- 21 6月, 2016 11 次提交
-
-
由 David Hildenbrand 提交于
Let's be careful first and allow nested virtualization only if enabled by the system administrator. In addition, user space still has to explicitly enable it via SCLP features for it to work. Acked-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
We have certain SIE features that we cannot support for now. Let's add these features, so user space can directly prepare to enable them, so we don't have to update yet another component. In addition, add a comment block, telling why it is for now not possible to forward/enable these features. Acked-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
Guest 2 sets up the epoch of guest 3 from his point of view. Therefore, we have to add the guest 2 epoch to the guest 3 epoch. We also have to take care of guest 2 epoch changes on STP syncs. This will work just fine by also updating the guest 3 epoch when a vsie_block has been set for a VCPU. Acked-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
We can easily enable ibs for guest 2, so he can use it for guest 3. Acked-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
We can easily enable cei for guest 2, so he can use it for guest 3. Acked-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
We can easily enable intervention bypass for guest 2, so it can use it for guest 3. Acked-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
We can easily forward guest-storage-limit-suppression if available. One thing to care about is keeping the prefix properly mapped when gsls in toggled on/off or the mso changes in between. Therefore we better remap the prefix on any mso changes just like we already do with the prefix. Acked-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
We can easily forward the guest-PER-enhancement facility to guest 2 if available. Acked-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
As we forward the whole SCA provided by guest 2, we can directly forward SIIF if available. Acked-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
Let's provide the 64-bit-SCAO facility to guest 2, so he can set up a SCA for guest 3 that has a 64 bit address. Please note that we already require the 64 bit SCAO for our vsie implementation, in order to forward the SCA directly (by pinning the page). Acked-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
This patch adds basic support for nested virtualization on s390x, called VSIE (virtual SIE) and allows it to be used by the guest if the necessary facilities are supported by the hardware and enabled for the guest. In order to make this work, we have to shadow the sie control block provided by guest 2. In order to gain some performance, we have to reuse the same shadow blocks as good as possible. For now, we allow as many shadow blocks as we have VCPUs (that way, every VCPU can run the VSIE concurrently). We have to watch out for the prefix getting unmapped out of our shadow gmap and properly get the VCPU out of VSIE in that case, to fault the prefix pages back in. We use the PROG_REQUEST bit for that purpose. This patch is based on an initial prototype by Tobias Elpelt. Acked-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
- 20 6月, 2016 5 次提交
-
-
由 David Hildenbrand 提交于
Nested virtualization will have to enable own gmaps. Current code would enable the wrong gmap whenever scheduled out and back in, therefore resulting in the wrong gmap being enabled. This patch reenables the last enabled gmap, therefore avoiding having to touch vcpu->arch.gmap when enabling a different gmap. Acked-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
The default kvm gmap notifier doesn't have to handle shadow gmaps. So let's just directly exit in case we get notified about one. Acked-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Martin Schwidefsky 提交于
Let's use a reference counter mechanism to control the lifetime of gmap structures. This will be needed for further changes related to gmap shadows. Reviewed-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Martin Schwidefsky 提交于
The current gmap pte notifier forces a pte into to a read-write state. If the pte is invalidated the gmap notifier is called to inform KVM that the mapping will go away. Extend this approach to allow read-write, read-only and no-access as possible target states and call the pte notifier for any change to the pte. This mechanism is used to temporarily set specific access rights for a pte without doing the heavy work of a true mprotect call. Reviewed-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Martin Schwidefsky 提交于
Pass an address range to the page table invalidation notifier for KVM. This allows to notify changes that affect a larger virtual memory area, e.g. for 1MB pages. Reviewed-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
- 16 6月, 2016 1 次提交
-
-
由 Paolo Bonzini 提交于
The new created_vcpus field avoids possible races between enabling capabilities and creating VCPUs. Acked-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 10 6月, 2016 20 次提交
-
-
由 David Hildenbrand 提交于
No need to convert the storage key into an unsigned long, the target function expects a char as argument. Reviewed-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
