kvm-s390.c 82.4 KB
Newer Older
1
/*
2
 * hosting zSeries kernel virtual machines
3
 *
4
 * Copyright IBM Corp. 2008, 2009
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
13
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14
 *               Jason J. Herne <jjherne@us.ibm.com>
15 16 17 18 19
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
20
#include <linux/hrtimer.h>
21 22 23 24
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
25
#include <linux/random.h>
26
#include <linux/slab.h>
27
#include <linux/timer.h>
28
#include <linux/vmalloc.h>
29
#include <linux/bitmap.h>
30
#include <asm/asm-offsets.h>
31
#include <asm/lowcore.h>
32
#include <asm/etr.h>
33
#include <asm/pgtable.h>
34
#include <asm/gmap.h>
35
#include <asm/nmi.h>
36
#include <asm/switch_to.h>
37
#include <asm/isc.h>
38
#include <asm/sclp.h>
39 40
#include <asm/cpacf.h>
#include <asm/etr.h>
41
#include "kvm-s390.h"
42 43
#include "gaccess.h"

44 45 46 47
#define KMSG_COMPONENT "kvm-s390"
#undef pr_fmt
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

48 49
#define CREATE_TRACE_POINTS
#include "trace.h"
50
#include "trace-s390.h"
51

52
#define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
53 54 55
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
			   (KVM_MAX_VCPUS + LOCAL_IRQS))
56

57 58 59 60
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
61
	{ "exit_null", VCPU_STAT(exit_null) },
62 63 64 65
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
66 67 68
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
69
	{ "exit_operation_exception", VCPU_STAT(exit_operation_exception) },
70
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
71
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
72
	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
73
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
74
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
75
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
76 77
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
78
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
79
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
80 81 82 83 84 85 86
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
87
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
88 89 90 91 92
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
	{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
93
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
94 95
	{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
	{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
96
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
97 98
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
99
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
J
Janosch Frank 已提交
100
	{ "instruction_sthyi", VCPU_STAT(instruction_sthyi) },
101
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
102
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
103
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
104
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
105 106
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
107
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
108 109
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
110
	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
111 112 113
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
114 115 116
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
117
	{ "diagnose_10", VCPU_STAT(diagnose_10) },
118
	{ "diagnose_44", VCPU_STAT(diagnose_44) },
119
	{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
120 121 122
	{ "diagnose_258", VCPU_STAT(diagnose_258) },
	{ "diagnose_308", VCPU_STAT(diagnose_308) },
	{ "diagnose_500", VCPU_STAT(diagnose_500) },
123 124 125
	{ NULL }
};

126
/* upper facilities limit for kvm */
127 128 129
unsigned long kvm_s390_fac_list_mask[16] = {
	0xffe6000000000000UL,
	0x005e000000000000UL,
130
};
131

132
unsigned long kvm_s390_fac_list_mask_size(void)
133
{
134 135
	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
	return ARRAY_SIZE(kvm_s390_fac_list_mask);
136 137
}

138 139
/* available cpu features supported by kvm */
static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
140 141
/* available subfunctions indicated via query / "test bit" */
static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
142

143
static struct gmap_notifier gmap_notifier;
144
debug_info_t *kvm_s390_dbf;
145

146
/* Section: not file related */
147
int kvm_arch_hardware_enable(void)
148 149
{
	/* every s390 is virtualization enabled ;-) */
150
	return 0;
151 152
}

153 154
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address);

155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
/*
 * This callback is executed during stop_machine(). All CPUs are therefore
 * temporarily stopped. In order not to change guest behavior, we have to
 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
 * so a CPU won't be stopped while calculating with the epoch.
 */
static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
			  void *v)
{
	struct kvm *kvm;
	struct kvm_vcpu *vcpu;
	int i;
	unsigned long long *delta = v;

	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm->arch.epoch -= *delta;
		kvm_for_each_vcpu(i, vcpu, kvm) {
			vcpu->arch.sie_block->epoch -= *delta;
173 174
			if (vcpu->arch.cputm_enabled)
				vcpu->arch.cputm_start += *delta;
175 176 177 178 179 180 181 182 183
		}
	}
	return NOTIFY_OK;
}

static struct notifier_block kvm_clock_notifier = {
	.notifier_call = kvm_clock_sync,
};

184 185
int kvm_arch_hardware_setup(void)
{
186 187
	gmap_notifier.notifier_call = kvm_gmap_notifier;
	gmap_register_ipte_notifier(&gmap_notifier);
188 189
	atomic_notifier_chain_register(&s390_epoch_delta_notifier,
				       &kvm_clock_notifier);
190 191 192 193 194
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
195
	gmap_unregister_ipte_notifier(&gmap_notifier);
196 197
	atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
					 &kvm_clock_notifier);
198 199
}

200 201 202 203 204
static void allow_cpu_feat(unsigned long nr)
{
	set_bit_inv(nr, kvm_s390_available_cpu_feat);
}

205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
static inline int plo_test_bit(unsigned char nr)
{
	register unsigned long r0 asm("0") = (unsigned long) nr | 0x100;
	int cc = 3; /* subfunction not available */

	asm volatile(
		/* Parameter registers are ignored for "test bit" */
		"	plo	0,0,0,0(0)\n"
		"	ipm	%0\n"
		"	srl	%0,28\n"
		: "=d" (cc)
		: "d" (r0)
		: "cc");
	return cc == 0;
}

221 222
static void kvm_s390_cpu_feat_init(void)
{
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
	int i;

	for (i = 0; i < 256; ++i) {
		if (plo_test_bit(i))
			kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
	}

	if (test_facility(28)) /* TOD-clock steering */
		etr_ptff(kvm_s390_available_subfunc.ptff, ETR_PTFF_QAF);

	if (test_facility(17)) { /* MSA */
		__cpacf_query(CPACF_KMAC, kvm_s390_available_subfunc.kmac);
		__cpacf_query(CPACF_KMC, kvm_s390_available_subfunc.kmc);
		__cpacf_query(CPACF_KM, kvm_s390_available_subfunc.km);
		__cpacf_query(CPACF_KIMD, kvm_s390_available_subfunc.kimd);
		__cpacf_query(CPACF_KLMD, kvm_s390_available_subfunc.klmd);
	}
	if (test_facility(76)) /* MSA3 */
		__cpacf_query(CPACF_PCKMO, kvm_s390_available_subfunc.pckmo);
	if (test_facility(77)) { /* MSA4 */
		__cpacf_query(CPACF_KMCTR, kvm_s390_available_subfunc.kmctr);
		__cpacf_query(CPACF_KMF, kvm_s390_available_subfunc.kmf);
		__cpacf_query(CPACF_KMO, kvm_s390_available_subfunc.kmo);
		__cpacf_query(CPACF_PCC, kvm_s390_available_subfunc.pcc);
	}
	if (test_facility(57)) /* MSA5 */
		__cpacf_query(CPACF_PPNO, kvm_s390_available_subfunc.ppno);

251 252 253 254
	if (MACHINE_HAS_ESOP)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
}

255 256
int kvm_arch_init(void *opaque)
{
257 258 259 260 261 262 263 264 265
	kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
	if (!kvm_s390_dbf)
		return -ENOMEM;

	if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
		debug_unregister(kvm_s390_dbf);
		return -ENOMEM;
	}

