kvm-s390.c 66.2 KB
Newer Older
1
/*
2
 * hosting zSeries kernel virtual machines
3
 *
4
 * Copyright IBM Corp. 2008, 2009
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
13
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14
 *               Jason J. Herne <jjherne@us.ibm.com>
15 16 17 18 19
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
20
#include <linux/hrtimer.h>
21 22 23 24
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
25
#include <linux/random.h>
26
#include <linux/slab.h>
27
#include <linux/timer.h>
28
#include <linux/vmalloc.h>
29
#include <asm/asm-offsets.h>
30 31
#include <asm/lowcore.h>
#include <asm/pgtable.h>
32
#include <asm/nmi.h>
33
#include <asm/switch_to.h>
34
#include <asm/isc.h>
35
#include <asm/sclp.h>
36
#include "kvm-s390.h"
37 38
#include "gaccess.h"

39 40
#define CREATE_TRACE_POINTS
#include "trace.h"
41
#include "trace-s390.h"
42

43
#define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
44 45 46
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
			   (KVM_MAX_VCPUS + LOCAL_IRQS))
47

48 49 50 51
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
52
	{ "exit_null", VCPU_STAT(exit_null) },
53 54 55 56
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
57 58 59
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
60
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
61
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
62
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
63
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
64 65
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
66
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
67
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
68 69 70 71 72 73 74
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
75
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
76 77 78 79 80
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
	{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
81
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
82 83
	{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
	{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
84
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
85 86
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
87
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
88
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
89
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
90
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
91
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
92 93
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
94
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
95 96
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
97
	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
98 99 100
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
101 102 103
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
104
	{ "diagnose_10", VCPU_STAT(diagnose_10) },
105
	{ "diagnose_44", VCPU_STAT(diagnose_44) },
106
	{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
107 108 109
	{ NULL }
};

110 111
/* upper facilities limit for kvm */
unsigned long kvm_s390_fac_list_mask[] = {
112
	0xffe6fffbfcfdfc40UL,
113
	0x005e800000000000UL,
114
};
115

116
unsigned long kvm_s390_fac_list_mask_size(void)
117
{
118 119
	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
	return ARRAY_SIZE(kvm_s390_fac_list_mask);
120 121
}

122 123
static struct gmap_notifier gmap_notifier;

124
/* Section: not file related */
125
int kvm_arch_hardware_enable(void)
126 127
{
	/* every s390 is virtualization enabled ;-) */
128
	return 0;
129 130
}

131 132
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address);

133 134
int kvm_arch_hardware_setup(void)
{
135 136
	gmap_notifier.notifier_call = kvm_gmap_notifier;
	gmap_register_ipte_notifier(&gmap_notifier);
137 138 139 140 141
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
142
	gmap_unregister_ipte_notifier(&gmap_notifier);
143 144 145 146
}

int kvm_arch_init(void *opaque)
{
147 148
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
149 150 151 152 153 154 155 156 157 158 159
}

/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

160
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
161
{
162 163
	int r;

164
	switch (ext) {
165
	case KVM_CAP_S390_PSW:
166
	case KVM_CAP_S390_GMAP:
167
	case KVM_CAP_SYNC_MMU:
168 169 170
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
171
	case KVM_CAP_ASYNC_PF:
172
	case KVM_CAP_SYNC_REGS:
173
	case KVM_CAP_ONE_REG:
174
	case KVM_CAP_ENABLE_CAP:
175
	case KVM_CAP_S390_CSS_SUPPORT:
C
Cornelia Huck 已提交
176
	case KVM_CAP_IOEVENTFD:
177
	case KVM_CAP_DEVICE_CTRL:
178
	case KVM_CAP_ENABLE_CAP_VM:
179
	case KVM_CAP_S390_IRQCHIP:
180
	case KVM_CAP_VM_ATTRIBUTES:
181
	case KVM_CAP_MP_STATE:
182
	case KVM_CAP_S390_INJECT_IRQ:
183
	case KVM_CAP_S390_USER_SIGP:
184
	case KVM_CAP_S390_USER_STSI:
185
	case KVM_CAP_S390_SKEYS:
186
	case KVM_CAP_S390_IRQ_STATE:
187 188
		r = 1;
		break;
189 190 191
	case KVM_CAP_S390_MEM_OP:
		r = MEM_OP_MAX_SIZE;
		break;
192 193 194 195
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
196 197 198
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
199
	case KVM_CAP_S390_COW:
200
		r = MACHINE_HAS_ESOP;
201
		break;
202 203 204
	case KVM_CAP_S390_VECTOR_REGISTERS:
		r = MACHINE_HAS_VX;
		break;
205
	default:
206
		r = 0;
207
	}
208
	return r;
209 210
}

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	gfn_t cur_gfn, last_gfn;
	unsigned long address;
	struct gmap *gmap = kvm->arch.gmap;

	down_read(&gmap->mm->mmap_sem);
	/* Loop over all guest pages */
	last_gfn = memslot->base_gfn + memslot->npages;
	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
		address = gfn_to_hva_memslot(memslot, cur_gfn);

		if (gmap_test_and_clear_dirty(address, gmap))
			mark_page_dirty(kvm, cur_gfn);
	}
	up_read(&gmap->mm->mmap_sem);
}

230 231 232 233 234 235 236
/* Section: vm related */
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
237 238
	int r;
	unsigned long n;
239
	struct kvm_memslots *slots;
240 241 242 243 244 245 246 247 248
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

