kvm-s390.c 76.5 KB
Newer Older
1
/*
2
 * hosting zSeries kernel virtual machines
3
 *
4
 * Copyright IBM Corp. 2008, 2009
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
13
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14
 *               Jason J. Herne <jjherne@us.ibm.com>
15 16 17 18 19
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
20
#include <linux/hrtimer.h>
21 22 23 24
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
25
#include <linux/random.h>
26
#include <linux/slab.h>
27
#include <linux/timer.h>
28
#include <linux/vmalloc.h>
29
#include <asm/asm-offsets.h>
30
#include <asm/lowcore.h>
31
#include <asm/etr.h>
32
#include <asm/pgtable.h>
33
#include <asm/gmap.h>
34
#include <asm/nmi.h>
35
#include <asm/switch_to.h>
36
#include <asm/isc.h>
37
#include <asm/sclp.h>
38
#include "kvm-s390.h"
39 40
#include "gaccess.h"

41 42 43 44
#define KMSG_COMPONENT "kvm-s390"
#undef pr_fmt
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

45 46
#define CREATE_TRACE_POINTS
#include "trace.h"
47
#include "trace-s390.h"
48

49
#define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
50 51 52
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
			   (KVM_MAX_VCPUS + LOCAL_IRQS))
53

54 55 56 57
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
58
	{ "exit_null", VCPU_STAT(exit_null) },
59 60 61 62
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
63 64 65
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
66
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
67
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
68
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
69
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
70
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
71 72
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
73
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
74
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
75 76 77 78 79 80 81
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
82
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
83 84 85 86 87
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
	{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
88
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
89 90
	{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
	{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
91
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
92 93
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
94
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
95
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
96
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
97
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
98
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
99 100
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
101
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
102 103
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
104
	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
105 106 107
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
108 109 110
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
111
	{ "diagnose_10", VCPU_STAT(diagnose_10) },
112
	{ "diagnose_44", VCPU_STAT(diagnose_44) },
113
	{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
114 115 116
	{ "diagnose_258", VCPU_STAT(diagnose_258) },
	{ "diagnose_308", VCPU_STAT(diagnose_308) },
	{ "diagnose_500", VCPU_STAT(diagnose_500) },
117 118 119
	{ NULL }
};

120 121
/* upper facilities limit for kvm */
unsigned long kvm_s390_fac_list_mask[] = {
122
	0xffe6fffbfcfdfc40UL,
123
	0x005e800000000000UL,
124
};
125

126
unsigned long kvm_s390_fac_list_mask_size(void)
127
{
128 129
	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
	return ARRAY_SIZE(kvm_s390_fac_list_mask);
130 131
}

132
static struct gmap_notifier gmap_notifier;
133
debug_info_t *kvm_s390_dbf;
134

135
/* Section: not file related */
136
int kvm_arch_hardware_enable(void)
137 138
{
	/* every s390 is virtualization enabled ;-) */
139
	return 0;
140 141
}

142 143
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address);

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
/*
 * This callback is executed during stop_machine(). All CPUs are therefore
 * temporarily stopped. In order not to change guest behavior, we have to
 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
 * so a CPU won't be stopped while calculating with the epoch.
 */
static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
			  void *v)
{
	struct kvm *kvm;
	struct kvm_vcpu *vcpu;
	int i;
	unsigned long long *delta = v;

	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm->arch.epoch -= *delta;
		kvm_for_each_vcpu(i, vcpu, kvm) {
			vcpu->arch.sie_block->epoch -= *delta;
162 163
			if (vcpu->arch.cputm_enabled)
				vcpu->arch.cputm_start += *delta;
164 165 166 167 168 169 170 171 172
		}
	}
	return NOTIFY_OK;
}

static struct notifier_block kvm_clock_notifier = {
	.notifier_call = kvm_clock_sync,
};

173 174
int kvm_arch_hardware_setup(void)
{
175 176
	gmap_notifier.notifier_call = kvm_gmap_notifier;
	gmap_register_ipte_notifier(&gmap_notifier);
177 178
	atomic_notifier_chain_register(&s390_epoch_delta_notifier,
				       &kvm_clock_notifier);
179 180 181 182 183
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
184
	gmap_unregister_ipte_notifier(&gmap_notifier);
185 186
	atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
					 &kvm_clock_notifier);
187 188 189 190
}

int kvm_arch_init(void *opaque)
{
191 192 193 194 195 196 197 198 199
	kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
	if (!kvm_s390_dbf)
		return -ENOMEM;

	if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
		debug_unregister(kvm_s390_dbf);
		return -ENOMEM;
	}

200 201
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
202 203
}

204 205 206 207 208
void kvm_arch_exit(void)
{
	debug_unregister(kvm_s390_dbf);
}

209 210 211 212 213 214 215 216 217
/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

218
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
219
{
220 221
	int r;

222
	switch (ext) {
223
	case KVM_CAP_S390_PSW:
224
	case KVM_CAP_S390_GMAP:
225
	case KVM_CAP_SYNC_MMU:
226 227 228
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
229
	case KVM_CAP_ASYNC_PF:
230
	case KVM_CAP_SYNC_REGS:
231
	case KVM_CAP_ONE_REG:
232
	case KVM_CAP_ENABLE_CAP:
233
	case KVM_CAP_S390_CSS_SUPPORT:
C
Cornelia Huck 已提交
234
	case KVM_CAP_IOEVENTFD:
235
	case KVM_CAP_DEVICE_CTRL:
236
	case KVM_CAP_ENABLE_CAP_VM:
237
	case KVM_CAP_S390_IRQCHIP:
238
	case KVM_CAP_VM_ATTRIBUTES:
239
	case KVM_CAP_MP_STATE:
240
	case KVM_CAP_S390_INJECT_IRQ:
241
	case KVM_CAP_S390_USER_SIGP:
242
	case KVM_CAP_S390_USER_STSI:
243
	case KVM_CAP_S390_SKEYS:
244
	case KVM_CAP_S390_IRQ_STATE:
245 246
		r = 1;
		break;
247 248 249
	case KVM_CAP_S390_MEM_OP:
		r = MEM_OP_MAX_SIZE;
		break;
250 251
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
252 253
		r = sclp.has_esca ? KVM_S390_ESCA_CPU_SLOTS
				  : KVM_S390_BSCA_CPU_SLOTS;
254
		break;
255 256 257
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
258
	case KVM_CAP_S390_COW:
259
		r = MACHINE_HAS_ESOP;
260
		break;
261 262 263
	case KVM_CAP_S390_VECTOR_REGISTERS:
		r = MACHINE_HAS_VX;
		break;
264 265 266
	case KVM_CAP_S390_RI:
		r = test_facility(64);
		break;
267
	default:
268
		r = 0;
269
	}
270
	return r;
271 272
}