266 267
	kvm_s390_cpu_feat_init();

268 269
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
270 271
}

272 273 274 275 276
void kvm_arch_exit(void)
{
	debug_unregister(kvm_s390_dbf);
}

277 278 279 280 281 282 283 284 285
/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

286
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
287
{
288 289
	int r;

290
	switch (ext) {
291
	case KVM_CAP_S390_PSW:
292
	case KVM_CAP_S390_GMAP:
293
	case KVM_CAP_SYNC_MMU:
294 295 296
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
297
	case KVM_CAP_ASYNC_PF:
298
	case KVM_CAP_SYNC_REGS:
299
	case KVM_CAP_ONE_REG:
300
	case KVM_CAP_ENABLE_CAP:
301
	case KVM_CAP_S390_CSS_SUPPORT:
C
Cornelia Huck 已提交
302
	case KVM_CAP_IOEVENTFD:
303
	case KVM_CAP_DEVICE_CTRL:
304
	case KVM_CAP_ENABLE_CAP_VM:
305
	case KVM_CAP_S390_IRQCHIP:
306
	case KVM_CAP_VM_ATTRIBUTES:
307
	case KVM_CAP_MP_STATE:
308
	case KVM_CAP_S390_INJECT_IRQ:
309
	case KVM_CAP_S390_USER_SIGP:
310
	case KVM_CAP_S390_USER_STSI:
311
	case KVM_CAP_S390_SKEYS:
312
	case KVM_CAP_S390_IRQ_STATE:
313 314
		r = 1;
		break;
315 316 317
	case KVM_CAP_S390_MEM_OP:
		r = MEM_OP_MAX_SIZE;
		break;
318 319
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
320 321 322
		r = KVM_S390_BSCA_CPU_SLOTS;
		if (sclp.has_esca && sclp.has_64bscao)
			r = KVM_S390_ESCA_CPU_SLOTS;
323
		break;
324 325 326
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
327
	case KVM_CAP_S390_COW:
328
		r = MACHINE_HAS_ESOP;
329
		break;
330 331 332
	case KVM_CAP_S390_VECTOR_REGISTERS:
		r = MACHINE_HAS_VX;
		break;
333 334 335
	case KVM_CAP_S390_RI:
		r = test_facility(64);
		break;
336
	default:
337
		r = 0;
338
	}
339
	return r;
340 341
}

342 343 344 345 346 347 348 349 350 351 352 353
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	gfn_t cur_gfn, last_gfn;
	unsigned long address;
	struct gmap *gmap = kvm->arch.gmap;

	/* Loop over all guest pages */
	last_gfn = memslot->base_gfn + memslot->npages;
	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
		address = gfn_to_hva_memslot(memslot, cur_gfn);

354
		if (test_and_clear_guest_dirty(gmap->mm, address))
355
			mark_page_dirty(kvm, cur_gfn);
356 357
		if (fatal_signal_pending(current))
			return;
358
		cond_resched();
359 360 361
	}
}

362
/* Section: vm related */
363 364
static void sca_del_vcpu(struct kvm_vcpu *vcpu);

365 366 367 368 369 370
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
371 372
	int r;
	unsigned long n;
373
	struct kvm_memslots *slots;
374 375 376 377 378 379 380 381 382
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

383 384
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
403 404
}

405 406 407 408 409 410 411 412
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
413
	case KVM_CAP_S390_IRQCHIP:
414
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
415 416 417
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
418
	case KVM_CAP_S390_USER_SIGP:
419
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
420 421 422
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
423
	case KVM_CAP_S390_VECTOR_REGISTERS:
424 425 426 427
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus)) {
			r = -EBUSY;
		} else if (MACHINE_HAS_VX) {
428 429
			set_kvm_facility(kvm->arch.model.fac_mask, 129);
			set_kvm_facility(kvm->arch.model.fac_list, 129);
430 431 432
			r = 0;
		} else
			r = -EINVAL;
433
		mutex_unlock(&kvm->lock);
434 435
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
			 r ? "(not available)" : "(success)");
436
		break;
437 438 439 440 441 442
	case KVM_CAP_S390_RI:
		r = -EINVAL;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus)) {
			r = -EBUSY;
		} else if (test_facility(64)) {
443 444
			set_kvm_facility(kvm->arch.model.fac_mask, 64);
			set_kvm_facility(kvm->arch.model.fac_list, 64);
445 446 447 448 449 450
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
			 r ? "(not available)" : "(success)");
		break;
451
	case KVM_CAP_S390_USER_STSI:
452
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
453 454 455
		kvm->arch.user_stsi = 1;
		r = 0;
		break;
456 457 458 459 460 461 462
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

463 464 465 466 467 468 469
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
470
		VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
471 472
			 kvm->arch.mem_limit);
		if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
473 474 475 476 477 478 479 480 481 482
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
483 484 485 486 487
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
488 489 490 491 492
		/* enable CMMA only for z10 and later (EDAT_1) */
		ret = -EINVAL;
		if (!MACHINE_IS_LPAR || !MACHINE_HAS_EDAT1)
			break;

493
		ret = -EBUSY;
494
		VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
495 496 497 498 499 500 501 502
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			kvm->arch.use_cmma = 1;
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
503 504 505 506
		ret = -EINVAL;
		if (!kvm->arch.use_cmma)
			break;

507
		VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
508 509
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
510
		s390_reset_cmma(kvm->arch.gmap->mm);
511 512 513 514
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
515 516 517 518 519 520 521 522 523
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

524 525
		if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
		    new_limit > kvm->arch.mem_limit)
526 527
			return -E2BIG;

528 529 530 531 532 533 534
		if (!new_limit)
			return -EINVAL;

		/* gmap_alloc takes last usable address */
		if (new_limit != KVM_S390_NO_MEM_LIMIT)
			new_limit -= 1;

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
		ret = -EBUSY;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			/* gmap_alloc will round the limit up */
			struct gmap *new = gmap_alloc(current->mm, new_limit);

			if (!new) {
				ret = -ENOMEM;
			} else {
				gmap_free(kvm->arch.gmap);
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
551 552 553
		VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
		VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
			 (void *) kvm->arch.gmap->asce);
554 555
		break;
	}
556 557 558 559 560 561 562
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

563 564 565 566 567 568 569
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *vcpu;
	int i;

570
	if (!test_kvm_facility(kvm, 76))
571 572 573 574 575 576 577 578 579
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
580
		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
581 582 583 584 585 586
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
587
		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
588 589 590 591 592
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
593
		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
594 595 596 597 598
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
599
		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
600 601 602 603 604 605 606 607 608 609 610 611 612 613
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_vcpu_crypto_setup(vcpu);
		exit_sie(vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

614 615 616 617 618 619 620 621 622 623
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;
624
	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
625 626 627 628 629 630

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
631
	u64 gtod;
632 633 634 635

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

636
	kvm_s390_set_tod_clock(kvm, gtod);
637
	VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod);
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;
669
	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
670 671 672 673 674 675

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
676
	u64 gtod;
677

678
	gtod = kvm_s390_get_tod_clock_fast(kvm);
679 680
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;
681
	VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