249 250
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
269 270
}

271 272 273 274 275 276 277 278
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
279 280 281 282
	case KVM_CAP_S390_IRQCHIP:
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
283 284 285 286
	case KVM_CAP_S390_USER_SIGP:
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
287
	case KVM_CAP_S390_VECTOR_REGISTERS:
288 289 290 291 292 293
		if (MACHINE_HAS_VX) {
			set_kvm_facility(kvm->arch.model.fac->mask, 129);
			set_kvm_facility(kvm->arch.model.fac->list, 129);
			r = 0;
		} else
			r = -EINVAL;
294
		break;
295 296 297 298
	case KVM_CAP_S390_USER_STSI:
		kvm->arch.user_stsi = 1;
		r = 0;
		break;
299 300 301 302 303 304 305
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
		if (put_user(kvm->arch.gmap->asce_end, (u64 __user *)attr->addr))
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
		ret = -EBUSY;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			kvm->arch.use_cmma = 1;
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
340
		s390_reset_cmma(kvm->arch.gmap->mm);
341 342 343 344
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

		if (new_limit > kvm->arch.gmap->asce_end)
			return -E2BIG;

		ret = -EBUSY;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			/* gmap_alloc will round the limit up */
			struct gmap *new = gmap_alloc(current->mm, new_limit);

			if (!new) {
				ret = -ENOMEM;
			} else {
				gmap_free(kvm->arch.gmap);
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
		break;
	}
375 376 377 378 379 380 381
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

382 383 384 385 386 387 388
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *vcpu;
	int i;

389
	if (!test_kvm_facility(kvm, 76))
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_vcpu_crypto_setup(vcpu);
		exit_sie(vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *cur_vcpu;
	unsigned int vcpu_idx;
	u64 host_tod, gtod;
	int r;

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

	r = store_tod_clock(&host_tod);
	if (r)
		return r;

	mutex_lock(&kvm->lock);
	kvm->arch.epoch = gtod - host_tod;
459 460
	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(vcpu_idx, cur_vcpu, kvm)
461
		cur_vcpu->arch.sie_block->epoch = kvm->arch.epoch;
462
	kvm_s390_vcpu_unblock_all(kvm);
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
	mutex_unlock(&kvm->lock);
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u64 host_tod, gtod;
	int r;

	r = store_tod_clock(&host_tod);
	if (r)
		return r;

	gtod = host_tod + kvm->arch.epoch;
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	mutex_lock(&kvm->lock);
	if (atomic_read(&kvm->online_vcpus)) {
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
		memcpy(&kvm->arch.model.cpu_id, &proc->cpuid,
		       sizeof(struct cpuid));
		kvm->arch.model.ibc = proc->ibc;
556
		memcpy(kvm->arch.model.fac->list, proc->fac_list,
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	memcpy(&proc->cpuid, &kvm->arch.model.cpu_id, sizeof(struct cpuid));
	proc->ibc = kvm->arch.model.ibc;
590
	memcpy(&proc->fac_list, kvm->arch.model.fac->list, S390_ARCH_FAC_LIST_SIZE_BYTE);
591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
	mach->ibc = sclp_get_ibc();
610 611
	memcpy(&mach->fac_mask, kvm->arch.model.fac->mask,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
612
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
613
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
	}
	return ret;
}

636 637 638 639 640
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
641
	case KVM_S390_VM_MEM_CTRL:
642
		ret = kvm_s390_set_mem_control(kvm, attr);
643
		break;
644 645 646
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
647 648 649
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
650 651 652
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
653 654 655 656 657 658 659 660 661 662
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
663 664 665 666 667 668
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
669 670 671
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
672 673 674
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
675 676 677 678 679 680
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
681 682 683 684 685 686 687
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
688 689 690 691
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
692
		case KVM_S390_VM_MEM_LIMIT_SIZE:
693 694 695 696 697 698 699
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
700 701 702 703 704 705 706 707 708 709 710
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
711 712 713 714 715 716 717 718 719 720 721
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
722 723 724 725 726 727 728 729 730 731 732 733 734
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
735 736 737 738 739 740 741 742
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	unsigned long curkey;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Is this guest using storage keys? */
	if (!mm_use_skey(current->mm))
		return KVM_S390_GET_SKEYS_NONE;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			goto out;
		}

		curkey = get_guest_storage_key(current->mm, hva);
		if (IS_ERR_VALUE(curkey)) {
			r = curkey;
			goto out;
		}
		keys[i] = curkey;
	}

	r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
			 sizeof(uint8_t) * args->count);
	if (r)
		r = -EFAULT;
out:
	kvfree(keys);
	return r;
}

static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
			   sizeof(uint8_t) * args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	/* Enable storage key handling for the guest */
	s390_enable_skey();

	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			goto out;
		}

		/* Lowest order bit is reserved */
		if (keys[i] & 0x01) {
			r = -EINVAL;
			goto out;
		}

		r = set_guest_storage_key(current->mm, hva,
					  (unsigned long)keys[i], 0);
		if (r)
			goto out;
	}
out:
	kvfree(keys);
	return r;
}