273 274 275 276 277 278 279 280 281 282 283 284
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	gfn_t cur_gfn, last_gfn;
	unsigned long address;
	struct gmap *gmap = kvm->arch.gmap;

	/* Loop over all guest pages */
	last_gfn = memslot->base_gfn + memslot->npages;
	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
		address = gfn_to_hva_memslot(memslot, cur_gfn);

285
		if (test_and_clear_guest_dirty(gmap->mm, address))
286
			mark_page_dirty(kvm, cur_gfn);
287 288
		if (fatal_signal_pending(current))
			return;
289
		cond_resched();
290 291 292
	}
}

293
/* Section: vm related */
294 295
static void sca_del_vcpu(struct kvm_vcpu *vcpu);

296 297 298 299 300 301
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
302 303
	int r;
	unsigned long n;
304
	struct kvm_memslots *slots;
305 306 307 308 309 310 311 312 313
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

314 315
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
334 335
}

336 337 338 339 340 341 342 343
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
344
	case KVM_CAP_S390_IRQCHIP:
345
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
346 347 348
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
349
	case KVM_CAP_S390_USER_SIGP:
350
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
351 352 353
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
354
	case KVM_CAP_S390_VECTOR_REGISTERS:
355 356 357 358
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus)) {
			r = -EBUSY;
		} else if (MACHINE_HAS_VX) {
359 360
			set_kvm_facility(kvm->arch.model.fac_mask, 129);
			set_kvm_facility(kvm->arch.model.fac_list, 129);
361 362 363
			r = 0;
		} else
			r = -EINVAL;
364
		mutex_unlock(&kvm->lock);
365 366
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
			 r ? "(not available)" : "(success)");
367
		break;
368 369 370 371 372 373
	case KVM_CAP_S390_RI:
		r = -EINVAL;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus)) {
			r = -EBUSY;
		} else if (test_facility(64)) {
374 375
			set_kvm_facility(kvm->arch.model.fac_mask, 64);
			set_kvm_facility(kvm->arch.model.fac_list, 64);
376 377 378 379 380 381
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
			 r ? "(not available)" : "(success)");
		break;
382
	case KVM_CAP_S390_USER_STSI:
383
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
384 385 386
		kvm->arch.user_stsi = 1;
		r = 0;
		break;
387 388 389 390 391 392 393
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

394 395 396 397 398 399 400
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
401
		VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
402 403
			 kvm->arch.mem_limit);
		if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
404 405 406 407 408 409 410 411 412 413
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
414 415 416 417 418
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
419 420 421 422 423
		/* enable CMMA only for z10 and later (EDAT_1) */
		ret = -EINVAL;
		if (!MACHINE_IS_LPAR || !MACHINE_HAS_EDAT1)
			break;

424
		ret = -EBUSY;
425
		VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
426 427 428 429 430 431 432 433
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			kvm->arch.use_cmma = 1;
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
434 435 436 437
		ret = -EINVAL;
		if (!kvm->arch.use_cmma)
			break;

438
		VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
439 440
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
441
		s390_reset_cmma(kvm->arch.gmap->mm);
442 443 444 445
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
446 447 448 449 450 451 452 453 454
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

455 456
		if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
		    new_limit > kvm->arch.mem_limit)
457 458
			return -E2BIG;

459 460 461 462 463 464 465
		if (!new_limit)
			return -EINVAL;

		/* gmap_alloc takes last usable address */
		if (new_limit != KVM_S390_NO_MEM_LIMIT)
			new_limit -= 1;

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
		ret = -EBUSY;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			/* gmap_alloc will round the limit up */
			struct gmap *new = gmap_alloc(current->mm, new_limit);

			if (!new) {
				ret = -ENOMEM;
			} else {
				gmap_free(kvm->arch.gmap);
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
482 483 484
		VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
		VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
			 (void *) kvm->arch.gmap->asce);
485 486
		break;
	}
487 488 489 490 491 492 493
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

494 495 496 497 498 499 500
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *vcpu;
	int i;

501
	if (!test_kvm_facility(kvm, 76))
502 503 504 505 506 507 508 509 510
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
511
		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
512 513 514 515 516 517
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
518
		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
519 520 521 522 523
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
524
		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
525 526 527 528 529
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
530
		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
531 532 533 534 535 536 537 538 539 540 541 542 543 544
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_vcpu_crypto_setup(vcpu);
		exit_sie(vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

545 546 547 548 549 550 551 552 553 554
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;
555
	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
556 557 558 559 560 561

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
562
	u64 gtod;
563 564 565 566

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

567
	kvm_s390_set_tod_clock(kvm, gtod);
568
	VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod);
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;
600
	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
601 602 603 604 605 606

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
607
	u64 gtod;
608

609
	gtod = kvm_s390_get_tod_clock_fast(kvm);
610 611
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;
612
	VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	mutex_lock(&kvm->lock);
	if (atomic_read(&kvm->online_vcpus)) {
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
655
		kvm->arch.model.cpuid = proc->cpuid;
656
		kvm->arch.model.ibc = proc->ibc;
657
		memcpy(kvm->arch.model.fac_list, proc->fac_list,
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
689
	proc->cpuid = kvm->arch.model.cpuid;
690
	proc->ibc = kvm->arch.model.ibc;
691 692
	memcpy(&proc->fac_list, kvm->arch.model.fac_list,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
711
	mach->ibc = sclp.ibc;
712
	memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
713
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
714
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
715
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
	}
	return ret;
}

