kvm-s390.c 76.8 KB
Newer Older
1
/*
2
 * hosting zSeries kernel virtual machines
3
 *
4
 * Copyright IBM Corp. 2008, 2009
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
13
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14
 *               Jason J. Herne <jjherne@us.ibm.com>
15 16 17 18 19
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
20
#include <linux/hrtimer.h>
21 22 23 24
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
25
#include <linux/random.h>
26
#include <linux/slab.h>
27
#include <linux/timer.h>
28
#include <linux/vmalloc.h>
29
#include <asm/asm-offsets.h>
30
#include <asm/lowcore.h>
31
#include <asm/etr.h>
32
#include <asm/pgtable.h>
33
#include <asm/nmi.h>
34
#include <asm/switch_to.h>
35
#include <asm/isc.h>
36
#include <asm/sclp.h>
37
#include "kvm-s390.h"
38 39
#include "gaccess.h"

40 41 42 43
#define KMSG_COMPONENT "kvm-s390"
#undef pr_fmt
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

44 45
#define CREATE_TRACE_POINTS
#include "trace.h"
46
#include "trace-s390.h"
47

48
#define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
49 50 51
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
			   (KVM_MAX_VCPUS + LOCAL_IRQS))
52

53 54 55 56
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
57
	{ "exit_null", VCPU_STAT(exit_null) },
58 59 60 61
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
62 63 64
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
65
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
66
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
67
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
68
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
69
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
70 71
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
72
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
73
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
74 75 76 77 78 79 80
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
81
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
82 83 84 85 86
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
	{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
87
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
88 89
	{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
	{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
90
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
91 92
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
93
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
94
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
95
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
96
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
97
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
98 99
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
100
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
101 102
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
103
	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
104 105 106
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
107 108 109
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
110
	{ "diagnose_10", VCPU_STAT(diagnose_10) },
111
	{ "diagnose_44", VCPU_STAT(diagnose_44) },
112
	{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
113 114 115
	{ "diagnose_258", VCPU_STAT(diagnose_258) },
	{ "diagnose_308", VCPU_STAT(diagnose_308) },
	{ "diagnose_500", VCPU_STAT(diagnose_500) },
116 117 118
	{ NULL }
};

119 120
/* upper facilities limit for kvm */
unsigned long kvm_s390_fac_list_mask[] = {
121
	0xffe6fffbfcfdfc40UL,
122
	0x005e800000000000UL,
123
};
124

125
unsigned long kvm_s390_fac_list_mask_size(void)
126
{
127 128
	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
	return ARRAY_SIZE(kvm_s390_fac_list_mask);
129 130
}

131
static struct gmap_notifier gmap_notifier;
132
debug_info_t *kvm_s390_dbf;
133

134
/* Section: not file related */
135
int kvm_arch_hardware_enable(void)
136 137
{
	/* every s390 is virtualization enabled ;-) */
138
	return 0;
139 140
}

141 142
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address);

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
/*
 * This callback is executed during stop_machine(). All CPUs are therefore
 * temporarily stopped. In order not to change guest behavior, we have to
 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
 * so a CPU won't be stopped while calculating with the epoch.
 */
static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
			  void *v)
{
	struct kvm *kvm;
	struct kvm_vcpu *vcpu;
	int i;
	unsigned long long *delta = v;

	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm->arch.epoch -= *delta;
		kvm_for_each_vcpu(i, vcpu, kvm) {
			vcpu->arch.sie_block->epoch -= *delta;
161 162
			if (vcpu->arch.cputm_enabled)
				vcpu->arch.cputm_start += *delta;
163 164 165 166 167 168 169 170 171
		}
	}
	return NOTIFY_OK;
}

static struct notifier_block kvm_clock_notifier = {
	.notifier_call = kvm_clock_sync,
};

172 173
int kvm_arch_hardware_setup(void)
{
174 175
	gmap_notifier.notifier_call = kvm_gmap_notifier;
	gmap_register_ipte_notifier(&gmap_notifier);
176 177
	atomic_notifier_chain_register(&s390_epoch_delta_notifier,
				       &kvm_clock_notifier);
178 179 180 181 182
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
183
	gmap_unregister_ipte_notifier(&gmap_notifier);
184 185
	atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
					 &kvm_clock_notifier);
186 187 188 189
}

int kvm_arch_init(void *opaque)
{
190 191 192 193 194 195 196 197 198
	kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
	if (!kvm_s390_dbf)
		return -ENOMEM;

	if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
		debug_unregister(kvm_s390_dbf);
		return -ENOMEM;
	}

199 200
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
201 202
}

203 204 205 206 207
void kvm_arch_exit(void)
{
	debug_unregister(kvm_s390_dbf);
}

208 209 210 211 212 213 214 215 216
/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

217
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
218
{
219 220
	int r;

221
	switch (ext) {
222
	case KVM_CAP_S390_PSW:
223
	case KVM_CAP_S390_GMAP:
224
	case KVM_CAP_SYNC_MMU:
225 226 227
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
228
	case KVM_CAP_ASYNC_PF:
229
	case KVM_CAP_SYNC_REGS:
230
	case KVM_CAP_ONE_REG:
231
	case KVM_CAP_ENABLE_CAP:
232
	case KVM_CAP_S390_CSS_SUPPORT:
C
Cornelia Huck 已提交
233
	case KVM_CAP_IOEVENTFD:
234
	case KVM_CAP_DEVICE_CTRL:
235
	case KVM_CAP_ENABLE_CAP_VM:
236
	case KVM_CAP_S390_IRQCHIP:
237
	case KVM_CAP_VM_ATTRIBUTES:
238
	case KVM_CAP_MP_STATE:
239
	case KVM_CAP_S390_INJECT_IRQ:
240
	case KVM_CAP_S390_USER_SIGP:
241
	case KVM_CAP_S390_USER_STSI:
242
	case KVM_CAP_S390_SKEYS:
243
	case KVM_CAP_S390_IRQ_STATE:
244 245
		r = 1;
		break;
246 247 248
	case KVM_CAP_S390_MEM_OP:
		r = MEM_OP_MAX_SIZE;
		break;
249 250
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
251 252
		r = sclp.has_esca ? KVM_S390_ESCA_CPU_SLOTS
				  : KVM_S390_BSCA_CPU_SLOTS;
253
		break;
254 255 256
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
257
	case KVM_CAP_S390_COW:
258
		r = MACHINE_HAS_ESOP;
259
		break;
260 261 262
	case KVM_CAP_S390_VECTOR_REGISTERS:
		r = MACHINE_HAS_VX;
		break;
263 264 265
	case KVM_CAP_S390_RI:
		r = test_facility(64);
		break;
266
	default:
267
		r = 0;
268
	}
269
	return r;
270 271
}

