kvm-s390.c 83.9 KB
Newer Older
1
/*
2
 * hosting zSeries kernel virtual machines
3
 *
4
 * Copyright IBM Corp. 2008, 2009
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
13
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14
 *               Jason J. Herne <jjherne@us.ibm.com>
15 16 17 18 19
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
20
#include <linux/hrtimer.h>
21 22 23
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
24
#include <linux/mman.h>
25
#include <linux/module.h>
26
#include <linux/random.h>
27
#include <linux/slab.h>
28
#include <linux/timer.h>
29
#include <linux/vmalloc.h>
30
#include <linux/bitmap.h>
31
#include <asm/asm-offsets.h>
32
#include <asm/lowcore.h>
33
#include <asm/etr.h>
34
#include <asm/pgtable.h>
35
#include <asm/gmap.h>
36
#include <asm/nmi.h>
37
#include <asm/switch_to.h>
38
#include <asm/isc.h>
39
#include <asm/sclp.h>
40 41
#include <asm/cpacf.h>
#include <asm/etr.h>
42
#include "kvm-s390.h"
43 44
#include "gaccess.h"

45 46 47 48
#define KMSG_COMPONENT "kvm-s390"
#undef pr_fmt
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

49 50
#define CREATE_TRACE_POINTS
#include "trace.h"
51
#include "trace-s390.h"
52

53
#define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
54 55 56
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
			   (KVM_MAX_VCPUS + LOCAL_IRQS))
57

58 59 60 61
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
62
	{ "exit_null", VCPU_STAT(exit_null) },
63 64 65 66
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
67 68 69
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
70
	{ "exit_operation_exception", VCPU_STAT(exit_operation_exception) },
71
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
72
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
73
	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
74
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
75
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
76
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
77 78
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
79
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
80
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
81 82 83 84 85 86 87
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
88
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
89 90 91 92 93
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
	{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
94
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
95 96
	{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
	{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
97
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
98 99
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
100
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
J
Janosch Frank 已提交
101
	{ "instruction_sthyi", VCPU_STAT(instruction_sthyi) },
102
	{ "instruction_sie", VCPU_STAT(instruction_sie) },
103
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
104
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
105
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
106
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
107 108
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
109
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
110 111
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
112
	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
113 114 115
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
116 117 118
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
119
	{ "diagnose_10", VCPU_STAT(diagnose_10) },
120
	{ "diagnose_44", VCPU_STAT(diagnose_44) },
121
	{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
122 123 124
	{ "diagnose_258", VCPU_STAT(diagnose_258) },
	{ "diagnose_308", VCPU_STAT(diagnose_308) },
	{ "diagnose_500", VCPU_STAT(diagnose_500) },
125 126 127
	{ NULL }
};

128
/* upper facilities limit for kvm */
129 130 131
unsigned long kvm_s390_fac_list_mask[16] = {
	0xffe6000000000000UL,
	0x005e000000000000UL,
132
};
133

134
unsigned long kvm_s390_fac_list_mask_size(void)
135
{
136 137
	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
	return ARRAY_SIZE(kvm_s390_fac_list_mask);
138 139
}

140 141
/* available cpu features supported by kvm */
static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
142 143
/* available subfunctions indicated via query / "test bit" */
static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
144

145
static struct gmap_notifier gmap_notifier;
146
static struct gmap_notifier vsie_gmap_notifier;
147
debug_info_t *kvm_s390_dbf;
148

149
/* Section: not file related */
150
int kvm_arch_hardware_enable(void)
151 152
{
	/* every s390 is virtualization enabled ;-) */
153
	return 0;
154 155
}

156 157
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
			      unsigned long end);
158

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
/*
 * This callback is executed during stop_machine(). All CPUs are therefore
 * temporarily stopped. In order not to change guest behavior, we have to
 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
 * so a CPU won't be stopped while calculating with the epoch.
 */
static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
			  void *v)
{
	struct kvm *kvm;
	struct kvm_vcpu *vcpu;
	int i;
	unsigned long long *delta = v;

	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm->arch.epoch -= *delta;
		kvm_for_each_vcpu(i, vcpu, kvm) {
			vcpu->arch.sie_block->epoch -= *delta;
177 178
			if (vcpu->arch.cputm_enabled)
				vcpu->arch.cputm_start += *delta;
179 180 181 182 183 184 185 186 187
		}
	}
	return NOTIFY_OK;
}

static struct notifier_block kvm_clock_notifier = {
	.notifier_call = kvm_clock_sync,
};

188 189
int kvm_arch_hardware_setup(void)
{
190
	gmap_notifier.notifier_call = kvm_gmap_notifier;
191
	gmap_register_pte_notifier(&gmap_notifier);
192 193
	vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier;
	gmap_register_pte_notifier(&vsie_gmap_notifier);
194 195
	atomic_notifier_chain_register(&s390_epoch_delta_notifier,
				       &kvm_clock_notifier);
196 197 198 199 200
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
201
	gmap_unregister_pte_notifier(&gmap_notifier);
202
	gmap_unregister_pte_notifier(&vsie_gmap_notifier);
203 204
	atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
					 &kvm_clock_notifier);
205 206
}

207 208 209 210 211
static void allow_cpu_feat(unsigned long nr)
{
	set_bit_inv(nr, kvm_s390_available_cpu_feat);
}

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
static inline int plo_test_bit(unsigned char nr)
{
	register unsigned long r0 asm("0") = (unsigned long) nr | 0x100;
	int cc = 3; /* subfunction not available */

	asm volatile(
		/* Parameter registers are ignored for "test bit" */
		"	plo	0,0,0,0(0)\n"
		"	ipm	%0\n"
		"	srl	%0,28\n"
		: "=d" (cc)
		: "d" (r0)
		: "cc");
	return cc == 0;
}

228 229
static void kvm_s390_cpu_feat_init(void)
{
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
	int i;

	for (i = 0; i < 256; ++i) {
		if (plo_test_bit(i))
			kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
	}

	if (test_facility(28)) /* TOD-clock steering */
		etr_ptff(kvm_s390_available_subfunc.ptff, ETR_PTFF_QAF);

	if (test_facility(17)) { /* MSA */
		__cpacf_query(CPACF_KMAC, kvm_s390_available_subfunc.kmac);
		__cpacf_query(CPACF_KMC, kvm_s390_available_subfunc.kmc);
		__cpacf_query(CPACF_KM, kvm_s390_available_subfunc.km);
		__cpacf_query(CPACF_KIMD, kvm_s390_available_subfunc.kimd);
		__cpacf_query(CPACF_KLMD, kvm_s390_available_subfunc.klmd);
	}
	if (test_facility(76)) /* MSA3 */
		__cpacf_query(CPACF_PCKMO, kvm_s390_available_subfunc.pckmo);
	if (test_facility(77)) { /* MSA4 */
		__cpacf_query(CPACF_KMCTR, kvm_s390_available_subfunc.kmctr);
		__cpacf_query(CPACF_KMF, kvm_s390_available_subfunc.kmf);
		__cpacf_query(CPACF_KMO, kvm_s390_available_subfunc.kmo);
		__cpacf_query(CPACF_PCC, kvm_s390_available_subfunc.pcc);
	}
	if (test_facility(57)) /* MSA5 */
		__cpacf_query(CPACF_PPNO, kvm_s390_available_subfunc.ppno);

258 259
	if (MACHINE_HAS_ESOP)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
260 261 262 263 264 265 266 267
	/*
	 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow),
	 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing).
	 */
	if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao ||
	    !test_facility(3))
		return;
	allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2);
268 269
	if (sclp.has_64bscao)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO);
270 271
}