707 708 709
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
710
	u16 lowest_ibc, unblocked_ibc;
711 712 713 714 715 716 717 718 719 720 721 722 723 724
	int ret = 0;

	mutex_lock(&kvm->lock);
	if (atomic_read(&kvm->online_vcpus)) {
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
725
		kvm->arch.model.cpuid = proc->cpuid;
726 727 728 729 730 731 732 733 734 735
		lowest_ibc = sclp.ibc >> 16 & 0xfff;
		unblocked_ibc = sclp.ibc & 0xfff;
		if (lowest_ibc) {
			if (proc->ibc > unblocked_ibc)
				kvm->arch.model.ibc = unblocked_ibc;
			else if (proc->ibc < lowest_ibc)
				kvm->arch.model.ibc = lowest_ibc;
			else
				kvm->arch.model.ibc = proc->ibc;
		}
736
		memcpy(kvm->arch.model.fac_list, proc->fac_list,
737 738 739 740 741 742 743 744 745
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
static int kvm_s390_set_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;
	int ret = -EBUSY;

	if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
		return -EFAULT;
	if (!bitmap_subset((unsigned long *) data.feat,
			   kvm_s390_available_cpu_feat,
			   KVM_S390_VM_CPU_FEAT_NR_BITS))
		return -EINVAL;

	mutex_lock(&kvm->lock);
	if (!atomic_read(&kvm->online_vcpus)) {
		bitmap_copy(kvm->arch.cpu_feat, (unsigned long *) data.feat,
			    KVM_S390_VM_CPU_FEAT_NR_BITS);
		ret = 0;
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

769 770 771 772 773 774 775 776 777 778
static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once supported by kernel + hw, we have to store the subfunctions
	 * in kvm->arch and remember that user space configured them.
	 */
	return -ENXIO;
}

779 780 781 782 783 784 785 786
static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
787 788 789
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_set_processor_feat(kvm, attr);
		break;
790 791 792
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_set_processor_subfunc(kvm, attr);
		break;
793 794 795 796 797 798 799 800 801 802 803 804 805 806
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
807
	proc->cpuid = kvm->arch.model.cpuid;
808
	proc->ibc = kvm->arch.model.ibc;
809 810
	memcpy(&proc->fac_list, kvm->arch.model.fac_list,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
829
	mach->ibc = sclp.ibc;
830
	memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
831
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
832
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
833
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
834 835 836 837 838 839 840
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
static int kvm_s390_get_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat, kvm->arch.cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

static int kvm_s390_get_machine_feat(struct kvm *kvm,
				     struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat,
		    kvm_s390_available_cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once we can actually configure subfunctions (kernel + hw support),
	 * we have to check if they were already set by user space, if so copy
	 * them from kvm->arch.
	 */
	return -ENXIO;
}

static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
					struct kvm_device_attr *attr)
{
	if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
	    sizeof(struct kvm_s390_vm_cpu_subfunc)))
		return -EFAULT;
	return 0;
}
885 886 887 888 889 890 891 892 893 894 895
static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
896 897 898 899 900 901
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_get_processor_feat(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_FEAT:
		ret = kvm_s390_get_machine_feat(kvm, attr);
		break;
902 903 904 905 906 907
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_get_processor_subfunc(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
		ret = kvm_s390_get_machine_subfunc(kvm, attr);
		break;
908 909 910 911
	}
	return ret;
}

912 913 914 915 916
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
917
	case KVM_S390_VM_MEM_CTRL:
918
		ret = kvm_s390_set_mem_control(kvm, attr);
919
		break;
920 921 922
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
923 924 925
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
926 927 928
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
929 930 931 932 933 934 935 936 937 938
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
939 940 941 942 943 944
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
945 946 947
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
948 949 950
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
951 952 953 954 955 956
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
957 958 959 960 961 962 963
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
964 965 966 967
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
968
		case KVM_S390_VM_MEM_LIMIT_SIZE:
969 970 971 972 973 974 975
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
976 977 978 979 980 981 982 983 984 985 986
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
987 988 989 990
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
991 992
		case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		case KVM_S390_VM_CPU_MACHINE_FEAT:
993
		case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
994 995
			ret = 0;
			break;
996 997
		/* configuring subfunctions is not supported yet */
		case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
998 999 1000 1001 1002
		default:
			ret = -ENXIO;
			break;
		}
		break;
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1016 1017 1018 1019 1020 1021 1022 1023
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	unsigned long curkey;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Is this guest using storage keys? */
	if (!mm_use_skey(current->mm))
		return KVM_S390_GET_SKEYS_NONE;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			goto out;
		}

		curkey = get_guest_storage_key(current->mm, hva);
		if (IS_ERR_VALUE(curkey)) {
			r = curkey;
			goto out;
		}
		keys[i] = curkey;
	}

	r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
			 sizeof(uint8_t) * args->count);
	if (r)
		r = -EFAULT;
out:
	kvfree(keys);
	return r;
}

static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
			   sizeof(uint8_t) * args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	/* Enable storage key handling for the guest */
1101 1102 1103
	r = s390_enable_skey();
	if (r)
		goto out;
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127

	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			goto out;
		}

		/* Lowest order bit is reserved */
		if (keys[i] & 0x01) {
			r = -EINVAL;
			goto out;
		}

		r = set_guest_storage_key(current->mm, hva,
					  (unsigned long)keys[i], 0);
		if (r)
			goto out;
	}
out:
	kvfree(keys);
	return r;
}

1128 1129 1130 1131 1132
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
1133
	struct kvm_device_attr attr;
1134 1135 1136
	int r;

	switch (ioctl) {
1137 1138 1139 1140 1141 1142 1143 1144 1145
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
1146 1147 1148 1149 1150 1151 1152 1153
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
1154 1155 1156 1157 1158 1159 1160
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
1161
			r = kvm_set_irq_routing(kvm, &routing, 0, 0);
1162 1163 1164
		}
		break;
	}
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
	case KVM_S390_GET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_get_skeys(kvm, &args);
		break;
	}
	case KVM_S390_SET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_set_skeys(kvm, &args);
		break;
	}
1206
	default:
1207
		r = -ENOTTY;
1208 1209 1210 1211 1212
	}

	return r;
}

1213 1214 1215
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
1216
	u32 cc = 0;
1217

1218
	memset(config, 0, 128);
1219 1220 1221 1222
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
1223
		"0: ipm %0\n"
1224
		"srl %0,28\n"
1225 1226 1227
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

1240
	if (test_facility(12)) {
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

1262
static u64 kvm_s390_get_initial_cpuid(void)
1263
{
1264 1265 1266 1267 1268
	struct cpuid cpuid;

	get_cpu_id(&cpuid);
	cpuid.version = 0xff;
	return *((u64 *) &cpuid);
1269 1270
}

1271
static void kvm_s390_crypto_init(struct kvm *kvm)
1272
{
1273
	if (!test_kvm_facility(kvm, 76))
1274
		return;
1275

1276
	kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
1277
	kvm_s390_set_crycb_format(kvm);
1278

1279 1280 1281 1282 1283 1284 1285
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1286 1287
}

1288 1289 1290
static void sca_dispose(struct kvm *kvm)
{
	if (kvm->arch.use_esca)
1291
		free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
1292 1293 1294 1295 1296
	else
		free_page((unsigned long)(kvm->arch.sca));
	kvm->arch.sca = NULL;
}