845 846 847 848 849
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
850
	struct kvm_device_attr attr;
851 852 853
	int r;

	switch (ioctl) {
854 855 856 857 858 859 860 861 862
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
863 864 865 866 867 868 869 870
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
871 872 873 874 875 876 877 878 879 880 881 882
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
			kvm_set_irq_routing(kvm, &routing, 0, 0);
			r = 0;
		}
		break;
	}
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
	case KVM_S390_GET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_get_skeys(kvm, &args);
		break;
	}
	case KVM_S390_SET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_set_skeys(kvm, &args);
		break;
	}
924
	default:
925
		r = -ENOTTY;
926 927 928 929 930
	}

	return r;
}

931 932 933
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
934
	u32 cc = 0;
935

936
	memset(config, 0, 128);
937 938 939 940
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
941
		"0: ipm %0\n"
942
		"srl %0,28\n"
943 944 945
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

	if (test_facility(2) && test_facility(12)) {
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

980 981 982 983 984 985
static void kvm_s390_get_cpu_id(struct cpuid *cpu_id)
{
	get_cpu_id(cpu_id);
	cpu_id->version = 0xff;
}

986 987
static int kvm_s390_crypto_init(struct kvm *kvm)
{
988
	if (!test_kvm_facility(kvm, 76))
989 990 991 992 993 994 995
		return 0;

	kvm->arch.crypto.crycb = kzalloc(sizeof(*kvm->arch.crypto.crycb),
					 GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.crypto.crycb)
		return -ENOMEM;

996
	kvm_s390_set_crycb_format(kvm);
997

998 999 1000 1001 1002 1003 1004
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1005

1006 1007 1008
	return 0;
}

1009
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1010
{
1011
	int i, rc;
1012
	char debug_name[16];
1013
	static unsigned long sca_offset;
1014

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

1026 1027
	rc = s390_enable_sie();
	if (rc)
1028
		goto out_err;
1029

1030 1031
	rc = -ENOMEM;

1032 1033
	kvm->arch.sca = (struct sca_block *) get_zeroed_page(GFP_KERNEL);
	if (!kvm->arch.sca)
1034
		goto out_err;
1035 1036 1037 1038
	spin_lock(&kvm_lock);
	sca_offset = (sca_offset + 16) & 0x7f0;
	kvm->arch.sca = (struct sca_block *) ((char *) kvm->arch.sca + sca_offset);
	spin_unlock(&kvm_lock);
1039 1040 1041 1042 1043

	sprintf(debug_name, "kvm-%u", current->pid);

	kvm->arch.dbf = debug_register(debug_name, 8, 2, 8 * sizeof(long));
	if (!kvm->arch.dbf)
1044
		goto out_err;
1045

1046 1047 1048
	/*
	 * The architectural maximum amount of facilities is 16 kbit. To store
	 * this amount, 2 kbyte of memory is required. Thus we need a full
1049 1050
	 * page to hold the guest facility list (arch.model.fac->list) and the
	 * facility mask (arch.model.fac->mask). Its address size has to be
1051 1052 1053
	 * 31 bits and word aligned.
	 */
	kvm->arch.model.fac =
1054
		(struct kvm_s390_fac *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
1055
	if (!kvm->arch.model.fac)
1056
		goto out_err;
1057

1058
	/* Populate the facility mask initially. */
1059
	memcpy(kvm->arch.model.fac->mask, S390_lowcore.stfle_fac_list,
1060
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1061 1062
	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
		if (i < kvm_s390_fac_list_mask_size())
1063
			kvm->arch.model.fac->mask[i] &= kvm_s390_fac_list_mask[i];
1064
		else
1065
			kvm->arch.model.fac->mask[i] = 0UL;
1066 1067
	}

1068 1069 1070 1071
	/* Populate the facility list initially. */
	memcpy(kvm->arch.model.fac->list, kvm->arch.model.fac->mask,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);

1072
	kvm_s390_get_cpu_id(&kvm->arch.model.cpu_id);
1073
	kvm->arch.model.ibc = sclp_get_ibc() & 0x0fff;
1074

1075
	if (kvm_s390_crypto_init(kvm) < 0)
1076
		goto out_err;
1077

1078
	spin_lock_init(&kvm->arch.float_int.lock);
1079 1080
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1081
	init_waitqueue_head(&kvm->arch.ipte_wq);
1082
	mutex_init(&kvm->arch.ipte_mutex);
1083

1084 1085 1086
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
	VM_EVENT(kvm, 3, "%s", "vm created");

1087 1088 1089
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
	} else {
1090
		kvm->arch.gmap = gmap_alloc(current->mm, (1UL << 44) - 1);
1091
		if (!kvm->arch.gmap)
1092
			goto out_err;
1093
		kvm->arch.gmap->private = kvm;
1094
		kvm->arch.gmap->pfault_enabled = 0;
1095
	}
1096 1097

	kvm->arch.css_support = 0;
1098
	kvm->arch.use_irqchip = 0;
1099
	kvm->arch.epoch = 0;
1100

1101 1102
	spin_lock_init(&kvm->arch.start_stop_lock);

1103
	return 0;
1104
out_err:
1105
	kfree(kvm->arch.crypto.crycb);
1106
	free_page((unsigned long)kvm->arch.model.fac);
1107
	debug_unregister(kvm->arch.dbf);
1108
	free_page((unsigned long)(kvm->arch.sca));
1109
	return rc;
1110 1111
}

1112 1113 1114
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1115
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1116
	kvm_s390_clear_local_irqs(vcpu);
1117
	kvm_clear_async_pf_completion_queue(vcpu);
C
Carsten Otte 已提交
1118 1119 1120 1121 1122 1123 1124
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		clear_bit(63 - vcpu->vcpu_id,
			  (unsigned long *) &vcpu->kvm->arch.sca->mcn);
		if (vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sda ==
		    (__u64) vcpu->arch.sie_block)
			vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sda = 0;
	}
1125
	smp_mb();
1126 1127 1128 1129

	if (kvm_is_ucontrol(vcpu->kvm))
		gmap_free(vcpu->arch.gmap);