272 273
int kvm_arch_init(void *opaque)
{
274 275 276 277 278 279 280 281 282
	kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
	if (!kvm_s390_dbf)
		return -ENOMEM;

	if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
		debug_unregister(kvm_s390_dbf);
		return -ENOMEM;
	}

283 284
	kvm_s390_cpu_feat_init();

285 286
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
287 288
}

289 290 291 292 293
void kvm_arch_exit(void)
{
	debug_unregister(kvm_s390_dbf);
}

294 295 296 297 298 299 300 301 302
/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

303
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
304
{
305 306
	int r;

307
	switch (ext) {
308
	case KVM_CAP_S390_PSW:
309
	case KVM_CAP_S390_GMAP:
310
	case KVM_CAP_SYNC_MMU:
311 312 313
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
314
	case KVM_CAP_ASYNC_PF:
315
	case KVM_CAP_SYNC_REGS:
316
	case KVM_CAP_ONE_REG:
317
	case KVM_CAP_ENABLE_CAP:
318
	case KVM_CAP_S390_CSS_SUPPORT:
C
Cornelia Huck 已提交
319
	case KVM_CAP_IOEVENTFD:
320
	case KVM_CAP_DEVICE_CTRL:
321
	case KVM_CAP_ENABLE_CAP_VM:
322
	case KVM_CAP_S390_IRQCHIP:
323
	case KVM_CAP_VM_ATTRIBUTES:
324
	case KVM_CAP_MP_STATE:
325
	case KVM_CAP_S390_INJECT_IRQ:
326
	case KVM_CAP_S390_USER_SIGP:
327
	case KVM_CAP_S390_USER_STSI:
328
	case KVM_CAP_S390_SKEYS:
329
	case KVM_CAP_S390_IRQ_STATE:
330 331
		r = 1;
		break;
332 333 334
	case KVM_CAP_S390_MEM_OP:
		r = MEM_OP_MAX_SIZE;
		break;
335 336
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
337 338 339
		r = KVM_S390_BSCA_CPU_SLOTS;
		if (sclp.has_esca && sclp.has_64bscao)
			r = KVM_S390_ESCA_CPU_SLOTS;
340
		break;
341 342 343
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
344
	case KVM_CAP_S390_COW:
345
		r = MACHINE_HAS_ESOP;
346
		break;
347 348 349
	case KVM_CAP_S390_VECTOR_REGISTERS:
		r = MACHINE_HAS_VX;
		break;
350 351 352
	case KVM_CAP_S390_RI:
		r = test_facility(64);
		break;
353
	default:
354
		r = 0;
355
	}
356
	return r;
357 358
}

359 360 361 362 363 364 365 366 367 368 369 370
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	gfn_t cur_gfn, last_gfn;
	unsigned long address;
	struct gmap *gmap = kvm->arch.gmap;

	/* Loop over all guest pages */
	last_gfn = memslot->base_gfn + memslot->npages;
	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
		address = gfn_to_hva_memslot(memslot, cur_gfn);

371
		if (test_and_clear_guest_dirty(gmap->mm, address))
372
			mark_page_dirty(kvm, cur_gfn);
373 374
		if (fatal_signal_pending(current))
			return;
375
		cond_resched();
376 377 378
	}
}

379
/* Section: vm related */
380 381
static void sca_del_vcpu(struct kvm_vcpu *vcpu);

382 383 384 385 386 387
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
388 389
	int r;
	unsigned long n;
390
	struct kvm_memslots *slots;
391 392 393 394 395 396 397 398 399
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

400 401
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
420 421
}

422 423 424 425 426 427 428 429
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
430
	case KVM_CAP_S390_IRQCHIP:
431
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
432 433 434
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
435
	case KVM_CAP_S390_USER_SIGP:
436
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
437 438 439
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
440
	case KVM_CAP_S390_VECTOR_REGISTERS:
441
		mutex_lock(&kvm->lock);
442
		if (kvm->created_vcpus) {
443 444
			r = -EBUSY;
		} else if (MACHINE_HAS_VX) {
445 446
			set_kvm_facility(kvm->arch.model.fac_mask, 129);
			set_kvm_facility(kvm->arch.model.fac_list, 129);
447 448 449
			r = 0;
		} else
			r = -EINVAL;
450
		mutex_unlock(&kvm->lock);
451 452
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
			 r ? "(not available)" : "(success)");
453
		break;
454 455 456
	case KVM_CAP_S390_RI:
		r = -EINVAL;
		mutex_lock(&kvm->lock);
457
		if (kvm->created_vcpus) {
458 459
			r = -EBUSY;
		} else if (test_facility(64)) {
460 461
			set_kvm_facility(kvm->arch.model.fac_mask, 64);
			set_kvm_facility(kvm->arch.model.fac_list, 64);
462 463 464 465 466 467
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
			 r ? "(not available)" : "(success)");
		break;
468
	case KVM_CAP_S390_USER_STSI:
469
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
470 471 472
		kvm->arch.user_stsi = 1;
		r = 0;
		break;
473 474 475 476 477 478 479
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

480 481 482 483 484 485 486
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
487
		VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
488 489
			 kvm->arch.mem_limit);
		if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
490 491 492 493 494 495 496 497 498 499
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
500 501 502 503 504
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
505
		ret = -ENXIO;
506
		if (!sclp.has_cmma)
507 508
			break;

509
		ret = -EBUSY;
510
		VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
511
		mutex_lock(&kvm->lock);
512
		if (!kvm->created_vcpus) {
513 514 515 516 517 518
			kvm->arch.use_cmma = 1;
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
519 520 521
		ret = -ENXIO;
		if (!sclp.has_cmma)
			break;
522 523 524 525
		ret = -EINVAL;
		if (!kvm->arch.use_cmma)
			break;

526
		VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
527 528
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
529
		s390_reset_cmma(kvm->arch.gmap->mm);
530 531 532 533
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
534 535 536 537 538 539 540 541 542
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

543 544
		if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
		    new_limit > kvm->arch.mem_limit)
545 546
			return -E2BIG;

547 548 549
		if (!new_limit)
			return -EINVAL;

550
		/* gmap_create takes last usable address */
551 552 553
		if (new_limit != KVM_S390_NO_MEM_LIMIT)
			new_limit -= 1;

554 555
		ret = -EBUSY;
		mutex_lock(&kvm->lock);
556
		if (!kvm->created_vcpus) {
557 558
			/* gmap_create will round the limit up */
			struct gmap *new = gmap_create(current->mm, new_limit);
559 560 561 562

			if (!new) {
				ret = -ENOMEM;
			} else {
563
				gmap_remove(kvm->arch.gmap);
564 565 566 567 568 569
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
570 571 572
		VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
		VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
			 (void *) kvm->arch.gmap->asce);
573 574
		break;
	}
575 576 577 578 579 580 581
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

582 583 584 585 586 587 588
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *vcpu;
	int i;

589
	if (!test_kvm_facility(kvm, 76))
590 591 592 593 594 595 596 597 598
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
599
		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
600 601 602 603 604 605
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
606
		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
607 608 609 610 611
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
612
		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
613 614 615 616 617
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
618
		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
619 620 621 622 623 624 625 626 627 628 629 630 631 632
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_vcpu_crypto_setup(vcpu);
		exit_sie(vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

633 634 635 636 637 638 639 640 641 642
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;
643
	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
644 645 646 647 648 649

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
650
	u64 gtod;
651 652 653 654