738 739 740 741 742
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
743
	case KVM_S390_VM_MEM_CTRL:
744
		ret = kvm_s390_set_mem_control(kvm, attr);
745
		break;
746 747 748
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
749 750 751
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
752 753 754
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
755 756 757 758 759 760 761 762 763 764
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
765 766 767 768 769 770
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
771 772 773
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
774 775 776
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
777 778 779 780 781 782
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
783 784 785 786 787 788 789
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
790 791 792 793
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
794
		case KVM_S390_VM_MEM_LIMIT_SIZE:
795 796 797 798 799 800 801
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
802 803 804 805 806 807 808 809 810 811 812
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
813 814 815 816 817 818 819 820 821 822 823
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
824 825 826 827 828 829 830 831 832 833 834 835 836
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
837 838 839 840 841 842 843 844
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	unsigned long curkey;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Is this guest using storage keys? */
	if (!mm_use_skey(current->mm))
		return KVM_S390_GET_SKEYS_NONE;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			goto out;
		}

		curkey = get_guest_storage_key(current->mm, hva);
		if (IS_ERR_VALUE(curkey)) {
			r = curkey;
			goto out;
		}
		keys[i] = curkey;
	}

	r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
			 sizeof(uint8_t) * args->count);
	if (r)
		r = -EFAULT;
out:
	kvfree(keys);
	return r;
}

static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
			   sizeof(uint8_t) * args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	/* Enable storage key handling for the guest */
922 923 924
	r = s390_enable_skey();
	if (r)
		goto out;
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948

	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			goto out;
		}

		/* Lowest order bit is reserved */
		if (keys[i] & 0x01) {
			r = -EINVAL;
			goto out;
		}

		r = set_guest_storage_key(current->mm, hva,
					  (unsigned long)keys[i], 0);
		if (r)
			goto out;
	}
out:
	kvfree(keys);
	return r;
}

949 950 951 952 953
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
954
	struct kvm_device_attr attr;
955 956 957
	int r;

	switch (ioctl) {
958 959 960 961 962 963 964 965 966
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
967 968 969 970 971 972 973 974
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
975 976 977 978 979 980 981
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
982
			r = kvm_set_irq_routing(kvm, &routing, 0, 0);
983 984 985
		}
		break;
	}
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
	case KVM_S390_GET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_get_skeys(kvm, &args);
		break;
	}
	case KVM_S390_SET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_set_skeys(kvm, &args);
		break;
	}
1027
	default:
1028
		r = -ENOTTY;
1029 1030 1031 1032 1033
	}

	return r;
}

1034 1035 1036
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
1037
	u32 cc = 0;
1038

1039
	memset(config, 0, 128);
1040 1041 1042 1043
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
1044
		"0: ipm %0\n"
1045
		"srl %0,28\n"
1046 1047 1048
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

1061
	if (test_facility(12)) {
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

1083
static u64 kvm_s390_get_initial_cpuid(void)
1084
{
1085 1086 1087 1088 1089
	struct cpuid cpuid;

	get_cpu_id(&cpuid);
	cpuid.version = 0xff;
	return *((u64 *) &cpuid);
1090 1091
}

1092
static void kvm_s390_crypto_init(struct kvm *kvm)
1093
{
1094
	if (!test_kvm_facility(kvm, 76))
1095
		return;
1096

1097
	kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
1098
	kvm_s390_set_crycb_format(kvm);
1099

1100 1101 1102 1103 1104 1105 1106
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1107 1108
}

1109 1110 1111
static void sca_dispose(struct kvm *kvm)
{
	if (kvm->arch.use_esca)
1112
		free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
1113 1114 1115 1116 1117
	else
		free_page((unsigned long)(kvm->arch.sca));
	kvm->arch.sca = NULL;
}

1118
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1119
{
1120
	int i, rc;
1121
	char debug_name[16];
1122
	static unsigned long sca_offset;
1123

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

1135 1136
	rc = s390_enable_sie();
	if (rc)
1137
		goto out_err;
1138

1139 1140
	rc = -ENOMEM;

1141
	kvm->arch.use_esca = 0; /* start with basic SCA */
1142
	rwlock_init(&kvm->arch.sca_lock);
1143
	kvm->arch.sca = (struct bsca_block *) get_zeroed_page(GFP_KERNEL);
1144
	if (!kvm->arch.sca)
1145
		goto out_err;
1146
	spin_lock(&kvm_lock);
1147
	sca_offset += 16;
1148
	if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
1149
		sca_offset = 0;
1150 1151
	kvm->arch.sca = (struct bsca_block *)
			((char *) kvm->arch.sca + sca_offset);
1152
	spin_unlock(&kvm_lock);
1153 1154 1155

	sprintf(debug_name, "kvm-%u", current->pid);

1156
	kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1157
	if (!kvm->arch.dbf)
1158
		goto out_err;
1159

1160 1161 1162
	kvm->arch.sie_page2 =
	     (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.sie_page2)
1163
		goto out_err;
1164

1165
	/* Populate the facility mask initially. */
1166
	memcpy(kvm->arch.model.fac_mask, S390_lowcore.stfle_fac_list,
1167
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1168 1169
	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
		if (i < kvm_s390_fac_list_mask_size())
1170
			kvm->arch.model.fac_mask[i] &= kvm_s390_fac_list_mask[i];
1171
		else
1172
			kvm->arch.model.fac_mask[i] = 0UL;
1173 1174
	}

1175
	/* Populate the facility list initially. */
1176 1177
	kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
	memcpy(kvm->arch.model.fac_list, kvm->arch.model.fac_mask,
1178 1179
	       S390_ARCH_FAC_LIST_SIZE_BYTE);

1180
	kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
1181
	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1182

1183
	kvm_s390_crypto_init(kvm);
1184

1185
	spin_lock_init(&kvm->arch.float_int.lock);
1186 1187
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1188
	init_waitqueue_head(&kvm->arch.ipte_wq);
1189
	mutex_init(&kvm->arch.ipte_mutex);
1190

1191
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1192
	VM_EVENT(kvm, 3, "vm created with type %lu", type);
1193

1194 1195
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
1196
		kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
1197
	} else {
1198 1199 1200 1201 1202
		if (sclp.hamax == U64_MAX)
			kvm->arch.mem_limit = TASK_MAX_SIZE;
		else
			kvm->arch.mem_limit = min_t(unsigned long, TASK_MAX_SIZE,
						    sclp.hamax + 1);
1203
		kvm->arch.gmap = gmap_alloc(current->mm, kvm->arch.mem_limit - 1);
1204
		if (!kvm->arch.gmap)
1205
			goto out_err;
1206
		kvm->arch.gmap->private = kvm;
1207
		kvm->arch.gmap->pfault_enabled = 0;
1208
	}
1209 1210

	kvm->arch.css_support = 0;
1211
	kvm->arch.use_irqchip = 0;
1212
	kvm->arch.epoch = 0;
1213

