kvm-s390.c 85.3 KB
Newer Older
1
/*
2
 * hosting zSeries kernel virtual machines
3
 *
4
 * Copyright IBM Corp. 2008, 2009
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
13
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14
 *               Jason J. Herne <jjherne@us.ibm.com>
15 16 17 18 19
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
20
#include <linux/hrtimer.h>
21 22 23
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
24
#include <linux/mman.h>
25
#include <linux/module.h>
26
#include <linux/random.h>
27
#include <linux/slab.h>
28
#include <linux/timer.h>
29
#include <linux/vmalloc.h>
30
#include <linux/bitmap.h>
31
#include <asm/asm-offsets.h>
32
#include <asm/lowcore.h>
33
#include <asm/etr.h>
34
#include <asm/pgtable.h>
35
#include <asm/gmap.h>
36
#include <asm/nmi.h>
37
#include <asm/switch_to.h>
38
#include <asm/isc.h>
39
#include <asm/sclp.h>
40 41
#include <asm/cpacf.h>
#include <asm/etr.h>
42
#include "kvm-s390.h"
43 44
#include "gaccess.h"

45 46 47 48
#define KMSG_COMPONENT "kvm-s390"
#undef pr_fmt
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

49 50
#define CREATE_TRACE_POINTS
#include "trace.h"
51
#include "trace-s390.h"
52

53
#define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
54 55 56
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
			   (KVM_MAX_VCPUS + LOCAL_IRQS))
57

58 59 60 61
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
62
	{ "exit_null", VCPU_STAT(exit_null) },
63 64 65 66
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
67 68 69
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
70
	{ "exit_operation_exception", VCPU_STAT(exit_operation_exception) },
71
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
72
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
73
	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
74
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
75
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
76
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
77 78
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
79
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
80
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
81 82 83 84 85 86 87
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
88
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
89 90 91 92 93
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
	{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
94
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
95 96
	{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
	{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
97
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
98 99
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
100
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
J
Janosch Frank 已提交
101
	{ "instruction_sthyi", VCPU_STAT(instruction_sthyi) },
102
	{ "instruction_sie", VCPU_STAT(instruction_sie) },
103
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
104
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
105
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
106
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
107 108
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
109
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
110 111
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
112
	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
113 114 115
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
116 117 118
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
119
	{ "diagnose_10", VCPU_STAT(diagnose_10) },
120
	{ "diagnose_44", VCPU_STAT(diagnose_44) },
121
	{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
122 123 124
	{ "diagnose_258", VCPU_STAT(diagnose_258) },
	{ "diagnose_308", VCPU_STAT(diagnose_308) },
	{ "diagnose_500", VCPU_STAT(diagnose_500) },
125 126 127
	{ NULL }
};

128 129 130 131 132
/* allow nested virtualization in KVM (if enabled by user space) */
static int nested;
module_param(nested, int, S_IRUGO);
MODULE_PARM_DESC(nested, "Nested virtualization support");

133
/* upper facilities limit for kvm */
134 135 136
unsigned long kvm_s390_fac_list_mask[16] = {
	0xffe6000000000000UL,
	0x005e000000000000UL,
137
};
138

139
unsigned long kvm_s390_fac_list_mask_size(void)
140
{
141 142
	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
	return ARRAY_SIZE(kvm_s390_fac_list_mask);
143 144
}

145 146
/* available cpu features supported by kvm */
static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
147 148
/* available subfunctions indicated via query / "test bit" */
static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
149

150
static struct gmap_notifier gmap_notifier;
151
static struct gmap_notifier vsie_gmap_notifier;
152
debug_info_t *kvm_s390_dbf;
153

154
/* Section: not file related */
155
int kvm_arch_hardware_enable(void)
156 157
{
	/* every s390 is virtualization enabled ;-) */
158
	return 0;
159 160
}

161 162
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
			      unsigned long end);
163

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
/*
 * This callback is executed during stop_machine(). All CPUs are therefore
 * temporarily stopped. In order not to change guest behavior, we have to
 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
 * so a CPU won't be stopped while calculating with the epoch.
 */
static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
			  void *v)
{
	struct kvm *kvm;
	struct kvm_vcpu *vcpu;
	int i;
	unsigned long long *delta = v;

	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm->arch.epoch -= *delta;
		kvm_for_each_vcpu(i, vcpu, kvm) {
			vcpu->arch.sie_block->epoch -= *delta;
182 183
			if (vcpu->arch.cputm_enabled)
				vcpu->arch.cputm_start += *delta;
184 185
			if (vcpu->arch.vsie_block)
				vcpu->arch.vsie_block->epoch -= *delta;
186 187 188 189 190 191 192 193 194
		}
	}
	return NOTIFY_OK;
}

static struct notifier_block kvm_clock_notifier = {
	.notifier_call = kvm_clock_sync,
};

195 196
int kvm_arch_hardware_setup(void)
{
197
	gmap_notifier.notifier_call = kvm_gmap_notifier;
198
	gmap_register_pte_notifier(&gmap_notifier);
199 200
	vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier;
	gmap_register_pte_notifier(&vsie_gmap_notifier);
201 202
	atomic_notifier_chain_register(&s390_epoch_delta_notifier,
				       &kvm_clock_notifier);
203 204 205 206 207
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
208
	gmap_unregister_pte_notifier(&gmap_notifier);
209
	gmap_unregister_pte_notifier(&vsie_gmap_notifier);
210 211
	atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
					 &kvm_clock_notifier);
212 213
}

214 215 216 217 218
static void allow_cpu_feat(unsigned long nr)
{
	set_bit_inv(nr, kvm_s390_available_cpu_feat);
}

219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
static inline int plo_test_bit(unsigned char nr)
{
	register unsigned long r0 asm("0") = (unsigned long) nr | 0x100;
	int cc = 3; /* subfunction not available */

	asm volatile(
		/* Parameter registers are ignored for "test bit" */
		"	plo	0,0,0,0(0)\n"
		"	ipm	%0\n"
		"	srl	%0,28\n"
		: "=d" (cc)
		: "d" (r0)
		: "cc");
	return cc == 0;
}

235 236
static void kvm_s390_cpu_feat_init(void)
{
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
	int i;

	for (i = 0; i < 256; ++i) {
		if (plo_test_bit(i))
			kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
	}

	if (test_facility(28)) /* TOD-clock steering */
		etr_ptff(kvm_s390_available_subfunc.ptff, ETR_PTFF_QAF);

	if (test_facility(17)) { /* MSA */
		__cpacf_query(CPACF_KMAC, kvm_s390_available_subfunc.kmac);
		__cpacf_query(CPACF_KMC, kvm_s390_available_subfunc.kmc);
		__cpacf_query(CPACF_KM, kvm_s390_available_subfunc.km);
		__cpacf_query(CPACF_KIMD, kvm_s390_available_subfunc.kimd);
		__cpacf_query(CPACF_KLMD, kvm_s390_available_subfunc.klmd);
	}
	if (test_facility(76)) /* MSA3 */
		__cpacf_query(CPACF_PCKMO, kvm_s390_available_subfunc.pckmo);
	if (test_facility(77)) { /* MSA4 */
		__cpacf_query(CPACF_KMCTR, kvm_s390_available_subfunc.kmctr);
		__cpacf_query(CPACF_KMF, kvm_s390_available_subfunc.kmf);
		__cpacf_query(CPACF_KMO, kvm_s390_available_subfunc.kmo);
		__cpacf_query(CPACF_PCC, kvm_s390_available_subfunc.pcc);
	}
	if (test_facility(57)) /* MSA5 */
		__cpacf_query(CPACF_PPNO, kvm_s390_available_subfunc.ppno);