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

655
	kvm_s390_set_tod_clock(kvm, gtod);
656
	VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod);
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;
688
	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
689 690 691 692 693 694

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
695
	u64 gtod;
696

697
	gtod = kvm_s390_get_tod_clock_fast(kvm);
698 699
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;
700
	VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

726 727 728
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
729
	u16 lowest_ibc, unblocked_ibc;
730 731 732
	int ret = 0;

	mutex_lock(&kvm->lock);
733
	if (kvm->created_vcpus) {
734 735 736 737 738 739 740 741 742 743
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
744
		kvm->arch.model.cpuid = proc->cpuid;
745 746 747 748 749 750 751 752 753 754
		lowest_ibc = sclp.ibc >> 16 & 0xfff;
		unblocked_ibc = sclp.ibc & 0xfff;
		if (lowest_ibc) {
			if (proc->ibc > unblocked_ibc)
				kvm->arch.model.ibc = unblocked_ibc;
			else if (proc->ibc < lowest_ibc)
				kvm->arch.model.ibc = lowest_ibc;
			else
				kvm->arch.model.ibc = proc->ibc;
		}
755
		memcpy(kvm->arch.model.fac_list, proc->fac_list,
756 757 758 759 760 761 762 763 764
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
static int kvm_s390_set_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;
	int ret = -EBUSY;

	if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
		return -EFAULT;
	if (!bitmap_subset((unsigned long *) data.feat,
			   kvm_s390_available_cpu_feat,
			   KVM_S390_VM_CPU_FEAT_NR_BITS))
		return -EINVAL;

	mutex_lock(&kvm->lock);
	if (!atomic_read(&kvm->online_vcpus)) {
		bitmap_copy(kvm->arch.cpu_feat, (unsigned long *) data.feat,
			    KVM_S390_VM_CPU_FEAT_NR_BITS);
		ret = 0;
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

788 789 790 791 792 793 794 795 796 797
static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once supported by kernel + hw, we have to store the subfunctions
	 * in kvm->arch and remember that user space configured them.
	 */
	return -ENXIO;
}

798 799 800 801 802 803 804 805
static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
806 807 808
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_set_processor_feat(kvm, attr);
		break;
809 810 811
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_set_processor_subfunc(kvm, attr);
		break;
812 813 814 815 816 817 818 819 820 821 822 823 824 825
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
826
	proc->cpuid = kvm->arch.model.cpuid;
827
	proc->ibc = kvm->arch.model.ibc;
828 829
	memcpy(&proc->fac_list, kvm->arch.model.fac_list,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
848
	mach->ibc = sclp.ibc;
849
	memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
850
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
851
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
852
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
853 854 855 856 857 858 859
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
static int kvm_s390_get_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat, kvm->arch.cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

static int kvm_s390_get_machine_feat(struct kvm *kvm,
				     struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat,
		    kvm_s390_available_cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once we can actually configure subfunctions (kernel + hw support),
	 * we have to check if they were already set by user space, if so copy
	 * them from kvm->arch.
	 */
	return -ENXIO;
}

static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
					struct kvm_device_attr *attr)
{
	if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
	    sizeof(struct kvm_s390_vm_cpu_subfunc)))
		return -EFAULT;
	return 0;
}
904 905 906 907 908 909 910 911 912 913 914
static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
915 916 917 918 919 920
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_get_processor_feat(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_FEAT:
		ret = kvm_s390_get_machine_feat(kvm, attr);
		break;
921 922 923 924 925 926
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_get_processor_subfunc(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
		ret = kvm_s390_get_machine_subfunc(kvm, attr);
		break;
927 928 929 930
	}
	return ret;
}

931 932 933 934 935
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
936
	case KVM_S390_VM_MEM_CTRL:
937
		ret = kvm_s390_set_mem_control(kvm, attr);
938
		break;
939 940 941
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
942 943 944
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
945 946 947
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
948 949 950 951 952 953 954 955 956 957
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
958 959 960 961 962 963
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
964 965 966
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
967 968 969
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
970 971 972 973 974 975
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
976 977 978 979 980 981 982
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
983 984 985 986
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
987 988
			ret = sclp.has_cmma ? 0 : -ENXIO;
			break;
989
		case KVM_S390_VM_MEM_LIMIT_SIZE:
990 991 992 993 994 995 996
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1008 1009 1010 1011
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
1012 1013
		case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		case KVM_S390_VM_CPU_MACHINE_FEAT:
1014
		case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
1015 1016
			ret = 0;
			break;
1017 1018
		/* configuring subfunctions is not supported yet */
		case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1019 1020 1021 1022 1023
		default:
			ret = -ENXIO;
			break;
		}
		break;
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1037 1038 1039 1040 1041 1042 1043 1044
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Is this guest using storage keys? */
	if (!mm_use_skey(current->mm))
		return KVM_S390_GET_SKEYS_NONE;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

1069
	down_read(&current->mm->mmap_sem);
1070 1071 1072 1073
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1074
			break;
1075 1076
		}

1077 1078
		r = get_guest_storage_key(current->mm, hva, &keys[i]);
		if (r)
1079
			break;
1080
	}
1081 1082 1083 1084 1085 1086 1087 1088
	up_read(&current->mm->mmap_sem);

	if (!r) {
		r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
				 sizeof(uint8_t) * args->count);
		if (r)
			r = -EFAULT;
	}
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121

	kvfree(keys);
	return r;
}

static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
			   sizeof(uint8_t) * args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	/* Enable storage key handling for the guest */
1122 1123 1124
	r = s390_enable_skey();
	if (r)
		goto out;
1125

1126
	down_read(&current->mm->mmap_sem);
1127 1128 1129 1130
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1131
			break;
1132 1133 1134 1135 1136
		}

		/* Lowest order bit is reserved */
		if (keys[i] & 0x01) {
			r = -EINVAL;
1137
			break;
1138 1139
		}

1140
		r = set_guest_storage_key(current->mm, hva, keys[i], 0);
1141
		if (r)
1142
			break;
1143
	}
1144
	up_read(&current->mm->mmap_sem);
1145 1146 1147 1148 1149
out:
	kvfree(keys);
	return r;
}

1150 1151 1152 1153 1154
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
1155
	struct kvm_device_attr attr;
1156 1157 1158
	int r;

	switch (ioctl) {
1159 1160 1161 1162 1163 1164 1165 1166 1167
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
1168 1169 1170 1171 1172 1173 1174 1175
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
1176 1177 1178 1179 1180 1181 1182
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
1183
			r = kvm_set_irq_routing(kvm, &routing, 0, 0);
1184 1185 1186
		}
		break;
	}
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
	case KVM_S390_GET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_get_skeys(kvm, &args);
		break;
	}
	case KVM_S390_SET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_set_skeys(kvm, &args);
		break;
	}
1228
	default:
1229
		r = -ENOTTY;
1230 1231 1232 1233 1234
	}

	return r;
}

1235 1236 1237
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
1238
	u32 cc = 0;
1239

1240
	memset(config, 0, 128);
1241 1242 1243 1244
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
1245
		"0: ipm %0\n"
1246
		"srl %0,28\n"
1247 1248 1249
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

1262
	if (test_facility(12)) {
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

1284
static u64 kvm_s390_get_initial_cpuid(void)
1285
{
1286 1287 1288 1289 1290
	struct cpuid cpuid;

	get_cpu_id(&cpuid);
	cpuid.version = 0xff;
	return *((u64 *) &cpuid);
1291 1292
}

1293
static void kvm_s390_crypto_init(struct kvm *kvm)
1294
{
1295
	if (!test_kvm_facility(kvm, 76))
1296
		return;
1297