272 273 274 275 276 277 278 279 280 281 282 283 284 285
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	gfn_t cur_gfn, last_gfn;
	unsigned long address;
	struct gmap *gmap = kvm->arch.gmap;

	/* Loop over all guest pages */
	last_gfn = memslot->base_gfn + memslot->npages;
	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
		address = gfn_to_hva_memslot(memslot, cur_gfn);

		if (gmap_test_and_clear_dirty(address, gmap))
			mark_page_dirty(kvm, cur_gfn);
286 287
		if (fatal_signal_pending(current))
			return;
288
		cond_resched();
289 290 291
	}
}

292
/* Section: vm related */
293 294
static void sca_del_vcpu(struct kvm_vcpu *vcpu);

295 296 297 298 299 300
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
301 302
	int r;
	unsigned long n;
303
	struct kvm_memslots *slots;
304 305 306 307 308 309 310 311 312
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

313 314
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
333 334
}

335 336 337 338 339 340 341 342
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
343
	case KVM_CAP_S390_IRQCHIP:
344
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
345 346 347
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
348
	case KVM_CAP_S390_USER_SIGP:
349
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
350 351 352
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
353
	case KVM_CAP_S390_VECTOR_REGISTERS:
354 355 356 357
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus)) {
			r = -EBUSY;
		} else if (MACHINE_HAS_VX) {
358 359 360 361 362
			set_kvm_facility(kvm->arch.model.fac->mask, 129);
			set_kvm_facility(kvm->arch.model.fac->list, 129);
			r = 0;
		} else
			r = -EINVAL;
363
		mutex_unlock(&kvm->lock);
364 365
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
			 r ? "(not available)" : "(success)");
366
		break;
367 368 369 370 371 372 373 374 375 376 377 378 379 380
	case KVM_CAP_S390_RI:
		r = -EINVAL;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus)) {
			r = -EBUSY;
		} else if (test_facility(64)) {
			set_kvm_facility(kvm->arch.model.fac->mask, 64);
			set_kvm_facility(kvm->arch.model.fac->list, 64);
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
			 r ? "(not available)" : "(success)");
		break;
381
	case KVM_CAP_S390_USER_STSI:
382
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
383 384 385
		kvm->arch.user_stsi = 1;
		r = 0;
		break;
386 387 388 389 390 391 392
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

393 394 395 396 397 398 399
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
400
		VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
401 402
			 kvm->arch.mem_limit);
		if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
403 404 405 406 407 408 409 410 411 412
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
413 414 415 416 417
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
418 419 420 421 422
		/* enable CMMA only for z10 and later (EDAT_1) */
		ret = -EINVAL;
		if (!MACHINE_IS_LPAR || !MACHINE_HAS_EDAT1)
			break;

423
		ret = -EBUSY;
424
		VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
425 426 427 428 429 430 431 432
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			kvm->arch.use_cmma = 1;
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
433 434 435 436
		ret = -EINVAL;
		if (!kvm->arch.use_cmma)
			break;

437
		VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
438 439
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
440
		s390_reset_cmma(kvm->arch.gmap->mm);
441 442 443 444
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
445 446 447 448 449 450 451 452 453
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

454 455
		if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
		    new_limit > kvm->arch.mem_limit)
456 457
			return -E2BIG;

458 459 460 461 462 463 464
		if (!new_limit)
			return -EINVAL;

		/* gmap_alloc takes last usable address */
		if (new_limit != KVM_S390_NO_MEM_LIMIT)
			new_limit -= 1;

465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
		ret = -EBUSY;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			/* gmap_alloc will round the limit up */
			struct gmap *new = gmap_alloc(current->mm, new_limit);

			if (!new) {
				ret = -ENOMEM;
			} else {
				gmap_free(kvm->arch.gmap);
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
481 482 483
		VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
		VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
			 (void *) kvm->arch.gmap->asce);
484 485
		break;
	}
486 487 488 489 490 491 492
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

493 494 495 496 497 498 499
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *vcpu;
	int i;

500
	if (!test_kvm_facility(kvm, 76))
501 502 503 504 505 506 507 508 509
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
510
		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
511 512 513 514 515 516
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
517
		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
518 519 520 521 522
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
523
		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
524 525 526 527 528
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
529
		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
530 531 532 533 534 535 536 537 538 539 540 541 542 543
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_vcpu_crypto_setup(vcpu);
		exit_sie(vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

544 545 546 547 548 549 550 551 552 553
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;
554
	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
555 556 557 558 559 560

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
561
	u64 gtod;
562 563 564 565

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

566
	kvm_s390_set_tod_clock(kvm, gtod);
567
	VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod);
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;
599
	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
600 601 602 603 604 605

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
606
	u64 gtod;
607

608
	gtod = kvm_s390_get_tod_clock_fast(kvm);
609 610
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;
611
	VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	mutex_lock(&kvm->lock);
	if (atomic_read(&kvm->online_vcpus)) {
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
		memcpy(&kvm->arch.model.cpu_id, &proc->cpuid,
		       sizeof(struct cpuid));
		kvm->arch.model.ibc = proc->ibc;
657
		memcpy(kvm->arch.model.fac->list, proc->fac_list,
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	memcpy(&proc->cpuid, &kvm->arch.model.cpu_id, sizeof(struct cpuid));
	proc->ibc = kvm->arch.model.ibc;
691
	memcpy(&proc->fac_list, kvm->arch.model.fac->list, S390_ARCH_FAC_LIST_SIZE_BYTE);
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
710
	mach->ibc = sclp.ibc;
711 712
	memcpy(&mach->fac_mask, kvm->arch.model.fac->mask,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
713
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
714
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
	}
	return ret;
}

