kvm-s390.c 73.0 KB
Newer Older
1
/*
2
 * hosting zSeries kernel virtual machines
3
 *
4
 * Copyright IBM Corp. 2008, 2009
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
13
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14
 *               Jason J. Herne <jjherne@us.ibm.com>
15 16 17 18 19
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
20
#include <linux/hrtimer.h>
21 22 23 24
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
25
#include <linux/random.h>
26
#include <linux/slab.h>
27
#include <linux/timer.h>
28
#include <linux/vmalloc.h>
29
#include <asm/asm-offsets.h>
30
#include <asm/lowcore.h>
31
#include <asm/etr.h>
32
#include <asm/pgtable.h>
33
#include <asm/nmi.h>
34
#include <asm/switch_to.h>
35
#include <asm/isc.h>
36
#include <asm/sclp.h>
37
#include "kvm-s390.h"
38 39
#include "gaccess.h"

40 41 42 43
#define KMSG_COMPONENT "kvm-s390"
#undef pr_fmt
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

44 45
#define CREATE_TRACE_POINTS
#include "trace.h"
46
#include "trace-s390.h"
47

48
#define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
49 50 51
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
			   (KVM_MAX_VCPUS + LOCAL_IRQS))
52

53 54 55 56
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
57
	{ "exit_null", VCPU_STAT(exit_null) },
58 59 60 61
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
62 63 64
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
65
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
66
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
67
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
68
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
69
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
70 71
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
72
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
73
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
74 75 76 77 78 79 80
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
81
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
82 83 84 85 86
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
	{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
87
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
88 89
	{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
	{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
90
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
91 92
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
93
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
94
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
95
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
96
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
97
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
98 99
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
100
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
101 102
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
103
	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
104 105 106
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
107 108 109
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
110
	{ "diagnose_10", VCPU_STAT(diagnose_10) },
111
	{ "diagnose_44", VCPU_STAT(diagnose_44) },
112
	{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
113 114 115
	{ "diagnose_258", VCPU_STAT(diagnose_258) },
	{ "diagnose_308", VCPU_STAT(diagnose_308) },
	{ "diagnose_500", VCPU_STAT(diagnose_500) },
116 117 118
	{ NULL }
};

119 120
/* upper facilities limit for kvm */
unsigned long kvm_s390_fac_list_mask[] = {
121
	0xffe6fffbfcfdfc40UL,
122
	0x005e800000000000UL,
123
};
124

125
unsigned long kvm_s390_fac_list_mask_size(void)
126
{
127 128
	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
	return ARRAY_SIZE(kvm_s390_fac_list_mask);
129 130
}

131
static struct gmap_notifier gmap_notifier;
132
debug_info_t *kvm_s390_dbf;
133

134
/* Section: not file related */
135
int kvm_arch_hardware_enable(void)
136 137
{
	/* every s390 is virtualization enabled ;-) */
138
	return 0;
139 140
}

141 142
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address);

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
/*
 * This callback is executed during stop_machine(). All CPUs are therefore
 * temporarily stopped. In order not to change guest behavior, we have to
 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
 * so a CPU won't be stopped while calculating with the epoch.
 */
static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
			  void *v)
{
	struct kvm *kvm;
	struct kvm_vcpu *vcpu;
	int i;
	unsigned long long *delta = v;

	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm->arch.epoch -= *delta;
		kvm_for_each_vcpu(i, vcpu, kvm) {
			vcpu->arch.sie_block->epoch -= *delta;
		}
	}
	return NOTIFY_OK;
}

static struct notifier_block kvm_clock_notifier = {
	.notifier_call = kvm_clock_sync,
};

170 171
int kvm_arch_hardware_setup(void)
{
172 173
	gmap_notifier.notifier_call = kvm_gmap_notifier;
	gmap_register_ipte_notifier(&gmap_notifier);
174 175
	atomic_notifier_chain_register(&s390_epoch_delta_notifier,
				       &kvm_clock_notifier);
176 177 178 179 180
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
181
	gmap_unregister_ipte_notifier(&gmap_notifier);
182 183
	atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
					 &kvm_clock_notifier);
184 185 186 187
}

int kvm_arch_init(void *opaque)
{
188 189 190 191 192 193 194 195 196
	kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
	if (!kvm_s390_dbf)
		return -ENOMEM;

	if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
		debug_unregister(kvm_s390_dbf);
		return -ENOMEM;
	}

197 198
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
199 200
}

201 202 203 204 205
void kvm_arch_exit(void)
{
	debug_unregister(kvm_s390_dbf);
}

206 207 208 209 210 211 212 213 214
/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

215
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
216
{
217 218
	int r;

219
	switch (ext) {
220
	case KVM_CAP_S390_PSW:
221
	case KVM_CAP_S390_GMAP:
222
	case KVM_CAP_SYNC_MMU:
223 224 225
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
226
	case KVM_CAP_ASYNC_PF:
227
	case KVM_CAP_SYNC_REGS:
228
	case KVM_CAP_ONE_REG:
229
	case KVM_CAP_ENABLE_CAP:
230
	case KVM_CAP_S390_CSS_SUPPORT:
C
Cornelia Huck 已提交
231
	case KVM_CAP_IOEVENTFD:
232
	case KVM_CAP_DEVICE_CTRL:
233
	case KVM_CAP_ENABLE_CAP_VM:
234
	case KVM_CAP_S390_IRQCHIP:
235
	case KVM_CAP_VM_ATTRIBUTES:
236
	case KVM_CAP_MP_STATE:
237
	case KVM_CAP_S390_INJECT_IRQ:
238
	case KVM_CAP_S390_USER_SIGP:
239
	case KVM_CAP_S390_USER_STSI:
240
	case KVM_CAP_S390_SKEYS:
241
	case KVM_CAP_S390_IRQ_STATE:
242 243
		r = 1;
		break;
244 245 246
	case KVM_CAP_S390_MEM_OP:
		r = MEM_OP_MAX_SIZE;
		break;
247 248
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
249 250
		r = sclp.has_esca ? KVM_S390_ESCA_CPU_SLOTS
				  : KVM_S390_BSCA_CPU_SLOTS;
251
		break;
252 253 254
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
255
	case KVM_CAP_S390_COW:
256
		r = MACHINE_HAS_ESOP;
257
		break;
258 259 260
	case KVM_CAP_S390_VECTOR_REGISTERS:
		r = MACHINE_HAS_VX;
		break;
261
	default:
262
		r = 0;
263
	}
264
	return r;
265 266
}