1214
	spin_lock_init(&kvm->arch.start_stop_lock);
1215
	KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
1216

1217
	return 0;
1218
out_err:
1219
	free_page((unsigned long)kvm->arch.sie_page2);
1220
	debug_unregister(kvm->arch.dbf);
1221
	sca_dispose(kvm);
1222
	KVM_EVENT(3, "creation of vm failed: %d", rc);
1223
	return rc;
1224 1225
}

1226 1227 1228
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1229
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1230
	kvm_s390_clear_local_irqs(vcpu);
1231
	kvm_clear_async_pf_completion_queue(vcpu);
1232
	if (!kvm_is_ucontrol(vcpu->kvm))
1233
		sca_del_vcpu(vcpu);
1234 1235 1236 1237

	if (kvm_is_ucontrol(vcpu->kvm))
		gmap_free(vcpu->arch.gmap);

1238
	if (vcpu->kvm->arch.use_cmma)
1239
		kvm_s390_vcpu_unsetup_cmma(vcpu);
1240
	free_page((unsigned long)(vcpu->arch.sie_block));
1241

1242
	kvm_vcpu_uninit(vcpu);
1243
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1244 1245 1246 1247 1248
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
1249
	struct kvm_vcpu *vcpu;
1250

1251 1252 1253 1254 1255 1256 1257 1258 1259
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
1260 1261
}

1262 1263
void kvm_arch_destroy_vm(struct kvm *kvm)
{
1264
	kvm_free_vcpus(kvm);
1265
	sca_dispose(kvm);
1266
	debug_unregister(kvm->arch.dbf);
1267
	free_page((unsigned long)kvm->arch.sie_page2);
1268 1269
	if (!kvm_is_ucontrol(kvm))
		gmap_free(kvm->arch.gmap);
1270
	kvm_s390_destroy_adapters(kvm);
1271
	kvm_s390_clear_float_irqs(kvm);
1272
	KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
1273 1274 1275
}

/* Section: vcpu related */
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
	vcpu->arch.gmap = gmap_alloc(current->mm, -1UL);
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

1286 1287
static void sca_del_vcpu(struct kvm_vcpu *vcpu)
{
1288
	read_lock(&vcpu->kvm->arch.sca_lock);
1289 1290
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1291

1292
		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1293
		sca->cpu[vcpu->vcpu_id].sda = 0;
1294 1295 1296 1297
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1298
		sca->cpu[vcpu->vcpu_id].sda = 0;
1299
	}
1300
	read_unlock(&vcpu->kvm->arch.sca_lock);
1301 1302
}

1303
static void sca_add_vcpu(struct kvm_vcpu *vcpu)
1304
{
1305 1306 1307
	read_lock(&vcpu->kvm->arch.sca_lock);
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1308

1309
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1310 1311
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
1312
		vcpu->arch.sie_block->ecb2 |= 0x04U;
1313
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1314
	} else {
1315
		struct bsca_block *sca = vcpu->kvm->arch.sca;
1316

1317
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1318 1319
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
1320
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1321
	}
1322
	read_unlock(&vcpu->kvm->arch.sca_lock);
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
}

/* Basic SCA to Extended SCA data copy routines */
static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
{
	d->sda = s->sda;
	d->sigp_ctrl.c = s->sigp_ctrl.c;
	d->sigp_ctrl.scn = s->sigp_ctrl.scn;
}

static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
{
	int i;

	d->ipte_control = s->ipte_control;
	d->mcn[0] = s->mcn;
	for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
		sca_copy_entry(&d->cpu[i], &s->cpu[i]);
}

static int sca_switch_to_extended(struct kvm *kvm)
{
	struct bsca_block *old_sca = kvm->arch.sca;
	struct esca_block *new_sca;
	struct kvm_vcpu *vcpu;
	unsigned int vcpu_idx;
	u32 scaol, scaoh;

	new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
	if (!new_sca)
		return -ENOMEM;

	scaoh = (u32)((u64)(new_sca) >> 32);
	scaol = (u32)(u64)(new_sca) & ~0x3fU;

	kvm_s390_vcpu_block_all(kvm);
	write_lock(&kvm->arch.sca_lock);

	sca_copy_b_to_e(new_sca, old_sca);

	kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
		vcpu->arch.sie_block->scaoh = scaoh;
		vcpu->arch.sie_block->scaol = scaol;
		vcpu->arch.sie_block->ecb2 |= 0x04U;
	}
	kvm->arch.sca = new_sca;
	kvm->arch.use_esca = 1;

	write_unlock(&kvm->arch.sca_lock);
	kvm_s390_vcpu_unblock_all(kvm);

	free_page((unsigned long)old_sca);

1376 1377
	VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
		 old_sca, kvm->arch.sca);
1378
	return 0;
1379 1380 1381 1382
}

static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
{
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
	int rc;

	if (id < KVM_S390_BSCA_CPU_SLOTS)
		return true;
	if (!sclp.has_esca)
		return false;

	mutex_lock(&kvm->lock);
	rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
	mutex_unlock(&kvm->lock);

	return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
1395 1396
}

1397 1398
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1399 1400
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1401 1402
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
1403
				    KVM_SYNC_ACRS |
1404 1405 1406
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
1407 1408
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
1409 1410 1411 1412
	/* fprs can be synchronized via vrs, even if the guest has no vx. With
	 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
	 */
	if (MACHINE_HAS_VX)
1413
		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1414 1415
	else
		vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
1416 1417 1418 1419

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

1420 1421 1422
	return 0;
}

1423 1424 1425 1426
/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
1427
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1428
	vcpu->arch.cputm_start = get_tod_clock_fast();
1429
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1430 1431 1432 1433 1434 1435
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
1436
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1437 1438
	vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	vcpu->arch.cputm_start = 0;
1439
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_enabled);
	vcpu->arch.cputm_enabled = true;
	__start_cpu_timer_accounting(vcpu);
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
	__stop_cpu_timer_accounting(vcpu);
	vcpu->arch.cputm_enabled = false;
}

static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__enable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__disable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

1472 1473 1474
/* set the cpu timer - may only be called from the VCPU thread itself */
void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
{
1475
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1476
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1477 1478
	if (vcpu->arch.cputm_enabled)
		vcpu->arch.cputm_start = get_tod_clock_fast();
1479
	vcpu->arch.sie_block->cputm = cputm;
1480
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1481
	preempt_enable();
1482 1483
}