737 738 739 740 741
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
742
	case KVM_S390_VM_MEM_CTRL:
743
		ret = kvm_s390_set_mem_control(kvm, attr);
744
		break;
745 746 747
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
748 749 750
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
751 752 753
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
754 755 756 757 758 759 760 761 762 763
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
764 765 766 767 768 769
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
770 771 772
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
773 774 775
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
776 777 778 779 780 781
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
782 783 784 785 786 787 788
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
789 790 791 792
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
793
		case KVM_S390_VM_MEM_LIMIT_SIZE:
794 795 796 797 798 799 800
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
801 802 803 804 805 806 807 808 809 810 811
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
812 813 814 815 816 817 818 819 820 821 822
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
823 824 825 826 827 828 829 830 831 832 833 834 835
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
836 837 838 839 840 841 842 843
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	unsigned long curkey;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Is this guest using storage keys? */
	if (!mm_use_skey(current->mm))
		return KVM_S390_GET_SKEYS_NONE;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			goto out;
		}

		curkey = get_guest_storage_key(current->mm, hva);
		if (IS_ERR_VALUE(curkey)) {
			r = curkey;
			goto out;
		}
		keys[i] = curkey;
	}

	r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
			 sizeof(uint8_t) * args->count);
	if (r)
		r = -EFAULT;
out:
	kvfree(keys);
	return r;
}

static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
			   sizeof(uint8_t) * args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	/* Enable storage key handling for the guest */
921 922 923
	r = s390_enable_skey();
	if (r)
		goto out;
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947

	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			goto out;
		}

		/* Lowest order bit is reserved */
		if (keys[i] & 0x01) {
			r = -EINVAL;
			goto out;
		}

		r = set_guest_storage_key(current->mm, hva,
					  (unsigned long)keys[i], 0);
		if (r)
			goto out;
	}
out:
	kvfree(keys);
	return r;
}

948 949 950 951 952
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
953
	struct kvm_device_attr attr;
954 955 956
	int r;

	switch (ioctl) {
957 958 959 960 961 962 963 964 965
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
966 967 968 969 970 971 972 973
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
974 975 976 977 978 979 980
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
981
			r = kvm_set_irq_routing(kvm, &routing, 0, 0);
982 983 984
		}
		break;
	}
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
	case KVM_S390_GET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_get_skeys(kvm, &args);
		break;
	}
	case KVM_S390_SET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_set_skeys(kvm, &args);
		break;
	}
1026
	default:
1027
		r = -ENOTTY;
1028 1029 1030 1031 1032
	}

	return r;
}

1033 1034 1035
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
1036
	u32 cc = 0;
1037

1038
	memset(config, 0, 128);
1039 1040 1041 1042
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
1043
		"0: ipm %0\n"
1044
		"srl %0,28\n"
1045 1046 1047
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

1060
	if (test_facility(12)) {
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

1082 1083 1084 1085 1086 1087
static void kvm_s390_get_cpu_id(struct cpuid *cpu_id)
{
	get_cpu_id(cpu_id);
	cpu_id->version = 0xff;
}

1088 1089
static int kvm_s390_crypto_init(struct kvm *kvm)
{
1090
	if (!test_kvm_facility(kvm, 76))
1091 1092 1093 1094 1095 1096 1097
		return 0;

	kvm->arch.crypto.crycb = kzalloc(sizeof(*kvm->arch.crypto.crycb),
					 GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.crypto.crycb)
		return -ENOMEM;

1098
	kvm_s390_set_crycb_format(kvm);
1099

1100 1101 1102 1103 1104 1105 1106
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1107

1108 1109 1110
	return 0;
}

1111 1112 1113
static void sca_dispose(struct kvm *kvm)
{
	if (kvm->arch.use_esca)
1114
		free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
1115 1116 1117 1118 1119
	else
		free_page((unsigned long)(kvm->arch.sca));
	kvm->arch.sca = NULL;
}

1120
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1121
{
1122
	int i, rc;
1123
	char debug_name[16];
1124
	static unsigned long sca_offset;
1125

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

1137 1138
	rc = s390_enable_sie();
	if (rc)
1139
		goto out_err;
1140

1141 1142
	rc = -ENOMEM;

1143
	kvm->arch.use_esca = 0; /* start with basic SCA */
1144
	rwlock_init(&kvm->arch.sca_lock);
1145
	kvm->arch.sca = (struct bsca_block *) get_zeroed_page(GFP_KERNEL);
1146
	if (!kvm->arch.sca)
1147
		goto out_err;
1148
	spin_lock(&kvm_lock);
1149
	sca_offset += 16;
1150
	if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
1151
		sca_offset = 0;
1152 1153
	kvm->arch.sca = (struct bsca_block *)
			((char *) kvm->arch.sca + sca_offset);
1154
	spin_unlock(&kvm_lock);
1155 1156 1157

	sprintf(debug_name, "kvm-%u", current->pid);

1158
	kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1159
	if (!kvm->arch.dbf)
1160
		goto out_err;
1161

1162 1163 1164
	/*
	 * The architectural maximum amount of facilities is 16 kbit. To store
	 * this amount, 2 kbyte of memory is required. Thus we need a full
1165 1166
	 * page to hold the guest facility list (arch.model.fac->list) and the
	 * facility mask (arch.model.fac->mask). Its address size has to be
1167 1168 1169
	 * 31 bits and word aligned.
	 */
	kvm->arch.model.fac =
1170
		(struct kvm_s390_fac *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
1171
	if (!kvm->arch.model.fac)
1172
		goto out_err;
1173

1174
	/* Populate the facility mask initially. */
1175
	memcpy(kvm->arch.model.fac->mask, S390_lowcore.stfle_fac_list,
1176
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1177 1178
	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
		if (i < kvm_s390_fac_list_mask_size())
1179
			kvm->arch.model.fac->mask[i] &= kvm_s390_fac_list_mask[i];
1180
		else
1181
			kvm->arch.model.fac->mask[i] = 0UL;
1182 1183
	}

1184 1185 1186 1187
	/* Populate the facility list initially. */
	memcpy(kvm->arch.model.fac->list, kvm->arch.model.fac->mask,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);

1188
	kvm_s390_get_cpu_id(&kvm->arch.model.cpu_id);
1189
	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1190

1191
	if (kvm_s390_crypto_init(kvm) < 0)
1192
		goto out_err;
1193

1194
	spin_lock_init(&kvm->arch.float_int.lock);
1195 1196
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1197
	init_waitqueue_head(&kvm->arch.ipte_wq);
1198
	mutex_init(&kvm->arch.ipte_mutex);
1199

1200
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1201
	VM_EVENT(kvm, 3, "vm created with type %lu", type);
1202