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	gfn_t cur_gfn, last_gfn;
	unsigned long address;
	struct gmap *gmap = kvm->arch.gmap;

	down_read(&gmap->mm->mmap_sem);
	/* Loop over all guest pages */
	last_gfn = memslot->base_gfn + memslot->npages;
	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
		address = gfn_to_hva_memslot(memslot, cur_gfn);

		if (gmap_test_and_clear_dirty(address, gmap))
			mark_page_dirty(kvm, cur_gfn);
	}
	up_read(&gmap->mm->mmap_sem);
}

286
/* Section: vm related */
287 288
static void sca_del_vcpu(struct kvm_vcpu *vcpu);

289 290 291 292 293 294
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
295 296
	int r;
	unsigned long n;
297
	struct kvm_memslots *slots;
298 299 300 301 302 303 304 305 306
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

307 308
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
327 328
}

329 330 331 332 333 334 335 336
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
337
	case KVM_CAP_S390_IRQCHIP:
338
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
339 340 341
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
342
	case KVM_CAP_S390_USER_SIGP:
343
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
344 345 346
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
347
	case KVM_CAP_S390_VECTOR_REGISTERS:
348 349 350 351
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus)) {
			r = -EBUSY;
		} else if (MACHINE_HAS_VX) {
352 353 354 355 356
			set_kvm_facility(kvm->arch.model.fac->mask, 129);
			set_kvm_facility(kvm->arch.model.fac->list, 129);
			r = 0;
		} else
			r = -EINVAL;
357
		mutex_unlock(&kvm->lock);
358 359
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
			 r ? "(not available)" : "(success)");
360
		break;
361
	case KVM_CAP_S390_USER_STSI:
362
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
363 364 365
		kvm->arch.user_stsi = 1;
		r = 0;
		break;
366 367 368 369 370 371 372
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

373 374 375 376 377 378 379
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
380 381
		VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
			 kvm->arch.gmap->asce_end);
382 383 384 385 386 387 388 389 390 391 392
		if (put_user(kvm->arch.gmap->asce_end, (u64 __user *)attr->addr))
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
393 394 395 396 397
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
398 399 400 401 402
		/* enable CMMA only for z10 and later (EDAT_1) */
		ret = -EINVAL;
		if (!MACHINE_IS_LPAR || !MACHINE_HAS_EDAT1)
			break;

403
		ret = -EBUSY;
404
		VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
405 406 407 408 409 410 411 412
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			kvm->arch.use_cmma = 1;
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
413 414 415 416
		ret = -EINVAL;
		if (!kvm->arch.use_cmma)
			break;

417
		VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
418 419
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
420
		s390_reset_cmma(kvm->arch.gmap->mm);
421 422 423 424
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

		if (new_limit > kvm->arch.gmap->asce_end)
			return -E2BIG;

		ret = -EBUSY;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			/* gmap_alloc will round the limit up */
			struct gmap *new = gmap_alloc(current->mm, new_limit);

			if (!new) {
				ret = -ENOMEM;
			} else {
				gmap_free(kvm->arch.gmap);
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
453
		VM_EVENT(kvm, 3, "SET: max guest memory: %lu bytes", new_limit);
454 455
		break;
	}
456 457 458 459 460 461 462
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

463 464 465 466 467 468 469
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *vcpu;
	int i;

470
	if (!test_kvm_facility(kvm, 76))
471 472 473 474 475 476 477 478 479
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
480
		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
481 482 483 484 485 486
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
487
		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
488 489 490 491 492
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
493
		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
494 495 496 497 498
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
499
		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
500 501 502 503 504 505 506 507 508 509 510 511 512 513
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_vcpu_crypto_setup(vcpu);
		exit_sie(vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

514 515 516 517 518 519 520 521 522 523
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;
524
	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
525 526 527 528 529 530

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
531
	u64 gtod;
532 533 534 535

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

536
	kvm_s390_set_tod_clock(kvm, gtod);
537
	VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod);
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;
569
	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
570 571 572 573 574 575

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
576
	u64 gtod;
577

578
	gtod = kvm_s390_get_tod_clock_fast(kvm);
579 580
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;
581
	VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	mutex_lock(&kvm->lock);
	if (atomic_read(&kvm->online_vcpus)) {
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
		memcpy(&kvm->arch.model.cpu_id, &proc->cpuid,
		       sizeof(struct cpuid));
		kvm->arch.model.ibc = proc->ibc;
627
		memcpy(kvm->arch.model.fac->list, proc->fac_list,
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	memcpy(&proc->cpuid, &kvm->arch.model.cpu_id, sizeof(struct cpuid));
	proc->ibc = kvm->arch.model.ibc;
661
	memcpy(&proc->fac_list, kvm->arch.model.fac->list, S390_ARCH_FAC_LIST_SIZE_BYTE);
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
680
	mach->ibc = sclp.ibc;
681 682
	memcpy(&mach->fac_mask, kvm->arch.model.fac->mask,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
683
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
684
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
	}
	return ret;
}

707 708 709 710 711
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
712
	case KVM_S390_VM_MEM_CTRL:
713
		ret = kvm_s390_set_mem_control(kvm, attr);
714
		break;
715 716 717
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
718 719 720
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
721 722 723
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
724 725 726 727 728 729 730 731 732 733
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
734 735 736 737 738 739
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
740 741 742
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
743 744 745
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
746 747 748 749 750 751
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
752 753 754 755 756 757 758
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
759 760 761 762
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
763
		case KVM_S390_VM_MEM_LIMIT_SIZE:
764 765 766 767 768 769 770
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
771 772 773 774 775 776 777 778 779 780 781
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
782 783 784 785 786 787 788 789 790 791 792
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
793 794 795 796 797 798 799 800 801 802 803 804 805
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
806 807 808 809 810 811 812 813
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	unsigned long curkey;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Is this guest using storage keys? */
	if (!mm_use_skey(current->mm))
		return KVM_S390_GET_SKEYS_NONE;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			goto out;
		}

		curkey = get_guest_storage_key(current->mm, hva);
		if (IS_ERR_VALUE(curkey)) {
			r = curkey;
			goto out;
		}
		keys[i] = curkey;
	}

	r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
			 sizeof(uint8_t) * args->count);
	if (r)
		r = -EFAULT;
out:
	kvfree(keys);
	return r;
}

static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
			   sizeof(uint8_t) * args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	/* Enable storage key handling for the guest */
891 892 893
	r = s390_enable_skey();
	if (r)
		goto out;
894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917