265 266
	if (MACHINE_HAS_ESOP)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
267 268 269 270 271
	/*
	 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow),
	 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing).
	 */
	if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao ||
272
	    !test_facility(3) || !nested)
273 274
		return;
	allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2);
275 276
	if (sclp.has_64bscao)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO);
277 278
	if (sclp.has_siif)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF);
279 280
	if (sclp.has_gpere)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE);
281 282
	if (sclp.has_gsls)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS);
283 284
	if (sclp.has_ib)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB);
285 286
	if (sclp.has_cei)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI);
287 288
	if (sclp.has_ibs)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS);
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
	/*
	 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make
	 * all skey handling functions read/set the skey from the PGSTE
	 * instead of the real storage key.
	 *
	 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make
	 * pages being detected as preserved although they are resident.
	 *
	 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will
	 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY.
	 *
	 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and
	 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be
	 * correctly shadowed. We can do that for the PGSTE but not for PTE.I.
	 *
	 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We
	 * cannot easily shadow the SCA because of the ipte lock.
	 */
307 308
}

309 310
int kvm_arch_init(void *opaque)
{
311 312 313 314 315 316 317 318 319
	kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
	if (!kvm_s390_dbf)
		return -ENOMEM;

	if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
		debug_unregister(kvm_s390_dbf);
		return -ENOMEM;
	}

320 321
	kvm_s390_cpu_feat_init();

322 323
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
324 325
}

326 327 328 329 330
void kvm_arch_exit(void)
{
	debug_unregister(kvm_s390_dbf);
}

331 332 333 334 335 336 337 338 339
/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

340
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
341
{
342 343
	int r;

344
	switch (ext) {
345
	case KVM_CAP_S390_PSW:
346
	case KVM_CAP_S390_GMAP:
347
	case KVM_CAP_SYNC_MMU:
348 349 350
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
351
	case KVM_CAP_ASYNC_PF:
352
	case KVM_CAP_SYNC_REGS:
353
	case KVM_CAP_ONE_REG:
354
	case KVM_CAP_ENABLE_CAP:
355
	case KVM_CAP_S390_CSS_SUPPORT:
C
Cornelia Huck 已提交
356
	case KVM_CAP_IOEVENTFD:
357
	case KVM_CAP_DEVICE_CTRL:
358
	case KVM_CAP_ENABLE_CAP_VM:
359
	case KVM_CAP_S390_IRQCHIP:
360
	case KVM_CAP_VM_ATTRIBUTES:
361
	case KVM_CAP_MP_STATE:
362
	case KVM_CAP_S390_INJECT_IRQ:
363
	case KVM_CAP_S390_USER_SIGP:
364
	case KVM_CAP_S390_USER_STSI:
365
	case KVM_CAP_S390_SKEYS:
366
	case KVM_CAP_S390_IRQ_STATE:
367 368
		r = 1;
		break;
369 370 371
	case KVM_CAP_S390_MEM_OP:
		r = MEM_OP_MAX_SIZE;
		break;
372 373
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
374 375 376
		r = KVM_S390_BSCA_CPU_SLOTS;
		if (sclp.has_esca && sclp.has_64bscao)
			r = KVM_S390_ESCA_CPU_SLOTS;
377
		break;
378 379 380
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
381
	case KVM_CAP_S390_COW:
382
		r = MACHINE_HAS_ESOP;
383
		break;
384 385 386
	case KVM_CAP_S390_VECTOR_REGISTERS:
		r = MACHINE_HAS_VX;
		break;
387 388 389
	case KVM_CAP_S390_RI:
		r = test_facility(64);
		break;
390
	default:
391
		r = 0;
392
	}
393
	return r;
394 395
}

396 397 398 399 400 401 402 403 404 405 406 407
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	gfn_t cur_gfn, last_gfn;
	unsigned long address;
	struct gmap *gmap = kvm->arch.gmap;

	/* Loop over all guest pages */
	last_gfn = memslot->base_gfn + memslot->npages;
	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
		address = gfn_to_hva_memslot(memslot, cur_gfn);

408
		if (test_and_clear_guest_dirty(gmap->mm, address))
409
			mark_page_dirty(kvm, cur_gfn);
410 411
		if (fatal_signal_pending(current))
			return;
412
		cond_resched();
413 414 415
	}
}

416
/* Section: vm related */
417 418
static void sca_del_vcpu(struct kvm_vcpu *vcpu);

419 420 421 422 423 424
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
425 426
	int r;
	unsigned long n;
427
	struct kvm_memslots *slots;
428 429 430 431 432 433 434 435 436
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

437 438
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
457 458
}

459 460 461 462 463 464 465 466
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
467
	case KVM_CAP_S390_IRQCHIP:
468
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
469 470 471
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
472
	case KVM_CAP_S390_USER_SIGP:
473
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
474 475 476
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
477
	case KVM_CAP_S390_VECTOR_REGISTERS:
478
		mutex_lock(&kvm->lock);
479
		if (kvm->created_vcpus) {
480 481
			r = -EBUSY;
		} else if (MACHINE_HAS_VX) {
482 483
			set_kvm_facility(kvm->arch.model.fac_mask, 129);
			set_kvm_facility(kvm->arch.model.fac_list, 129);
484 485 486
			r = 0;
		} else
			r = -EINVAL;
487
		mutex_unlock(&kvm->lock);
488 489
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
			 r ? "(not available)" : "(success)");
490
		break;
491 492 493
	case KVM_CAP_S390_RI:
		r = -EINVAL;
		mutex_lock(&kvm->lock);
494
		if (kvm->created_vcpus) {
495 496
			r = -EBUSY;
		} else if (test_facility(64)) {
497 498
			set_kvm_facility(kvm->arch.model.fac_mask, 64);
			set_kvm_facility(kvm->arch.model.fac_list, 64);
499 500 501 502 503 504
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
			 r ? "(not available)" : "(success)");
		break;
505
	case KVM_CAP_S390_USER_STSI:
506
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
507 508 509
		kvm->arch.user_stsi = 1;
		r = 0;
		break;
510 511 512 513 514 515 516
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

517 518 519 520 521 522 523
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
524
		VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
525 526
			 kvm->arch.mem_limit);
		if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
527 528 529 530 531 532 533 534 535 536
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
537 538 539 540 541
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
542
		ret = -ENXIO;
543
		if (!sclp.has_cmma)
544 545
			break;

546
		ret = -EBUSY;
547
		VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
548
		mutex_lock(&kvm->lock);
549
		if (!kvm->created_vcpus) {
550 551 552 553 554 555
			kvm->arch.use_cmma = 1;
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
556 557 558
		ret = -ENXIO;
		if (!sclp.has_cmma)
			break;
559 560 561 562
		ret = -EINVAL;
		if (!kvm->arch.use_cmma)
			break;

563
		VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
564 565
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
566
		s390_reset_cmma(kvm->arch.gmap->mm);
567 568 569 570
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
571 572 573 574 575 576 577 578 579
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

580 581
		if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
		    new_limit > kvm->arch.mem_limit)
582 583
			return -E2BIG;

584 585 586
		if (!new_limit)
			return -EINVAL;

587
		/* gmap_create takes last usable address */
588 589 590
		if (new_limit != KVM_S390_NO_MEM_LIMIT)
			new_limit -= 1;

591 592
		ret = -EBUSY;
		mutex_lock(&kvm->lock);
593
		if (!kvm->created_vcpus) {
594 595
			/* gmap_create will round the limit up */
			struct gmap *new = gmap_create(current->mm, new_limit);
596 597 598 599

			if (!new) {
				ret = -ENOMEM;
			} else {
600
				gmap_remove(kvm->arch.gmap);
601 602 603 604 605 606
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
607 608 609
		VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
		VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
			 (void *) kvm->arch.gmap->asce);
610 611
		break;
	}
612 613 614 615 616 617 618
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

