_lock(&file_priv->mm.lock);
5180 5181 5182 5183 5184 5185 5186 5187 5188
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5189
	spin_unlock(&file_priv->mm.lock);
5190
}
5191

5192 5193 5194 5195 5196 5197 5198
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
5199
		      list_empty(&dev_priv->mm.active_list);
5200 5201 5202 5203

	return !lists_empty;
}

5204
static int
5205 5206 5207
i915_gem_inactive_shrink(struct shrinker *shrinker,
			 int nr_to_scan,
			 gfp_t gfp_mask)
5208
{
5209 5210 5211 5212 5213 5214 5215 5216 5217
	struct drm_i915_private *dev_priv =
		container_of(shrinker,
			     struct drm_i915_private,
			     mm.inactive_shrinker);
	struct drm_device *dev = dev_priv->dev;
	struct drm_i915_gem_object *obj, *next;
	int cnt;

	if (!mutex_trylock(&dev->struct_mutex))
5218
		return 0;
5219 5220 5221

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
5222 5223 5224 5225 5226 5227 5228
		cnt = 0;
		list_for_each_entry(obj,
				    &dev_priv->mm.inactive_list,
				    mm_list)
			cnt++;
		mutex_unlock(&dev->struct_mutex);
		return cnt / 100 * sysctl_vfs_cache_pressure;
5229 5230
	}

5231
rescan:
5232
	/* first scan for clean buffers */
5233
	i915_gem_retire_requests(dev);
5234

5235 5236 5237 5238 5239 5240 5241
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (i915_gem_object_is_purgeable(obj)) {
			i915_gem_object_unbind(&obj->base);
			if (--nr_to_scan == 0)
				break;
5242 5243 5244 5245
		}
	}

	/* second pass, evict/count anything still on the inactive list */
5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257
	cnt = 0;
	list_for_each_entry_safe(obj, next,
				 &dev_priv->mm.inactive_list,
				 mm_list) {
		if (nr_to_scan) {
			i915_gem_object_unbind(&obj->base);
			nr_to_scan--;
		} else
			cnt++;
	}

	if (nr_to_scan && i915_gpu_is_active(dev)) {
5258 5259 5260 5261 5262 5263
		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
5264
		if (i915_gpu_idle(dev) == 0)
5265 5266
			goto rescan;
	}
5267 5268
	mutex_unlock(&dev->struct_mutex);
	return cnt / 100 * sysctl_vfs_cache_pressure;
5269
}