	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			goto out;
		}

		/* Lowest order bit is reserved */
		if (keys[i] & 0x01) {
			r = -EINVAL;
			goto out;
		}

		r = set_guest_storage_key(current->mm, hva,
					  (unsigned long)keys[i], 0);
		if (r)
			goto out;
	}
out:
	kvfree(keys);
	return r;
}

918 919 920 921 922
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
923
	struct kvm_device_attr attr;
924 925 926
	int r;

	switch (ioctl) {
927 928 929 930 931 932 933 934 935
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
936 937 938 939 940 941 942 943
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
944 945 946 947 948 949 950
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
951
			r = kvm_set_irq_routing(kvm, &routing, 0, 0);
952 953 954
		}
		break;
	}
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995
	case KVM_S390_GET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_get_skeys(kvm, &args);
		break;
	}
	case KVM_S390_SET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_set_skeys(kvm, &args);
		break;
	}
996
	default:
997
		r = -ENOTTY;
998 999 1000 1001 1002
	}

	return r;
}

1003 1004 1005
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
1006
	u32 cc = 0;
1007

1008
	memset(config, 0, 128);
1009 1010 1011 1012
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
1013
		"0: ipm %0\n"
1014
		"srl %0,28\n"
1015 1016 1017
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

	if (test_facility(2) && test_facility(12)) {
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

1052 1053 1054 1055 1056 1057
static void kvm_s390_get_cpu_id(struct cpuid *cpu_id)
{
	get_cpu_id(cpu_id);
	cpu_id->version = 0xff;
}

1058 1059
static int kvm_s390_crypto_init(struct kvm *kvm)
{
1060
	if (!test_kvm_facility(kvm, 76))
1061 1062 1063 1064 1065 1066 1067
		return 0;

	kvm->arch.crypto.crycb = kzalloc(sizeof(*kvm->arch.crypto.crycb),
					 GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.crypto.crycb)
		return -ENOMEM;

1068
	kvm_s390_set_crycb_format(kvm);
1069

1070 1071 1072 1073 1074 1075 1076
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1077

1078 1079 1080
	return 0;
}

1081 1082 1083
static void sca_dispose(struct kvm *kvm)
{
	if (kvm->arch.use_esca)
1084
		free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
1085 1086 1087 1088 1089
	else
		free_page((unsigned long)(kvm->arch.sca));
	kvm->arch.sca = NULL;
}

1090
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1091
{
1092
	int i, rc;
1093
	char debug_name[16];
1094
	static unsigned long sca_offset;
1095

1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

1107 1108
	rc = s390_enable_sie();
	if (rc)
1109
		goto out_err;
1110

1111 1112
	rc = -ENOMEM;

1113
	kvm->arch.use_esca = 0; /* start with basic SCA */
1114
	rwlock_init(&kvm->arch.sca_lock);
1115
	kvm->arch.sca = (struct bsca_block *) get_zeroed_page(GFP_KERNEL);
1116
	if (!kvm->arch.sca)
1117
		goto out_err;
1118
	spin_lock(&kvm_lock);
1119
	sca_offset += 16;
1120
	if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
1121
		sca_offset = 0;
1122 1123
	kvm->arch.sca = (struct bsca_block *)
			((char *) kvm->arch.sca + sca_offset);
1124
	spin_unlock(&kvm_lock);
1125 1126 1127

	sprintf(debug_name, "kvm-%u", current->pid);

1128
	kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1129
	if (!kvm->arch.dbf)
1130
		goto out_err;
1131

1132 1133 1134
	/*
	 * The architectural maximum amount of facilities is 16 kbit. To store
	 * this amount, 2 kbyte of memory is required. Thus we need a full
1135 1136
	 * page to hold the guest facility list (arch.model.fac->list) and the
	 * facility mask (arch.model.fac->mask). Its address size has to be
1137 1138 1139
	 * 31 bits and word aligned.
	 */
	kvm->arch.model.fac =
1140
		(struct kvm_s390_fac *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
1141
	if (!kvm->arch.model.fac)
1142
		goto out_err;
1143

1144
	/* Populate the facility mask initially. */
1145
	memcpy(kvm->arch.model.fac->mask, S390_lowcore.stfle_fac_list,
1146
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1147 1148
	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
		if (i < kvm_s390_fac_list_mask_size())
1149
			kvm->arch.model.fac->mask[i] &= kvm_s390_fac_list_mask[i];
1150
		else
1151
			kvm->arch.model.fac->mask[i] = 0UL;
1152 1153
	}

1154 1155 1156 1157
	/* Populate the facility list initially. */
	memcpy(kvm->arch.model.fac->list, kvm->arch.model.fac->mask,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);

1158
	kvm_s390_get_cpu_id(&kvm->arch.model.cpu_id);
1159
	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1160

1161
	if (kvm_s390_crypto_init(kvm) < 0)
1162
		goto out_err;
1163

1164
	spin_lock_init(&kvm->arch.float_int.lock);
1165 1166
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1167
	init_waitqueue_head(&kvm->arch.ipte_wq);
1168
	mutex_init(&kvm->arch.ipte_mutex);
1169

1170
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1171
	VM_EVENT(kvm, 3, "vm created with type %lu", type);
1172

1173 1174 1175
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
	} else {
1176
		kvm->arch.gmap = gmap_alloc(current->mm, (1UL << 44) - 1);
1177
		if (!kvm->arch.gmap)
1178
			goto out_err;
1179
		kvm->arch.gmap->private = kvm;
1180
		kvm->arch.gmap->pfault_enabled = 0;
1181
	}
1182 1183

	kvm->arch.css_support = 0;
1184
	kvm->arch.use_irqchip = 0;
1185
	kvm->arch.epoch = 0;
1186

1187
	spin_lock_init(&kvm->arch.start_stop_lock);
1188
	KVM_EVENT(3, "vm 0x%p created by pid %u", kvm, current->pid);
1189