1297
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1298
{
1299
	gfp_t alloc_flags = GFP_KERNEL;
1300
	int i, rc;
1301
	char debug_name[16];
1302
	static unsigned long sca_offset;
1303

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

1315 1316
	rc = s390_enable_sie();
	if (rc)
1317
		goto out_err;
1318

1319 1320
	rc = -ENOMEM;

J
Janosch Frank 已提交
1321 1322
	ratelimit_state_init(&kvm->arch.sthyi_limit, 5 * HZ, 500);

1323
	kvm->arch.use_esca = 0; /* start with basic SCA */
1324 1325
	if (!sclp.has_64bscao)
		alloc_flags |= GFP_DMA;
1326
	rwlock_init(&kvm->arch.sca_lock);
1327
	kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags);
1328
	if (!kvm->arch.sca)
1329
		goto out_err;
1330
	spin_lock(&kvm_lock);
1331
	sca_offset += 16;
1332
	if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
1333
		sca_offset = 0;
1334 1335
	kvm->arch.sca = (struct bsca_block *)
			((char *) kvm->arch.sca + sca_offset);
1336
	spin_unlock(&kvm_lock);
1337 1338 1339

	sprintf(debug_name, "kvm-%u", current->pid);

1340
	kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1341
	if (!kvm->arch.dbf)
1342
		goto out_err;
1343

1344 1345 1346
	kvm->arch.sie_page2 =
	     (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.sie_page2)
1347
		goto out_err;
1348

1349
	/* Populate the facility mask initially. */
1350
	memcpy(kvm->arch.model.fac_mask, S390_lowcore.stfle_fac_list,
1351
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1352 1353
	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
		if (i < kvm_s390_fac_list_mask_size())
1354
			kvm->arch.model.fac_mask[i] &= kvm_s390_fac_list_mask[i];
1355
		else
1356
			kvm->arch.model.fac_mask[i] = 0UL;
1357 1358
	}

1359
	/* Populate the facility list initially. */
1360 1361
	kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
	memcpy(kvm->arch.model.fac_list, kvm->arch.model.fac_mask,
1362 1363
	       S390_ARCH_FAC_LIST_SIZE_BYTE);

J
Janosch Frank 已提交
1364 1365 1366
	set_kvm_facility(kvm->arch.model.fac_mask, 74);
	set_kvm_facility(kvm->arch.model.fac_list, 74);

1367
	kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
1368
	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1369

1370
	kvm_s390_crypto_init(kvm);
1371

1372
	spin_lock_init(&kvm->arch.float_int.lock);
1373 1374
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1375
	init_waitqueue_head(&kvm->arch.ipte_wq);
1376
	mutex_init(&kvm->arch.ipte_mutex);
1377

1378
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1379
	VM_EVENT(kvm, 3, "vm created with type %lu", type);
1380

1381 1382
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
1383
		kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
1384
	} else {
1385 1386 1387 1388 1389
		if (sclp.hamax == U64_MAX)
			kvm->arch.mem_limit = TASK_MAX_SIZE;
		else
			kvm->arch.mem_limit = min_t(unsigned long, TASK_MAX_SIZE,
						    sclp.hamax + 1);
1390
		kvm->arch.gmap = gmap_alloc(current->mm, kvm->arch.mem_limit - 1);
1391
		if (!kvm->arch.gmap)
1392
			goto out_err;
1393
		kvm->arch.gmap->private = kvm;
1394
		kvm->arch.gmap->pfault_enabled = 0;
1395
	}
1396 1397

	kvm->arch.css_support = 0;
1398
	kvm->arch.use_irqchip = 0;
1399
	kvm->arch.epoch = 0;
1400

1401
	spin_lock_init(&kvm->arch.start_stop_lock);
1402
	KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
1403

1404
	return 0;
1405
out_err:
1406
	free_page((unsigned long)kvm->arch.sie_page2);
1407
	debug_unregister(kvm->arch.dbf);
1408
	sca_dispose(kvm);
1409
	KVM_EVENT(3, "creation of vm failed: %d", rc);
1410
	return rc;
1411 1412
}

1413 1414 1415
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1416
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1417
	kvm_s390_clear_local_irqs(vcpu);
1418
	kvm_clear_async_pf_completion_queue(vcpu);
1419
	if (!kvm_is_ucontrol(vcpu->kvm))
1420
		sca_del_vcpu(vcpu);
1421 1422 1423 1424

	if (kvm_is_ucontrol(vcpu->kvm))
		gmap_free(vcpu->arch.gmap);

1425
	if (vcpu->kvm->arch.use_cmma)
1426
		kvm_s390_vcpu_unsetup_cmma(vcpu);
1427
	free_page((unsigned long)(vcpu->arch.sie_block));
1428

1429
	kvm_vcpu_uninit(vcpu);
1430
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1431 1432 1433 1434 1435
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
1436
	struct kvm_vcpu *vcpu;
1437

1438 1439 1440 1441 1442 1443 1444 1445 1446
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
1447 1448
}

1449 1450
void kvm_arch_destroy_vm(struct kvm *kvm)
{
1451
	kvm_free_vcpus(kvm);
1452
	sca_dispose(kvm);
1453
	debug_unregister(kvm->arch.dbf);
1454
	free_page((unsigned long)kvm->arch.sie_page2);
1455 1456
	if (!kvm_is_ucontrol(kvm))
		gmap_free(kvm->arch.gmap);
1457
	kvm_s390_destroy_adapters(kvm);
1458
	kvm_s390_clear_float_irqs(kvm);
1459
	KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
1460 1461 1462
}

/* Section: vcpu related */
1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
	vcpu->arch.gmap = gmap_alloc(current->mm, -1UL);
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

1473 1474
static void sca_del_vcpu(struct kvm_vcpu *vcpu)
{
1475
	read_lock(&vcpu->kvm->arch.sca_lock);
1476 1477
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1478

1479
		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1480
		sca->cpu[vcpu->vcpu_id].sda = 0;
1481 1482 1483 1484
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1485
		sca->cpu[vcpu->vcpu_id].sda = 0;
1486
	}
1487
	read_unlock(&vcpu->kvm->arch.sca_lock);
1488 1489
}

1490
static void sca_add_vcpu(struct kvm_vcpu *vcpu)
1491
{
1492 1493 1494
	read_lock(&vcpu->kvm->arch.sca_lock);
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1495

1496
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1497 1498
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
1499
		vcpu->arch.sie_block->ecb2 |= 0x04U;
1500
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1501
	} else {
1502
		struct bsca_block *sca = vcpu->kvm->arch.sca;
1503

1504
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1505 1506
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
1507
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1508
	}
1509
	read_unlock(&vcpu->kvm->arch.sca_lock);
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
}