619 620 621 622 623 624 625
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *vcpu;
	int i;

626
	if (!test_kvm_facility(kvm, 76))
627 628 629 630 631 632 633 634 635
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
636
		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
637 638 639 640 641 642
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
643
		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
644 645 646 647 648
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
649
		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
650 651 652 653 654
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
655
		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
656 657 658 659 660 661 662 663 664 665 666 667 668 669
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_vcpu_crypto_setup(vcpu);
		exit_sie(vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

670 671 672 673 674 675 676 677 678 679
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;
680
	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
681 682 683 684 685 686

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
687
	u64 gtod;
688 689 690 691

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

692
	kvm_s390_set_tod_clock(kvm, gtod);
693
	VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod);
694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;
725
	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
726 727 728 729 730 731

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
732
	u64 gtod;
733

734
	gtod = kvm_s390_get_tod_clock_fast(kvm);
735 736
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;
737
	VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

763 764 765
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
766
	u16 lowest_ibc, unblocked_ibc;
767 768 769
	int ret = 0;

	mutex_lock(&kvm->lock);
770
	if (kvm->created_vcpus) {
771 772 773 774 775 776 777 778 779 780
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
781
		kvm->arch.model.cpuid = proc->cpuid;
782 783 784 785 786 787 788 789 790 791
		lowest_ibc = sclp.ibc >> 16 & 0xfff;
		unblocked_ibc = sclp.ibc & 0xfff;
		if (lowest_ibc) {
			if (proc->ibc > unblocked_ibc)
				kvm->arch.model.ibc = unblocked_ibc;
			else if (proc->ibc < lowest_ibc)
				kvm->arch.model.ibc = lowest_ibc;
			else
				kvm->arch.model.ibc = proc->ibc;
		}
792
		memcpy(kvm->arch.model.fac_list, proc->fac_list,
793 794 795 796 797 798 799 800 801
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
static int kvm_s390_set_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;
	int ret = -EBUSY;

	if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
		return -EFAULT;
	if (!bitmap_subset((unsigned long *) data.feat,
			   kvm_s390_available_cpu_feat,
			   KVM_S390_VM_CPU_FEAT_NR_BITS))
		return -EINVAL;

	mutex_lock(&kvm->lock);
	if (!atomic_read(&kvm->online_vcpus)) {
		bitmap_copy(kvm->arch.cpu_feat, (unsigned long *) data.feat,
			    KVM_S390_VM_CPU_FEAT_NR_BITS);
		ret = 0;
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

825 826 827 828 829 830 831 832 833 834
static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once supported by kernel + hw, we have to store the subfunctions
	 * in kvm->arch and remember that user space configured them.
	 */
	return -ENXIO;
}

835 836 837 838 839 840 841 842
static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
843 844 845
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_set_processor_feat(kvm, attr);
		break;
846 847 848
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_set_processor_subfunc(kvm, attr);
		break;
849 850 851 852 853 854 855 856 857 858 859 860 861 862
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
863
	proc->cpuid = kvm->arch.model.cpuid;
864
	proc->ibc = kvm->arch.model.ibc;
865 866
	memcpy(&proc->fac_list, kvm->arch.model.fac_list,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
885
	mach->ibc = sclp.ibc;
886
	memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
887
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
888
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
889
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
890 891 892 893 894 895 896
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
static int kvm_s390_get_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat, kvm->arch.cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

static int kvm_s390_get_machine_feat(struct kvm *kvm,
				     struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat,
		    kvm_s390_available_cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once we can actually configure subfunctions (kernel + hw support),
	 * we have to check if they were already set by user space, if so copy
	 * them from kvm->arch.
	 */
	return -ENXIO;
}

static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
					struct kvm_device_attr *attr)
{
	if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
	    sizeof(struct kvm_s390_vm_cpu_subfunc)))
		return -EFAULT;
	return 0;
}
941 942 943 944 945 946 947 948 949 950 951
static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
952 953 954 955 956 957
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_get_processor_feat(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_FEAT:
		ret = kvm_s390_get_machine_feat(kvm, attr);
		break;
958 959 960 961 962 963
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_get_processor_subfunc(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
		ret = kvm_s390_get_machine_subfunc(kvm, attr);
		break;
964 965 966 967
	}
	return ret;
}

968 969 970 971 972
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
973
	case KVM_S390_VM_MEM_CTRL:
974
		ret = kvm_s390_set_mem_control(kvm, attr);
975
		break;
976 977 978
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
979 980 981
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
982 983 984
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
985 986 987 988 989 990 991 992 993 994
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
995 996 997 998 999 1000
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
1001 1002 1003
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
1004 1005 1006
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
1007 1008 1009 1010 1011 1012
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
1013 1014 1015 1016 1017 1018 1019
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
1020 1021 1022 1023
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
1024 1025
			ret = sclp.has_cmma ? 0 : -ENXIO;
			break;
1026
		case KVM_S390_VM_MEM_LIMIT_SIZE:
1027 1028 1029 1030 1031 1032 1033
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1045 1046 1047 1048
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
1049 1050
		case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		case KVM_S390_VM_CPU_MACHINE_FEAT:
1051
		case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
1052 1053
			ret = 0;
			break;
1054 1055
		/* configuring subfunctions is not supported yet */
		case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1056 1057 1058 1059 1060
		default:
			ret = -ENXIO;
			break;
		}
		break;
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1074 1075 1076 1077 1078 1079 1080 1081
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Is this guest using storage keys? */
	if (!mm_use_skey(current->mm))
		return KVM_S390_GET_SKEYS_NONE;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

1106
	down_read(&current->mm->mmap_sem);
1107 1108 1109 1110
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1111
			break;
1112 1113
		}

1114 1115
		r = get_guest_storage_key(current->mm, hva, &keys[i]);
		if (r)
1116
			break;
1117
	}
1118 1119 1120 1121 1122 1123 1124 1125
	up_read(&current->mm->mmap_sem);

	if (!r) {
		r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
				 sizeof(uint8_t) * args->count);
		if (r)
			r = -EFAULT;
	}
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158

	kvfree(keys);
	return r;
}

static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
			   sizeof(uint8_t) * args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	/* Enable storage key handling for the guest */
1159 1160 1161
	r = s390_enable_skey();
	if (r)
		goto out;
1162

1163
	down_read(&current->mm->mmap_sem);
1164 1165 1166 1167
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1168
			break;
1169 1170 1171 1172 1173
		}

		/* Lowest order bit is reserved */
		if (keys[i] & 0x01) {
			r = -EINVAL;
1174
			break;
1175 1176
		}

1177
		r = set_guest_storage_key(current->mm, hva, keys[i], 0);
1178
		if (r)
1179
			break;
1180
	}
1181
	up_read(&current->mm->mmap_sem);
1182 1183 1184 1185 1186
out:
	kvfree(keys);
	return r;
}

1187 1188 1189 1190 1191
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
1192
	struct kvm_device_attr attr;
1193 1194 1195
	int r;

	switch (ioctl) {
1196 1197 1198 1199 1200 1201 1202 1203 1204
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
1205 1206 1207 1208 1209 1210 1211 1212
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
1213 1214 1215 1216 1217 1218 1219
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
1220
			r = kvm_set_irq_routing(kvm, &routing, 0, 0);
1221 1222 1223
		}
		break;
	}
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
	case KVM_S390_GET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_get_skeys(kvm, &args);
		break;
	}
	case KVM_S390_SET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_set_skeys(kvm, &args);
		break;
	}
1265
	default:
1266
		r = -ENOTTY;
1267 1268 1269 1270 1271
	}

	return r;
}

1272 1273 1274
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
1275
	u32 cc = 0;
1276