1130 1131
	if (kvm_s390_cmma_enabled(vcpu->kvm))
		kvm_s390_vcpu_unsetup_cmma(vcpu);
1132
	free_page((unsigned long)(vcpu->arch.sie_block));
1133

1134
	kvm_vcpu_uninit(vcpu);
1135
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1136 1137 1138 1139 1140
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
1141
	struct kvm_vcpu *vcpu;
1142

1143 1144 1145 1146 1147 1148 1149 1150 1151
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
1152 1153
}

1154 1155
void kvm_arch_destroy_vm(struct kvm *kvm)
{
1156
	kvm_free_vcpus(kvm);
1157
	free_page((unsigned long)kvm->arch.model.fac);
1158
	free_page((unsigned long)(kvm->arch.sca));
1159
	debug_unregister(kvm->arch.dbf);
1160
	kfree(kvm->arch.crypto.crycb);
1161 1162
	if (!kvm_is_ucontrol(kvm))
		gmap_free(kvm->arch.gmap);
1163
	kvm_s390_destroy_adapters(kvm);
1164
	kvm_s390_clear_float_irqs(kvm);
1165 1166 1167
}

/* Section: vcpu related */
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
	vcpu->arch.gmap = gmap_alloc(current->mm, -1UL);
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

1178 1179
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1180 1181
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1182 1183
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
1184
				    KVM_SYNC_ACRS |
1185 1186 1187
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
1188 1189
	if (test_kvm_facility(vcpu->kvm, 129))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1190 1191 1192 1193

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

1194 1195 1196 1197 1198
	return 0;
}

void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
1199
	save_fp_ctl(&vcpu->arch.host_fpregs.fpc);
1200
	if (test_kvm_facility(vcpu->kvm, 129))
1201 1202 1203
		save_vx_regs((__vector128 *)&vcpu->arch.host_vregs->vrs);
	else
		save_fp_regs(vcpu->arch.host_fpregs.fprs);
1204
	save_access_regs(vcpu->arch.host_acrs);
1205
	if (test_kvm_facility(vcpu->kvm, 129)) {
1206 1207 1208 1209 1210 1211
		restore_fp_ctl(&vcpu->run->s.regs.fpc);
		restore_vx_regs((__vector128 *)&vcpu->run->s.regs.vrs);
	} else {
		restore_fp_ctl(&vcpu->arch.guest_fpregs.fpc);
		restore_fp_regs(vcpu->arch.guest_fpregs.fprs);
	}
1212
	restore_access_regs(vcpu->run->s.regs.acrs);
1213
	gmap_enable(vcpu->arch.gmap);
1214
	atomic_set_mask(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1215 1216 1217 1218
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
1219
	atomic_clear_mask(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1220
	gmap_disable(vcpu->arch.gmap);
1221
	if (test_kvm_facility(vcpu->kvm, 129)) {
1222 1223 1224 1225 1226 1227
		save_fp_ctl(&vcpu->run->s.regs.fpc);
		save_vx_regs((__vector128 *)&vcpu->run->s.regs.vrs);
	} else {
		save_fp_ctl(&vcpu->arch.guest_fpregs.fpc);
		save_fp_regs(vcpu->arch.guest_fpregs.fprs);
	}
1228
	save_access_regs(vcpu->run->s.regs.acrs);
1229
	restore_fp_ctl(&vcpu->arch.host_fpregs.fpc);
1230
	if (test_kvm_facility(vcpu->kvm, 129))
1231 1232 1233
		restore_vx_regs((__vector128 *)&vcpu->arch.host_vregs->vrs);
	else
		restore_fp_regs(vcpu->arch.host_fpregs.fprs);
1234 1235 1236 1237 1238 1239 1240 1241
	restore_access_regs(vcpu->arch.host_acrs);
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
1242
	kvm_s390_set_prefix(vcpu, 0);
1243 1244 1245 1246 1247 1248 1249 1250 1251
	vcpu->arch.sie_block->cputm     = 0UL;
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
	vcpu->arch.guest_fpregs.fpc = 0;
	asm volatile("lfpc %0" : : "Q" (vcpu->arch.guest_fpregs.fpc));
	vcpu->arch.sie_block->gbea = 1;
1252
	vcpu->arch.sie_block->pp = 0;
1253 1254
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1255 1256
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
1257
	kvm_s390_clear_local_irqs(vcpu);
1258 1259
}

1260
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1261
{
1262 1263 1264
	mutex_lock(&vcpu->kvm->lock);
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
	mutex_unlock(&vcpu->kvm->lock);
1265 1266
	if (!kvm_is_ucontrol(vcpu->kvm))
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1267 1268
}

1269 1270
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
1271
	if (!test_kvm_facility(vcpu->kvm, 76))
1272 1273
		return;

1274 1275 1276 1277 1278 1279 1280
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

1281 1282 1283
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;

	vcpu->arch.sie_block->ecb2 |= 0x80;
	vcpu->arch.sie_block->ecb2 &= ~0x08;
	return 0;
}