1484
/* update and get the cpu timer - can also be called from other VCPU threads */
1485 1486
__u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
{
1487
	unsigned int seq;
1488 1489 1490 1491 1492
	__u64 value;

	if (unlikely(!vcpu->arch.cputm_enabled))
		return vcpu->arch.sie_block->cputm;

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	do {
		seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
		/*
		 * If the writer would ever execute a read in the critical
		 * section, e.g. in irq context, we have a deadlock.
		 */
		WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
		value = vcpu->arch.sie_block->cputm;
		/* if cputm_start is 0, accounting is being started/stopped */
		if (likely(vcpu->arch.cputm_start))
			value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	} while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
	preempt_enable();
1507
	return value;
1508 1509
}

1510 1511
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
1512
	/* Save host register state */
1513
	save_fpu_regs();
1514 1515
	vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
	vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
1516

1517 1518 1519 1520
	if (MACHINE_HAS_VX)
		current->thread.fpu.regs = vcpu->run->s.regs.vrs;
	else
		current->thread.fpu.regs = vcpu->run->s.regs.fprs;
1521
	current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
1522
	if (test_fp_ctl(current->thread.fpu.fpc))
1523
		/* User space provided an invalid FPC, let's clear it */
1524 1525 1526
		current->thread.fpu.fpc = 0;

	save_access_regs(vcpu->arch.host_acrs);
1527
	restore_access_regs(vcpu->run->s.regs.acrs);
1528
	gmap_enable(vcpu->arch.gmap);
1529
	atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1530
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1531
		__start_cpu_timer_accounting(vcpu);
1532
	vcpu->cpu = cpu;
1533 1534 1535 1536
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
1537
	vcpu->cpu = -1;
1538
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1539
		__stop_cpu_timer_accounting(vcpu);
1540
	atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1541
	gmap_disable(vcpu->arch.gmap);
1542

1543
	/* Save guest register state */
1544
	save_fpu_regs();
1545
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
1546

1547 1548 1549
	/* Restore host register state */
	current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
	current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
1550 1551

	save_access_regs(vcpu->run->s.regs.acrs);
1552 1553 1554 1555 1556 1557 1558 1559
	restore_access_regs(vcpu->arch.host_acrs);
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
1560
	kvm_s390_set_prefix(vcpu, 0);
1561
	kvm_s390_set_cpu_timer(vcpu, 0);
1562 1563 1564 1565 1566
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
1567 1568 1569
	/* make sure the new fpc will be lazily loaded */
	save_fpu_regs();
	current->thread.fpu.fpc = 0;
1570
	vcpu->arch.sie_block->gbea = 1;
1571
	vcpu->arch.sie_block->pp = 0;
1572 1573
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1574 1575
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
1576
	kvm_s390_clear_local_irqs(vcpu);
1577 1578
}

1579
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1580
{
1581
	mutex_lock(&vcpu->kvm->lock);
1582
	preempt_disable();
1583
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
1584
	preempt_enable();
1585
	mutex_unlock(&vcpu->kvm->lock);
1586
	if (!kvm_is_ucontrol(vcpu->kvm)) {
1587
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1588
		sca_add_vcpu(vcpu);
1589 1590
	}

1591 1592
}

1593 1594
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
1595
	if (!test_kvm_facility(vcpu->kvm, 76))
1596 1597
		return;

1598 1599 1600 1601 1602 1603 1604
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

1605 1606 1607
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;

	vcpu->arch.sie_block->ecb2 |= 0x80;
	vcpu->arch.sie_block->ecb2 &= ~0x08;
	return 0;
}

1625 1626 1627 1628 1629
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;

	vcpu->arch.sie_block->ibc = model->ibc;
1630
	if (test_kvm_facility(vcpu->kvm, 7))
1631
		vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list;
1632 1633
}

1634 1635
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
1636
	int rc = 0;
1637

1638 1639
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
1640 1641
						    CPUSTAT_STOPPED);

1642
	if (test_kvm_facility(vcpu->kvm, 78))
1643
		atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
1644
	else if (test_kvm_facility(vcpu->kvm, 8))
1645
		atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
1646

1647 1648
	kvm_s390_vcpu_setup_model(vcpu);

1649 1650 1651
	vcpu->arch.sie_block->ecb = 0x02;
	if (test_kvm_facility(vcpu->kvm, 9))
		vcpu->arch.sie_block->ecb |= 0x04;
1652
	if (test_kvm_facility(vcpu->kvm, 50) && test_kvm_facility(vcpu->kvm, 73))
1653 1654
		vcpu->arch.sie_block->ecb |= 0x10;

1655 1656
	if (test_kvm_facility(vcpu->kvm, 8))
		vcpu->arch.sie_block->ecb2 |= 0x08;
1657
	vcpu->arch.sie_block->eca   = 0xC1002000U;
1658
	if (sclp.has_siif)
1659
		vcpu->arch.sie_block->eca |= 1;
1660
	if (sclp.has_sigpif)
1661
		vcpu->arch.sie_block->eca |= 0x10000000U;
1662 1663
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->arch.sie_block->ecb3 |= 0x01;
1664
	if (test_kvm_facility(vcpu->kvm, 129)) {
1665 1666 1667
		vcpu->arch.sie_block->eca |= 0x00020000;
		vcpu->arch.sie_block->ecd |= 0x20000000;
	}
1668
	vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
1669
	vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
1670

1671
	if (vcpu->kvm->arch.use_cmma) {
1672 1673 1674
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
1675
	}
1676
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1677
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1678

1679 1680
	kvm_s390_vcpu_crypto_setup(vcpu);

1681
	return rc;
1682 1683 1684 1685 1686
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
1687
	struct kvm_vcpu *vcpu;
1688
	struct sie_page *sie_page;
1689 1690
	int rc = -EINVAL;

1691
	if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
1692 1693 1694
		goto out;

	rc = -ENOMEM;
1695

1696
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1697
	if (!vcpu)
1698
		goto out;
1699

1700 1701
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
1702 1703
		goto out_free_cpu;

1704 1705 1706
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;

1707
	vcpu->arch.sie_block->icpua = id;
1708 1709
	spin_lock_init(&vcpu->arch.local_int.lock);
	vcpu->arch.local_int.float_int = &kvm->arch.float_int;
1710
	vcpu->arch.local_int.wq = &vcpu->wq;
1711
	vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
1712
	seqcount_init(&vcpu->arch.cputm_seqcount);
1713