1298
	kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
1299
	kvm_s390_set_crycb_format(kvm);
1300

1301 1302 1303 1304 1305 1306 1307
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1308 1309
}

1310 1311 1312
static void sca_dispose(struct kvm *kvm)
{
	if (kvm->arch.use_esca)
1313
		free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
1314 1315 1316 1317 1318
	else
		free_page((unsigned long)(kvm->arch.sca));
	kvm->arch.sca = NULL;
}

1319
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1320
{
1321
	gfp_t alloc_flags = GFP_KERNEL;
1322
	int i, rc;
1323
	char debug_name[16];
1324
	static unsigned long sca_offset;
1325

1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

1337 1338
	rc = s390_enable_sie();
	if (rc)
1339
		goto out_err;
1340

1341 1342
	rc = -ENOMEM;

J
Janosch Frank 已提交
1343 1344
	ratelimit_state_init(&kvm->arch.sthyi_limit, 5 * HZ, 500);

1345
	kvm->arch.use_esca = 0; /* start with basic SCA */
1346 1347
	if (!sclp.has_64bscao)
		alloc_flags |= GFP_DMA;
1348
	rwlock_init(&kvm->arch.sca_lock);
1349
	kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags);
1350
	if (!kvm->arch.sca)
1351
		goto out_err;
1352
	spin_lock(&kvm_lock);
1353
	sca_offset += 16;
1354
	if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
1355
		sca_offset = 0;
1356 1357
	kvm->arch.sca = (struct bsca_block *)
			((char *) kvm->arch.sca + sca_offset);
1358
	spin_unlock(&kvm_lock);
1359 1360 1361

	sprintf(debug_name, "kvm-%u", current->pid);

1362
	kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1363
	if (!kvm->arch.dbf)
1364
		goto out_err;
1365

1366 1367 1368
	kvm->arch.sie_page2 =
	     (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.sie_page2)
1369
		goto out_err;
1370

1371
	/* Populate the facility mask initially. */
1372
	memcpy(kvm->arch.model.fac_mask, S390_lowcore.stfle_fac_list,
1373
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1374 1375
	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
		if (i < kvm_s390_fac_list_mask_size())
1376
			kvm->arch.model.fac_mask[i] &= kvm_s390_fac_list_mask[i];
1377
		else
1378
			kvm->arch.model.fac_mask[i] = 0UL;
1379 1380
	}

1381
	/* Populate the facility list initially. */
1382 1383
	kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
	memcpy(kvm->arch.model.fac_list, kvm->arch.model.fac_mask,
1384 1385
	       S390_ARCH_FAC_LIST_SIZE_BYTE);

J
Janosch Frank 已提交
1386 1387 1388
	set_kvm_facility(kvm->arch.model.fac_mask, 74);
	set_kvm_facility(kvm->arch.model.fac_list, 74);

1389
	kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
1390
	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1391

1392
	kvm_s390_crypto_init(kvm);
1393

1394
	spin_lock_init(&kvm->arch.float_int.lock);
1395 1396
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1397
	init_waitqueue_head(&kvm->arch.ipte_wq);
1398
	mutex_init(&kvm->arch.ipte_mutex);
1399

1400
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1401
	VM_EVENT(kvm, 3, "vm created with type %lu", type);
1402

1403 1404
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
1405
		kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
1406
	} else {
1407 1408 1409 1410 1411
		if (sclp.hamax == U64_MAX)
			kvm->arch.mem_limit = TASK_MAX_SIZE;
		else
			kvm->arch.mem_limit = min_t(unsigned long, TASK_MAX_SIZE,
						    sclp.hamax + 1);
1412
		kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1);
1413
		if (!kvm->arch.gmap)
1414
			goto out_err;
1415
		kvm->arch.gmap->private = kvm;
1416
		kvm->arch.gmap->pfault_enabled = 0;
1417
	}
1418 1419

	kvm->arch.css_support = 0;
1420
	kvm->arch.use_irqchip = 0;
1421
	kvm->arch.epoch = 0;
1422

1423
	spin_lock_init(&kvm->arch.start_stop_lock);
1424
	kvm_s390_vsie_init(kvm);
1425
	KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
1426

1427
	return 0;
1428
out_err:
1429
	free_page((unsigned long)kvm->arch.sie_page2);
1430
	debug_unregister(kvm->arch.dbf);
1431
	sca_dispose(kvm);
1432
	KVM_EVENT(3, "creation of vm failed: %d", rc);
1433
	return rc;
1434 1435
}

1436 1437 1438
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1439
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1440
	kvm_s390_clear_local_irqs(vcpu);
1441
	kvm_clear_async_pf_completion_queue(vcpu);
1442
	if (!kvm_is_ucontrol(vcpu->kvm))
1443
		sca_del_vcpu(vcpu);
1444 1445

	if (kvm_is_ucontrol(vcpu->kvm))
1446
		gmap_remove(vcpu->arch.gmap);
1447

1448
	if (vcpu->kvm->arch.use_cmma)
1449
		kvm_s390_vcpu_unsetup_cmma(vcpu);
1450
	free_page((unsigned long)(vcpu->arch.sie_block));
1451

1452
	kvm_vcpu_uninit(vcpu);
1453
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1454 1455 1456 1457 1458
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
1459
	struct kvm_vcpu *vcpu;
1460

1461 1462 1463 1464 1465 1466 1467 1468 1469
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
1470 1471
}

1472 1473
void kvm_arch_destroy_vm(struct kvm *kvm)
{
1474
	kvm_free_vcpus(kvm);
1475
	sca_dispose(kvm);
1476
	debug_unregister(kvm->arch.dbf);
1477
	free_page((unsigned long)kvm->arch.sie_page2);
1478
	if (!kvm_is_ucontrol(kvm))
1479
		gmap_remove(kvm->arch.gmap);
1480
	kvm_s390_destroy_adapters(kvm);
1481
	kvm_s390_clear_float_irqs(kvm);
1482
	kvm_s390_vsie_destroy(kvm);
1483
	KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
1484 1485 1486
}

/* Section: vcpu related */
1487 1488
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
1489
	vcpu->arch.gmap = gmap_create(current->mm, -1UL);
1490 1491 1492 1493 1494 1495 1496
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

1497 1498
static void sca_del_vcpu(struct kvm_vcpu *vcpu)
{
1499
	read_lock(&vcpu->kvm->arch.sca_lock);
1500 1501
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1502

1503
		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1504
		sca->cpu[vcpu->vcpu_id].sda = 0;
1505 1506 1507 1508
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1509
		sca->cpu[vcpu->vcpu_id].sda = 0;
1510
	}
1511
	read_unlock(&vcpu->kvm->arch.sca_lock);
1512 1513
}

1514
static void sca_add_vcpu(struct kvm_vcpu *vcpu)
1515
{
1516 1517 1518
	read_lock(&vcpu->kvm->arch.sca_lock);
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1519

1520
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1521 1522
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
1523
		vcpu->arch.sie_block->ecb2 |= 0x04U;
1524
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1525
	} else {
1526
		struct bsca_block *sca = vcpu->kvm->arch.sca;
1527

1528
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1529 1530
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
1531
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1532
	}
1533
	read_unlock(&vcpu->kvm->arch.sca_lock);
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
}