1203 1204
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
1205
		kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
1206
	} else {
1207 1208 1209 1210 1211
		if (sclp.hamax == U64_MAX)
			kvm->arch.mem_limit = TASK_MAX_SIZE;
		else
			kvm->arch.mem_limit = min_t(unsigned long, TASK_MAX_SIZE,
						    sclp.hamax + 1);
1212
		kvm->arch.gmap = gmap_alloc(current->mm, kvm->arch.mem_limit - 1);
1213
		if (!kvm->arch.gmap)
1214
			goto out_err;
1215
		kvm->arch.gmap->private = kvm;
1216
		kvm->arch.gmap->pfault_enabled = 0;
1217
	}
1218 1219

	kvm->arch.css_support = 0;
1220
	kvm->arch.use_irqchip = 0;
1221
	kvm->arch.epoch = 0;
1222

1223
	spin_lock_init(&kvm->arch.start_stop_lock);
1224
	KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
1225

1226
	return 0;
1227
out_err:
1228
	kfree(kvm->arch.crypto.crycb);
1229
	free_page((unsigned long)kvm->arch.model.fac);
1230
	debug_unregister(kvm->arch.dbf);
1231
	sca_dispose(kvm);
1232
	KVM_EVENT(3, "creation of vm failed: %d", rc);
1233
	return rc;
1234 1235
}

1236 1237 1238
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1239
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1240
	kvm_s390_clear_local_irqs(vcpu);
1241
	kvm_clear_async_pf_completion_queue(vcpu);
1242
	if (!kvm_is_ucontrol(vcpu->kvm))
1243
		sca_del_vcpu(vcpu);
1244 1245 1246 1247

	if (kvm_is_ucontrol(vcpu->kvm))
		gmap_free(vcpu->arch.gmap);

1248
	if (vcpu->kvm->arch.use_cmma)
1249
		kvm_s390_vcpu_unsetup_cmma(vcpu);
1250
	free_page((unsigned long)(vcpu->arch.sie_block));
1251

1252
	kvm_vcpu_uninit(vcpu);
1253
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1254 1255 1256 1257 1258
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
1259
	struct kvm_vcpu *vcpu;
1260

1261 1262 1263 1264 1265 1266 1267 1268 1269
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
1270 1271
}

1272 1273
void kvm_arch_destroy_vm(struct kvm *kvm)
{
1274
	kvm_free_vcpus(kvm);
1275
	free_page((unsigned long)kvm->arch.model.fac);
1276
	sca_dispose(kvm);
1277
	debug_unregister(kvm->arch.dbf);
1278
	kfree(kvm->arch.crypto.crycb);
1279 1280
	if (!kvm_is_ucontrol(kvm))
		gmap_free(kvm->arch.gmap);
1281
	kvm_s390_destroy_adapters(kvm);
1282
	kvm_s390_clear_float_irqs(kvm);
1283
	KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
1284 1285 1286
}

/* Section: vcpu related */
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
	vcpu->arch.gmap = gmap_alloc(current->mm, -1UL);
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

1297 1298
static void sca_del_vcpu(struct kvm_vcpu *vcpu)
{
1299
	read_lock(&vcpu->kvm->arch.sca_lock);
1300 1301
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1302

1303
		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1304
		sca->cpu[vcpu->vcpu_id].sda = 0;
1305 1306 1307 1308
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1309
		sca->cpu[vcpu->vcpu_id].sda = 0;
1310
	}
1311
	read_unlock(&vcpu->kvm->arch.sca_lock);
1312 1313
}

1314
static void sca_add_vcpu(struct kvm_vcpu *vcpu)
1315
{
1316 1317 1318
	read_lock(&vcpu->kvm->arch.sca_lock);
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1319

1320
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1321 1322
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
1323
		vcpu->arch.sie_block->ecb2 |= 0x04U;
1324
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1325
	} else {
1326
		struct bsca_block *sca = vcpu->kvm->arch.sca;
1327

1328
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1329 1330
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
1331
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1332
	}
1333
	read_unlock(&vcpu->kvm->arch.sca_lock);
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
}

/* Basic SCA to Extended SCA data copy routines */
static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
{
	d->sda = s->sda;
	d->sigp_ctrl.c = s->sigp_ctrl.c;
	d->sigp_ctrl.scn = s->sigp_ctrl.scn;
}

static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
{
	int i;

	d->ipte_control = s->ipte_control;
	d->mcn[0] = s->mcn;
	for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
		sca_copy_entry(&d->cpu[i], &s->cpu[i]);
}

static int sca_switch_to_extended(struct kvm *kvm)
{
	struct bsca_block *old_sca = kvm->arch.sca;
	struct esca_block *new_sca;
	struct kvm_vcpu *vcpu;
	unsigned int vcpu_idx;
	u32 scaol, scaoh;

	new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
	if (!new_sca)
		return -ENOMEM;

	scaoh = (u32)((u64)(new_sca) >> 32);
	scaol = (u32)(u64)(new_sca) & ~0x3fU;

	kvm_s390_vcpu_block_all(kvm);
	write_lock(&kvm->arch.sca_lock);

	sca_copy_b_to_e(new_sca, old_sca);

	kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
		vcpu->arch.sie_block->scaoh = scaoh;
		vcpu->arch.sie_block->scaol = scaol;
		vcpu->arch.sie_block->ecb2 |= 0x04U;
	}
	kvm->arch.sca = new_sca;
	kvm->arch.use_esca = 1;

	write_unlock(&kvm->arch.sca_lock);
	kvm_s390_vcpu_unblock_all(kvm);

	free_page((unsigned long)old_sca);

1387 1388
	VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
		 old_sca, kvm->arch.sca);
1389
	return 0;
1390 1391 1392 1393
}

static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
{
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
	int rc;

	if (id < KVM_S390_BSCA_CPU_SLOTS)
		return true;
	if (!sclp.has_esca)
		return false;

	mutex_lock(&kvm->lock);
	rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
	mutex_unlock(&kvm->lock);

	return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
1406 1407
}

1408 1409
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1410 1411
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1412 1413
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
1414
				    KVM_SYNC_ACRS |
1415 1416 1417
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
1418 1419
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
1420 1421 1422 1423
	/* fprs can be synchronized via vrs, even if the guest has no vx. With
	 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
	 */
	if (MACHINE_HAS_VX)
1424
		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1425 1426
	else
		vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
1427 1428 1429 1430

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

1431 1432 1433
	return 0;
}

1434 1435 1436 1437
/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
1438
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1439
	vcpu->arch.cputm_start = get_tod_clock_fast();
1440
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1441 1442 1443 1444 1445 1446
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
1447
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1448 1449
	vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	vcpu->arch.cputm_start = 0;
1450
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_enabled);
	vcpu->arch.cputm_enabled = true;
	__start_cpu_timer_accounting(vcpu);
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
	__stop_cpu_timer_accounting(vcpu);
	vcpu->arch.cputm_enabled = false;
}

static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__enable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__disable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