1301 1302 1303 1304 1305 1306 1307 1308 1309
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;

	vcpu->arch.cpu_id = model->cpu_id;
	vcpu->arch.sie_block->ibc = model->ibc;
	vcpu->arch.sie_block->fac = (int) (long) model->fac->list;
}

1310 1311
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
1312
	int rc = 0;
1313

1314 1315
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
1316 1317
						    CPUSTAT_STOPPED);

1318 1319 1320
	if (test_kvm_facility(vcpu->kvm, 78))
		atomic_set_mask(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
	else if (test_kvm_facility(vcpu->kvm, 8))
1321 1322
		atomic_set_mask(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);

1323 1324
	kvm_s390_vcpu_setup_model(vcpu);

1325
	vcpu->arch.sie_block->ecb   = 6;
1326
	if (test_kvm_facility(vcpu->kvm, 50) && test_kvm_facility(vcpu->kvm, 73))
1327 1328
		vcpu->arch.sie_block->ecb |= 0x10;

1329
	vcpu->arch.sie_block->ecb2  = 8;
1330
	vcpu->arch.sie_block->eca   = 0xC1002000U;
1331 1332
	if (sclp_has_siif())
		vcpu->arch.sie_block->eca |= 1;
1333 1334
	if (sclp_has_sigpif())
		vcpu->arch.sie_block->eca |= 0x10000000U;
1335
	if (test_kvm_facility(vcpu->kvm, 129)) {
1336 1337 1338
		vcpu->arch.sie_block->eca |= 0x00020000;
		vcpu->arch.sie_block->ecd |= 0x20000000;
	}
1339
	vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
1340

1341 1342 1343 1344
	if (kvm_s390_cmma_enabled(vcpu->kvm)) {
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
1345
	}
1346
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1347
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1348

1349 1350
	kvm_s390_vcpu_crypto_setup(vcpu);

1351
	return rc;
1352 1353 1354 1355 1356
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
1357
	struct kvm_vcpu *vcpu;
1358
	struct sie_page *sie_page;
1359 1360 1361 1362 1363 1364
	int rc = -EINVAL;

	if (id >= KVM_MAX_VCPUS)
		goto out;

	rc = -ENOMEM;
1365

1366
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1367
	if (!vcpu)
1368
		goto out;
1369

1370 1371
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
1372 1373
		goto out_free_cpu;

1374 1375
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;
1376
	vcpu->arch.host_vregs = &sie_page->vregs;
1377

1378
	vcpu->arch.sie_block->icpua = id;
C
Carsten Otte 已提交
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
	if (!kvm_is_ucontrol(kvm)) {
		if (!kvm->arch.sca) {
			WARN_ON_ONCE(1);
			goto out_free_cpu;
		}
		if (!kvm->arch.sca->cpu[id].sda)
			kvm->arch.sca->cpu[id].sda =
				(__u64) vcpu->arch.sie_block;
		vcpu->arch.sie_block->scaoh =
			(__u32)(((__u64)kvm->arch.sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)kvm->arch.sca;
		set_bit(63 - id, (unsigned long *) &kvm->arch.sca->mcn);
	}
1392

1393 1394
	spin_lock_init(&vcpu->arch.local_int.lock);
	vcpu->arch.local_int.float_int = &kvm->arch.float_int;
1395
	vcpu->arch.local_int.wq = &vcpu->wq;
1396
	vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
1397

1398 1399
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
1400
		goto out_free_sie_block;
1401 1402
	VM_EVENT(kvm, 3, "create cpu %d at %p, sie block at %p", id, vcpu,
		 vcpu->arch.sie_block);
1403
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
1404 1405

	return vcpu;
1406 1407
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
1408
out_free_cpu:
1409
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1410
out:
1411 1412 1413 1414 1415
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
1416
	return kvm_s390_vcpu_has_irq(vcpu, 0);
1417 1418
}

1419
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
1420 1421 1422 1423
{
	atomic_set_mask(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
}

1424
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
1425 1426 1427 1428
{
	atomic_clear_mask(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
}

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
{
	atomic_set_mask(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
}

static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
	atomic_clear_mask(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
}

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
	atomic_set_mask(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

1450 1451
/* Kick a guest cpu out of SIE to process a request synchronously */
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
1452
{
1453 1454
	kvm_make_request(req, vcpu);
	kvm_s390_vcpu_request(vcpu);
1455 1456 1457
	exit_sie(vcpu);
}

1458 1459 1460 1461 1462 1463 1464 1465
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address)
{
	int i;
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
1466
		if (kvm_s390_get_prefix(vcpu) == (address & ~0x1000UL)) {
1467
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx", address);
1468
			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
1469 1470 1471 1472
		}
	}
}

1473 1474 1475 1476 1477 1478 1479
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

1480 1481 1482 1483 1484 1485
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
1486 1487 1488 1489 1490 1491 1492 1493
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
1494 1495 1496 1497 1498 1499 1500 1501
	case KVM_REG_S390_CPU_TIMER:
		r = put_user(vcpu->arch.sie_block->cputm,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
1514 1515 1516 1517
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
1518 1519 1520 1521
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
1535 1536 1537 1538 1539 1540 1541 1542
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
1543 1544 1545 1546 1547 1548 1549 1550
	case KVM_REG_S390_CPU_TIMER:
		r = get_user(vcpu->arch.sie_block->cputm,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
1551 1552 1553
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
1554 1555
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
1556 1557 1558 1559 1560 1561 1562 1563 1564
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
1565 1566 1567 1568
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
1569 1570 1571 1572
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
1573 1574 1575 1576 1577 1578
	default:
		break;
	}