/* Basic SCA to Extended SCA data copy routines */
static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
{
	d->sda = s->sda;
	d->sigp_ctrl.c = s->sigp_ctrl.c;
	d->sigp_ctrl.scn = s->sigp_ctrl.scn;
}

static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
{
	int i;

	d->ipte_control = s->ipte_control;
	d->mcn[0] = s->mcn;
	for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
		sca_copy_entry(&d->cpu[i], &s->cpu[i]);
}

static int sca_switch_to_extended(struct kvm *kvm)
{
	struct bsca_block *old_sca = kvm->arch.sca;
	struct esca_block *new_sca;
	struct kvm_vcpu *vcpu;
	unsigned int vcpu_idx;
	u32 scaol, scaoh;

	new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
	if (!new_sca)
		return -ENOMEM;

	scaoh = (u32)((u64)(new_sca) >> 32);
	scaol = (u32)(u64)(new_sca) & ~0x3fU;

	kvm_s390_vcpu_block_all(kvm);
	write_lock(&kvm->arch.sca_lock);

	sca_copy_b_to_e(new_sca, old_sca);

	kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
		vcpu->arch.sie_block->scaoh = scaoh;
		vcpu->arch.sie_block->scaol = scaol;
		vcpu->arch.sie_block->ecb2 |= 0x04U;
	}
	kvm->arch.sca = new_sca;
	kvm->arch.use_esca = 1;

	write_unlock(&kvm->arch.sca_lock);
	kvm_s390_vcpu_unblock_all(kvm);

	free_page((unsigned long)old_sca);

1587 1588
	VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
		 old_sca, kvm->arch.sca);
1589
	return 0;
1590 1591 1592 1593
}

static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
{
1594 1595 1596 1597
	int rc;

	if (id < KVM_S390_BSCA_CPU_SLOTS)
		return true;
1598
	if (!sclp.has_esca || !sclp.has_64bscao)
1599 1600 1601 1602 1603 1604 1605
		return false;

	mutex_lock(&kvm->lock);
	rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
	mutex_unlock(&kvm->lock);

	return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
1606 1607
}

1608 1609
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1610 1611
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1612 1613
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
1614
				    KVM_SYNC_ACRS |
1615 1616 1617
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
1618 1619
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
1620 1621 1622 1623
	/* fprs can be synchronized via vrs, even if the guest has no vx. With
	 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
	 */
	if (MACHINE_HAS_VX)
1624
		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1625 1626
	else
		vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
1627 1628 1629 1630

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

1631 1632 1633
	return 0;
}

1634 1635 1636 1637
/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
1638
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1639
	vcpu->arch.cputm_start = get_tod_clock_fast();
1640
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1641 1642 1643 1644 1645 1646
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
1647
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1648 1649
	vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	vcpu->arch.cputm_start = 0;
1650
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_enabled);
	vcpu->arch.cputm_enabled = true;
	__start_cpu_timer_accounting(vcpu);
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
	__stop_cpu_timer_accounting(vcpu);
	vcpu->arch.cputm_enabled = false;
}

static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__enable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__disable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

1683 1684 1685
/* set the cpu timer - may only be called from the VCPU thread itself */
void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
{
1686
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1687
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1688 1689
	if (vcpu->arch.cputm_enabled)
		vcpu->arch.cputm_start = get_tod_clock_fast();
1690
	vcpu->arch.sie_block->cputm = cputm;
1691
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1692
	preempt_enable();
1693 1694
}

1695
/* update and get the cpu timer - can also be called from other VCPU threads */
1696 1697
__u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
{
1698
	unsigned int seq;
1699 1700 1701 1702 1703
	__u64 value;

	if (unlikely(!vcpu->arch.cputm_enabled))
		return vcpu->arch.sie_block->cputm;

1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	do {
		seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
		/*
		 * If the writer would ever execute a read in the critical
		 * section, e.g. in irq context, we have a deadlock.
		 */
		WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
		value = vcpu->arch.sie_block->cputm;
		/* if cputm_start is 0, accounting is being started/stopped */
		if (likely(vcpu->arch.cputm_start))
			value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	} while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
	preempt_enable();
1718
	return value;
1719 1720
}

1721 1722
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
1723
	/* Save host register state */
1724
	save_fpu_regs();
1725 1726
	vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
	vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
1727

1728 1729 1730 1731
	if (MACHINE_HAS_VX)
		current->thread.fpu.regs = vcpu->run->s.regs.vrs;
	else
		current->thread.fpu.regs = vcpu->run->s.regs.fprs;
1732
	current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
1733
	if (test_fp_ctl(current->thread.fpu.fpc))
1734
		/* User space provided an invalid FPC, let's clear it */
1735 1736 1737
		current->thread.fpu.fpc = 0;

	save_access_regs(vcpu->arch.host_acrs);
1738
	restore_access_regs(vcpu->run->s.regs.acrs);
1739
	gmap_enable(vcpu->arch.enabled_gmap);
1740
	atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1741
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1742
		__start_cpu_timer_accounting(vcpu);
1743
	vcpu->cpu = cpu;
1744 1745 1746 1747
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
1748
	vcpu->cpu = -1;
1749
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1750
		__stop_cpu_timer_accounting(vcpu);
1751
	atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1752 1753
	vcpu->arch.enabled_gmap = gmap_get_enabled();
	gmap_disable(vcpu->arch.enabled_gmap);
1754

1755
	/* Save guest register state */
1756
	save_fpu_regs();
1757
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
1758

1759 1760 1761
	/* Restore host register state */
	current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
	current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
1762 1763

	save_access_regs(vcpu->run->s.regs.acrs);
1764 1765 1766 1767 1768 1769 1770 1771
	restore_access_regs(vcpu->arch.host_acrs);
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
1772
	kvm_s390_set_prefix(vcpu, 0);
1773
	kvm_s390_set_cpu_timer(vcpu, 0);
1774 1775 1776 1777 1778
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
1779 1780 1781
	/* make sure the new fpc will be lazily loaded */
	save_fpu_regs();
	current->thread.fpu.fpc = 0;
1782
	vcpu->arch.sie_block->gbea = 1;
1783
	vcpu->arch.sie_block->pp = 0;
1784 1785
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1786 1787
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
1788
	kvm_s390_clear_local_irqs(vcpu);
1789 1790
}

1791
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1792
{
1793
	mutex_lock(&vcpu->kvm->lock);
1794
	preempt_disable();
1795
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
1796
	preempt_enable();
1797
	mutex_unlock(&vcpu->kvm->lock);
1798
	if (!kvm_is_ucontrol(vcpu->kvm)) {
1799
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1800
		sca_add_vcpu(vcpu);
1801
	}
1802 1803
	/* make vcpu_load load the right gmap on the first trigger */
	vcpu->arch.enabled_gmap = vcpu->arch.gmap;
1804 1805
}

1806 1807
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
1808
	if (!test_kvm_facility(vcpu->kvm, 76))
1809 1810
		return;

1811 1812 1813 1814 1815 1816 1817
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

1818 1819 1820
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;

	vcpu->arch.sie_block->ecb2 |= 0x80;
	vcpu->arch.sie_block->ecb2 &= ~0x08;
	return 0;
}

1838 1839 1840 1841 1842
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;

	vcpu->arch.sie_block->ibc = model->ibc;
1843
	if (test_kvm_facility(vcpu->kvm, 7))
1844
		vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list;
1845 1846
}

1847 1848
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
1849
	int rc = 0;
1850

1851 1852
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
1853 1854
						    CPUSTAT_STOPPED);

1855
	if (test_kvm_facility(vcpu->kvm, 78))
1856
		atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
1857
	else if (test_kvm_facility(vcpu->kvm, 8))
1858
		atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
1859

1860 1861
	kvm_s390_vcpu_setup_model(vcpu);