1190
	return 0;
1191
out_err:
1192
	kfree(kvm->arch.crypto.crycb);
1193
	free_page((unsigned long)kvm->arch.model.fac);
1194
	debug_unregister(kvm->arch.dbf);
1195
	sca_dispose(kvm);
1196
	KVM_EVENT(3, "creation of vm failed: %d", rc);
1197
	return rc;
1198 1199
}

1200 1201 1202
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1203
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1204
	kvm_s390_clear_local_irqs(vcpu);
1205
	kvm_clear_async_pf_completion_queue(vcpu);
1206
	if (!kvm_is_ucontrol(vcpu->kvm))
1207
		sca_del_vcpu(vcpu);
1208
	smp_mb();
1209 1210 1211 1212

	if (kvm_is_ucontrol(vcpu->kvm))
		gmap_free(vcpu->arch.gmap);

1213
	if (vcpu->kvm->arch.use_cmma)
1214
		kvm_s390_vcpu_unsetup_cmma(vcpu);
1215
	free_page((unsigned long)(vcpu->arch.sie_block));
1216

1217
	kvm_vcpu_uninit(vcpu);
1218
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1219 1220 1221 1222 1223
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
1224
	struct kvm_vcpu *vcpu;
1225

1226 1227 1228 1229 1230 1231 1232 1233 1234
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
1235 1236
}

1237 1238
void kvm_arch_destroy_vm(struct kvm *kvm)
{
1239
	kvm_free_vcpus(kvm);
1240
	free_page((unsigned long)kvm->arch.model.fac);
1241
	sca_dispose(kvm);
1242
	debug_unregister(kvm->arch.dbf);
1243
	kfree(kvm->arch.crypto.crycb);
1244 1245
	if (!kvm_is_ucontrol(kvm))
		gmap_free(kvm->arch.gmap);
1246
	kvm_s390_destroy_adapters(kvm);
1247
	kvm_s390_clear_float_irqs(kvm);
1248
	KVM_EVENT(3, "vm 0x%p destroyed", kvm);
1249 1250 1251
}

/* Section: vcpu related */
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
	vcpu->arch.gmap = gmap_alloc(current->mm, -1UL);
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

1262 1263
static void sca_del_vcpu(struct kvm_vcpu *vcpu)
{
1264
	read_lock(&vcpu->kvm->arch.sca_lock);
1265 1266
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1267

1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
		if (sca->cpu[vcpu->vcpu_id].sda == (__u64) vcpu->arch.sie_block)
			sca->cpu[vcpu->vcpu_id].sda = 0;
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
		if (sca->cpu[vcpu->vcpu_id].sda == (__u64) vcpu->arch.sie_block)
			sca->cpu[vcpu->vcpu_id].sda = 0;
	}
1278
	read_unlock(&vcpu->kvm->arch.sca_lock);
1279 1280 1281 1282 1283
}

static void sca_add_vcpu(struct kvm_vcpu *vcpu, struct kvm *kvm,
			unsigned int id)
{
1284
	read_lock(&kvm->arch.sca_lock);
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294
	if (kvm->arch.use_esca) {
		struct esca_block *sca = kvm->arch.sca;

		if (!sca->cpu[id].sda)
			sca->cpu[id].sda = (__u64) vcpu->arch.sie_block;
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
		set_bit_inv(id, (unsigned long *) sca->mcn);
	} else {
		struct bsca_block *sca = kvm->arch.sca;
1295

1296 1297 1298 1299 1300 1301
		if (!sca->cpu[id].sda)
			sca->cpu[id].sda = (__u64) vcpu->arch.sie_block;
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
		set_bit_inv(id, (unsigned long *) &sca->mcn);
	}
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357
	read_unlock(&kvm->arch.sca_lock);
}

/* Basic SCA to Extended SCA data copy routines */
static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
{
	d->sda = s->sda;
	d->sigp_ctrl.c = s->sigp_ctrl.c;
	d->sigp_ctrl.scn = s->sigp_ctrl.scn;
}

static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
{
	int i;

	d->ipte_control = s->ipte_control;
	d->mcn[0] = s->mcn;
	for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
		sca_copy_entry(&d->cpu[i], &s->cpu[i]);
}

static int sca_switch_to_extended(struct kvm *kvm)
{
	struct bsca_block *old_sca = kvm->arch.sca;
	struct esca_block *new_sca;
	struct kvm_vcpu *vcpu;
	unsigned int vcpu_idx;
	u32 scaol, scaoh;

	new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
	if (!new_sca)
		return -ENOMEM;

	scaoh = (u32)((u64)(new_sca) >> 32);
	scaol = (u32)(u64)(new_sca) & ~0x3fU;

	kvm_s390_vcpu_block_all(kvm);
	write_lock(&kvm->arch.sca_lock);

	sca_copy_b_to_e(new_sca, old_sca);

	kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
		vcpu->arch.sie_block->scaoh = scaoh;
		vcpu->arch.sie_block->scaol = scaol;
		vcpu->arch.sie_block->ecb2 |= 0x04U;
	}
	kvm->arch.sca = new_sca;
	kvm->arch.use_esca = 1;

	write_unlock(&kvm->arch.sca_lock);
	kvm_s390_vcpu_unblock_all(kvm);

	free_page((unsigned long)old_sca);

	VM_EVENT(kvm, 2, "Switched to ESCA (%p -> %p)", old_sca, kvm->arch.sca);
	return 0;
1358 1359 1360 1361
}

static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
{
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
	int rc;

	if (id < KVM_S390_BSCA_CPU_SLOTS)
		return true;
	if (!sclp.has_esca)
		return false;

	mutex_lock(&kvm->lock);
	rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
	mutex_unlock(&kvm->lock);

	return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
1374 1375
}

1376 1377
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1378 1379
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1380 1381
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
1382
				    KVM_SYNC_ACRS |
1383 1384 1385
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
1386 1387
	if (test_kvm_facility(vcpu->kvm, 129))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1388 1389 1390 1391

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

1392 1393 1394
	return 0;
}

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
/*
 * Backs up the current FP/VX register save area on a particular
 * destination.  Used to switch between different register save
 * areas.
 */
static inline void save_fpu_to(struct fpu *dst)
{
	dst->fpc = current->thread.fpu.fpc;
	dst->regs = current->thread.fpu.regs;
}

/*
 * Switches the FP/VX register save area from which to lazy
 * restore register contents.
 */
static inline void load_fpu_from(struct fpu *from)
{
	current->thread.fpu.fpc = from->fpc;
	current->thread.fpu.regs = from->regs;
}