1483 1484 1485
/* set the cpu timer - may only be called from the VCPU thread itself */
void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
{
1486
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1487
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1488 1489
	if (vcpu->arch.cputm_enabled)
		vcpu->arch.cputm_start = get_tod_clock_fast();
1490
	vcpu->arch.sie_block->cputm = cputm;
1491
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1492
	preempt_enable();
1493 1494
}

1495
/* update and get the cpu timer - can also be called from other VCPU threads */
1496 1497
__u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
{
1498
	unsigned int seq;
1499 1500 1501 1502 1503
	__u64 value;

	if (unlikely(!vcpu->arch.cputm_enabled))
		return vcpu->arch.sie_block->cputm;

1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	do {
		seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
		/*
		 * If the writer would ever execute a read in the critical
		 * section, e.g. in irq context, we have a deadlock.
		 */
		WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
		value = vcpu->arch.sie_block->cputm;
		/* if cputm_start is 0, accounting is being started/stopped */
		if (likely(vcpu->arch.cputm_start))
			value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	} while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
	preempt_enable();
1518
	return value;
1519 1520
}

1521 1522
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
1523
	/* Save host register state */
1524
	save_fpu_regs();
1525 1526
	vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
	vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
1527

1528 1529 1530 1531
	if (MACHINE_HAS_VX)
		current->thread.fpu.regs = vcpu->run->s.regs.vrs;
	else
		current->thread.fpu.regs = vcpu->run->s.regs.fprs;
1532
	current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
1533
	if (test_fp_ctl(current->thread.fpu.fpc))
1534
		/* User space provided an invalid FPC, let's clear it */
1535 1536 1537
		current->thread.fpu.fpc = 0;

	save_access_regs(vcpu->arch.host_acrs);
1538
	restore_access_regs(vcpu->run->s.regs.acrs);
1539
	gmap_enable(vcpu->arch.gmap);
1540
	atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1541
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1542
		__start_cpu_timer_accounting(vcpu);
1543
	vcpu->cpu = cpu;
1544 1545 1546 1547
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
1548
	vcpu->cpu = -1;
1549
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1550
		__stop_cpu_timer_accounting(vcpu);
1551
	atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1552
	gmap_disable(vcpu->arch.gmap);
1553

1554
	/* Save guest register state */
1555
	save_fpu_regs();
1556
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
1557

1558 1559 1560
	/* Restore host register state */
	current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
	current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
1561 1562

	save_access_regs(vcpu->run->s.regs.acrs);
1563 1564 1565 1566 1567 1568 1569 1570
	restore_access_regs(vcpu->arch.host_acrs);
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
1571
	kvm_s390_set_prefix(vcpu, 0);
1572
	kvm_s390_set_cpu_timer(vcpu, 0);
1573 1574 1575 1576 1577
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
1578 1579 1580
	/* make sure the new fpc will be lazily loaded */
	save_fpu_regs();
	current->thread.fpu.fpc = 0;
1581
	vcpu->arch.sie_block->gbea = 1;
1582
	vcpu->arch.sie_block->pp = 0;
1583 1584
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1585 1586
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
1587
	kvm_s390_clear_local_irqs(vcpu);
1588 1589
}

1590
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1591
{
1592
	mutex_lock(&vcpu->kvm->lock);
1593
	preempt_disable();
1594
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
1595
	preempt_enable();
1596
	mutex_unlock(&vcpu->kvm->lock);
1597
	if (!kvm_is_ucontrol(vcpu->kvm)) {
1598
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1599
		sca_add_vcpu(vcpu);
1600 1601
	}

1602 1603
}

1604 1605
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
1606
	if (!test_kvm_facility(vcpu->kvm, 76))
1607 1608
		return;

1609 1610 1611 1612 1613 1614 1615
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

1616 1617 1618
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;

	vcpu->arch.sie_block->ecb2 |= 0x80;
	vcpu->arch.sie_block->ecb2 &= ~0x08;
	return 0;
}

1636 1637 1638 1639 1640 1641 1642 1643 1644
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;

	vcpu->arch.cpu_id = model->cpu_id;
	vcpu->arch.sie_block->ibc = model->ibc;
	vcpu->arch.sie_block->fac = (int) (long) model->fac->list;
}

1645 1646
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
1647
	int rc = 0;
1648

1649 1650
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
1651 1652
						    CPUSTAT_STOPPED);

1653
	if (test_kvm_facility(vcpu->kvm, 78))
1654
		atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
1655
	else if (test_kvm_facility(vcpu->kvm, 8))
1656
		atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
1657

1658 1659
	kvm_s390_vcpu_setup_model(vcpu);

1660
	vcpu->arch.sie_block->ecb   = 6;
1661
	if (test_kvm_facility(vcpu->kvm, 50) && test_kvm_facility(vcpu->kvm, 73))
1662 1663
		vcpu->arch.sie_block->ecb |= 0x10;

1664
	vcpu->arch.sie_block->ecb2  = 8;
1665
	vcpu->arch.sie_block->eca   = 0xC1002000U;
1666
	if (sclp.has_siif)
1667
		vcpu->arch.sie_block->eca |= 1;
1668
	if (sclp.has_sigpif)
1669
		vcpu->arch.sie_block->eca |= 0x10000000U;
1670 1671
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->arch.sie_block->ecb3 |= 0x01;
1672
	if (test_kvm_facility(vcpu->kvm, 129)) {
1673 1674 1675
		vcpu->arch.sie_block->eca |= 0x00020000;
		vcpu->arch.sie_block->ecd |= 0x20000000;
	}
1676
	vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
1677
	vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
1678

1679
	if (vcpu->kvm->arch.use_cmma) {
1680 1681 1682
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
1683
	}
1684
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1685
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1686

1687 1688
	kvm_s390_vcpu_crypto_setup(vcpu);

1689
	return rc;
1690 1691 1692 1693 1694
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
1695
	struct kvm_vcpu *vcpu;
1696
	struct sie_page *sie_page;
1697 1698
	int rc = -EINVAL;

1699
	if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
1700 1701 1702
		goto out;

	rc = -ENOMEM;
1703

1704
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1705
	if (!vcpu)
1706
		goto out;
1707

1708 1709
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
1710 1711
		goto out_free_cpu;

1712 1713 1714
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;