/* Basic SCA to Extended SCA data copy routines */
static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
{
	d->sda = s->sda;
	d->sigp_ctrl.c = s->sigp_ctrl.c;
	d->sigp_ctrl.scn = s->sigp_ctrl.scn;
}

static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
{
	int i;

	d->ipte_control = s->ipte_control;
	d->mcn[0] = s->mcn;
	for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
		sca_copy_entry(&d->cpu[i], &s->cpu[i]);
}

static int sca_switch_to_extended(struct kvm *kvm)
{
	struct bsca_block *old_sca = kvm->arch.sca;
	struct esca_block *new_sca;
	struct kvm_vcpu *vcpu;
	unsigned int vcpu_idx;
	u32 scaol, scaoh;

	new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
	if (!new_sca)
		return -ENOMEM;

	scaoh = (u32)((u64)(new_sca) >> 32);
	scaol = (u32)(u64)(new_sca) & ~0x3fU;

	kvm_s390_vcpu_block_all(kvm);
	write_lock(&kvm->arch.sca_lock);

	sca_copy_b_to_e(new_sca, old_sca);

	kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
		vcpu->arch.sie_block->scaoh = scaoh;
		vcpu->arch.sie_block->scaol = scaol;
		vcpu->arch.sie_block->ecb2 |= 0x04U;
	}
	kvm->arch.sca = new_sca;
	kvm->arch.use_esca = 1;

	write_unlock(&kvm->arch.sca_lock);
	kvm_s390_vcpu_unblock_all(kvm);

	free_page((unsigned long)old_sca);

1563 1564
	VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
		 old_sca, kvm->arch.sca);
1565
	return 0;
1566 1567 1568 1569
}

static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
{
1570 1571 1572 1573
	int rc;

	if (id < KVM_S390_BSCA_CPU_SLOTS)
		return true;
1574
	if (!sclp.has_esca || !sclp.has_64bscao)
1575 1576 1577 1578 1579 1580 1581
		return false;

	mutex_lock(&kvm->lock);
	rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
	mutex_unlock(&kvm->lock);

	return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
1582 1583
}

1584 1585
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1586 1587
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1588 1589
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
1590
				    KVM_SYNC_ACRS |
1591 1592 1593
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
1594 1595
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
1596 1597 1598 1599
	/* fprs can be synchronized via vrs, even if the guest has no vx. With
	 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
	 */
	if (MACHINE_HAS_VX)
1600
		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1601 1602
	else
		vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
1603 1604 1605 1606

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

1607 1608 1609
	return 0;
}

1610 1611 1612 1613
/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
1614
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1615
	vcpu->arch.cputm_start = get_tod_clock_fast();
1616
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1617 1618 1619 1620 1621 1622
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
1623
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1624 1625
	vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	vcpu->arch.cputm_start = 0;
1626
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_enabled);
	vcpu->arch.cputm_enabled = true;
	__start_cpu_timer_accounting(vcpu);
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
	__stop_cpu_timer_accounting(vcpu);
	vcpu->arch.cputm_enabled = false;
}

static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__enable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__disable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

1659 1660 1661
/* set the cpu timer - may only be called from the VCPU thread itself */
void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
{
1662
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1663
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1664 1665
	if (vcpu->arch.cputm_enabled)
		vcpu->arch.cputm_start = get_tod_clock_fast();
1666
	vcpu->arch.sie_block->cputm = cputm;
1667
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1668
	preempt_enable();
1669 1670
}

1671
/* update and get the cpu timer - can also be called from other VCPU threads */
1672 1673
__u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
{
1674
	unsigned int seq;
1675 1676 1677 1678 1679
	__u64 value;

	if (unlikely(!vcpu->arch.cputm_enabled))
		return vcpu->arch.sie_block->cputm;

1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	do {
		seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
		/*
		 * If the writer would ever execute a read in the critical
		 * section, e.g. in irq context, we have a deadlock.
		 */
		WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
		value = vcpu->arch.sie_block->cputm;
		/* if cputm_start is 0, accounting is being started/stopped */
		if (likely(vcpu->arch.cputm_start))
			value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	} while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
	preempt_enable();
1694
	return value;
1695 1696
}

1697 1698
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
1699
	/* Save host register state */
1700
	save_fpu_regs();
1701 1702
	vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
	vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
1703

1704 1705 1706 1707
	if (MACHINE_HAS_VX)
		current->thread.fpu.regs = vcpu->run->s.regs.vrs;
	else
		current->thread.fpu.regs = vcpu->run->s.regs.fprs;
1708
	current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
1709
	if (test_fp_ctl(current->thread.fpu.fpc))
1710
		/* User space provided an invalid FPC, let's clear it */
1711 1712 1713
		current->thread.fpu.fpc = 0;

	save_access_regs(vcpu->arch.host_acrs);
1714
	restore_access_regs(vcpu->run->s.regs.acrs);
1715
	gmap_enable(vcpu->arch.gmap);
1716
	atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1717
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1718
		__start_cpu_timer_accounting(vcpu);
1719
	vcpu->cpu = cpu;
1720 1721 1722 1723
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
1724
	vcpu->cpu = -1;
1725
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1726
		__stop_cpu_timer_accounting(vcpu);
1727
	atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1728
	gmap_disable(vcpu->arch.gmap);
1729

1730
	/* Save guest register state */
1731
	save_fpu_regs();
1732
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
1733

1734 1735 1736
	/* Restore host register state */
	current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
	current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
1737 1738

	save_access_regs(vcpu->run->s.regs.acrs);
1739 1740 1741 1742 1743 1744 1745 1746
	restore_access_regs(vcpu->arch.host_acrs);
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
1747
	kvm_s390_set_prefix(vcpu, 0);
1748
	kvm_s390_set_cpu_timer(vcpu, 0);
1749 1750 1751 1752 1753
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
1754 1755 1756
	/* make sure the new fpc will be lazily loaded */
	save_fpu_regs();
	current->thread.fpu.fpc = 0;
1757
	vcpu->arch.sie_block->gbea = 1;
1758
	vcpu->arch.sie_block->pp = 0;
1759 1760
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1761 1762
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
1763
	kvm_s390_clear_local_irqs(vcpu);
1764 1765
}

1766
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1767
{
1768
	mutex_lock(&vcpu->kvm->lock);
1769
	preempt_disable();
1770
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
1771
	preempt_enable();
1772
	mutex_unlock(&vcpu->kvm->lock);
1773
	if (!kvm_is_ucontrol(vcpu->kvm)) {
1774
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1775
		sca_add_vcpu(vcpu);
1776 1777
	}

1778 1779
}

1780 1781
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
1782
	if (!test_kvm_facility(vcpu->kvm, 76))
1783 1784
		return;

1785 1786 1787 1788 1789 1790 1791
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

1792 1793 1794
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;

	vcpu->arch.sie_block->ecb2 |= 0x80;
	vcpu->arch.sie_block->ecb2 &= ~0x08;
	return 0;
}

1812 1813 1814 1815 1816
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;

	vcpu->arch.sie_block->ibc = model->ibc;
1817
	if (test_kvm_facility(vcpu->kvm, 7))
1818
		vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list;
1819 1820
}

1821 1822
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
1823
	int rc = 0;
1824

1825 1826
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
1827 1828
						    CPUSTAT_STOPPED);

1829
	if (test_kvm_facility(vcpu->kvm, 78))
1830
		atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
1831
	else if (test_kvm_facility(vcpu->kvm, 8))
1832
		atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
1833

1834 1835
	kvm_s390_vcpu_setup_model(vcpu);