1277
	memset(config, 0, 128);
1278 1279 1280 1281
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
1282
		"0: ipm %0\n"
1283
		"srl %0,28\n"
1284 1285 1286
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

1299
	if (test_facility(12)) {
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

1321
static u64 kvm_s390_get_initial_cpuid(void)
1322
{
1323 1324 1325 1326 1327
	struct cpuid cpuid;

	get_cpu_id(&cpuid);
	cpuid.version = 0xff;
	return *((u64 *) &cpuid);
1328 1329
}

1330
static void kvm_s390_crypto_init(struct kvm *kvm)
1331
{
1332
	if (!test_kvm_facility(kvm, 76))
1333
		return;
1334

1335
	kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
1336
	kvm_s390_set_crycb_format(kvm);
1337

1338 1339 1340 1341 1342 1343 1344
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1345 1346
}

1347 1348 1349
static void sca_dispose(struct kvm *kvm)
{
	if (kvm->arch.use_esca)
1350
		free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
1351 1352 1353 1354 1355
	else
		free_page((unsigned long)(kvm->arch.sca));
	kvm->arch.sca = NULL;
}

1356
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1357
{
1358
	gfp_t alloc_flags = GFP_KERNEL;
1359
	int i, rc;
1360
	char debug_name[16];
1361
	static unsigned long sca_offset;
1362

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

1374 1375
	rc = s390_enable_sie();
	if (rc)
1376
		goto out_err;
1377

1378 1379
	rc = -ENOMEM;

J
Janosch Frank 已提交
1380 1381
	ratelimit_state_init(&kvm->arch.sthyi_limit, 5 * HZ, 500);

1382
	kvm->arch.use_esca = 0; /* start with basic SCA */
1383 1384
	if (!sclp.has_64bscao)
		alloc_flags |= GFP_DMA;
1385
	rwlock_init(&kvm->arch.sca_lock);
1386
	kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags);
1387
	if (!kvm->arch.sca)
1388
		goto out_err;
1389
	spin_lock(&kvm_lock);
1390
	sca_offset += 16;
1391
	if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
1392
		sca_offset = 0;
1393 1394
	kvm->arch.sca = (struct bsca_block *)
			((char *) kvm->arch.sca + sca_offset);
1395
	spin_unlock(&kvm_lock);
1396 1397 1398

	sprintf(debug_name, "kvm-%u", current->pid);

1399
	kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1400
	if (!kvm->arch.dbf)
1401
		goto out_err;
1402

1403 1404 1405
	kvm->arch.sie_page2 =
	     (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.sie_page2)
1406
		goto out_err;
1407

1408
	/* Populate the facility mask initially. */
1409
	memcpy(kvm->arch.model.fac_mask, S390_lowcore.stfle_fac_list,
1410
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1411 1412
	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
		if (i < kvm_s390_fac_list_mask_size())
1413
			kvm->arch.model.fac_mask[i] &= kvm_s390_fac_list_mask[i];
1414
		else
1415
			kvm->arch.model.fac_mask[i] = 0UL;
1416 1417
	}

1418
	/* Populate the facility list initially. */
1419 1420
	kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
	memcpy(kvm->arch.model.fac_list, kvm->arch.model.fac_mask,
1421 1422
	       S390_ARCH_FAC_LIST_SIZE_BYTE);

J
Janosch Frank 已提交
1423 1424 1425
	set_kvm_facility(kvm->arch.model.fac_mask, 74);
	set_kvm_facility(kvm->arch.model.fac_list, 74);

1426
	kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
1427
	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1428

1429
	kvm_s390_crypto_init(kvm);
1430

1431
	spin_lock_init(&kvm->arch.float_int.lock);
1432 1433
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1434
	init_waitqueue_head(&kvm->arch.ipte_wq);
1435
	mutex_init(&kvm->arch.ipte_mutex);
1436

1437
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1438
	VM_EVENT(kvm, 3, "vm created with type %lu", type);
1439

1440 1441
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
1442
		kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
1443
	} else {
1444 1445 1446 1447 1448
		if (sclp.hamax == U64_MAX)
			kvm->arch.mem_limit = TASK_MAX_SIZE;
		else
			kvm->arch.mem_limit = min_t(unsigned long, TASK_MAX_SIZE,
						    sclp.hamax + 1);
1449
		kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1);
1450
		if (!kvm->arch.gmap)
1451
			goto out_err;
1452
		kvm->arch.gmap->private = kvm;
1453
		kvm->arch.gmap->pfault_enabled = 0;
1454
	}
1455 1456

	kvm->arch.css_support = 0;
1457
	kvm->arch.use_irqchip = 0;
1458
	kvm->arch.epoch = 0;
1459

1460
	spin_lock_init(&kvm->arch.start_stop_lock);
1461
	kvm_s390_vsie_init(kvm);
1462
	KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
1463

1464
	return 0;
1465
out_err:
1466
	free_page((unsigned long)kvm->arch.sie_page2);
1467
	debug_unregister(kvm->arch.dbf);
1468
	sca_dispose(kvm);
1469
	KVM_EVENT(3, "creation of vm failed: %d", rc);
1470
	return rc;
1471 1472
}

1473 1474 1475
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1476
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1477
	kvm_s390_clear_local_irqs(vcpu);
1478
	kvm_clear_async_pf_completion_queue(vcpu);
1479
	if (!kvm_is_ucontrol(vcpu->kvm))
1480
		sca_del_vcpu(vcpu);
1481 1482

	if (kvm_is_ucontrol(vcpu->kvm))
1483
		gmap_remove(vcpu->arch.gmap);
1484

1485
	if (vcpu->kvm->arch.use_cmma)
1486
		kvm_s390_vcpu_unsetup_cmma(vcpu);
1487
	free_page((unsigned long)(vcpu->arch.sie_block));
1488

1489
	kvm_vcpu_uninit(vcpu);
1490
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1491 1492 1493 1494 1495
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
1496
	struct kvm_vcpu *vcpu;
1497

1498 1499 1500 1501 1502 1503 1504 1505 1506
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
1507 1508
}

1509 1510
void kvm_arch_destroy_vm(struct kvm *kvm)
{
1511
	kvm_free_vcpus(kvm);
1512
	sca_dispose(kvm);
1513
	debug_unregister(kvm->arch.dbf);
1514
	free_page((unsigned long)kvm->arch.sie_page2);
1515
	if (!kvm_is_ucontrol(kvm))
1516
		gmap_remove(kvm->arch.gmap);
1517
	kvm_s390_destroy_adapters(kvm);
1518
	kvm_s390_clear_float_irqs(kvm);
1519
	kvm_s390_vsie_destroy(kvm);
1520
	KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
1521 1522 1523
}

/* Section: vcpu related */
1524 1525
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
1526
	vcpu->arch.gmap = gmap_create(current->mm, -1UL);
1527 1528 1529 1530 1531 1532 1533
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

1534 1535
static void sca_del_vcpu(struct kvm_vcpu *vcpu)
{
1536
	read_lock(&vcpu->kvm->arch.sca_lock);
1537 1538
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1539

1540
		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1541
		sca->cpu[vcpu->vcpu_id].sda = 0;
1542 1543 1544 1545
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1546
		sca->cpu[vcpu->vcpu_id].sda = 0;
1547
	}
1548
	read_unlock(&vcpu->kvm->arch.sca_lock);
1549 1550
}

1551
static void sca_add_vcpu(struct kvm_vcpu *vcpu)
1552
{
1553 1554 1555
	read_lock(&vcpu->kvm->arch.sca_lock);
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1556