1715
	vcpu->arch.sie_block->icpua = id;
1716 1717
	spin_lock_init(&vcpu->arch.local_int.lock);
	vcpu->arch.local_int.float_int = &kvm->arch.float_int;
1718
	vcpu->arch.local_int.wq = &vcpu->wq;
1719
	vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
1720
	seqcount_init(&vcpu->arch.cputm_seqcount);
1721

1722 1723
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
1724
		goto out_free_sie_block;
1725
	VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu,
1726
		 vcpu->arch.sie_block);
1727
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
1728 1729

	return vcpu;
1730 1731
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
1732
out_free_cpu:
1733
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1734
out:
1735 1736 1737 1738 1739
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
1740
	return kvm_s390_vcpu_has_irq(vcpu, 0);
1741 1742
}

1743
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
1744
{
1745
	atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1746
	exit_sie(vcpu);
1747 1748
}

1749
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
1750
{
1751
	atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1752 1753
}

1754 1755
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
{
1756
	atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1757
	exit_sie(vcpu);
1758 1759 1760 1761
}

static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
1762
	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1763 1764
}

1765 1766 1767 1768 1769 1770
/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
1771
	atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
1772 1773 1774 1775
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

1776 1777
/* Kick a guest cpu out of SIE to process a request synchronously */
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
1778
{
1779 1780
	kvm_make_request(req, vcpu);
	kvm_s390_vcpu_request(vcpu);
1781 1782
}

1783 1784 1785 1786 1787 1788 1789 1790
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address)
{
	int i;
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
1791
		if (kvm_s390_get_prefix(vcpu) == (address & ~0x1000UL)) {
1792
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx", address);
1793
			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
1794 1795 1796 1797
		}
	}
}

1798 1799 1800 1801 1802 1803 1804
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

1805 1806 1807 1808 1809 1810
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
1811 1812 1813 1814 1815 1816 1817 1818
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
1819
	case KVM_REG_S390_CPU_TIMER:
1820
		r = put_user(kvm_s390_get_cpu_timer(vcpu),
1821 1822 1823 1824 1825 1826
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
1839 1840 1841 1842
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
1843 1844 1845 1846
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;
1858
	__u64 val;
1859 1860

	switch (reg->id) {
1861 1862 1863 1864 1865 1866 1867 1868
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
1869
	case KVM_REG_S390_CPU_TIMER:
1870 1871 1872
		r = get_user(val, (u64 __user *)reg->addr);
		if (!r)
			kvm_s390_set_cpu_timer(vcpu, val);
1873 1874 1875 1876 1877
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
1878 1879 1880
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
1881 1882
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
1883 1884 1885 1886 1887 1888 1889 1890 1891
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
1892 1893 1894 1895
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
1896 1897 1898 1899
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
1900 1901 1902 1903 1904 1905
	default:
		break;
	}

	return r;
}
1906

1907 1908 1909 1910 1911 1912 1913 1914
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
1915
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
1916 1917 1918 1919 1920
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
1921
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
1922 1923 1924 1925 1926 1927
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
1928
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
1929
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
1930
	restore_access_regs(vcpu->run->s.regs.acrs);
1931 1932 1933 1934 1935 1936
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
1937
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
1938 1939 1940 1941 1942 1943
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
1944 1945
	/* make sure the new values will be lazily loaded */
	save_fpu_regs();
1946 1947
	if (test_fp_ctl(fpu->fpc))
		return -EINVAL;
1948 1949 1950 1951 1952
	current->thread.fpu.fpc = fpu->fpc;
	if (MACHINE_HAS_VX)
		convert_fp_to_vx(current->thread.fpu.vxrs, (freg_t *)fpu->fprs);
	else
		memcpy(current->thread.fpu.fprs, &fpu->fprs, sizeof(fpu->fprs));
1953 1954 1955 1956 1957
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
1958 1959 1960 1961 1962 1963 1964
	/* make sure we have the latest values */
	save_fpu_regs();
	if (MACHINE_HAS_VX)
		convert_vx_to_fp((freg_t *)fpu->fprs, current->thread.fpu.vxrs);
	else
		memcpy(fpu->fprs, current->thread.fpu.fprs, sizeof(fpu->fprs));
	fpu->fpc = current->thread.fpu.fpc;
1965 1966 1967 1968 1969 1970 1971
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

1972
	if (!is_vcpu_stopped(vcpu))
1973
		rc = -EBUSY;
1974 1975 1976 1977
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
1978 1979 1980 1981 1982 1983 1984 1985 1986
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

1987 1988 1989 1990
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
1991 1992
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
1993
{
1994 1995 1996 1997 1998
	int rc = 0;

	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

1999
	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
2000 2001 2002 2003 2004
		return -EINVAL;

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
2005
		atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2006 2007 2008 2009

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
2010
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2011 2012 2013 2014 2015 2016
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
2017
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2018 2019 2020
	}

	return rc;
2021 2022
}

2023 2024 2025
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2026 2027 2028
	/* CHECK_STOP and LOAD are not supported yet */
	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				       KVM_MP_STATE_OPERATING;
2029 2030 2031 2032 2033
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
	int rc = 0;

	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

	return rc;
2054 2055
}

2056 2057 2058 2059 2060
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
	return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
}

2061 2062
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
2063
retry:
2064
	kvm_s390_vcpu_request_handled(vcpu);
2065 2066
	if (!vcpu->requests)
		return 0;
2067 2068 2069 2070 2071 2072 2073
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
	 * guest prefix page. gmap_ipte_notify will wait on the ptl lock.
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
2074
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
2075 2076
		int rc;
		rc = gmap_ipte_notify(vcpu->arch.gmap,
2077
				      kvm_s390_get_prefix(vcpu),
2078 2079 2080
				      PAGE_SIZE * 2);
		if (rc)
			return rc;
2081
		goto retry;
2082
	}
2083

2084 2085 2086 2087 2088
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

2089 2090 2091
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
2092
			atomic_or(CPUSTAT_IBS,
2093 2094 2095
					&vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
2096
	}
2097 2098 2099 2100

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
2101
			atomic_andnot(CPUSTAT_IBS,
2102 2103 2104 2105 2106
					  &vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
	}

2107 2108 2109
	/* nothing to do, just clear the request */
	clear_bit(KVM_REQ_UNHALT, &vcpu->requests);

2110 2111 2112
	return 0;
}

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
{
	struct kvm_vcpu *vcpu;
	int i;

	mutex_lock(&kvm->lock);
	preempt_disable();
	kvm->arch.epoch = tod - get_tod_clock();
	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
	kvm_s390_vcpu_unblock_all(kvm);
	preempt_enable();
	mutex_unlock(&kvm->lock);
}