1416 1417
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
1418
	/* Save host register state */
1419
	save_fpu_regs();
1420
	save_fpu_to(&vcpu->arch.host_fpregs);
1421

1422
	if (test_kvm_facility(vcpu->kvm, 129)) {
1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
		current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
		/*
		 * Use the register save area in the SIE-control block
		 * for register restore and save in kvm_arch_vcpu_put()
		 */
		current->thread.fpu.vxrs =
			(__vector128 *)&vcpu->run->s.regs.vrs;
	} else
		load_fpu_from(&vcpu->arch.guest_fpregs);

	if (test_fp_ctl(current->thread.fpu.fpc))
1434
		/* User space provided an invalid FPC, let's clear it */
1435 1436 1437
		current->thread.fpu.fpc = 0;

	save_access_regs(vcpu->arch.host_acrs);
1438
	restore_access_regs(vcpu->run->s.regs.acrs);
1439
	gmap_enable(vcpu->arch.gmap);
1440
	atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1441 1442 1443 1444
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
1445
	atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1446
	gmap_disable(vcpu->arch.gmap);
1447

1448
	save_fpu_regs();
1449

1450
	if (test_kvm_facility(vcpu->kvm, 129))
1451 1452 1453 1454 1455 1456 1457
		/*
		 * kvm_arch_vcpu_load() set up the register save area to
		 * the &vcpu->run->s.regs.vrs and, thus, the vector registers
		 * are already saved.  Only the floating-point control must be
		 * copied.
		 */
		vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
1458
	else
1459 1460 1461 1462
		save_fpu_to(&vcpu->arch.guest_fpregs);
	load_fpu_from(&vcpu->arch.host_fpregs);

	save_access_regs(vcpu->run->s.regs.acrs);
1463 1464 1465 1466 1467 1468 1469 1470
	restore_access_regs(vcpu->arch.host_acrs);
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
1471
	kvm_s390_set_prefix(vcpu, 0);
1472 1473 1474 1475 1476 1477 1478 1479 1480
	vcpu->arch.sie_block->cputm     = 0UL;
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
	vcpu->arch.guest_fpregs.fpc = 0;
	asm volatile("lfpc %0" : : "Q" (vcpu->arch.guest_fpregs.fpc));
	vcpu->arch.sie_block->gbea = 1;
1481
	vcpu->arch.sie_block->pp = 0;
1482 1483
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1484 1485
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
1486
	kvm_s390_clear_local_irqs(vcpu);
1487 1488
}

1489
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1490
{
1491
	mutex_lock(&vcpu->kvm->lock);
1492
	preempt_disable();
1493
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
1494
	preempt_enable();
1495
	mutex_unlock(&vcpu->kvm->lock);
1496 1497
	if (!kvm_is_ucontrol(vcpu->kvm))
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1498 1499
}

1500 1501
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
1502
	if (!test_kvm_facility(vcpu->kvm, 76))
1503 1504
		return;

1505 1506 1507 1508 1509 1510 1511
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

1512 1513 1514
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;

	vcpu->arch.sie_block->ecb2 |= 0x80;
	vcpu->arch.sie_block->ecb2 &= ~0x08;
	return 0;
}

1532 1533 1534 1535 1536 1537 1538 1539 1540
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;

	vcpu->arch.cpu_id = model->cpu_id;
	vcpu->arch.sie_block->ibc = model->ibc;
	vcpu->arch.sie_block->fac = (int) (long) model->fac->list;
}

1541 1542
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
1543
	int rc = 0;
1544

1545 1546
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
1547 1548
						    CPUSTAT_STOPPED);

1549
	if (test_kvm_facility(vcpu->kvm, 78))
1550
		atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
1551
	else if (test_kvm_facility(vcpu->kvm, 8))
1552
		atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
1553

1554 1555
	kvm_s390_vcpu_setup_model(vcpu);

1556
	vcpu->arch.sie_block->ecb   = 6;
1557
	if (test_kvm_facility(vcpu->kvm, 50) && test_kvm_facility(vcpu->kvm, 73))
1558 1559
		vcpu->arch.sie_block->ecb |= 0x10;

1560
	vcpu->arch.sie_block->ecb2  = 8;
1561 1562
	if (vcpu->kvm->arch.use_esca)
		vcpu->arch.sie_block->ecb2 |= 4;
1563
	vcpu->arch.sie_block->eca   = 0xC1002000U;
1564
	if (sclp.has_siif)
1565
		vcpu->arch.sie_block->eca |= 1;
1566
	if (sclp.has_sigpif)
1567
		vcpu->arch.sie_block->eca |= 0x10000000U;
1568
	if (test_kvm_facility(vcpu->kvm, 129)) {
1569 1570 1571
		vcpu->arch.sie_block->eca |= 0x00020000;
		vcpu->arch.sie_block->ecd |= 0x20000000;
	}
1572
	vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
1573

1574
	if (vcpu->kvm->arch.use_cmma) {
1575 1576 1577
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
1578
	}
1579
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1580
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1581

1582 1583
	kvm_s390_vcpu_crypto_setup(vcpu);

1584
	return rc;
1585 1586 1587 1588 1589
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
1590
	struct kvm_vcpu *vcpu;
1591
	struct sie_page *sie_page;
1592 1593
	int rc = -EINVAL;

1594
	if (!sca_can_add_vcpu(kvm, id))
1595 1596 1597
		goto out;

	rc = -ENOMEM;
1598

1599
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1600
	if (!vcpu)
1601
		goto out;
1602

1603 1604
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
1605 1606
		goto out_free_cpu;

1607 1608 1609
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;

1610
	vcpu->arch.sie_block->icpua = id;
1611
	if (!kvm_is_ucontrol(kvm))
1612
		sca_add_vcpu(vcpu, kvm, id);
1613

1614 1615
	spin_lock_init(&vcpu->arch.local_int.lock);
	vcpu->arch.local_int.float_int = &kvm->arch.float_int;
1616
	vcpu->arch.local_int.wq = &vcpu->wq;
1617
	vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
1618