1836 1837 1838
	vcpu->arch.sie_block->ecb = 0x02;
	if (test_kvm_facility(vcpu->kvm, 9))
		vcpu->arch.sie_block->ecb |= 0x04;
1839
	if (test_kvm_facility(vcpu->kvm, 50) && test_kvm_facility(vcpu->kvm, 73))
1840 1841
		vcpu->arch.sie_block->ecb |= 0x10;

1842 1843
	if (test_kvm_facility(vcpu->kvm, 8))
		vcpu->arch.sie_block->ecb2 |= 0x08;
1844
	vcpu->arch.sie_block->eca   = 0xC1002000U;
1845
	if (sclp.has_siif)
1846
		vcpu->arch.sie_block->eca |= 1;
1847
	if (sclp.has_sigpif)
1848
		vcpu->arch.sie_block->eca |= 0x10000000U;
1849 1850
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->arch.sie_block->ecb3 |= 0x01;
1851
	if (test_kvm_facility(vcpu->kvm, 129)) {
1852 1853 1854
		vcpu->arch.sie_block->eca |= 0x00020000;
		vcpu->arch.sie_block->ecd |= 0x20000000;
	}
1855
	vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
1856
	vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
J
Janosch Frank 已提交
1857 1858
	if (test_kvm_facility(vcpu->kvm, 74))
		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
1859

1860
	if (vcpu->kvm->arch.use_cmma) {
1861 1862 1863
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
1864
	}
1865
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1866
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1867

1868 1869
	kvm_s390_vcpu_crypto_setup(vcpu);

1870
	return rc;
1871 1872 1873 1874 1875
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
1876
	struct kvm_vcpu *vcpu;
1877
	struct sie_page *sie_page;
1878 1879
	int rc = -EINVAL;

1880
	if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
1881 1882 1883
		goto out;

	rc = -ENOMEM;
1884

1885
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1886
	if (!vcpu)
1887
		goto out;
1888

1889 1890
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
1891 1892
		goto out_free_cpu;

1893 1894 1895
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;

1896
	vcpu->arch.sie_block->icpua = id;
1897 1898
	spin_lock_init(&vcpu->arch.local_int.lock);
	vcpu->arch.local_int.float_int = &kvm->arch.float_int;
1899
	vcpu->arch.local_int.wq = &vcpu->wq;
1900
	vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
1901
	seqcount_init(&vcpu->arch.cputm_seqcount);
1902

1903 1904
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
1905
		goto out_free_sie_block;
1906
	VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu,
1907
		 vcpu->arch.sie_block);
1908
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
1909 1910

	return vcpu;
1911 1912
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
1913
out_free_cpu:
1914
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1915
out:
1916 1917 1918 1919 1920
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
1921
	return kvm_s390_vcpu_has_irq(vcpu, 0);
1922 1923
}

1924
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
1925
{
1926
	atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1927
	exit_sie(vcpu);
1928 1929
}

1930
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
1931
{
1932
	atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1933 1934
}

1935 1936
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
{
1937
	atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1938
	exit_sie(vcpu);
1939 1940 1941 1942
}

static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
1943
	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1944 1945
}

1946 1947 1948 1949 1950 1951
/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
1952
	atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
1953 1954 1955 1956
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

1957 1958
/* Kick a guest cpu out of SIE to process a request synchronously */
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
1959
{
1960 1961
	kvm_make_request(req, vcpu);
	kvm_s390_vcpu_request(vcpu);
1962 1963
}

1964 1965 1966 1967 1968 1969 1970 1971
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address)
{
	int i;
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
1972
		if (kvm_s390_get_prefix(vcpu) == (address & ~0x1000UL)) {
1973
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx", address);
1974
			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
1975 1976 1977 1978
		}
	}
}

1979 1980 1981 1982 1983 1984 1985
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

1986 1987 1988 1989 1990 1991
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
1992 1993 1994 1995 1996 1997 1998 1999
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2000
	case KVM_REG_S390_CPU_TIMER:
2001
		r = put_user(kvm_s390_get_cpu_timer(vcpu),
2002 2003 2004 2005 2006 2007
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2020 2021 2022 2023
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2024 2025 2026 2027
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;
2039
	__u64 val;
2040 2041

	switch (reg->id) {
2042 2043 2044 2045 2046 2047 2048 2049
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2050
	case KVM_REG_S390_CPU_TIMER:
2051 2052 2053
		r = get_user(val, (u64 __user *)reg->addr);
		if (!r)
			kvm_s390_set_cpu_timer(vcpu, val);
2054 2055 2056 2057 2058
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2059 2060 2061
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
2062 2063
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2064 2065 2066 2067 2068 2069 2070 2071 2072
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2073 2074 2075 2076
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2077 2078 2079 2080
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2081 2082 2083 2084 2085 2086
	default:
		break;
	}

	return r;
}
2087

2088 2089 2090 2091 2092 2093 2094 2095
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2096
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
2097 2098 2099 2100 2101
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2102
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
2103 2104 2105 2106 2107 2108
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2109
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
2110
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
2111
	restore_access_regs(vcpu->run->s.regs.acrs);
2112 2113 2114 2115 2116 2117
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2118
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
2119 2120 2121 2122 2123 2124
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2125 2126
	/* make sure the new values will be lazily loaded */
	save_fpu_regs();
2127 2128
	if (test_fp_ctl(fpu->fpc))
		return -EINVAL;
2129 2130 2131 2132 2133
	current->thread.fpu.fpc = fpu->fpc;
	if (MACHINE_HAS_VX)
		convert_fp_to_vx(current->thread.fpu.vxrs, (freg_t *)fpu->fprs);
	else
		memcpy(current->thread.fpu.fprs, &fpu->fprs, sizeof(fpu->fprs));
2134 2135 2136 2137 2138
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2139 2140 2141 2142 2143 2144 2145
	/* make sure we have the latest values */
	save_fpu_regs();
	if (MACHINE_HAS_VX)
		convert_vx_to_fp((freg_t *)fpu->fprs, current->thread.fpu.vxrs);
	else
		memcpy(fpu->fprs, current->thread.fpu.fprs, sizeof(fpu->fprs));
	fpu->fpc = current->thread.fpu.fpc;
2146 2147 2148 2149 2150 2151 2152
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

2153
	if (!is_vcpu_stopped(vcpu))
2154
		rc = -EBUSY;
2155 2156 2157 2158
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
2159 2160 2161 2162 2163 2164 2165 2166 2167
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

2168 2169 2170 2171
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
2172 2173
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
2174
{
2175 2176 2177 2178 2179
	int rc = 0;

	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

2180
	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
2181 2182 2183 2184 2185
		return -EINVAL;

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
2186
		atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2187 2188 2189 2190

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
2191
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2192 2193 2194 2195 2196 2197
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
2198
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2199 2200 2201
	}

	return rc;
2202 2203
}

2204 2205 2206
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2207 2208 2209
	/* CHECK_STOP and LOAD are not supported yet */
	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				       KVM_MP_STATE_OPERATING;
2210 2211 2212 2213 2214
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
	int rc = 0;

	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

	return rc;
2235 2236
}

2237 2238 2239 2240 2241
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
	return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
}