1557
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1558 1559
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
1560
		vcpu->arch.sie_block->ecb2 |= 0x04U;
1561
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1562
	} else {
1563
		struct bsca_block *sca = vcpu->kvm->arch.sca;
1564

1565
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1566 1567
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
1568
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1569
	}
1570
	read_unlock(&vcpu->kvm->arch.sca_lock);
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
}

/* Basic SCA to Extended SCA data copy routines */
static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
{
	d->sda = s->sda;
	d->sigp_ctrl.c = s->sigp_ctrl.c;
	d->sigp_ctrl.scn = s->sigp_ctrl.scn;
}

static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
{
	int i;

	d->ipte_control = s->ipte_control;
	d->mcn[0] = s->mcn;
	for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
		sca_copy_entry(&d->cpu[i], &s->cpu[i]);
}

static int sca_switch_to_extended(struct kvm *kvm)
{
	struct bsca_block *old_sca = kvm->arch.sca;
	struct esca_block *new_sca;
	struct kvm_vcpu *vcpu;
	unsigned int vcpu_idx;
	u32 scaol, scaoh;

	new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
	if (!new_sca)
		return -ENOMEM;

	scaoh = (u32)((u64)(new_sca) >> 32);
	scaol = (u32)(u64)(new_sca) & ~0x3fU;

	kvm_s390_vcpu_block_all(kvm);
	write_lock(&kvm->arch.sca_lock);

	sca_copy_b_to_e(new_sca, old_sca);

	kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
		vcpu->arch.sie_block->scaoh = scaoh;
		vcpu->arch.sie_block->scaol = scaol;
		vcpu->arch.sie_block->ecb2 |= 0x04U;
	}
	kvm->arch.sca = new_sca;
	kvm->arch.use_esca = 1;

	write_unlock(&kvm->arch.sca_lock);
	kvm_s390_vcpu_unblock_all(kvm);

	free_page((unsigned long)old_sca);

1624 1625
	VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
		 old_sca, kvm->arch.sca);
1626
	return 0;
1627 1628 1629 1630
}

static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
{
1631 1632 1633 1634
	int rc;

	if (id < KVM_S390_BSCA_CPU_SLOTS)
		return true;
1635
	if (!sclp.has_esca || !sclp.has_64bscao)
1636 1637 1638 1639 1640 1641 1642
		return false;

	mutex_lock(&kvm->lock);
	rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
	mutex_unlock(&kvm->lock);

	return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
1643 1644
}

1645 1646
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1647 1648
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1649 1650
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
1651
				    KVM_SYNC_ACRS |
1652 1653 1654
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
1655 1656
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
1657 1658 1659 1660
	/* fprs can be synchronized via vrs, even if the guest has no vx. With
	 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
	 */
	if (MACHINE_HAS_VX)
1661
		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1662 1663
	else
		vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
1664 1665 1666 1667

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

1668 1669 1670
	return 0;
}

1671 1672 1673 1674
/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
1675
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1676
	vcpu->arch.cputm_start = get_tod_clock_fast();
1677
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1678 1679 1680 1681 1682 1683
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
1684
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1685 1686
	vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	vcpu->arch.cputm_start = 0;
1687
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_enabled);
	vcpu->arch.cputm_enabled = true;
	__start_cpu_timer_accounting(vcpu);
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
	__stop_cpu_timer_accounting(vcpu);
	vcpu->arch.cputm_enabled = false;
}

static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__enable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__disable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

1720 1721 1722
/* set the cpu timer - may only be called from the VCPU thread itself */
void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
{
1723
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1724
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1725 1726
	if (vcpu->arch.cputm_enabled)
		vcpu->arch.cputm_start = get_tod_clock_fast();
1727
	vcpu->arch.sie_block->cputm = cputm;
1728
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1729
	preempt_enable();
1730 1731
}

1732
/* update and get the cpu timer - can also be called from other VCPU threads */
1733 1734
__u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
{
1735
	unsigned int seq;
1736 1737 1738 1739 1740
	__u64 value;

	if (unlikely(!vcpu->arch.cputm_enabled))
		return vcpu->arch.sie_block->cputm;

1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	do {
		seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
		/*
		 * If the writer would ever execute a read in the critical
		 * section, e.g. in irq context, we have a deadlock.
		 */
		WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
		value = vcpu->arch.sie_block->cputm;
		/* if cputm_start is 0, accounting is being started/stopped */
		if (likely(vcpu->arch.cputm_start))
			value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	} while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
	preempt_enable();
1755
	return value;
1756 1757
}

1758 1759
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
1760
	/* Save host register state */
1761
	save_fpu_regs();
1762 1763
	vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
	vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
1764

1765 1766 1767 1768
	if (MACHINE_HAS_VX)
		current->thread.fpu.regs = vcpu->run->s.regs.vrs;
	else
		current->thread.fpu.regs = vcpu->run->s.regs.fprs;
1769
	current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
1770
	if (test_fp_ctl(current->thread.fpu.fpc))
1771
		/* User space provided an invalid FPC, let's clear it */
1772 1773 1774
		current->thread.fpu.fpc = 0;

	save_access_regs(vcpu->arch.host_acrs);
1775
	restore_access_regs(vcpu->run->s.regs.acrs);
1776
	gmap_enable(vcpu->arch.enabled_gmap);
1777
	atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1778
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1779
		__start_cpu_timer_accounting(vcpu);
1780
	vcpu->cpu = cpu;
1781 1782 1783 1784
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
1785
	vcpu->cpu = -1;
1786
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1787
		__stop_cpu_timer_accounting(vcpu);
1788
	atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1789 1790
	vcpu->arch.enabled_gmap = gmap_get_enabled();
	gmap_disable(vcpu->arch.enabled_gmap);
1791

1792
	/* Save guest register state */
1793
	save_fpu_regs();
1794
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
1795

1796 1797 1798
	/* Restore host register state */
	current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
	current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
1799 1800

	save_access_regs(vcpu->run->s.regs.acrs);
1801 1802 1803 1804 1805 1806 1807 1808
	restore_access_regs(vcpu->arch.host_acrs);
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
1809
	kvm_s390_set_prefix(vcpu, 0);
1810
	kvm_s390_set_cpu_timer(vcpu, 0);
1811 1812 1813 1814 1815
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
1816 1817 1818
	/* make sure the new fpc will be lazily loaded */
	save_fpu_regs();
	current->thread.fpu.fpc = 0;
1819
	vcpu->arch.sie_block->gbea = 1;
1820
	vcpu->arch.sie_block->pp = 0;
1821 1822
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1823 1824
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
1825
	kvm_s390_clear_local_irqs(vcpu);
1826 1827
}

1828
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1829
{
1830
	mutex_lock(&vcpu->kvm->lock);
1831
	preempt_disable();
1832
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
1833
	preempt_enable();
1834
	mutex_unlock(&vcpu->kvm->lock);
1835
	if (!kvm_is_ucontrol(vcpu->kvm)) {
1836
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1837
		sca_add_vcpu(vcpu);
1838
	}
1839 1840
	/* make vcpu_load load the right gmap on the first trigger */
	vcpu->arch.enabled_gmap = vcpu->arch.gmap;
1841 1842
}

1843 1844
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
1845
	if (!test_kvm_facility(vcpu->kvm, 76))
1846 1847
		return;

1848 1849 1850 1851 1852 1853 1854
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

1855 1856 1857
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;

	vcpu->arch.sie_block->ecb2 |= 0x80;
	vcpu->arch.sie_block->ecb2 &= ~0x08;
	return 0;
}

1875 1876 1877 1878 1879
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;

	vcpu->arch.sie_block->ibc = model->ibc;
1880
	if (test_kvm_facility(vcpu->kvm, 7))
1881
		vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list;
1882 1883
}

1884 1885
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
1886
	int rc = 0;
1887