1714 1715
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
1716
		goto out_free_sie_block;
1717
	VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu,
1718
		 vcpu->arch.sie_block);
1719
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
1720 1721

	return vcpu;
1722 1723
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
1724
out_free_cpu:
1725
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1726
out:
1727 1728 1729 1730 1731
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
1732
	return kvm_s390_vcpu_has_irq(vcpu, 0);
1733 1734
}

1735
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
1736
{
1737
	atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1738
	exit_sie(vcpu);
1739 1740
}

1741
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
1742
{
1743
	atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1744 1745
}

1746 1747
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
{
1748
	atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1749
	exit_sie(vcpu);
1750 1751 1752 1753
}

static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
1754
	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1755 1756
}

1757 1758 1759 1760 1761 1762
/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
1763
	atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
1764 1765 1766 1767
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

1768 1769
/* Kick a guest cpu out of SIE to process a request synchronously */
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
1770
{
1771 1772
	kvm_make_request(req, vcpu);
	kvm_s390_vcpu_request(vcpu);
1773 1774
}

1775 1776 1777 1778 1779 1780 1781 1782
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address)
{
	int i;
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
1783
		if (kvm_s390_get_prefix(vcpu) == (address & ~0x1000UL)) {
1784
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx", address);
1785
			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
1786 1787 1788 1789
		}
	}
}

1790 1791 1792 1793 1794 1795 1796
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

1797 1798 1799 1800 1801 1802
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
1803 1804 1805 1806 1807 1808 1809 1810
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
1811
	case KVM_REG_S390_CPU_TIMER:
1812
		r = put_user(kvm_s390_get_cpu_timer(vcpu),
1813 1814 1815 1816 1817 1818
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
1831 1832 1833 1834
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
1835 1836 1837 1838
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;
1850
	__u64 val;
1851 1852

	switch (reg->id) {
1853 1854 1855 1856 1857 1858 1859 1860
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
1861
	case KVM_REG_S390_CPU_TIMER:
1862 1863 1864
		r = get_user(val, (u64 __user *)reg->addr);
		if (!r)
			kvm_s390_set_cpu_timer(vcpu, val);
1865 1866 1867 1868 1869
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
1870 1871 1872
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
1873 1874
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
1875 1876 1877 1878 1879 1880 1881 1882 1883
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
1884 1885 1886 1887
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
1888 1889 1890 1891
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
1892 1893 1894 1895 1896 1897
	default:
		break;
	}

	return r;
}
1898

1899 1900 1901 1902 1903 1904 1905 1906
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
1907
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
1908 1909 1910 1911 1912
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
1913
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
1914 1915 1916 1917 1918 1919
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
1920
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
1921
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
1922
	restore_access_regs(vcpu->run->s.regs.acrs);
1923 1924 1925 1926 1927 1928
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
1929
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
1930 1931 1932 1933 1934 1935
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
1936 1937
	/* make sure the new values will be lazily loaded */
	save_fpu_regs();
1938 1939
	if (test_fp_ctl(fpu->fpc))
		return -EINVAL;
1940 1941 1942 1943 1944
	current->thread.fpu.fpc = fpu->fpc;
	if (MACHINE_HAS_VX)
		convert_fp_to_vx(current->thread.fpu.vxrs, (freg_t *)fpu->fprs);
	else
		memcpy(current->thread.fpu.fprs, &fpu->fprs, sizeof(fpu->fprs));
1945 1946 1947 1948 1949
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
1950 1951 1952 1953 1954 1955 1956
	/* make sure we have the latest values */
	save_fpu_regs();
	if (MACHINE_HAS_VX)
		convert_vx_to_fp((freg_t *)fpu->fprs, current->thread.fpu.vxrs);
	else
		memcpy(fpu->fprs, current->thread.fpu.fprs, sizeof(fpu->fprs));
	fpu->fpc = current->thread.fpu.fpc;
1957 1958 1959 1960 1961 1962 1963
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

1964
	if (!is_vcpu_stopped(vcpu))
1965
		rc = -EBUSY;
1966 1967 1968 1969
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
1970 1971 1972 1973 1974 1975 1976 1977 1978
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

1979 1980 1981 1982
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
1983 1984
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
1985
{
1986 1987 1988 1989 1990
	int rc = 0;

	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

1991
	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
1992 1993 1994 1995 1996
		return -EINVAL;

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
1997
		atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
1998 1999 2000 2001

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
2002
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2003 2004 2005 2006 2007 2008
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
2009
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2010 2011 2012
	}

	return rc;
2013 2014
}

2015 2016 2017
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2018 2019 2020
	/* CHECK_STOP and LOAD are not supported yet */
	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				       KVM_MP_STATE_OPERATING;
2021 2022 2023 2024 2025
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
	int rc = 0;

	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

	return rc;
2046 2047
}

2048 2049 2050 2051 2052
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
	return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
}

2053 2054
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
2055
retry:
2056
	kvm_s390_vcpu_request_handled(vcpu);
2057 2058
	if (!vcpu->requests)
		return 0;
2059 2060 2061 2062 2063 2064 2065
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
	 * guest prefix page. gmap_ipte_notify will wait on the ptl lock.
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
2066
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
2067 2068
		int rc;
		rc = gmap_ipte_notify(vcpu->arch.gmap,
2069
				      kvm_s390_get_prefix(vcpu),
2070 2071 2072
				      PAGE_SIZE * 2);
		if (rc)
			return rc;
2073
		goto retry;
2074
	}
2075

2076 2077 2078 2079 2080
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

2081 2082 2083
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
2084
			atomic_or(CPUSTAT_IBS,
2085 2086 2087
					&vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
2088
	}
2089 2090 2091 2092

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
2093
			atomic_andnot(CPUSTAT_IBS,
2094 2095 2096 2097 2098
					  &vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
	}

2099 2100 2101
	/* nothing to do, just clear the request */
	clear_bit(KVM_REQ_UNHALT, &vcpu->requests);

2102 2103 2104
	return 0;
}

2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120
void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
{
	struct kvm_vcpu *vcpu;
	int i;

	mutex_lock(&kvm->lock);
	preempt_disable();
	kvm->arch.epoch = tod - get_tod_clock();
	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
	kvm_s390_vcpu_unblock_all(kvm);
	preempt_enable();
	mutex_unlock(&kvm->lock);
}