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
	/*
	 * Allocate a save area for floating-point registers.  If the vector
	 * extension is available, register contents are saved in the SIE
	 * control block.  The allocated save area is still required in
	 * particular places, for example, in kvm_s390_vcpu_store_status().
	 */
	vcpu->arch.guest_fpregs.fprs = kzalloc(sizeof(freg_t) * __NUM_FPRS,
					       GFP_KERNEL);
	if (!vcpu->arch.guest_fpregs.fprs) {
		rc = -ENOMEM;
		goto out_free_sie_block;
	}

1632 1633
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
1634
		goto out_free_sie_block;
1635 1636
	VM_EVENT(kvm, 3, "create cpu %d at %p, sie block at %p", id, vcpu,
		 vcpu->arch.sie_block);
1637
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
1638 1639

	return vcpu;
1640 1641
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
1642
out_free_cpu:
1643
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1644
out:
1645 1646 1647 1648 1649
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
1650
	return kvm_s390_vcpu_has_irq(vcpu, 0);
1651 1652
}

1653
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
1654
{
1655
	atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1656
	exit_sie(vcpu);
1657 1658
}

1659
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
1660
{
1661
	atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1662 1663
}

1664 1665
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
{
1666
	atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1667
	exit_sie(vcpu);
1668 1669 1670 1671
}

static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
1672
	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1673 1674
}

1675 1676 1677 1678 1679 1680
/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
1681
	atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
1682 1683 1684 1685
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

1686 1687
/* Kick a guest cpu out of SIE to process a request synchronously */
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
1688
{
1689 1690
	kvm_make_request(req, vcpu);
	kvm_s390_vcpu_request(vcpu);
1691 1692
}

1693 1694 1695 1696 1697 1698 1699 1700
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address)
{
	int i;
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
1701
		if (kvm_s390_get_prefix(vcpu) == (address & ~0x1000UL)) {
1702
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx", address);
1703
			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
1704 1705 1706 1707
		}
	}
}

1708 1709 1710 1711 1712 1713 1714
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

1715 1716 1717 1718 1719 1720
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
1721 1722 1723 1724 1725 1726 1727 1728
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
1729 1730 1731 1732 1733 1734 1735 1736
	case KVM_REG_S390_CPU_TIMER:
		r = put_user(vcpu->arch.sie_block->cputm,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
1749 1750 1751 1752
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
1753 1754 1755 1756
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
1770 1771 1772 1773 1774 1775 1776 1777
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
1778 1779 1780 1781 1782 1783 1784 1785
	case KVM_REG_S390_CPU_TIMER:
		r = get_user(vcpu->arch.sie_block->cputm,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
1786 1787 1788
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
1789 1790
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
1791 1792 1793 1794 1795 1796 1797 1798 1799
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
1800 1801 1802 1803
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
1804 1805 1806 1807
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
1808 1809 1810 1811 1812 1813
	default:
		break;
	}

	return r;
}
1814

1815 1816 1817 1818 1819 1820 1821 1822
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
1823
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
1824 1825 1826 1827 1828
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
1829
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
1830 1831 1832 1833 1834 1835
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
1836
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
1837
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
1838
	restore_access_regs(vcpu->run->s.regs.acrs);
1839 1840 1841 1842 1843 1844
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
1845
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
1846 1847 1848 1849 1850 1851
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
1852 1853
	if (test_fp_ctl(fpu->fpc))
		return -EINVAL;
1854
	memcpy(vcpu->arch.guest_fpregs.fprs, &fpu->fprs, sizeof(fpu->fprs));
1855
	vcpu->arch.guest_fpregs.fpc = fpu->fpc;
1856
	save_fpu_regs();
1857
	load_fpu_from(&vcpu->arch.guest_fpregs);
1858 1859 1860 1861 1862
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
1863
	memcpy(&fpu->fprs, vcpu->arch.guest_fpregs.fprs, sizeof(fpu->fprs));
1864 1865 1866 1867 1868 1869 1870 1871
	fpu->fpc = vcpu->arch.guest_fpregs.fpc;
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

1872
	if (!is_vcpu_stopped(vcpu))
1873
		rc = -EBUSY;
1874 1875 1876 1877
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
1878 1879 1880 1881 1882 1883 1884 1885 1886
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

1887 1888 1889 1890
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
1891 1892
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
1893
{
1894 1895 1896 1897 1898
	int rc = 0;

	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

1899
	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
1900 1901 1902 1903 1904
		return -EINVAL;

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
1905
		atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
1906 1907 1908 1909

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
1910
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
1911 1912 1913 1914 1915 1916
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
1917
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
1918 1919 1920
	}

	return rc;
1921 1922
}

1923 1924 1925
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
1926 1927 1928
	/* CHECK_STOP and LOAD are not supported yet */
	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				       KVM_MP_STATE_OPERATING;
1929 1930 1931 1932 1933
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953
	int rc = 0;

	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

	return rc;
1954 1955
}

1956 1957 1958 1959 1960
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
	return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
}

1961 1962
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
1963
retry:
1964
	kvm_s390_vcpu_request_handled(vcpu);
1965 1966
	if (!vcpu->requests)
		return 0;
1967 1968 1969 1970 1971 1972 1973
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
	 * guest prefix page. gmap_ipte_notify will wait on the ptl lock.
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
1974
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
1975 1976
		int rc;
		rc = gmap_ipte_notify(vcpu->arch.gmap,
1977
				      kvm_s390_get_prefix(vcpu),
1978 1979 1980
				      PAGE_SIZE * 2);
		if (rc)
			return rc;
1981
		goto retry;
1982
	}
1983

1984 1985 1986 1987 1988
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

1989 1990 1991
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
1992
			atomic_or(CPUSTAT_IBS,
1993 1994 1995
					&vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
1996
	}
1997 1998 1999 2000

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
2001
			atomic_andnot(CPUSTAT_IBS,
2002 2003 2004 2005 2006
					  &vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
	}

2007 2008 2009
	/* nothing to do, just clear the request */
	clear_bit(KVM_REQ_UNHALT, &vcpu->requests);

2010 2011 2012
	return 0;
}

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
{
	struct kvm_vcpu *vcpu;
	int i;

	mutex_lock(&kvm->lock);
	preempt_disable();
	kvm->arch.epoch = tod - get_tod_clock();
	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
	kvm_s390_vcpu_unblock_all(kvm);
	preempt_enable();
	mutex_unlock(&kvm->lock);
}

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
2040
{
2041 2042
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
2043 2044
}