1888 1889
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
1890 1891
						    CPUSTAT_STOPPED);

1892
	if (test_kvm_facility(vcpu->kvm, 78))
1893
		atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
1894
	else if (test_kvm_facility(vcpu->kvm, 8))
1895
		atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
1896

1897 1898
	kvm_s390_vcpu_setup_model(vcpu);

1899 1900 1901
	/* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */
	if (MACHINE_HAS_ESOP)
		vcpu->arch.sie_block->ecb |= 0x02;
1902 1903
	if (test_kvm_facility(vcpu->kvm, 9))
		vcpu->arch.sie_block->ecb |= 0x04;
1904
	if (test_kvm_facility(vcpu->kvm, 73))
1905 1906
		vcpu->arch.sie_block->ecb |= 0x10;

1907
	if (test_kvm_facility(vcpu->kvm, 8) && sclp.has_pfmfi)
1908
		vcpu->arch.sie_block->ecb2 |= 0x08;
1909 1910 1911
	vcpu->arch.sie_block->eca = 0x1002000U;
	if (sclp.has_cei)
		vcpu->arch.sie_block->eca |= 0x80000000U;
1912 1913
	if (sclp.has_ib)
		vcpu->arch.sie_block->eca |= 0x40000000U;
1914
	if (sclp.has_siif)
1915
		vcpu->arch.sie_block->eca |= 1;
1916
	if (sclp.has_sigpif)
1917
		vcpu->arch.sie_block->eca |= 0x10000000U;
1918 1919
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->arch.sie_block->ecb3 |= 0x01;
1920
	if (test_kvm_facility(vcpu->kvm, 129)) {
1921 1922 1923
		vcpu->arch.sie_block->eca |= 0x00020000;
		vcpu->arch.sie_block->ecd |= 0x20000000;
	}
1924
	vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
1925
	vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
J
Janosch Frank 已提交
1926 1927
	if (test_kvm_facility(vcpu->kvm, 74))
		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
1928

1929
	if (vcpu->kvm->arch.use_cmma) {
1930 1931 1932
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
1933
	}
1934
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1935
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1936

1937 1938
	kvm_s390_vcpu_crypto_setup(vcpu);

1939
	return rc;
1940 1941 1942 1943 1944
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
1945
	struct kvm_vcpu *vcpu;
1946
	struct sie_page *sie_page;
1947 1948
	int rc = -EINVAL;

1949
	if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
1950 1951 1952
		goto out;

	rc = -ENOMEM;
1953

1954
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1955
	if (!vcpu)
1956
		goto out;
1957

1958 1959
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
1960 1961
		goto out_free_cpu;

1962 1963 1964
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;

1965 1966 1967 1968
	/* the real guest size will always be smaller than msl */
	vcpu->arch.sie_block->mso = 0;
	vcpu->arch.sie_block->msl = sclp.hamax;

1969
	vcpu->arch.sie_block->icpua = id;
1970 1971
	spin_lock_init(&vcpu->arch.local_int.lock);
	vcpu->arch.local_int.float_int = &kvm->arch.float_int;
1972
	vcpu->arch.local_int.wq = &vcpu->wq;
1973
	vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
1974
	seqcount_init(&vcpu->arch.cputm_seqcount);
1975

1976 1977
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
1978
		goto out_free_sie_block;
1979
	VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu,
1980
		 vcpu->arch.sie_block);
1981
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
1982 1983

	return vcpu;
1984 1985
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
1986
out_free_cpu:
1987
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1988
out:
1989 1990 1991 1992 1993
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
1994
	return kvm_s390_vcpu_has_irq(vcpu, 0);
1995 1996
}

1997
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
1998
{
1999
	atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
2000
	exit_sie(vcpu);
2001 2002
}

2003
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
2004
{
2005
	atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
2006 2007
}

2008 2009
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
{
2010
	atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
2011
	exit_sie(vcpu);
2012 2013 2014 2015
}

static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
2016
	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
2017 2018
}

2019 2020 2021 2022 2023 2024
/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
2025
	atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
2026 2027 2028 2029
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

2030 2031
/* Kick a guest cpu out of SIE to process a request synchronously */
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
2032
{
2033 2034
	kvm_make_request(req, vcpu);
	kvm_s390_vcpu_request(vcpu);
2035 2036
}

2037 2038
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
			      unsigned long end)
2039 2040 2041
{
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;
2042 2043
	unsigned long prefix;
	int i;
2044

2045 2046
	if (gmap_is_shadow(gmap))
		return;
2047 2048 2049
	if (start >= 1UL << 31)
		/* We are only interested in prefix pages */
		return;
2050 2051
	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
2052 2053 2054 2055
		prefix = kvm_s390_get_prefix(vcpu);
		if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) {
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx",
				   start, end);
2056
			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
2057 2058 2059 2060
		}
	}
}

2061 2062 2063 2064 2065 2066 2067
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

2068 2069 2070 2071 2072 2073
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
2074 2075 2076 2077 2078 2079 2080 2081
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2082
	case KVM_REG_S390_CPU_TIMER:
2083
		r = put_user(kvm_s390_get_cpu_timer(vcpu),
2084 2085 2086 2087 2088 2089
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2102 2103 2104 2105
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2106 2107 2108 2109
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;
2121
	__u64 val;
2122 2123

	switch (reg->id) {
2124 2125 2126 2127 2128 2129 2130 2131
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2132
	case KVM_REG_S390_CPU_TIMER:
2133 2134 2135
		r = get_user(val, (u64 __user *)reg->addr);
		if (!r)
			kvm_s390_set_cpu_timer(vcpu, val);
2136 2137 2138 2139 2140
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2141 2142 2143
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
2144 2145
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2146 2147 2148 2149 2150 2151 2152 2153 2154
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2155 2156 2157 2158
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2159 2160 2161 2162
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2163 2164 2165 2166 2167 2168
	default:
		break;
	}

	return r;
}
2169

2170 2171 2172 2173 2174 2175 2176 2177
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2178
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
2179 2180 2181 2182 2183
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2184
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
2185 2186 2187 2188 2189 2190
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2191
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
2192
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
2193
	restore_access_regs(vcpu->run->s.regs.acrs);
2194 2195 2196 2197 2198 2199
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2200
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
2201 2202 2203 2204 2205 2206
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2207 2208
	/* make sure the new values will be lazily loaded */
	save_fpu_regs();
2209 2210
	if (test_fp_ctl(fpu->fpc))
		return -EINVAL;
2211 2212 2213 2214 2215
	current->thread.fpu.fpc = fpu->fpc;
	if (MACHINE_HAS_VX)
		convert_fp_to_vx(current->thread.fpu.vxrs, (freg_t *)fpu->fprs);
	else
		memcpy(current->thread.fpu.fprs, &fpu->fprs, sizeof(fpu->fprs));
2216 2217 2218 2219 2220
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2221 2222 2223 2224 2225 2226 2227
	/* make sure we have the latest values */
	save_fpu_regs();
	if (MACHINE_HAS_VX)
		convert_vx_to_fp((freg_t *)fpu->fprs, current->thread.fpu.vxrs);
	else
		memcpy(fpu->fprs, current->thread.fpu.fprs, sizeof(fpu->fprs));
	fpu->fpc = current->thread.fpu.fpc;
2228 2229 2230 2231 2232 2233 2234
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

2235
	if (!is_vcpu_stopped(vcpu))
2236
		rc = -EBUSY;
2237 2238 2239 2240
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
2241 2242 2243 2244 2245 2246 2247 2248 2249
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

2250 2251 2252 2253
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
2254 2255
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
2256
{
2257 2258 2259 2260 2261
	int rc = 0;