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
2132
{
2133 2134
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
2135 2136
}

2137 2138 2139 2140
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
2141
	struct kvm_s390_irq irq;
2142 2143

	if (start_token) {
2144 2145 2146
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
2147 2148
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
2149
		inti.parm64 = token;
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
2196
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
2197 2198 2199 2200 2201 2202
		return 0;
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
2203 2204 2205
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
2206 2207 2208 2209 2210 2211
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

2212
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
2213
{
2214
	int rc, cpuflags;
2215

2216 2217 2218 2219 2220 2221 2222
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

2223 2224
	vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
	vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
2225 2226 2227 2228

	if (need_resched())
		schedule();

2229
	if (test_cpu_flag(CIF_MCCK_PENDING))
2230 2231
		s390_handle_mcck();

2232 2233 2234 2235 2236
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
2237

2238 2239 2240 2241
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

2242 2243 2244 2245 2246
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

2247
	vcpu->arch.sie_block->icptcode = 0;
2248 2249 2250
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
2251

2252 2253 2254
	return 0;
}

2255 2256
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
2257 2258 2259 2260
	struct kvm_s390_pgm_info pgm_info = {
		.code = PGM_ADDRESSING,
	};
	u8 opcode, ilen;
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
2274
	rc = read_guest_instr(vcpu, &opcode, 1);
2275
	ilen = insn_length(opcode);
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
	if (rc < 0) {
		return rc;
	} else if (rc) {
		/* Instruction-Fetching Exceptions - we can't detect the ilen.
		 * Forward by arbitrary ilc, injection will take care of
		 * nullification if necessary.
		 */
		pgm_info = vcpu->arch.pgm;
		ilen = 4;
	}
2286 2287 2288
	pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
	kvm_s390_forward_psw(vcpu, ilen);
	return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
2289 2290
}

2291 2292
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
2293 2294 2295 2296
	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

2297 2298 2299
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

2300 2301
	vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
	vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315

	if (vcpu->arch.sie_block->icptcode > 0) {
		int rc = kvm_handle_sie_intercept(vcpu);

		if (rc != -EOPNOTSUPP)
			return rc;
		vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
		vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
		vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
		return -EREMOTE;
	} else if (exit_reason != -EFAULT) {
		vcpu->stat.exit_null++;
		return 0;
2316 2317 2318 2319 2320
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
2321
		return -EREMOTE;
2322
	} else if (current->thread.gmap_pfault) {
2323
		trace_kvm_s390_major_guest_pfault(vcpu);
2324
		current->thread.gmap_pfault = 0;
2325 2326 2327
		if (kvm_arch_setup_async_pf(vcpu))
			return 0;
		return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
2328
	}
2329
	return vcpu_post_run_fault_in_sie(vcpu);
2330 2331 2332 2333 2334 2335
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

2336 2337 2338 2339 2340 2341
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

2342 2343 2344 2345
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
2346

2347
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2348 2349 2350 2351
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
2352 2353
		local_irq_disable();
		__kvm_guest_enter();
2354
		__disable_cpu_timer_accounting(vcpu);
2355
		local_irq_enable();
2356 2357
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
2358
		local_irq_disable();
2359
		__enable_cpu_timer_accounting(vcpu);
2360 2361
		__kvm_guest_exit();
		local_irq_enable();
2362
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2363 2364

		rc = vcpu_post_run(vcpu, exit_reason);
2365
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2366

2367
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2368
	return rc;
2369 2370
}

2371 2372 2373 2374 2375 2376 2377 2378
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2379 2380
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2381 2382
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
2383
		kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
2384 2385 2386 2387 2388 2389 2390 2391 2392
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2393 2394
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
	}
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
2405
	kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
2406 2407 2408 2409 2410 2411 2412 2413 2414
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
}

2415 2416
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
2417
	int rc;
2418 2419
	sigset_t sigsaved;

2420 2421 2422 2423 2424
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
		return 0;
	}

2425 2426 2427
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

2428 2429 2430
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
2431
		pr_err_ratelimited("can't run stopped vcpu %d\n",
2432 2433 2434
				   vcpu->vcpu_id);
		return -EINVAL;
	}
2435

2436
	sync_regs(vcpu, kvm_run);
2437
	enable_cpu_timer_accounting(vcpu);
2438

2439
	might_fault();
2440
	rc = __vcpu_run(vcpu);
2441

2442 2443
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
2444
		rc = -EINTR;
2445
	}
2446

2447 2448 2449 2450 2451
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

2452
	if (rc == -EREMOTE) {
2453
		/* userspace support is needed, kvm_run has been prepared */
2454 2455
		rc = 0;
	}
2456

2457
	disable_cpu_timer_accounting(vcpu);
2458
	store_regs(vcpu, kvm_run);
2459

2460 2461 2462 2463
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu->stat.exit_userspace++;
2464
	return rc;
2465 2466 2467 2468 2469 2470 2471 2472
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
2473
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2474
{
2475
	unsigned char archmode = 1;
2476
	freg_t fprs[NUM_FPRS];
2477
	unsigned int px;
2478
	u64 clkcomp, cputm;
2479
	int rc;
2480

2481
	px = kvm_s390_get_prefix(vcpu);
2482 2483
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
2484
			return -EFAULT;
2485
		gpa = 0;
2486 2487
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
2488
			return -EFAULT;
2489 2490 2491
		gpa = px;
	} else
		gpa -= __LC_FPREGS_SAVE_AREA;
2492 2493 2494

	/* manually convert vector registers if necessary */
	if (MACHINE_HAS_VX) {
2495
		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
2496 2497 2498 2499
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
				     fprs, 128);
	} else {
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
2500
				     vcpu->run->s.regs.fprs, 128);
2501
	}
2502
	rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
2503
			      vcpu->run->s.regs.gprs, 128);
2504
	rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
2505
			      &vcpu->arch.sie_block->gpsw, 16);
2506
	rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
2507
			      &px, 4);
2508
	rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
2509
			      &vcpu->run->s.regs.fpc, 4);
2510
	rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
2511
			      &vcpu->arch.sie_block->todpr, 4);
2512
	cputm = kvm_s390_get_cpu_timer(vcpu);
2513
	rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
2514
			      &cputm, 8);
2515
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
2516
	rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
2517
			      &clkcomp, 8);
2518
	rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
2519
			      &vcpu->run->s.regs.acrs, 64);
2520
	rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
2521 2522
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
2523 2524
}