2242 2243
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
2244
retry:
2245
	kvm_s390_vcpu_request_handled(vcpu);
2246 2247
	if (!vcpu->requests)
		return 0;
2248 2249 2250 2251 2252 2253 2254
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
	 * guest prefix page. gmap_ipte_notify will wait on the ptl lock.
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
2255
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
2256 2257
		int rc;
		rc = gmap_ipte_notify(vcpu->arch.gmap,
2258
				      kvm_s390_get_prefix(vcpu),
2259 2260 2261
				      PAGE_SIZE * 2);
		if (rc)
			return rc;
2262
		goto retry;
2263
	}
2264

2265 2266 2267 2268 2269
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

2270 2271 2272
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
2273
			atomic_or(CPUSTAT_IBS,
2274 2275 2276
					&vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
2277
	}
2278 2279 2280 2281

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
2282
			atomic_andnot(CPUSTAT_IBS,
2283 2284 2285 2286 2287
					  &vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
	}

2288 2289 2290
	/* nothing to do, just clear the request */
	clear_bit(KVM_REQ_UNHALT, &vcpu->requests);

2291 2292 2293
	return 0;
}

2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
{
	struct kvm_vcpu *vcpu;
	int i;

	mutex_lock(&kvm->lock);
	preempt_disable();
	kvm->arch.epoch = tod - get_tod_clock();
	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
	kvm_s390_vcpu_unblock_all(kvm);
	preempt_enable();
	mutex_unlock(&kvm->lock);
}

2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
2321
{
2322 2323
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
2324 2325
}

2326 2327 2328 2329
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
2330
	struct kvm_s390_irq irq;
2331 2332

	if (start_token) {
2333 2334 2335
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
2336 2337
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
2338
		inti.parm64 = token;
2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
2385
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
2386 2387 2388 2389 2390 2391
		return 0;
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
2392 2393 2394
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
2395 2396 2397 2398 2399 2400
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

2401
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
2402
{
2403
	int rc, cpuflags;
2404

2405 2406 2407 2408 2409 2410 2411
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

2412 2413
	vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
	vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
2414 2415 2416 2417

	if (need_resched())
		schedule();

2418
	if (test_cpu_flag(CIF_MCCK_PENDING))
2419 2420
		s390_handle_mcck();

2421 2422 2423 2424 2425
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
2426

2427 2428 2429 2430
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

2431 2432 2433 2434 2435
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

2436
	vcpu->arch.sie_block->icptcode = 0;
2437 2438 2439
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
2440

2441 2442 2443
	return 0;
}

2444 2445
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
2446 2447 2448 2449
	struct kvm_s390_pgm_info pgm_info = {
		.code = PGM_ADDRESSING,
	};
	u8 opcode, ilen;
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
2463
	rc = read_guest_instr(vcpu, &opcode, 1);
2464
	ilen = insn_length(opcode);
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474
	if (rc < 0) {
		return rc;
	} else if (rc) {
		/* Instruction-Fetching Exceptions - we can't detect the ilen.
		 * Forward by arbitrary ilc, injection will take care of
		 * nullification if necessary.
		 */
		pgm_info = vcpu->arch.pgm;
		ilen = 4;
	}
2475 2476 2477
	pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
	kvm_s390_forward_psw(vcpu, ilen);
	return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
2478 2479
}

2480 2481
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
2482 2483 2484 2485
	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

2486 2487 2488
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

2489 2490
	vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
	vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504

	if (vcpu->arch.sie_block->icptcode > 0) {
		int rc = kvm_handle_sie_intercept(vcpu);

		if (rc != -EOPNOTSUPP)
			return rc;
		vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
		vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
		vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
		return -EREMOTE;
	} else if (exit_reason != -EFAULT) {
		vcpu->stat.exit_null++;
		return 0;
2505 2506 2507 2508 2509
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
2510
		return -EREMOTE;
2511
	} else if (current->thread.gmap_pfault) {
2512
		trace_kvm_s390_major_guest_pfault(vcpu);
2513
		current->thread.gmap_pfault = 0;
2514 2515 2516
		if (kvm_arch_setup_async_pf(vcpu))
			return 0;
		return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
2517
	}
2518
	return vcpu_post_run_fault_in_sie(vcpu);
2519 2520 2521 2522 2523 2524
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

2525 2526 2527 2528 2529 2530
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

2531 2532 2533 2534
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
2535

2536
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2537 2538 2539 2540
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
2541 2542
		local_irq_disable();
		__kvm_guest_enter();
2543
		__disable_cpu_timer_accounting(vcpu);
2544
		local_irq_enable();
2545 2546
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
2547
		local_irq_disable();
2548
		__enable_cpu_timer_accounting(vcpu);
2549 2550
		__kvm_guest_exit();
		local_irq_enable();
2551
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2552 2553

		rc = vcpu_post_run(vcpu, exit_reason);
2554
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2555

2556
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2557
	return rc;
2558 2559
}

2560 2561 2562 2563 2564 2565 2566 2567
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2568 2569
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2570 2571
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
2572
		kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
2573 2574 2575 2576 2577 2578 2579 2580 2581
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2582 2583
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
	}
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
2594
	kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
2595 2596 2597 2598 2599 2600 2601 2602 2603
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
}

2604 2605
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
2606
	int rc;
2607 2608
	sigset_t sigsaved;

2609 2610 2611 2612 2613
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
		return 0;
	}

2614 2615 2616
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

2617 2618 2619
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
2620
		pr_err_ratelimited("can't run stopped vcpu %d\n",
2621 2622 2623
				   vcpu->vcpu_id);
		return -EINVAL;
	}
2624

2625
	sync_regs(vcpu, kvm_run);
2626
	enable_cpu_timer_accounting(vcpu);
2627

2628
	might_fault();
2629
	rc = __vcpu_run(vcpu);
2630

2631 2632
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
2633
		rc = -EINTR;
2634
	}
2635

2636 2637 2638 2639 2640
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

2641
	if (rc == -EREMOTE) {
2642
		/* userspace support is needed, kvm_run has been prepared */
2643 2644
		rc = 0;
	}
2645

2646
	disable_cpu_timer_accounting(vcpu);
2647
	store_regs(vcpu, kvm_run);
2648

2649 2650 2651 2652
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu->stat.exit_userspace++;
2653
	return rc;
2654 2655 2656 2657 2658 2659 2660 2661
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
2662
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2663
{
2664
	unsigned char archmode = 1;
2665
	freg_t fprs[NUM_FPRS];
2666
	unsigned int px;
2667
	u64 clkcomp, cputm;
2668
	int rc;
2669

2670
	px = kvm_s390_get_prefix(vcpu);
2671 2672
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
2673
			return -EFAULT;
2674
		gpa = 0;
2675 2676
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
2677
			return -EFAULT;
2678 2679 2680
		gpa = px;
	} else
		gpa -= __LC_FPREGS_SAVE_AREA;
2681 2682 2683

	/* manually convert vector registers if necessary */
	if (MACHINE_HAS_VX) {
2684
		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
2685 2686 2687 2688
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
				     fprs, 128);
	} else {
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
2689
				     vcpu->run->s.regs.fprs, 128);
2690
	}
2691
	rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
2692
			      vcpu->run->s.regs.gprs, 128);
2693
	rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
2694
			      &vcpu->arch.sie_block->gpsw, 16);
2695
	rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
2696
			      &px, 4);
2697
	rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
2698
			      &vcpu->run->s.regs.fpc, 4);
2699
	rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
2700
			      &vcpu->arch.sie_block->todpr, 4);
2701
	cputm = kvm_s390_get_cpu_timer(vcpu);
2702
	rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
2703
			      &cputm, 8);
2704
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
2705
	rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
2706
			      &clkcomp, 8);
2707
	rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
2708
			      &vcpu->run->s.regs.acrs, 64);
2709
	rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
2710 2711
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
2712 2713
}