	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

2262
	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
2263
		return -EINVAL;
2264 2265
	if (!sclp.has_gpere)
		return -EINVAL;
2266 2267 2268 2269

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
2270
		atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2271 2272 2273 2274

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
2275
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2276 2277 2278 2279 2280 2281
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
2282
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2283 2284 2285
	}

	return rc;
2286 2287
}

2288 2289 2290
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2291 2292 2293
	/* CHECK_STOP and LOAD are not supported yet */
	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				       KVM_MP_STATE_OPERATING;
2294 2295 2296 2297 2298
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
	int rc = 0;

	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

	return rc;
2319 2320
}

2321 2322 2323 2324 2325
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
	return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
}

2326 2327
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
2328
retry:
2329
	kvm_s390_vcpu_request_handled(vcpu);
2330 2331
	if (!vcpu->requests)
		return 0;
2332 2333
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
2334
	 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock.
2335 2336 2337 2338
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
2339
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
2340
		int rc;
2341 2342 2343
		rc = gmap_mprotect_notify(vcpu->arch.gmap,
					  kvm_s390_get_prefix(vcpu),
					  PAGE_SIZE * 2, PROT_WRITE);
2344 2345
		if (rc)
			return rc;
2346
		goto retry;
2347
	}
2348

2349 2350 2351 2352 2353
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

2354 2355 2356
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
2357
			atomic_or(CPUSTAT_IBS,
2358 2359 2360
					&vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
2361
	}
2362 2363 2364 2365

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
2366
			atomic_andnot(CPUSTAT_IBS,
2367 2368 2369 2370 2371
					  &vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
	}

2372 2373 2374
	/* nothing to do, just clear the request */
	clear_bit(KVM_REQ_UNHALT, &vcpu->requests);

2375 2376 2377
	return 0;
}

2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393
void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
{
	struct kvm_vcpu *vcpu;
	int i;

	mutex_lock(&kvm->lock);
	preempt_disable();
	kvm->arch.epoch = tod - get_tod_clock();
	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
	kvm_s390_vcpu_unblock_all(kvm);
	preempt_enable();
	mutex_unlock(&kvm->lock);
}

2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
2405
{
2406 2407
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
2408 2409
}

2410 2411 2412 2413
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
2414
	struct kvm_s390_irq irq;
2415 2416

	if (start_token) {
2417 2418 2419
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
2420 2421
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
2422
		inti.parm64 = token;
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
2469
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
2470 2471 2472 2473 2474 2475
		return 0;
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
2476 2477 2478
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
2479 2480 2481 2482 2483 2484
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

2485
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
2486
{
2487
	int rc, cpuflags;
2488

2489 2490 2491 2492 2493 2494 2495
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

2496 2497
	vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
	vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
2498 2499 2500 2501

	if (need_resched())
		schedule();

2502
	if (test_cpu_flag(CIF_MCCK_PENDING))
2503 2504
		s390_handle_mcck();

2505 2506 2507 2508 2509
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
2510

2511 2512 2513 2514
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

2515 2516 2517 2518 2519
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

2520
	vcpu->arch.sie_block->icptcode = 0;
2521 2522 2523
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
2524

2525 2526 2527
	return 0;
}

2528 2529
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
2530 2531 2532 2533
	struct kvm_s390_pgm_info pgm_info = {
		.code = PGM_ADDRESSING,
	};
	u8 opcode, ilen;
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
2547
	rc = read_guest_instr(vcpu, &opcode, 1);
2548
	ilen = insn_length(opcode);
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
	if (rc < 0) {
		return rc;
	} else if (rc) {
		/* Instruction-Fetching Exceptions - we can't detect the ilen.
		 * Forward by arbitrary ilc, injection will take care of
		 * nullification if necessary.
		 */
		pgm_info = vcpu->arch.pgm;
		ilen = 4;
	}
2559 2560 2561
	pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
	kvm_s390_forward_psw(vcpu, ilen);
	return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
2562 2563
}

2564 2565
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
2566 2567 2568 2569
	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

2570 2571 2572
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

2573 2574
	vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
	vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588

	if (vcpu->arch.sie_block->icptcode > 0) {
		int rc = kvm_handle_sie_intercept(vcpu);

		if (rc != -EOPNOTSUPP)
			return rc;
		vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
		vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
		vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
		return -EREMOTE;
	} else if (exit_reason != -EFAULT) {
		vcpu->stat.exit_null++;
		return 0;
2589 2590 2591 2592 2593
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
2594
		return -EREMOTE;
2595
	} else if (current->thread.gmap_pfault) {
2596
		trace_kvm_s390_major_guest_pfault(vcpu);
2597
		current->thread.gmap_pfault = 0;
2598 2599 2600
		if (kvm_arch_setup_async_pf(vcpu))
			return 0;
		return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
2601
	}
2602
	return vcpu_post_run_fault_in_sie(vcpu);
2603 2604 2605 2606 2607 2608
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

2609 2610 2611 2612 2613 2614
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

2615 2616 2617 2618
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
2619

2620
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2621 2622 2623 2624
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
2625 2626
		local_irq_disable();
		__kvm_guest_enter();
2627
		__disable_cpu_timer_accounting(vcpu);
2628
		local_irq_enable();
2629 2630
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
2631
		local_irq_disable();
2632
		__enable_cpu_timer_accounting(vcpu);
2633 2634
		__kvm_guest_exit();
		local_irq_enable();
2635
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2636 2637

		rc = vcpu_post_run(vcpu, exit_reason);
2638
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2639

2640
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2641
	return rc;
2642 2643
}

2644 2645 2646 2647 2648 2649 2650 2651
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2652 2653
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2654 2655
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
2656
		kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
2657 2658 2659 2660 2661 2662 2663 2664 2665
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2666 2667
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677
	}
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
2678
	kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
2679 2680 2681 2682 2683 2684 2685 2686 2687
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
}

2688 2689
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
2690
	int rc;
2691 2692
	sigset_t sigsaved;

2693 2694 2695 2696 2697
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
		return 0;
	}

2698 2699 2700
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

2701 2702 2703
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
2704
		pr_err_ratelimited("can't run stopped vcpu %d\n",
2705 2706 2707
				   vcpu->vcpu_id);
		return -EINVAL;
	}
2708

2709
	sync_regs(vcpu, kvm_run);
2710
	enable_cpu_timer_accounting(vcpu);
2711

2712
	might_fault();
2713
	rc = __vcpu_run(vcpu);
2714

2715 2716
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
2717
		rc = -EINTR;
2718
	}
2719

2720 2721 2722 2723 2724
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

2725
	if (rc == -EREMOTE) {
2726
		/* userspace support is needed, kvm_run has been prepared */
2727 2728
		rc = 0;
	}
2729

2730
	disable_cpu_timer_accounting(vcpu);
2731
	store_regs(vcpu, kvm_run);
2732

2733 2734 2735 2736
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu->stat.exit_userspace++;
2737
	return rc;
2738 2739 2740 2741 2742 2743 2744 2745
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
2746
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2747
{
2748
	unsigned char archmode = 1;
2749
	freg_t fprs[NUM_FPRS];
2750
	unsigned int px;
2751
	u64 clkcomp, cputm;
2752
	int rc;
2753

2754
	px = kvm_s390_get_prefix(vcpu);
2755 2756
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
2757
			return -EFAULT;
2758
		gpa = 0;
2759 2760
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
2761
			return -EFAULT;
2762 2763 2764
		gpa = px;
	} else
		gpa -= __LC_FPREGS_SAVE_AREA;
2765 2766 2767