	return r;
}
1579

1580 1581 1582 1583 1584 1585 1586 1587
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
1588
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
1589 1590 1591 1592 1593
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
1594
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
1595 1596 1597 1598 1599 1600
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
1601
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
1602
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
1603
	restore_access_regs(vcpu->run->s.regs.acrs);
1604 1605 1606 1607 1608 1609
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
1610
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
1611 1612 1613 1614 1615 1616
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
1617 1618
	if (test_fp_ctl(fpu->fpc))
		return -EINVAL;
1619
	memcpy(&vcpu->arch.guest_fpregs.fprs, &fpu->fprs, sizeof(fpu->fprs));
1620 1621 1622
	vcpu->arch.guest_fpregs.fpc = fpu->fpc;
	restore_fp_ctl(&vcpu->arch.guest_fpregs.fpc);
	restore_fp_regs(vcpu->arch.guest_fpregs.fprs);
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
	memcpy(&fpu->fprs, &vcpu->arch.guest_fpregs.fprs, sizeof(fpu->fprs));
	fpu->fpc = vcpu->arch.guest_fpregs.fpc;
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

1637
	if (!is_vcpu_stopped(vcpu))
1638
		rc = -EBUSY;
1639 1640 1641 1642
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
1643 1644 1645 1646 1647 1648 1649 1650 1651
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

1652 1653 1654 1655
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
1656 1657
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
1658
{
1659 1660 1661 1662 1663
	int rc = 0;

	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

1664
	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
		return -EINVAL;

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
		atomic_set_mask(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
		atomic_clear_mask(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
		atomic_clear_mask(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
	}

	return rc;
1686 1687
}

1688 1689 1690
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
1691 1692 1693
	/* CHECK_STOP and LOAD are not supported yet */
	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				       KVM_MP_STATE_OPERATING;
1694 1695 1696 1697 1698
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
	int rc = 0;

	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

	return rc;
1719 1720
}

1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
bool kvm_s390_cmma_enabled(struct kvm *kvm)
{
	if (!MACHINE_IS_LPAR)
		return false;
	/* only enable for z10 and later */
	if (!MACHINE_HAS_EDAT1)
		return false;
	if (!kvm->arch.use_cmma)
		return false;
	return true;
}

1733 1734 1735 1736 1737
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
	return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
}

1738 1739
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
1740 1741
	if (!vcpu->requests)
		return 0;
1742
retry:
1743
	kvm_s390_vcpu_request_handled(vcpu);
1744 1745 1746 1747 1748 1749 1750
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
	 * guest prefix page. gmap_ipte_notify will wait on the ptl lock.
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
1751
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
1752 1753
		int rc;
		rc = gmap_ipte_notify(vcpu->arch.gmap,
1754
				      kvm_s390_get_prefix(vcpu),
1755 1756 1757
				      PAGE_SIZE * 2);
		if (rc)
			return rc;
1758
		goto retry;
1759
	}
1760

1761 1762 1763 1764 1765
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

1766 1767 1768 1769 1770 1771 1772
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
			atomic_set_mask(CPUSTAT_IBS,
					&vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
1773
	}
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
			atomic_clear_mask(CPUSTAT_IBS,
					  &vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
	}

1784 1785 1786
	/* nothing to do, just clear the request */
	clear_bit(KVM_REQ_UNHALT, &vcpu->requests);

1787 1788 1789
	return 0;
}

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
1801
{
1802 1803
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
1804 1805
}

1806 1807 1808 1809
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
1810
	struct kvm_s390_irq irq;
1811 1812

	if (start_token) {
1813 1814 1815
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
1816 1817
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
1818
		inti.parm64 = token;
1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
1865
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
1866 1867 1868 1869 1870 1871
		return 0;
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
1872 1873 1874
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
1875 1876 1877 1878 1879 1880
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

1881
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
1882
{
1883
	int rc, cpuflags;
1884

1885 1886 1887 1888 1889 1890 1891
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

1892
	memcpy(&vcpu->arch.sie_block->gg14, &vcpu->run->s.regs.gprs[14], 16);
1893 1894 1895 1896

	if (need_resched())
		schedule();

1897
	if (test_cpu_flag(CIF_MCCK_PENDING))
1898 1899
		s390_handle_mcck();

1900 1901 1902 1903 1904
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
1905

1906 1907 1908 1909
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

1910 1911 1912 1913 1914
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

1915
	vcpu->arch.sie_block->icptcode = 0;
1916 1917 1918
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
1919

1920 1921 1922
	return 0;
}

1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
	psw_t *psw = &vcpu->arch.sie_block->gpsw;
	u8 opcode;
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
1940
	rc = read_guest(vcpu, psw->addr, 0, &opcode, 1);
1941 1942 1943 1944 1945 1946 1947
	if (rc)
		return kvm_s390_inject_prog_cond(vcpu, rc);
	psw->addr = __rewind_psw(*psw, -insn_length(opcode));

	return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
}

1948 1949
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
1950
	int rc = -1;
1951 1952 1953 1954 1955

	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

1956 1957 1958
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

1959
	if (exit_reason >= 0) {
1960
		rc = 0;
1961 1962 1963 1964 1965 1966
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
		rc = -EREMOTE;
1967 1968