1862 1863 1864
	/* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */
	if (MACHINE_HAS_ESOP)
		vcpu->arch.sie_block->ecb |= 0x02;
1865 1866
	if (test_kvm_facility(vcpu->kvm, 9))
		vcpu->arch.sie_block->ecb |= 0x04;
1867
	if (test_kvm_facility(vcpu->kvm, 73))
1868 1869
		vcpu->arch.sie_block->ecb |= 0x10;

1870
	if (test_kvm_facility(vcpu->kvm, 8) && sclp.has_pfmfi)
1871
		vcpu->arch.sie_block->ecb2 |= 0x08;
1872 1873 1874
	vcpu->arch.sie_block->eca = 0x1002000U;
	if (sclp.has_cei)
		vcpu->arch.sie_block->eca |= 0x80000000U;
1875 1876
	if (sclp.has_ib)
		vcpu->arch.sie_block->eca |= 0x40000000U;
1877
	if (sclp.has_siif)
1878
		vcpu->arch.sie_block->eca |= 1;
1879
	if (sclp.has_sigpif)
1880
		vcpu->arch.sie_block->eca |= 0x10000000U;
1881 1882
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->arch.sie_block->ecb3 |= 0x01;
1883
	if (test_kvm_facility(vcpu->kvm, 129)) {
1884 1885 1886
		vcpu->arch.sie_block->eca |= 0x00020000;
		vcpu->arch.sie_block->ecd |= 0x20000000;
	}
1887
	vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
1888
	vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
J
Janosch Frank 已提交
1889 1890
	if (test_kvm_facility(vcpu->kvm, 74))
		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
1891

1892
	if (vcpu->kvm->arch.use_cmma) {
1893 1894 1895
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
1896
	}
1897
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1898
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1899

1900 1901
	kvm_s390_vcpu_crypto_setup(vcpu);

1902
	return rc;
1903 1904 1905 1906 1907
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
1908
	struct kvm_vcpu *vcpu;
1909
	struct sie_page *sie_page;
1910 1911
	int rc = -EINVAL;

1912
	if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
1913 1914 1915
		goto out;

	rc = -ENOMEM;
1916

1917
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1918
	if (!vcpu)
1919
		goto out;
1920

1921 1922
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
1923 1924
		goto out_free_cpu;

1925 1926 1927
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;

1928 1929 1930 1931
	/* the real guest size will always be smaller than msl */
	vcpu->arch.sie_block->mso = 0;
	vcpu->arch.sie_block->msl = sclp.hamax;

1932
	vcpu->arch.sie_block->icpua = id;
1933 1934
	spin_lock_init(&vcpu->arch.local_int.lock);
	vcpu->arch.local_int.float_int = &kvm->arch.float_int;
1935
	vcpu->arch.local_int.wq = &vcpu->wq;
1936
	vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
1937
	seqcount_init(&vcpu->arch.cputm_seqcount);
1938

1939 1940
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
1941
		goto out_free_sie_block;
1942
	VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu,
1943
		 vcpu->arch.sie_block);
1944
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
1945 1946

	return vcpu;
1947 1948
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
1949
out_free_cpu:
1950
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1951
out:
1952 1953 1954 1955 1956
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
1957
	return kvm_s390_vcpu_has_irq(vcpu, 0);
1958 1959
}

1960
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
1961
{
1962
	atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1963
	exit_sie(vcpu);
1964 1965
}

1966
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
1967
{
1968
	atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1969 1970
}

1971 1972
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
{
1973
	atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1974
	exit_sie(vcpu);
1975 1976 1977 1978
}

static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
1979
	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1980 1981
}

1982 1983 1984 1985 1986 1987
/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
1988
	atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
1989 1990 1991 1992
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

1993 1994
/* Kick a guest cpu out of SIE to process a request synchronously */
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
1995
{
1996 1997
	kvm_make_request(req, vcpu);
	kvm_s390_vcpu_request(vcpu);
1998 1999
}

2000 2001
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
			      unsigned long end)
2002 2003 2004
{
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;
2005 2006
	unsigned long prefix;
	int i;
2007

2008 2009
	if (gmap_is_shadow(gmap))
		return;
2010 2011 2012
	if (start >= 1UL << 31)
		/* We are only interested in prefix pages */
		return;
2013 2014
	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
2015 2016 2017 2018
		prefix = kvm_s390_get_prefix(vcpu);
		if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) {
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx",
				   start, end);
2019
			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
2020 2021 2022 2023
		}
	}
}

2024 2025 2026 2027 2028 2029 2030
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

2031 2032 2033 2034 2035 2036
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
2037 2038 2039 2040 2041 2042 2043 2044
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2045
	case KVM_REG_S390_CPU_TIMER:
2046
		r = put_user(kvm_s390_get_cpu_timer(vcpu),
2047 2048 2049 2050 2051 2052
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2065 2066 2067 2068
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2069 2070 2071 2072
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;
2084
	__u64 val;
2085 2086

	switch (reg->id) {
2087 2088 2089 2090 2091 2092 2093 2094
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2095
	case KVM_REG_S390_CPU_TIMER:
2096 2097 2098
		r = get_user(val, (u64 __user *)reg->addr);
		if (!r)
			kvm_s390_set_cpu_timer(vcpu, val);
2099 2100 2101 2102 2103
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2104 2105 2106
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
2107 2108
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2109 2110 2111 2112 2113 2114 2115 2116 2117
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2118 2119 2120 2121
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2122 2123 2124 2125
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2126 2127 2128 2129 2130 2131
	default:
		break;
	}

	return r;
}
2132

2133 2134 2135 2136 2137 2138 2139 2140
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2141
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
2142 2143 2144 2145 2146
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2147
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
2148 2149 2150 2151 2152 2153
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2154
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
2155
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
2156
	restore_access_regs(vcpu->run->s.regs.acrs);
2157 2158 2159 2160 2161 2162
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2163
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
2164 2165 2166 2167 2168 2169
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2170 2171
	/* make sure the new values will be lazily loaded */
	save_fpu_regs();
2172 2173
	if (test_fp_ctl(fpu->fpc))
		return -EINVAL;
2174 2175 2176 2177 2178
	current->thread.fpu.fpc = fpu->fpc;
	if (MACHINE_HAS_VX)
		convert_fp_to_vx(current->thread.fpu.vxrs, (freg_t *)fpu->fprs);
	else
		memcpy(current->thread.fpu.fprs, &fpu->fprs, sizeof(fpu->fprs));
2179 2180 2181 2182 2183
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2184 2185 2186 2187 2188 2189 2190
	/* make sure we have the latest values */
	save_fpu_regs();
	if (MACHINE_HAS_VX)
		convert_vx_to_fp((freg_t *)fpu->fprs, current->thread.fpu.vxrs);
	else
		memcpy(fpu->fprs, current->thread.fpu.fprs, sizeof(fpu->fprs));
	fpu->fpc = current->thread.fpu.fpc;
2191 2192 2193 2194 2195 2196 2197
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

2198
	if (!is_vcpu_stopped(vcpu))
2199
		rc = -EBUSY;
2200 2201 2202 2203
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
2204 2205 2206 2207 2208 2209 2210 2211 2212
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

2213 2214 2215 2216
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
2217 2218
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
2219
{
2220 2221 2222 2223 2224
	int rc = 0;

	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

2225
	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
2226
		return -EINVAL;
2227 2228
	if (!sclp.has_gpere)
		return -EINVAL;
2229 2230 2231 2232

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
2233
		atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2234 2235 2236 2237