	/* manually convert vector registers if necessary */
	if (MACHINE_HAS_VX) {
2768
		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
2769 2770 2771 2772
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
				     fprs, 128);
	} else {
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
2773
				     vcpu->run->s.regs.fprs, 128);
2774
	}
2775
	rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
2776
			      vcpu->run->s.regs.gprs, 128);
2777
	rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
2778
			      &vcpu->arch.sie_block->gpsw, 16);
2779
	rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
2780
			      &px, 4);
2781
	rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
2782
			      &vcpu->run->s.regs.fpc, 4);
2783
	rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
2784
			      &vcpu->arch.sie_block->todpr, 4);
2785
	cputm = kvm_s390_get_cpu_timer(vcpu);
2786
	rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
2787
			      &cputm, 8);
2788
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
2789
	rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
2790
			      &clkcomp, 8);
2791
	rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
2792
			      &vcpu->run->s.regs.acrs, 64);
2793
	rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
2794 2795
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
2796 2797
}

2798 2799 2800 2801 2802 2803 2804
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
	 * copying in vcpu load/put. Lets update our copies before we save
	 * it into the save area
	 */
2805
	save_fpu_regs();
2806
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
2807 2808 2809 2810 2811
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

E
Eric Farman 已提交
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
/*
 * store additional status at address
 */
int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu,
					unsigned long gpa)
{
	/* Only bits 0-53 are used for address formation */
	if (!(gpa & ~0x3ff))
		return 0;

	return write_guest_abs(vcpu, gpa & ~0x3ff,
			       (void *)&vcpu->run->s.regs.vrs, 512);
}

int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	if (!test_kvm_facility(vcpu->kvm, 129))
		return 0;

	/*
	 * The guest VXRS are in the host VXRs due to the lazy
2833 2834 2835 2836 2837
	 * copying in vcpu load/put. We can simply call save_fpu_regs()
	 * to save the current register state because we are in the
	 * middle of a load/put cycle.
	 *
	 * Let's update our copies before we save it into the save area.
E
Eric Farman 已提交
2838
	 */
2839
	save_fpu_regs();
E
Eric Farman 已提交
2840 2841 2842 2843

	return kvm_s390_store_adtl_status_unloaded(vcpu, addr);
}

2844 2845 2846
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2847
	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
2862 2863
	if (!sclp.has_ibs)
		return;
2864
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2865
	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2866 2867
}

2868 2869
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
2870 2871 2872 2873 2874
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

2875
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2876
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2877
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

2897
	atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2898 2899 2900 2901
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
2902
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2903
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2904
	return;
2905 2906 2907 2908
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
2909 2910 2911 2912 2913 2914
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

2915
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2916
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2917
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2918 2919
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

2920
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2921
	kvm_s390_clear_stop_irq(vcpu);
2922

2923
	atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

2941
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2942
	return;
2943 2944
}

2945 2946 2947 2948 2949 2950 2951 2952 2953
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
2954 2955 2956
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
2957
			VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
2958 2959 2960 2961
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
2962 2963 2964 2965 2966 2967 2968
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
				  struct kvm_s390_mem_op *mop)
{
	void __user *uaddr = (void __user *)mop->buf;
	void *tmpbuf = NULL;
	int r, srcu_idx;
	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
				    | KVM_S390_MEMOP_F_CHECK_ONLY;

	if (mop->flags & ~supported_flags)
		return -EINVAL;

	if (mop->size > MEM_OP_MAX_SIZE)
		return -E2BIG;

	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
		tmpbuf = vmalloc(mop->size);
		if (!tmpbuf)
			return -ENOMEM;
	}

	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

	switch (mop->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2995 2996
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_FETCH);
2997 2998 2999 3000 3001 3002 3003 3004 3005 3006
			break;
		}
		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		if (r == 0) {
			if (copy_to_user(uaddr, tmpbuf, mop->size))
				r = -EFAULT;
		}
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
3007 3008
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_STORE);
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
			break;
		}
		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
			r = -EFAULT;
			break;
		}
		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		break;
	default:
		r = -EINVAL;
	}

	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);

	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);

	vfree(tmpbuf);
	return r;
}

3030 3031 3032 3033 3034
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
3035
	int idx;
3036
	long r;
3037

3038
	switch (ioctl) {
3039 3040 3041 3042 3043 3044 3045 3046 3047
	case KVM_S390_IRQ: {
		struct kvm_s390_irq s390irq;

		r = -EFAULT;
		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
			break;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
		break;
	}
3048
	case KVM_S390_INTERRUPT: {
3049
		struct kvm_s390_interrupt s390int;
3050
		struct kvm_s390_irq s390irq;
3051

3052
		r = -EFAULT;
3053
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
3054
			break;
3055 3056 3057
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
3058
		break;
3059
	}
3060
	case KVM_S390_STORE_STATUS:
3061
		idx = srcu_read_lock(&vcpu->kvm->srcu);
3062
		r = kvm_s390_vcpu_store_status(vcpu, arg);
3063
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3064
		break;
3065 3066 3067
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

3068
		r = -EFAULT;
3069
		if (copy_from_user(&psw, argp, sizeof(psw)))
3070 3071 3072
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
3073 3074
	}
	case KVM_S390_INITIAL_RESET:
3075 3076
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
3125
	case KVM_S390_VCPU_FAULT: {
3126
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
3127 3128
		break;
	}
3129 3130 3131 3132 3133 3134 3135 3136 3137
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
3138 3139 3140 3141 3142 3143 3144 3145 3146
	case KVM_S390_MEM_OP: {
		struct kvm_s390_mem_op mem_op;

		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
		else
			r = -EFAULT;
		break;
	}
3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
	case KVM_S390_SET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
		    irq_state.len == 0 ||
		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_set_irq_state(vcpu,
					   (void __user *) irq_state.buf,
					   irq_state.len);
		break;
	}
	case KVM_S390_GET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len == 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_get_irq_state(vcpu,
					   (__u8 __user *)  irq_state.buf,
					   irq_state.len);
		break;
	}
3179
	default:
3180
		r = -ENOTTY;
3181
	}
3182
	return r;
3183 3184
}

3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

3198 3199
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
3200 3201 3202 3203
{
	return 0;
}

3204
/* Section: memory related */
3205 3206
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
3207
				   const struct kvm_userspace_memory_region *mem,
3208
				   enum kvm_mr_change change)
3209
{
3210 3211 3212 3213
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
3214

3215
	if (mem->userspace_addr & 0xffffful)
3216 3217
		return -EINVAL;

3218
	if (mem->memory_size & 0xffffful)
3219 3220
		return -EINVAL;

3221 3222 3223
	if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
		return -EINVAL;

3224 3225 3226 3227
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
3228
				const struct kvm_userspace_memory_region *mem,
3229
				const struct kvm_memory_slot *old,
3230
				const struct kvm_memory_slot *new,
3231
				enum kvm_mr_change change)
3232
{
3233
	int rc;
3234

3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
3245 3246 3247 3248

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
3249
		pr_warn("failed to commit memory region\n");
3250
	return;
3251 3252
}

3253 3254 3255 3256 3257 3258 3259
static inline unsigned long nonhyp_mask(int i)
{
	unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;

	return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
}

3260 3261 3262 3263 3264
void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu)
{
	vcpu->valid_wakeup = false;
}

3265 3266
static int __init kvm_s390_init(void)
{
3267 3268
	int i;

3269 3270 3271 3272 3273
	if (!sclp.has_sief2) {
		pr_info("SIE not available\n");
		return -ENODEV;
	}

3274 3275 3276 3277
	for (i = 0; i < 16; i++)
		kvm_s390_fac_list_mask[i] |=
			S390_lowcore.stfle_fac_list[i] & nonhyp_mask(i);

3278
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
3279 3280 3281 3282 3283 3284 3285 3286 3287
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
3288 3289 3290 3291 3292 3293 3294 3295 3296

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");