Let's just split returning the key and reporting errors. This makes calling code easier and avoids bugs as happened already. Reviewed-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Martin Schwidefsky 提交于
Move the mmap semaphore locking out of set_guest_storage_key and get_guest_storage_key. This makes the two functions more like the other ptep_xxx operations and allows to avoid repeated semaphore operations if multiple keys are read or written. Reviewed-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Reviewed-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NMartin Schwidefsky <schwidefsky@de.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
Constrained transactional execution is an addon of transactional execution. Let's enable the assist also if only TX is enabled for the guest. Reviewed-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
host-protection-interruption control was introduced with ESOP. So let's enable it only if we have ESOP and add an explanatory comment why we can live without it. Reviewed-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
Let's enable interlock-and-broadcast suppression only if the facility is actually available. Reviewed-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
Let's enable interpretation of PFMFI only if the facility is actually available. Emulation code still works in case the guest is offered EDAT-1. Reviewed-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
Let's only enable conditional-external-interruption if the facility is actually available. Reviewed-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
Let's enable intervention bypass only if the facility is acutally available. Reviewed-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
If guest-storage-limit-suppression is not available, we would for now have a valid guest address space with size 0. So let's simply set the origin to 0 and the limit to hamax. Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
Let's not provide the device attribute for cmma enabling and clearing if the hardware doesn't support it. This also helps getting rid of the undocumented return value "-EINVAL" in case CMMA is not available when trying to enable it. Also properly document the meaning of -EINVAL for CMMA clearing. Reviewed-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
Now that we can detect if collaborative-memory-management interpretation is available, replace the heuristic by a real hardware detection. Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
Without guest-PER enhancement, we can't provide any debugging support. Therefore act like kernel support is missing. Reviewed-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
Without that facility, we may only use scaol. So fallback to DMA allocation in that case, so we won't overwrite random memory via the SIE. Also disallow ESCA, so we don't have to handle that allocation case. Reviewed-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
We have certain instructions that indicate available subfunctions via a query subfunction (crypto functions and ptff), or via a test bit function (plo). By exposing these "subfunction blocks" to user space, we allow user space to 1) query available subfunctions and make sure subfunctions won't get lost during migration - e.g. properly indicate them via a CPU model 2) change the subfunctions to be reported to the guest (even adding unavailable ones) This mechanism works just like the way we indicate the stfl(e) list to user space. This way, user space could even emulate some subfunctions in QEMU in the future. If this is ever applicable, we have to make sure later on, that unsupported subfunctions result in an intercept to QEMU. Please note that support to indicate them to the guest is still missing and requires hardware support. Usually, the IBC takes already care of these subfunctions for migration safety. QEMU should make sure to always set these bits properly according to the machine generation to be emulated. Available subfunctions are only valid in combination with STFLE bits retrieved via KVM_S390_VM_CPU_MACHINE and enabled via KVM_S390_VM_CPU_PROCESSOR. If the applicable bits are available, the indicated subfunctions are guaranteed to be correct. Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
ESOP guarantees that during a protection exception, bit 61 of real location 168-175 will only be set to 1 if it was because of ALCP or DATP. If the exception is due to LAP or KCP, the bit will always be set to 0. The old SOP definition allowed bit 61 to be unpredictable in case of LAP or KCP in some conditions. So ESOP replaces this unpredictability by a guarantee. Therefore, we can directly forward ESOP if it is available on our machine. We don't have to do anything when ESOP is disabled - the guest will simply expect unpredictable values. Our guest access functions are already handling ESOP properly. Please note that future functionality in KVM will require knowledge about ESOP being enabled for a guest or not. Reviewed-by: NChristian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 David Hildenbrand 提交于