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
2238
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2239 2240 2241 2242 2243 2244
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
2245
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2246 2247 2248
	}

	return rc;
2249 2250
}

2251 2252 2253
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2254 2255 2256
	/* CHECK_STOP and LOAD are not supported yet */
	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				       KVM_MP_STATE_OPERATING;
2257 2258 2259 2260 2261
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
	int rc = 0;

	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

	return rc;
2282 2283
}

2284 2285 2286 2287 2288
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
	return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
}

2289 2290
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
2291
retry:
2292
	kvm_s390_vcpu_request_handled(vcpu);
2293 2294
	if (!vcpu->requests)
		return 0;
2295 2296
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
2297
	 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock.
2298 2299 2300 2301
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
2302
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
2303
		int rc;
2304 2305 2306
		rc = gmap_mprotect_notify(vcpu->arch.gmap,
					  kvm_s390_get_prefix(vcpu),
					  PAGE_SIZE * 2, PROT_WRITE);
2307 2308
		if (rc)
			return rc;
2309
		goto retry;
2310
	}
2311

2312 2313 2314 2315 2316
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

2317 2318 2319
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
2320
			atomic_or(CPUSTAT_IBS,
2321 2322 2323
					&vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
2324
	}
2325 2326 2327 2328

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
2329
			atomic_andnot(CPUSTAT_IBS,
2330 2331 2332 2333 2334
					  &vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
	}

2335 2336 2337
	/* nothing to do, just clear the request */
	clear_bit(KVM_REQ_UNHALT, &vcpu->requests);

2338 2339 2340
	return 0;
}

2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
{
	struct kvm_vcpu *vcpu;
	int i;

	mutex_lock(&kvm->lock);
	preempt_disable();
	kvm->arch.epoch = tod - get_tod_clock();
	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
	kvm_s390_vcpu_unblock_all(kvm);
	preempt_enable();
	mutex_unlock(&kvm->lock);
}

2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
2368
{
2369 2370
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
2371 2372
}

2373 2374 2375 2376
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
2377
	struct kvm_s390_irq irq;
2378 2379

	if (start_token) {
2380 2381 2382
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
2383 2384
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
2385
		inti.parm64 = token;
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
2432
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
2433 2434 2435 2436 2437 2438
		return 0;
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
2439 2440 2441
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
2442 2443 2444 2445 2446 2447
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

2448
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
2449
{
2450
	int rc, cpuflags;
2451

2452 2453 2454 2455 2456 2457 2458
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

2459 2460
	vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
	vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
2461 2462 2463 2464

	if (need_resched())
		schedule();

2465
	if (test_cpu_flag(CIF_MCCK_PENDING))
2466 2467
		s390_handle_mcck();

2468 2469 2470 2471 2472
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
2473

2474 2475 2476 2477
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

2478 2479 2480 2481 2482
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

2483
	vcpu->arch.sie_block->icptcode = 0;
2484 2485 2486
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
2487

2488 2489 2490
	return 0;
}

2491 2492
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
2493 2494 2495 2496
	struct kvm_s390_pgm_info pgm_info = {
		.code = PGM_ADDRESSING,
	};
	u8 opcode, ilen;
2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
2510
	rc = read_guest_instr(vcpu, &opcode, 1);
2511
	ilen = insn_length(opcode);
2512 2513 2514 2515 2516 2517 2518 2519 2520 2521
	if (rc < 0) {
		return rc;
	} else if (rc) {
		/* Instruction-Fetching Exceptions - we can't detect the ilen.
		 * Forward by arbitrary ilc, injection will take care of
		 * nullification if necessary.
		 */
		pgm_info = vcpu->arch.pgm;
		ilen = 4;
	}
2522 2523 2524
	pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
	kvm_s390_forward_psw(vcpu, ilen);
	return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
2525 2526
}

2527 2528
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
2529 2530 2531 2532
	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

2533 2534 2535
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

2536 2537
	vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
	vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551

	if (vcpu->arch.sie_block->icptcode > 0) {
		int rc = kvm_handle_sie_intercept(vcpu);

		if (rc != -EOPNOTSUPP)
			return rc;
		vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
		vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
		vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
		return -EREMOTE;
	} else if (exit_reason != -EFAULT) {
		vcpu->stat.exit_null++;
		return 0;
2552 2553 2554 2555 2556
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
2557
		return -EREMOTE;
2558
	} else if (current->thread.gmap_pfault) {
2559
		trace_kvm_s390_major_guest_pfault(vcpu);
2560
		current->thread.gmap_pfault = 0;
2561 2562 2563
		if (kvm_arch_setup_async_pf(vcpu))
			return 0;
		return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
2564
	}
2565
	return vcpu_post_run_fault_in_sie(vcpu);
2566 2567 2568 2569 2570 2571
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

2572 2573 2574 2575 2576 2577
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

2578 2579 2580 2581
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
2582

2583
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2584 2585 2586 2587
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
2588 2589
		local_irq_disable();
		__kvm_guest_enter();
2590
		__disable_cpu_timer_accounting(vcpu);
2591
		local_irq_enable();
2592 2593
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
2594
		local_irq_disable();
2595
		__enable_cpu_timer_accounting(vcpu);
2596 2597
		__kvm_guest_exit();
		local_irq_enable();
2598
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2599 2600

		rc = vcpu_post_run(vcpu, exit_reason);
2601
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2602

2603
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2604
	return rc;
2605 2606
}

2607 2608 2609 2610 2611 2612 2613 2614
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2615 2616
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2617 2618
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
2619
		kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
2620 2621 2622 2623 2624 2625 2626 2627 2628
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2629 2630
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
	}
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
2641
	kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
2642 2643 2644 2645 2646 2647 2648 2649 2650
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
}

2651 2652
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
2653
	int rc;
2654 2655
	sigset_t sigsaved;

2656 2657 2658 2659 2660
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
		return 0;
	}

2661 2662 2663
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

2664 2665 2666
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
2667
		pr_err_ratelimited("can't run stopped vcpu %d\n",
2668 2669 2670
				   vcpu->vcpu_id);
		return -EINVAL;
	}
2671

2672
	sync_regs(vcpu, kvm_run);
2673
	enable_cpu_timer_accounting(vcpu);
2674

2675
	might_fault();
2676
	rc = __vcpu_run(vcpu);
2677

2678 2679
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
2680
		rc = -EINTR;
2681
	}
2682

2683 2684 2685 2686 2687
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

2688
	if (rc == -EREMOTE) {
2689
		/* userspace support is needed, kvm_run has been prepared */
2690 2691
		rc = 0;
	}
2692

2693
	disable_cpu_timer_accounting(vcpu);
2694
	store_regs(vcpu, kvm_run);
2695

2696 2697 2698 2699
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu->stat.exit_userspace++;
2700
	return rc;
2701 2702 2703 2704 2705 2706 2707 2708
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
2709
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2710
{
2711
	unsigned char archmode = 1;
2712
	freg_t fprs[NUM_FPRS];
2713
	unsigned int px;
2714
	u64 clkcomp, cputm;
2715
	int rc;
2716

2717
	px = kvm_s390_get_prefix(vcpu);
2718 2719
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
2720
			return -EFAULT;
2721
		gpa = 0;
2722 2723
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
2724
			return -EFAULT;
2725 2726 2727
		gpa = px;
	} else
		gpa -= __LC_FPREGS_SAVE_AREA;
2728 2729 2730