2045 2046 2047 2048
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
2049
	struct kvm_s390_irq irq;
2050 2051

	if (start_token) {
2052 2053 2054
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
2055 2056
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
2057
		inti.parm64 = token;
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
2104
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
2105 2106 2107 2108 2109 2110
		return 0;
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
2111 2112 2113
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
2114 2115 2116 2117 2118 2119
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

2120
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
2121
{
2122
	int rc, cpuflags;
2123

2124 2125 2126 2127 2128 2129 2130
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

2131
	memcpy(&vcpu->arch.sie_block->gg14, &vcpu->run->s.regs.gprs[14], 16);
2132 2133 2134 2135

	if (need_resched())
		schedule();

2136
	if (test_cpu_flag(CIF_MCCK_PENDING))
2137 2138
		s390_handle_mcck();

2139 2140 2141 2142 2143
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
2144

2145 2146 2147 2148
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

2149 2150 2151 2152 2153
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

2154
	vcpu->arch.sie_block->icptcode = 0;
2155 2156 2157
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
2158

2159 2160 2161
	return 0;
}

2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
	psw_t *psw = &vcpu->arch.sie_block->gpsw;
	u8 opcode;
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
2179
	rc = read_guest(vcpu, psw->addr, 0, &opcode, 1);
2180 2181 2182 2183 2184 2185 2186
	if (rc)
		return kvm_s390_inject_prog_cond(vcpu, rc);
	psw->addr = __rewind_psw(*psw, -insn_length(opcode));

	return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
}

2187 2188
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
2189 2190 2191 2192
	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

2193 2194 2195
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
	memcpy(&vcpu->run->s.regs.gprs[14], &vcpu->arch.sie_block->gg14, 16);

	if (vcpu->arch.sie_block->icptcode > 0) {
		int rc = kvm_handle_sie_intercept(vcpu);

		if (rc != -EOPNOTSUPP)
			return rc;
		vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
		vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
		vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
		return -EREMOTE;
	} else if (exit_reason != -EFAULT) {
		vcpu->stat.exit_null++;
		return 0;
2211 2212 2213 2214 2215
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
2216
		return -EREMOTE;
2217
	} else if (current->thread.gmap_pfault) {
2218
		trace_kvm_s390_major_guest_pfault(vcpu);
2219
		current->thread.gmap_pfault = 0;
2220 2221 2222
		if (kvm_arch_setup_async_pf(vcpu))
			return 0;
		return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
2223
	}
2224
	return vcpu_post_run_fault_in_sie(vcpu);
2225 2226 2227 2228 2229 2230
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

2231 2232 2233 2234 2235 2236
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

2237 2238 2239 2240
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
2241

2242
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2243 2244 2245 2246
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
2247 2248 2249
		local_irq_disable();
		__kvm_guest_enter();
		local_irq_enable();
2250 2251
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
2252 2253 2254
		local_irq_disable();
		__kvm_guest_exit();
		local_irq_enable();
2255
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2256 2257

		rc = vcpu_post_run(vcpu, exit_reason);
2258
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2259

2260
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2261
	return rc;
2262 2263
}

2264 2265 2266 2267 2268 2269 2270 2271
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2272 2273
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
		vcpu->arch.sie_block->cputm = kvm_run->s.regs.cputm;
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2286 2287
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
	}
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
	kvm_run->s.regs.cputm = vcpu->arch.sie_block->cputm;
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
}

2308 2309
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
2310
	int rc;
2311 2312
	sigset_t sigsaved;

2313 2314 2315 2316 2317
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
		return 0;
	}

2318 2319 2320
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

2321 2322 2323
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
2324
		pr_err_ratelimited("can't run stopped vcpu %d\n",
2325 2326 2327
				   vcpu->vcpu_id);
		return -EINVAL;
	}
2328

2329
	sync_regs(vcpu, kvm_run);
2330

2331
	might_fault();
2332
	rc = __vcpu_run(vcpu);
2333

2334 2335
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
2336
		rc = -EINTR;
2337
	}
2338

2339 2340 2341 2342 2343
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

2344
	if (rc == -EREMOTE) {
2345
		/* userspace support is needed, kvm_run has been prepared */
2346 2347
		rc = 0;
	}
2348

2349
	store_regs(vcpu, kvm_run);
2350

2351 2352 2353 2354
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu->stat.exit_userspace++;
2355
	return rc;
2356 2357 2358 2359 2360 2361 2362 2363
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
2364
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2365
{
2366
	unsigned char archmode = 1;
2367
	unsigned int px;
2368
	u64 clkcomp;
2369
	int rc;
2370

2371 2372
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
2373
			return -EFAULT;
2374 2375 2376
		gpa = SAVE_AREA_BASE;
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
2377
			return -EFAULT;
2378 2379 2380 2381 2382 2383 2384 2385
		gpa = kvm_s390_real_to_abs(vcpu, SAVE_AREA_BASE);
	}
	rc = write_guest_abs(vcpu, gpa + offsetof(struct save_area, fp_regs),
			     vcpu->arch.guest_fpregs.fprs, 128);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, gp_regs),
			      vcpu->run->s.regs.gprs, 128);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, psw),
			      &vcpu->arch.sie_block->gpsw, 16);
2386
	px = kvm_s390_get_prefix(vcpu);
2387
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, pref_reg),
2388
			      &px, 4);
2389 2390 2391 2392 2393 2394 2395
	rc |= write_guest_abs(vcpu,
			      gpa + offsetof(struct save_area, fp_ctrl_reg),
			      &vcpu->arch.guest_fpregs.fpc, 4);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, tod_reg),
			      &vcpu->arch.sie_block->todpr, 4);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, timer),
			      &vcpu->arch.sie_block->cputm, 8);
2396
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
2397 2398 2399 2400 2401 2402 2403
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, clk_cmp),
			      &clkcomp, 8);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, acc_regs),
			      &vcpu->run->s.regs.acrs, 64);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, ctrl_regs),
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
2404 2405
}

2406 2407 2408 2409 2410 2411 2412
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
	 * copying in vcpu load/put. Lets update our copies before we save
	 * it into the save area
	 */
2413
	save_fpu_regs();
2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426
	if (test_kvm_facility(vcpu->kvm, 129)) {
		/*
		 * If the vector extension is available, the vector registers
		 * which overlaps with floating-point registers are saved in
		 * the SIE-control block.  Hence, extract the floating-point
		 * registers and the FPC value and store them in the
		 * guest_fpregs structure.
		 */
		vcpu->arch.guest_fpregs.fpc = current->thread.fpu.fpc;
		convert_vx_to_fp(vcpu->arch.guest_fpregs.fprs,
				 current->thread.fpu.vxrs);
	} else
		save_fpu_to(&vcpu->arch.guest_fpregs);
2427 2428 2429 2430 2431
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