2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
2140
{
2141 2142
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
2143 2144
}

2145 2146 2147 2148
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
2149
	struct kvm_s390_irq irq;
2150 2151

	if (start_token) {
2152 2153 2154
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
2155 2156
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
2157
		inti.parm64 = token;
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
2204
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
2205 2206 2207 2208 2209 2210
		return 0;
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
2211 2212 2213
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
2214 2215 2216 2217 2218 2219
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

2220
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
2221
{
2222
	int rc, cpuflags;
2223

2224 2225 2226 2227 2228 2229 2230
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

2231 2232
	vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
	vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
2233 2234 2235 2236

	if (need_resched())
		schedule();

2237
	if (test_cpu_flag(CIF_MCCK_PENDING))
2238 2239
		s390_handle_mcck();

2240 2241 2242 2243 2244
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
2245

2246 2247 2248 2249
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

2250 2251 2252 2253 2254
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

2255
	vcpu->arch.sie_block->icptcode = 0;
2256 2257 2258
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
2259

2260 2261 2262
	return 0;
}

2263 2264
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
2265 2266 2267 2268
	struct kvm_s390_pgm_info pgm_info = {
		.code = PGM_ADDRESSING,
	};
	u8 opcode, ilen;
2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
2282
	rc = read_guest_instr(vcpu, &opcode, 1);
2283
	ilen = insn_length(opcode);
2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
	if (rc < 0) {
		return rc;
	} else if (rc) {
		/* Instruction-Fetching Exceptions - we can't detect the ilen.
		 * Forward by arbitrary ilc, injection will take care of
		 * nullification if necessary.
		 */
		pgm_info = vcpu->arch.pgm;
		ilen = 4;
	}
2294 2295 2296
	pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
	kvm_s390_forward_psw(vcpu, ilen);
	return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
2297 2298
}

2299 2300
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
2301 2302 2303 2304
	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

2305 2306 2307
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

2308 2309
	vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
	vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323

	if (vcpu->arch.sie_block->icptcode > 0) {
		int rc = kvm_handle_sie_intercept(vcpu);

		if (rc != -EOPNOTSUPP)
			return rc;
		vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
		vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
		vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
		return -EREMOTE;
	} else if (exit_reason != -EFAULT) {
		vcpu->stat.exit_null++;
		return 0;
2324 2325 2326 2327 2328
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
2329
		return -EREMOTE;
2330
	} else if (current->thread.gmap_pfault) {
2331
		trace_kvm_s390_major_guest_pfault(vcpu);
2332
		current->thread.gmap_pfault = 0;
2333 2334 2335
		if (kvm_arch_setup_async_pf(vcpu))
			return 0;
		return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
2336
	}
2337
	return vcpu_post_run_fault_in_sie(vcpu);
2338 2339 2340 2341 2342 2343
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

2344 2345 2346 2347 2348 2349
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

2350 2351 2352 2353
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
2354

2355
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2356 2357 2358 2359
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
2360 2361
		local_irq_disable();
		__kvm_guest_enter();
2362
		__disable_cpu_timer_accounting(vcpu);
2363
		local_irq_enable();
2364 2365
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
2366
		local_irq_disable();
2367
		__enable_cpu_timer_accounting(vcpu);
2368 2369
		__kvm_guest_exit();
		local_irq_enable();
2370
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2371 2372

		rc = vcpu_post_run(vcpu, exit_reason);
2373
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2374

2375
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2376
	return rc;
2377 2378
}

2379 2380 2381 2382 2383 2384 2385 2386
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2387 2388
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2389 2390
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
2391
		kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
2392 2393 2394 2395 2396 2397 2398 2399 2400
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2401 2402
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
	}
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
2413
	kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
2414 2415 2416 2417 2418 2419 2420 2421 2422
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
}

2423 2424
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
2425
	int rc;
2426 2427
	sigset_t sigsaved;

2428 2429 2430 2431 2432
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
		return 0;
	}

2433 2434 2435
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

2436 2437 2438
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
2439
		pr_err_ratelimited("can't run stopped vcpu %d\n",
2440 2441 2442
				   vcpu->vcpu_id);
		return -EINVAL;
	}
2443

2444
	sync_regs(vcpu, kvm_run);
2445
	enable_cpu_timer_accounting(vcpu);
2446

2447
	might_fault();
2448
	rc = __vcpu_run(vcpu);
2449

2450 2451
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
2452
		rc = -EINTR;
2453
	}
2454

2455 2456 2457 2458 2459
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

2460
	if (rc == -EREMOTE) {
2461
		/* userspace support is needed, kvm_run has been prepared */
2462 2463
		rc = 0;
	}
2464

2465
	disable_cpu_timer_accounting(vcpu);
2466
	store_regs(vcpu, kvm_run);
2467

2468 2469 2470 2471
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu->stat.exit_userspace++;
2472
	return rc;
2473 2474 2475 2476 2477 2478 2479 2480
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
2481
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2482
{
2483
	unsigned char archmode = 1;
2484
	freg_t fprs[NUM_FPRS];
2485
	unsigned int px;
2486
	u64 clkcomp, cputm;
2487
	int rc;
2488

2489
	px = kvm_s390_get_prefix(vcpu);
2490 2491
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
2492
			return -EFAULT;
2493
		gpa = 0;
2494 2495
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
2496
			return -EFAULT;
2497 2498 2499
		gpa = px;
	} else
		gpa -= __LC_FPREGS_SAVE_AREA;
2500 2501 2502 2503 2504 2505 2506 2507

	/* manually convert vector registers if necessary */
	if (MACHINE_HAS_VX) {
		convert_vx_to_fp(fprs, current->thread.fpu.vxrs);
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
				     fprs, 128);
	} else {
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
2508
				     vcpu->run->s.regs.fprs, 128);
2509
	}
2510
	rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
2511
			      vcpu->run->s.regs.gprs, 128);
2512
	rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
2513
			      &vcpu->arch.sie_block->gpsw, 16);
2514
	rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
2515
			      &px, 4);
2516
	rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
2517
			      &vcpu->run->s.regs.fpc, 4);
2518
	rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
2519
			      &vcpu->arch.sie_block->todpr, 4);
2520
	cputm = kvm_s390_get_cpu_timer(vcpu);
2521
	rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
2522
			      &cputm, 8);
2523
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
2524
	rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
2525
			      &clkcomp, 8);
2526
	rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
2527
			      &vcpu->run->s.regs.acrs, 64);
2528
	rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
2529 2530
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
2531 2532
}