	/* manually convert vector registers if necessary */
	if (MACHINE_HAS_VX) {
2731
		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
2732 2733 2734 2735
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
				     fprs, 128);
	} else {
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
2736
				     vcpu->run->s.regs.fprs, 128);
2737
	}
2738
	rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
2739
			      vcpu->run->s.regs.gprs, 128);
2740
	rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
2741
			      &vcpu->arch.sie_block->gpsw, 16);
2742
	rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
2743
			      &px, 4);
2744
	rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
2745
			      &vcpu->run->s.regs.fpc, 4);
2746
	rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
2747
			      &vcpu->arch.sie_block->todpr, 4);
2748
	cputm = kvm_s390_get_cpu_timer(vcpu);
2749
	rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
2750
			      &cputm, 8);
2751
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
2752
	rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
2753
			      &clkcomp, 8);
2754
	rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
2755
			      &vcpu->run->s.regs.acrs, 64);
2756
	rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
2757 2758
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
2759 2760
}

2761 2762 2763 2764 2765 2766 2767
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
	 * copying in vcpu load/put. Lets update our copies before we save
	 * it into the save area
	 */
2768
	save_fpu_regs();
2769
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
2770 2771 2772 2773 2774
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

E
Eric Farman 已提交
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795
/*
 * store additional status at address
 */
int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu,
					unsigned long gpa)
{
	/* Only bits 0-53 are used for address formation */
	if (!(gpa & ~0x3ff))
		return 0;

	return write_guest_abs(vcpu, gpa & ~0x3ff,
			       (void *)&vcpu->run->s.regs.vrs, 512);
}

int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	if (!test_kvm_facility(vcpu->kvm, 129))
		return 0;

	/*
	 * The guest VXRS are in the host VXRs due to the lazy
2796 2797 2798 2799 2800
	 * copying in vcpu load/put. We can simply call save_fpu_regs()
	 * to save the current register state because we are in the
	 * middle of a load/put cycle.
	 *
	 * Let's update our copies before we save it into the save area.
E
Eric Farman 已提交
2801
	 */
2802
	save_fpu_regs();
E
Eric Farman 已提交
2803 2804 2805 2806

	return kvm_s390_store_adtl_status_unloaded(vcpu, addr);
}

2807 2808 2809
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2810
	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
2825 2826
	if (!sclp.has_ibs)
		return;
2827
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2828
	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2829 2830
}

2831 2832
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
2833 2834 2835 2836 2837
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

2838
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2839
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2840
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

2860
	atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2861 2862 2863 2864
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
2865
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2866
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2867
	return;
2868 2869 2870 2871
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
2872 2873 2874 2875 2876 2877
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

2878
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2879
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2880
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2881 2882
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

2883
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2884
	kvm_s390_clear_stop_irq(vcpu);
2885

2886
	atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

2904
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2905
	return;
2906 2907
}

2908 2909 2910 2911 2912 2913 2914 2915 2916
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
2917 2918 2919
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
2920
			VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
2921 2922 2923 2924
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
2925 2926 2927 2928 2929 2930 2931
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
				  struct kvm_s390_mem_op *mop)
{
	void __user *uaddr = (void __user *)mop->buf;
	void *tmpbuf = NULL;
	int r, srcu_idx;
	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
				    | KVM_S390_MEMOP_F_CHECK_ONLY;

	if (mop->flags & ~supported_flags)
		return -EINVAL;

	if (mop->size > MEM_OP_MAX_SIZE)
		return -E2BIG;

	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
		tmpbuf = vmalloc(mop->size);
		if (!tmpbuf)
			return -ENOMEM;
	}

	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

	switch (mop->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2958 2959
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_FETCH);
2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
			break;
		}
		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		if (r == 0) {
			if (copy_to_user(uaddr, tmpbuf, mop->size))
				r = -EFAULT;
		}
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2970 2971
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_STORE);
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992
			break;
		}
		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
			r = -EFAULT;
			break;
		}
		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		break;
	default:
		r = -EINVAL;
	}

	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);

	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);

	vfree(tmpbuf);
	return r;
}

2993 2994 2995 2996 2997
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
2998
	int idx;
2999
	long r;
3000

3001
	switch (ioctl) {
3002 3003 3004 3005 3006 3007 3008 3009 3010
	case KVM_S390_IRQ: {
		struct kvm_s390_irq s390irq;

		r = -EFAULT;
		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
			break;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
		break;
	}
3011
	case KVM_S390_INTERRUPT: {
3012
		struct kvm_s390_interrupt s390int;
3013
		struct kvm_s390_irq s390irq;
3014

3015
		r = -EFAULT;
3016
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
3017
			break;
3018 3019 3020
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
3021
		break;
3022
	}
3023
	case KVM_S390_STORE_STATUS:
3024
		idx = srcu_read_lock(&vcpu->kvm->srcu);
3025
		r = kvm_s390_vcpu_store_status(vcpu, arg);
3026
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3027
		break;
3028 3029 3030
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

3031
		r = -EFAULT;
3032
		if (copy_from_user(&psw, argp, sizeof(psw)))
3033 3034 3035
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
3036 3037
	}
	case KVM_S390_INITIAL_RESET:
3038 3039
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
3088
	case KVM_S390_VCPU_FAULT: {
3089
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
3090 3091
		break;
	}
3092 3093 3094 3095 3096 3097 3098 3099 3100
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
3101 3102 3103 3104 3105 3106 3107 3108 3109
	case KVM_S390_MEM_OP: {
		struct kvm_s390_mem_op mem_op;

		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
		else
			r = -EFAULT;
		break;
	}
3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
	case KVM_S390_SET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
		    irq_state.len == 0 ||
		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_set_irq_state(vcpu,
					   (void __user *) irq_state.buf,
					   irq_state.len);
		break;
	}
	case KVM_S390_GET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len == 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_get_irq_state(vcpu,
					   (__u8 __user *)  irq_state.buf,
					   irq_state.len);
		break;
	}
3142
	default:
3143
		r = -ENOTTY;
3144
	}
3145
	return r;
3146 3147
}

3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

3161 3162
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
3163 3164 3165 3166
{
	return 0;
}

3167
/* Section: memory related */
3168 3169
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
3170
				   const struct kvm_userspace_memory_region *mem,
3171
				   enum kvm_mr_change change)
3172
{
3173 3174 3175 3176
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
3177

3178
	if (mem->userspace_addr & 0xffffful)
3179 3180
		return -EINVAL;

3181
	if (mem->memory_size & 0xffffful)
3182 3183
		return -EINVAL;

3184 3185 3186
	if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
		return -EINVAL;

3187 3188 3189 3190
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
3191
				const struct kvm_userspace_memory_region *mem,
3192
				const struct kvm_memory_slot *old,
3193
				const struct kvm_memory_slot *new,
3194
				enum kvm_mr_change change)
3195
{
3196
	int rc;
3197

3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
3208 3209 3210 3211

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
3212
		pr_warn("failed to commit memory region\n");
3213
	return;
3214 3215
}

3216 3217 3218 3219 3220 3221 3222
static inline unsigned long nonhyp_mask(int i)
{
	unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;

	return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
}

3223 3224 3225 3226 3227
void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu)
{
	vcpu->valid_wakeup = false;
}

3228 3229
static int __init kvm_s390_init(void)
{
3230 3231
	int i;

3232 3233 3234 3235 3236
	if (!sclp.has_sief2) {
		pr_info("SIE not available\n");
		return -ENODEV;
	}

3237 3238 3239 3240
	for (i = 0; i < 16; i++)
		kvm_s390_fac_list_mask[i] |=
			S390_lowcore.stfle_fac_list[i] & nonhyp_mask(i);

3241
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
3242 3243 3244 3245 3246 3247 3248 3249 3250
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
3251 3252 3253 3254 3255 3256 3257 3258 3259

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");