E
Eric Farman 已提交
2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452
/*
 * store additional status at address
 */
int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu,
					unsigned long gpa)
{
	/* Only bits 0-53 are used for address formation */
	if (!(gpa & ~0x3ff))
		return 0;

	return write_guest_abs(vcpu, gpa & ~0x3ff,
			       (void *)&vcpu->run->s.regs.vrs, 512);
}

int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	if (!test_kvm_facility(vcpu->kvm, 129))
		return 0;

	/*
	 * The guest VXRS are in the host VXRs due to the lazy
2453 2454 2455 2456 2457
	 * copying in vcpu load/put. We can simply call save_fpu_regs()
	 * to save the current register state because we are in the
	 * middle of a load/put cycle.
	 *
	 * Let's update our copies before we save it into the save area.
E
Eric Farman 已提交
2458
	 */
2459
	save_fpu_regs();
E
Eric Farman 已提交
2460 2461 2462 2463

	return kvm_s390_store_adtl_status_unloaded(vcpu, addr);
}

2464 2465 2466
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2467
	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2483
	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2484 2485
}

2486 2487
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
2488 2489 2490 2491 2492
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

2493
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2494
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2495
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

2515
	atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2516 2517 2518 2519
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
2520
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2521
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2522
	return;
2523 2524 2525 2526
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
2527 2528 2529 2530 2531 2532
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

2533
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2534
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2535
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2536 2537
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

2538
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2539
	kvm_s390_clear_stop_irq(vcpu);
2540

2541
	atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

2559
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2560
	return;
2561 2562
}

2563 2564 2565 2566 2567 2568 2569 2570 2571
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
2572 2573 2574
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
2575
			VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
2576 2577 2578 2579
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
2580 2581 2582 2583 2584 2585 2586
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645
static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
				  struct kvm_s390_mem_op *mop)
{
	void __user *uaddr = (void __user *)mop->buf;
	void *tmpbuf = NULL;
	int r, srcu_idx;
	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
				    | KVM_S390_MEMOP_F_CHECK_ONLY;

	if (mop->flags & ~supported_flags)
		return -EINVAL;

	if (mop->size > MEM_OP_MAX_SIZE)
		return -E2BIG;

	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
		tmpbuf = vmalloc(mop->size);
		if (!tmpbuf)
			return -ENOMEM;
	}

	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

	switch (mop->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
			r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size, false);
			break;
		}
		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		if (r == 0) {
			if (copy_to_user(uaddr, tmpbuf, mop->size))
				r = -EFAULT;
		}
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
			r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size, true);
			break;
		}
		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
			r = -EFAULT;
			break;
		}
		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		break;
	default:
		r = -EINVAL;
	}

	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);

	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);

	vfree(tmpbuf);
	return r;
}

2646 2647 2648 2649 2650
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
2651
	int idx;
2652
	long r;
2653

2654
	switch (ioctl) {
2655 2656 2657 2658 2659 2660 2661 2662 2663
	case KVM_S390_IRQ: {
		struct kvm_s390_irq s390irq;

		r = -EFAULT;
		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
			break;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
		break;
	}
2664
	case KVM_S390_INTERRUPT: {
2665
		struct kvm_s390_interrupt s390int;
2666
		struct kvm_s390_irq s390irq;
2667

2668
		r = -EFAULT;
2669
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
2670
			break;
2671 2672 2673
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
2674
		break;
2675
	}
2676
	case KVM_S390_STORE_STATUS:
2677
		idx = srcu_read_lock(&vcpu->kvm->srcu);
2678
		r = kvm_s390_vcpu_store_status(vcpu, arg);
2679
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
2680
		break;
2681 2682 2683
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

2684
		r = -EFAULT;
2685
		if (copy_from_user(&psw, argp, sizeof(psw)))
2686 2687 2688
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
2689 2690
	}
	case KVM_S390_INITIAL_RESET:
2691 2692
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
2741
	case KVM_S390_VCPU_FAULT: {
2742
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
2743 2744
		break;
	}
2745 2746 2747 2748 2749 2750 2751 2752 2753
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
2754 2755 2756 2757 2758 2759 2760 2761 2762
	case KVM_S390_MEM_OP: {
		struct kvm_s390_mem_op mem_op;

		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
		else
			r = -EFAULT;
		break;
	}
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
	case KVM_S390_SET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
		    irq_state.len == 0 ||
		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_set_irq_state(vcpu,
					   (void __user *) irq_state.buf,
					   irq_state.len);
		break;
	}
	case KVM_S390_GET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len == 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_get_irq_state(vcpu,
					   (__u8 __user *)  irq_state.buf,
					   irq_state.len);
		break;
	}
2795
	default:
2796
		r = -ENOTTY;
2797
	}
2798
	return r;
2799 2800
}

2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

2814 2815
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
2816 2817 2818 2819
{
	return 0;
}

2820
/* Section: memory related */
2821 2822
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
2823
				   const struct kvm_userspace_memory_region *mem,
2824
				   enum kvm_mr_change change)
2825
{
2826 2827 2828 2829
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
2830

2831
	if (mem->userspace_addr & 0xffffful)
2832 2833
		return -EINVAL;

2834
	if (mem->memory_size & 0xffffful)
2835 2836
		return -EINVAL;

2837 2838 2839 2840
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
2841
				const struct kvm_userspace_memory_region *mem,
2842
				const struct kvm_memory_slot *old,
2843
				const struct kvm_memory_slot *new,
2844
				enum kvm_mr_change change)
2845
{
2846
	int rc;
2847

2848 2849 2850 2851 2852 2853 2854 2855 2856 2857
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
2858 2859 2860 2861

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
2862
		pr_warn("failed to commit memory region\n");
2863
	return;
2864 2865 2866 2867
}

static int __init kvm_s390_init(void)
{
2868
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2869 2870 2871 2872 2873 2874 2875 2876 2877
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
2878 2879 2880 2881 2882 2883 2884 2885 2886

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");