	} else if (current->thread.gmap_pfault) {
1969
		trace_kvm_s390_major_guest_pfault(vcpu);
1970
		current->thread.gmap_pfault = 0;
1971
		if (kvm_arch_setup_async_pf(vcpu)) {
1972
			rc = 0;
1973 1974 1975 1976
		} else {
			gpa_t gpa = current->thread.gmap_addr;
			rc = kvm_arch_fault_in_page(vcpu, gpa, 1);
		}
1977 1978
	}

1979 1980
	if (rc == -1)
		rc = vcpu_post_run_fault_in_sie(vcpu);
1981

1982
	memcpy(&vcpu->run->s.regs.gprs[14], &vcpu->arch.sie_block->gg14, 16);
1983

1984 1985
	if (rc == 0) {
		if (kvm_is_ucontrol(vcpu->kvm))
1986 1987
			/* Don't exit for host interrupts. */
			rc = vcpu->arch.sie_block->icptcode ? -EOPNOTSUPP : 0;
1988 1989 1990 1991
		else
			rc = kvm_handle_sie_intercept(vcpu);
	}

1992 1993 1994 1995 1996 1997 1998
	return rc;
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

1999 2000 2001 2002 2003 2004
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

2005 2006 2007 2008
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
2009

2010
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2011 2012 2013 2014
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
2015 2016 2017
		local_irq_disable();
		__kvm_guest_enter();
		local_irq_enable();
2018 2019
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
2020 2021 2022
		local_irq_disable();
		__kvm_guest_exit();
		local_irq_enable();
2023
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2024 2025

		rc = vcpu_post_run(vcpu, exit_reason);
2026
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2027

2028
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2029
	return rc;
2030 2031
}

2032 2033 2034 2035 2036 2037 2038 2039
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2040 2041
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
		vcpu->arch.sie_block->cputm = kvm_run->s.regs.cputm;
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2054 2055
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
	}
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
	kvm_run->s.regs.cputm = vcpu->arch.sie_block->cputm;
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
}

2076 2077
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
2078
	int rc;
2079 2080
	sigset_t sigsaved;

2081 2082 2083 2084 2085
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
		return 0;
	}

2086 2087 2088
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

2089 2090 2091 2092 2093 2094 2095
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
		pr_err_ratelimited("kvm-s390: can't run stopped vcpu %d\n",
				   vcpu->vcpu_id);
		return -EINVAL;
	}
2096

2097
	sync_regs(vcpu, kvm_run);
2098

2099
	might_fault();
2100
	rc = __vcpu_run(vcpu);
2101

2102 2103
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
2104
		rc = -EINTR;
2105
	}
2106

2107 2108 2109 2110 2111
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

2112
	if (rc == -EOPNOTSUPP) {
2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
		/* intercept cannot be handled in-kernel, prepare kvm-run */
		kvm_run->exit_reason         = KVM_EXIT_S390_SIEIC;
		kvm_run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		kvm_run->s390_sieic.ipa      = vcpu->arch.sie_block->ipa;
		kvm_run->s390_sieic.ipb      = vcpu->arch.sie_block->ipb;
		rc = 0;
	}

	if (rc == -EREMOTE) {
		/* intercept was handled, but userspace support is needed
		 * kvm_run has been prepared by the handler */
		rc = 0;
	}
2126

2127
	store_regs(vcpu, kvm_run);
2128

2129 2130 2131 2132
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu->stat.exit_userspace++;
2133
	return rc;
2134 2135 2136 2137 2138 2139 2140 2141
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
2142
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2143
{
2144
	unsigned char archmode = 1;
2145
	unsigned int px;
2146
	u64 clkcomp;
2147
	int rc;
2148

2149 2150
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
2151
			return -EFAULT;
2152 2153 2154
		gpa = SAVE_AREA_BASE;
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
2155
			return -EFAULT;
2156 2157 2158 2159 2160 2161 2162 2163
		gpa = kvm_s390_real_to_abs(vcpu, SAVE_AREA_BASE);
	}
	rc = write_guest_abs(vcpu, gpa + offsetof(struct save_area, fp_regs),
			     vcpu->arch.guest_fpregs.fprs, 128);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, gp_regs),
			      vcpu->run->s.regs.gprs, 128);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, psw),
			      &vcpu->arch.sie_block->gpsw, 16);
2164
	px = kvm_s390_get_prefix(vcpu);
2165
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, pref_reg),
2166
			      &px, 4);
2167 2168 2169 2170 2171 2172 2173
	rc |= write_guest_abs(vcpu,
			      gpa + offsetof(struct save_area, fp_ctrl_reg),
			      &vcpu->arch.guest_fpregs.fpc, 4);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, tod_reg),
			      &vcpu->arch.sie_block->todpr, 4);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, timer),
			      &vcpu->arch.sie_block->cputm, 8);
2174
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
2175 2176 2177 2178 2179 2180 2181
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, clk_cmp),
			      &clkcomp, 8);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, acc_regs),
			      &vcpu->run->s.regs.acrs, 64);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, ctrl_regs),
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
2182 2183
}

2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
	 * copying in vcpu load/put. Lets update our copies before we save
	 * it into the save area
	 */
	save_fp_ctl(&vcpu->arch.guest_fpregs.fpc);
	save_fp_regs(vcpu->arch.guest_fpregs.fprs);
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

E
Eric Farman 已提交
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
/*
 * store additional status at address
 */
int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu,
					unsigned long gpa)
{
	/* Only bits 0-53 are used for address formation */
	if (!(gpa & ~0x3ff))
		return 0;

	return write_guest_abs(vcpu, gpa & ~0x3ff,
			       (void *)&vcpu->run->s.regs.vrs, 512);
}

int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	if (!test_kvm_facility(vcpu->kvm, 129))
		return 0;