2533 2534 2535 2536 2537 2538 2539
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
	 * copying in vcpu load/put. Lets update our copies before we save
	 * it into the save area
	 */
2540
	save_fpu_regs();
2541
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
2542 2543 2544 2545 2546
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

E
Eric Farman 已提交
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
/*
 * store additional status at address
 */
int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu,
					unsigned long gpa)
{
	/* Only bits 0-53 are used for address formation */
	if (!(gpa & ~0x3ff))
		return 0;

	return write_guest_abs(vcpu, gpa & ~0x3ff,
			       (void *)&vcpu->run->s.regs.vrs, 512);
}

int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	if (!test_kvm_facility(vcpu->kvm, 129))
		return 0;

	/*
	 * The guest VXRS are in the host VXRs due to the lazy
2568 2569 2570 2571 2572
	 * copying in vcpu load/put. We can simply call save_fpu_regs()
	 * to save the current register state because we are in the
	 * middle of a load/put cycle.
	 *
	 * Let's update our copies before we save it into the save area.
E
Eric Farman 已提交
2573
	 */
2574
	save_fpu_regs();
E
Eric Farman 已提交
2575 2576 2577 2578

	return kvm_s390_store_adtl_status_unloaded(vcpu, addr);
}

2579 2580 2581
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2582
	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2598
	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2599 2600
}

2601 2602
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
2603 2604 2605 2606 2607
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

2608
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2609
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2610
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

2630
	atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2631 2632 2633 2634
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
2635
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2636
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2637
	return;
2638 2639 2640 2641
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
2642 2643 2644 2645 2646 2647
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

2648
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2649
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2650
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2651 2652
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

2653
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2654
	kvm_s390_clear_stop_irq(vcpu);
2655

2656
	atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

2674
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2675
	return;
2676 2677
}

2678 2679 2680 2681 2682 2683 2684 2685 2686
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
2687 2688 2689
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
2690
			VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
2691 2692 2693 2694
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
2695 2696 2697 2698 2699 2700 2701
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
				  struct kvm_s390_mem_op *mop)
{
	void __user *uaddr = (void __user *)mop->buf;
	void *tmpbuf = NULL;
	int r, srcu_idx;
	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
				    | KVM_S390_MEMOP_F_CHECK_ONLY;

	if (mop->flags & ~supported_flags)
		return -EINVAL;

	if (mop->size > MEM_OP_MAX_SIZE)
		return -E2BIG;

	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
		tmpbuf = vmalloc(mop->size);
		if (!tmpbuf)
			return -ENOMEM;
	}

	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

	switch (mop->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2728 2729
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_FETCH);
2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
			break;
		}
		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		if (r == 0) {
			if (copy_to_user(uaddr, tmpbuf, mop->size))
				r = -EFAULT;
		}
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2740 2741
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_STORE);
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
			break;
		}
		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
			r = -EFAULT;
			break;
		}
		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		break;
	default:
		r = -EINVAL;
	}

	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);

	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);

	vfree(tmpbuf);
	return r;
}

2763 2764 2765 2766 2767
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
2768
	int idx;
2769
	long r;
2770

2771
	switch (ioctl) {
2772 2773 2774 2775 2776 2777 2778 2779 2780
	case KVM_S390_IRQ: {
		struct kvm_s390_irq s390irq;

		r = -EFAULT;
		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
			break;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
		break;
	}
2781
	case KVM_S390_INTERRUPT: {
2782
		struct kvm_s390_interrupt s390int;
2783
		struct kvm_s390_irq s390irq;
2784

2785
		r = -EFAULT;
2786
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
2787
			break;
2788 2789 2790
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
2791
		break;
2792
	}
2793
	case KVM_S390_STORE_STATUS:
2794
		idx = srcu_read_lock(&vcpu->kvm->srcu);
2795
		r = kvm_s390_vcpu_store_status(vcpu, arg);
2796
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
2797
		break;
2798 2799 2800
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

2801
		r = -EFAULT;
2802
		if (copy_from_user(&psw, argp, sizeof(psw)))
2803 2804 2805
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
2806 2807
	}
	case KVM_S390_INITIAL_RESET:
2808 2809
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
2858
	case KVM_S390_VCPU_FAULT: {
2859
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
2860 2861
		break;
	}
2862 2863 2864 2865 2866 2867 2868 2869 2870
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
2871 2872 2873 2874 2875 2876 2877 2878 2879
	case KVM_S390_MEM_OP: {
		struct kvm_s390_mem_op mem_op;

		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
		else
			r = -EFAULT;
		break;
	}
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
	case KVM_S390_SET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
		    irq_state.len == 0 ||
		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_set_irq_state(vcpu,
					   (void __user *) irq_state.buf,
					   irq_state.len);
		break;
	}
	case KVM_S390_GET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len == 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_get_irq_state(vcpu,
					   (__u8 __user *)  irq_state.buf,
					   irq_state.len);
		break;
	}
2912
	default:
2913
		r = -ENOTTY;
2914
	}
2915
	return r;
2916 2917
}

2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

2931 2932
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
2933 2934 2935 2936
{
	return 0;
}

2937
/* Section: memory related */
2938 2939
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
2940
				   const struct kvm_userspace_memory_region *mem,
2941
				   enum kvm_mr_change change)
2942
{
2943 2944 2945 2946
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
2947

2948
	if (mem->userspace_addr & 0xffffful)
2949 2950
		return -EINVAL;

2951
	if (mem->memory_size & 0xffffful)
2952 2953
		return -EINVAL;

2954 2955 2956
	if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
		return -EINVAL;

2957 2958 2959 2960
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
2961
				const struct kvm_userspace_memory_region *mem,
2962
				const struct kvm_memory_slot *old,
2963
				const struct kvm_memory_slot *new,
2964
				enum kvm_mr_change change)
2965
{
2966
	int rc;
2967

2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
2978 2979 2980 2981

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
2982
		pr_warn("failed to commit memory region\n");
2983
	return;
2984 2985 2986 2987
}

static int __init kvm_s390_init(void)
{
2988 2989 2990 2991 2992
	if (!sclp.has_sief2) {
		pr_info("SIE not available\n");
		return -ENODEV;
	}

2993
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2994 2995 2996 2997 2998 2999 3000 3001 3002
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
3003 3004 3005 3006 3007 3008 3009 3010 3011

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");