2525 2526 2527 2528 2529 2530 2531
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
	 * copying in vcpu load/put. Lets update our copies before we save
	 * it into the save area
	 */
2532
	save_fpu_regs();
2533
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
2534 2535 2536 2537 2538
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

E
Eric Farman 已提交
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559
/*
 * store additional status at address
 */
int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu,
					unsigned long gpa)
{
	/* Only bits 0-53 are used for address formation */
	if (!(gpa & ~0x3ff))
		return 0;

	return write_guest_abs(vcpu, gpa & ~0x3ff,
			       (void *)&vcpu->run->s.regs.vrs, 512);
}

int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	if (!test_kvm_facility(vcpu->kvm, 129))
		return 0;

	/*
	 * The guest VXRS are in the host VXRs due to the lazy
2560 2561 2562 2563 2564
	 * copying in vcpu load/put. We can simply call save_fpu_regs()
	 * to save the current register state because we are in the
	 * middle of a load/put cycle.
	 *
	 * Let's update our copies before we save it into the save area.
E
Eric Farman 已提交
2565
	 */
2566
	save_fpu_regs();
E
Eric Farman 已提交
2567 2568 2569 2570

	return kvm_s390_store_adtl_status_unloaded(vcpu, addr);
}

2571 2572 2573
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2574
	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2590
	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2591 2592
}

2593 2594
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
2595 2596 2597 2598 2599
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

2600
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2601
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2602
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

2622
	atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2623 2624 2625 2626
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
2627
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2628
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2629
	return;
2630 2631 2632 2633
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
2634 2635 2636 2637 2638 2639
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

2640
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2641
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2642
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2643 2644
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

2645
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2646
	kvm_s390_clear_stop_irq(vcpu);
2647

2648
	atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

2666
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2667
	return;
2668 2669
}

2670 2671 2672 2673 2674 2675 2676 2677 2678
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
2679 2680 2681
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
2682
			VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
2683 2684 2685 2686
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
2687 2688 2689 2690 2691 2692 2693
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
				  struct kvm_s390_mem_op *mop)
{
	void __user *uaddr = (void __user *)mop->buf;
	void *tmpbuf = NULL;
	int r, srcu_idx;
	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
				    | KVM_S390_MEMOP_F_CHECK_ONLY;

	if (mop->flags & ~supported_flags)
		return -EINVAL;

	if (mop->size > MEM_OP_MAX_SIZE)
		return -E2BIG;

	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
		tmpbuf = vmalloc(mop->size);
		if (!tmpbuf)
			return -ENOMEM;
	}

	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

	switch (mop->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2720 2721
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_FETCH);
2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
			break;
		}
		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		if (r == 0) {
			if (copy_to_user(uaddr, tmpbuf, mop->size))
				r = -EFAULT;
		}
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2732 2733
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_STORE);
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
			break;
		}
		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
			r = -EFAULT;
			break;
		}
		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		break;
	default:
		r = -EINVAL;
	}

	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);

	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);

	vfree(tmpbuf);
	return r;
}

2755 2756 2757 2758 2759
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
2760
	int idx;
2761
	long r;
2762

2763
	switch (ioctl) {
2764 2765 2766 2767 2768 2769 2770 2771 2772
	case KVM_S390_IRQ: {
		struct kvm_s390_irq s390irq;

		r = -EFAULT;
		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
			break;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
		break;
	}
2773
	case KVM_S390_INTERRUPT: {
2774
		struct kvm_s390_interrupt s390int;
2775
		struct kvm_s390_irq s390irq;
2776

2777
		r = -EFAULT;
2778
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
2779
			break;
2780 2781 2782
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
2783
		break;
2784
	}
2785
	case KVM_S390_STORE_STATUS:
2786
		idx = srcu_read_lock(&vcpu->kvm->srcu);
2787
		r = kvm_s390_vcpu_store_status(vcpu, arg);
2788
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
2789
		break;
2790 2791 2792
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

2793
		r = -EFAULT;
2794
		if (copy_from_user(&psw, argp, sizeof(psw)))
2795 2796 2797
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
2798 2799
	}
	case KVM_S390_INITIAL_RESET:
2800 2801
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
2850
	case KVM_S390_VCPU_FAULT: {
2851
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
2852 2853
		break;
	}
2854 2855 2856 2857 2858 2859 2860 2861 2862
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
2863 2864 2865 2866 2867 2868 2869 2870 2871
	case KVM_S390_MEM_OP: {
		struct kvm_s390_mem_op mem_op;

		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
		else
			r = -EFAULT;
		break;
	}
2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
	case KVM_S390_SET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
		    irq_state.len == 0 ||
		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_set_irq_state(vcpu,
					   (void __user *) irq_state.buf,
					   irq_state.len);
		break;
	}
	case KVM_S390_GET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len == 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_get_irq_state(vcpu,
					   (__u8 __user *)  irq_state.buf,
					   irq_state.len);
		break;
	}
2904
	default:
2905
		r = -ENOTTY;
2906
	}
2907
	return r;
2908 2909
}

2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

2923 2924
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
2925 2926 2927 2928
{
	return 0;
}

2929
/* Section: memory related */
2930 2931
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
2932
				   const struct kvm_userspace_memory_region *mem,
2933
				   enum kvm_mr_change change)
2934
{
2935 2936 2937 2938
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
2939

2940
	if (mem->userspace_addr & 0xffffful)
2941 2942
		return -EINVAL;

2943
	if (mem->memory_size & 0xffffful)
2944 2945
		return -EINVAL;

2946 2947 2948
	if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
		return -EINVAL;

2949 2950 2951 2952
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
2953
				const struct kvm_userspace_memory_region *mem,
2954
				const struct kvm_memory_slot *old,
2955
				const struct kvm_memory_slot *new,
2956
				enum kvm_mr_change change)
2957
{
2958
	int rc;
2959

2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
2970 2971 2972 2973

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
2974
		pr_warn("failed to commit memory region\n");
2975
	return;
2976 2977 2978 2979
}

static int __init kvm_s390_init(void)
{
2980 2981 2982 2983 2984
	if (!sclp.has_sief2) {
		pr_info("SIE not available\n");
		return -ENODEV;
	}

2985
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2986 2987 2988 2989 2990 2991 2992 2993 2994
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
2995 2996 2997 2998 2999 3000 3001 3002 3003

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");