	/*
	 * The guest VXRS are in the host VXRs due to the lazy
	 * copying in vcpu load/put. Let's update our copies before we save
	 * it into the save area.
	 */
	save_vx_regs((__vector128 *)&vcpu->run->s.regs.vrs);

	return kvm_s390_store_adtl_status_unloaded(vcpu, addr);
}

2227 2228 2229
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2230
	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2246
	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2247 2248
}

2249 2250
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
2251 2252 2253 2254 2255
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

2256
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2257
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2258
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

2278
	atomic_clear_mask(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2279 2280 2281 2282
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
2283
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2284
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2285
	return;
2286 2287 2288 2289
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
2290 2291 2292 2293 2294 2295
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

2296
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2297
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2298
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2299 2300
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

2301
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2302
	kvm_s390_clear_stop_irq(vcpu);
2303

2304
	atomic_set_mask(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

2322
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2323
	return;
2324 2325
}

2326 2327 2328 2329 2330 2331 2332 2333 2334
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
2335 2336 2337 2338 2339 2340 2341
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
2342 2343 2344 2345 2346 2347 2348
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
				  struct kvm_s390_mem_op *mop)
{
	void __user *uaddr = (void __user *)mop->buf;
	void *tmpbuf = NULL;
	int r, srcu_idx;
	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
				    | KVM_S390_MEMOP_F_CHECK_ONLY;

	if (mop->flags & ~supported_flags)
		return -EINVAL;

	if (mop->size > MEM_OP_MAX_SIZE)
		return -E2BIG;

	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
		tmpbuf = vmalloc(mop->size);
		if (!tmpbuf)
			return -ENOMEM;
	}

	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

	switch (mop->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
			r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size, false);
			break;
		}
		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		if (r == 0) {
			if (copy_to_user(uaddr, tmpbuf, mop->size))
				r = -EFAULT;
		}
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
			r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size, true);
			break;
		}
		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
			r = -EFAULT;
			break;
		}
		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		break;
	default:
		r = -EINVAL;
	}

	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);

	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);

	vfree(tmpbuf);
	return r;
}

2408 2409 2410 2411 2412
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
2413
	int idx;
2414
	long r;
2415

2416
	switch (ioctl) {
2417 2418 2419 2420 2421 2422 2423 2424 2425
	case KVM_S390_IRQ: {
		struct kvm_s390_irq s390irq;

		r = -EFAULT;
		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
			break;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
		break;
	}
2426
	case KVM_S390_INTERRUPT: {
2427
		struct kvm_s390_interrupt s390int;
2428
		struct kvm_s390_irq s390irq;
2429

2430
		r = -EFAULT;
2431
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
2432
			break;
2433 2434 2435
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
2436
		break;
2437
	}
2438
	case KVM_S390_STORE_STATUS:
2439
		idx = srcu_read_lock(&vcpu->kvm->srcu);
2440
		r = kvm_s390_vcpu_store_status(vcpu, arg);
2441
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
2442
		break;
2443 2444 2445
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

2446
		r = -EFAULT;
2447
		if (copy_from_user(&psw, argp, sizeof(psw)))
2448 2449 2450
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
2451 2452
	}
	case KVM_S390_INITIAL_RESET:
2453 2454
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
2503
	case KVM_S390_VCPU_FAULT: {
2504
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
2505 2506
		break;
	}
2507 2508 2509 2510 2511 2512 2513 2514 2515
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
2516 2517 2518 2519 2520 2521 2522 2523 2524
	case KVM_S390_MEM_OP: {
		struct kvm_s390_mem_op mem_op;

		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
		else
			r = -EFAULT;
		break;
	}
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
	case KVM_S390_SET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
		    irq_state.len == 0 ||
		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_set_irq_state(vcpu,
					   (void __user *) irq_state.buf,
					   irq_state.len);
		break;
	}
	case KVM_S390_GET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len == 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_get_irq_state(vcpu,
					   (__u8 __user *)  irq_state.buf,
					   irq_state.len);
		break;
	}
2557
	default:
2558
		r = -ENOTTY;
2559
	}
2560
	return r;
2561 2562
}

2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

2576 2577
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
2578 2579 2580 2581
{
	return 0;
}

2582
/* Section: memory related */
2583 2584
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
2585 2586
				   struct kvm_userspace_memory_region *mem,
				   enum kvm_mr_change change)
2587
{
2588 2589 2590 2591
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
2592

2593
	if (mem->userspace_addr & 0xffffful)
2594 2595
		return -EINVAL;

2596
	if (mem->memory_size & 0xffffful)
2597 2598
		return -EINVAL;

2599 2600 2601 2602 2603
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
				struct kvm_userspace_memory_region *mem,
2604 2605
				const struct kvm_memory_slot *old,
				enum kvm_mr_change change)
2606
{
2607
	int rc;
2608

2609 2610 2611 2612 2613 2614 2615 2616 2617 2618
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
2619 2620 2621 2622

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
2623
		printk(KERN_WARNING "kvm-s390: failed to commit memory region\n");
2624
	return;
2625 2626 2627 2628
}

static int __init kvm_s390_init(void)
{
2629
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2630 2631 2632 2633 2634 2635 2636 2637 2638
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
2639 2640 2641 2642 2643 2644 2645 2646 2647

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");