For now, we only have an interface to query and configure facilities indicated via STFL(E). However, we also have features indicated via SCLP, that have to be indicated to the guest by user space and usually require KVM support. This patch allows user space to query and configure available cpu features for the guest. Please note that disabling a feature doesn't necessarily mean that it is completely disabled (e.g. ESOP is mostly handled by the SIE). We will try our best to disable it. Most features (e.g. SCLP) can't directly be forwarded, as most of them need in addition to hardware support, support in KVM. As we later on want to turn these features in KVM explicitly on/off (to simulate different behavior), we have to filter all features provided by the hardware and make them configurable. Signed-off-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Janosch Frank 提交于
Store hypervisor information is a valid instruction not only in supervisor state but also in problem state, i.e. the guest's userspace. Its execution is not only computational and memory intensive, but also has to get hold of the ipte lock to write to the guest's memory. This lock is not intended to be held often and long, especially not from the untrusted guest userspace. Therefore we apply rate limiting of sthyi executions per VM. Signed-off-by: NJanosch Frank <frankja@linux.vnet.ibm.com> Acked-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Janosch Frank 提交于
Store Hypervisor Information is an emulated z/VM instruction that provides a guest with basic information about the layers it is running on. This includes information about the cpu configuration of both the machine and the lpar, as well as their names, machine model and machine type. This information enables an application to determine the maximum capacity of CPs and IFLs available to software. The instruction is available whenever the facility bit 74 is set, otherwise executing it results in an operation exception. It is important to check the validity flags in the sections before using data from any structure member. It is not guaranteed that all members will be valid on all machines / machine configurations. Signed-off-by: NJanosch Frank <frankja@linux.vnet.ibm.com> Reviewed-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Janosch Frank 提交于
This commit introduces code that handles operation exception interceptions. With this handler we can emulate instructions by using illegal opcodes. Signed-off-by: NJanosch Frank <frankja@linux.vnet.ibm.com> Reviewed-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
- 13 5月, 2016 1 次提交
-
-
由 Christian Borntraeger 提交于
Some wakeups should not be considered a sucessful poll. For example on s390 I/O interrupts are usually floating, which means that _ALL_ CPUs would be considered runnable - letting all vCPUs poll all the time for transactional like workload, even if one vCPU would be enough. This can result in huge CPU usage for large guests. This patch lets architectures provide a way to qualify wakeups if they should be considered a good/bad wakeups in regard to polls. For s390 the implementation will fence of halt polling for anything but known good, single vCPU events. The s390 implementation for floating interrupts does a wakeup for one vCPU, but the interrupt will be delivered by whatever CPU checks first for a pending interrupt. We prefer the woken up CPU by marking the poll of this CPU as "good" poll. This code will also mark several other wakeup reasons like IPI or expired timers as "good". This will of course also mark some events as not sucessful. As KVM on z runs always as a 2nd level hypervisor, we prefer to not poll, unless we are really sure, though. This patch successfully limits the CPU usage for cases like uperf 1byte transactional ping pong workload or wakeup heavy workload like OLTP while still providing a proper speedup. This also introduced a new vcpu stat "halt_poll_no_tuning" that marks wakeups that are considered not good for polling. Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com> Acked-by: Radim Krčmář <rkrcmar@redhat.com> (for an earlier version) Cc: David Matlack <dmatlack@google.com> Cc: Wanpeng Li <kernellwp@gmail.com> [Rename config symbol. - Paolo] Signed-off-by: NPaolo Bonzini <pbonzini@redhat.com>
-
- 09 5月, 2016 2 次提交
-
-
由 Alexander Yarygin 提交于
When a guest is initializing, KVM provides facility bits that can be successfully used by the guest. It's done by applying kvm_s390_fac_list_mask mask on host facility bits stored by the STFLE instruction. Facility bits can be one of two kinds: it's either a hypervisor managed bit or non-hypervisor managed. The hardware provides information which bits need special handling. Let's automatically passthrough to guests new facility bits, that don't require hypervisor support. Signed-off-by: NAlexander Yarygin <yarygin@linux.vnet.ibm.com> Reviewed-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Reviewed-by: NEric Farman <farman@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-
由 Alexander Yarygin 提交于
Some facility bits are in a range that is defined to be "ok for guests without any necessary hypervisor changes". Enable those bits. Signed-off-by: NAlexander Yarygin <yarygin@linux.vnet.ibm.com> Reviewed-by: NDavid Hildenbrand <dahi@linux.vnet.ibm.com> Signed-off-by: NChristian Borntraeger <borntraeger@de.ibm.com>
-