2714 2715 2716 2717 2718 2719 2720
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
	 * copying in vcpu load/put. Lets update our copies before we save
	 * it into the save area
	 */
2721
	save_fpu_regs();
2722
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
2723 2724 2725 2726 2727
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

E
Eric Farman 已提交
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
/*
 * store additional status at address
 */
int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu,
					unsigned long gpa)
{
	/* Only bits 0-53 are used for address formation */
	if (!(gpa & ~0x3ff))
		return 0;

	return write_guest_abs(vcpu, gpa & ~0x3ff,
			       (void *)&vcpu->run->s.regs.vrs, 512);
}

int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	if (!test_kvm_facility(vcpu->kvm, 129))
		return 0;

	/*
	 * The guest VXRS are in the host VXRs due to the lazy
2749 2750 2751 2752 2753
	 * copying in vcpu load/put. We can simply call save_fpu_regs()
	 * to save the current register state because we are in the
	 * middle of a load/put cycle.
	 *
	 * Let's update our copies before we save it into the save area.
E
Eric Farman 已提交
2754
	 */
2755
	save_fpu_regs();
E
Eric Farman 已提交
2756 2757 2758 2759

	return kvm_s390_store_adtl_status_unloaded(vcpu, addr);
}

2760 2761 2762
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2763
	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2779
	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2780 2781
}

2782 2783
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
2784 2785 2786 2787 2788
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

2789
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2790
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2791
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

2811
	atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2812 2813 2814 2815
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
2816
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2817
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2818
	return;
2819 2820 2821 2822
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
2823 2824 2825 2826 2827 2828
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

2829
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2830
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2831
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2832 2833
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

2834
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2835
	kvm_s390_clear_stop_irq(vcpu);
2836

2837
	atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

2855
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2856
	return;
2857 2858
}

2859 2860 2861 2862 2863 2864 2865 2866 2867
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
2868 2869 2870
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
2871
			VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
2872 2873 2874 2875
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
2876 2877 2878 2879 2880 2881 2882
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
				  struct kvm_s390_mem_op *mop)
{
	void __user *uaddr = (void __user *)mop->buf;
	void *tmpbuf = NULL;
	int r, srcu_idx;
	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
				    | KVM_S390_MEMOP_F_CHECK_ONLY;

	if (mop->flags & ~supported_flags)
		return -EINVAL;

	if (mop->size > MEM_OP_MAX_SIZE)
		return -E2BIG;

	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
		tmpbuf = vmalloc(mop->size);
		if (!tmpbuf)
			return -ENOMEM;
	}

	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

	switch (mop->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2909 2910
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_FETCH);
2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
			break;
		}
		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		if (r == 0) {
			if (copy_to_user(uaddr, tmpbuf, mop->size))
				r = -EFAULT;
		}
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2921 2922
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_STORE);
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
			break;
		}
		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
			r = -EFAULT;
			break;
		}
		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		break;
	default:
		r = -EINVAL;
	}

	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);

	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);

	vfree(tmpbuf);
	return r;
}

2944 2945 2946 2947 2948
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
2949
	int idx;
2950
	long r;
2951

2952
	switch (ioctl) {
2953 2954 2955 2956 2957 2958 2959 2960 2961
	case KVM_S390_IRQ: {
		struct kvm_s390_irq s390irq;

		r = -EFAULT;
		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
			break;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
		break;
	}
2962
	case KVM_S390_INTERRUPT: {
2963
		struct kvm_s390_interrupt s390int;
2964
		struct kvm_s390_irq s390irq;
2965

2966
		r = -EFAULT;
2967
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
2968
			break;
2969 2970 2971
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
2972
		break;
2973
	}
2974
	case KVM_S390_STORE_STATUS:
2975
		idx = srcu_read_lock(&vcpu->kvm->srcu);
2976
		r = kvm_s390_vcpu_store_status(vcpu, arg);
2977
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
2978
		break;
2979 2980 2981
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

2982
		r = -EFAULT;
2983
		if (copy_from_user(&psw, argp, sizeof(psw)))
2984 2985 2986
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
2987 2988
	}
	case KVM_S390_INITIAL_RESET:
2989 2990
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
3039
	case KVM_S390_VCPU_FAULT: {
3040
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
3041 3042
		break;
	}
3043 3044 3045 3046 3047 3048 3049 3050 3051
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
3052 3053 3054 3055 3056 3057 3058 3059 3060
	case KVM_S390_MEM_OP: {
		struct kvm_s390_mem_op mem_op;

		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
		else
			r = -EFAULT;
		break;
	}
3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
	case KVM_S390_SET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
		    irq_state.len == 0 ||
		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_set_irq_state(vcpu,
					   (void __user *) irq_state.buf,
					   irq_state.len);
		break;
	}
	case KVM_S390_GET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len == 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_get_irq_state(vcpu,
					   (__u8 __user *)  irq_state.buf,
					   irq_state.len);
		break;
	}
3093
	default:
3094
		r = -ENOTTY;
3095
	}
3096
	return r;
3097 3098
}

3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

3112 3113
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
3114 3115 3116 3117
{
	return 0;
}

3118
/* Section: memory related */
3119 3120
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
3121
				   const struct kvm_userspace_memory_region *mem,
3122
				   enum kvm_mr_change change)
3123
{
3124 3125 3126 3127
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
3128

3129
	if (mem->userspace_addr & 0xffffful)
3130 3131
		return -EINVAL;

3132
	if (mem->memory_size & 0xffffful)
3133 3134
		return -EINVAL;

3135 3136 3137
	if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
		return -EINVAL;

3138 3139 3140 3141
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
3142
				const struct kvm_userspace_memory_region *mem,
3143
				const struct kvm_memory_slot *old,
3144
				const struct kvm_memory_slot *new,
3145
				enum kvm_mr_change change)
3146
{
3147
	int rc;
3148

3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
3159 3160 3161 3162

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
3163
		pr_warn("failed to commit memory region\n");
3164
	return;
3165 3166
}

3167 3168 3169 3170 3171 3172 3173
static inline unsigned long nonhyp_mask(int i)
{
	unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;

	return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
}

3174 3175 3176 3177 3178
void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu)
{
	vcpu->valid_wakeup = false;
}

3179 3180
static int __init kvm_s390_init(void)
{
3181 3182
	int i;

3183 3184 3185 3186 3187
	if (!sclp.has_sief2) {
		pr_info("SIE not available\n");
		return -ENODEV;
	}

3188 3189 3190 3191
	for (i = 0; i < 16; i++)
		kvm_s390_fac_list_mask[i] |=
			S390_lowcore.stfle_fac_list[i] & nonhyp_mask(i);

3192
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
3193 3194 3195 3196 3197 3198 3199 3200 3201
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
3202 3203 3204 3205 3206 3207 3208 3209 3210

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");