kvm-s390.c 84.2 KB
Newer Older
1
/*
2
 * hosting zSeries kernel virtual machines
3
 *
4
 * Copyright IBM Corp. 2008, 2009
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
13
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14
 *               Jason J. Herne <jjherne@us.ibm.com>
15 16 17 18 19
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
20
#include <linux/hrtimer.h>
21 22 23
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
24
#include <linux/mman.h>
25
#include <linux/module.h>
26
#include <linux/random.h>
27
#include <linux/slab.h>
28
#include <linux/timer.h>
29
#include <linux/vmalloc.h>
30
#include <linux/bitmap.h>
31
#include <asm/asm-offsets.h>
32
#include <asm/lowcore.h>
33
#include <asm/etr.h>
34
#include <asm/pgtable.h>
35
#include <asm/gmap.h>
36
#include <asm/nmi.h>
37
#include <asm/switch_to.h>
38
#include <asm/isc.h>
39
#include <asm/sclp.h>
40 41
#include <asm/cpacf.h>
#include <asm/etr.h>
42
#include "kvm-s390.h"
43 44
#include "gaccess.h"

45 46 47 48
#define KMSG_COMPONENT "kvm-s390"
#undef pr_fmt
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

49 50
#define CREATE_TRACE_POINTS
#include "trace.h"
51
#include "trace-s390.h"
52

53
#define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
54 55 56
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
			   (KVM_MAX_VCPUS + LOCAL_IRQS))
57

58 59 60 61
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
62
	{ "exit_null", VCPU_STAT(exit_null) },
63 64 65 66
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
67 68 69
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
70
	{ "exit_operation_exception", VCPU_STAT(exit_operation_exception) },
71
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
72
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
73
	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
74
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
75
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
76
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
77 78
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
79
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
80
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
81 82 83 84 85 86 87
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
88
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
89 90 91 92 93
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
	{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
94
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
95 96
	{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
	{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
97
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
98 99
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
100
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
J
Janosch Frank 已提交
101
	{ "instruction_sthyi", VCPU_STAT(instruction_sthyi) },
102
	{ "instruction_sie", VCPU_STAT(instruction_sie) },
103
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
104
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
105
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
106
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
107 108
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
109
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
110 111
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
112
	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
113 114 115
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
116 117 118
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
119
	{ "diagnose_10", VCPU_STAT(diagnose_10) },
120
	{ "diagnose_44", VCPU_STAT(diagnose_44) },
121
	{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
122 123 124
	{ "diagnose_258", VCPU_STAT(diagnose_258) },
	{ "diagnose_308", VCPU_STAT(diagnose_308) },
	{ "diagnose_500", VCPU_STAT(diagnose_500) },
125 126 127
	{ NULL }
};

128
/* upper facilities limit for kvm */
129 130 131
unsigned long kvm_s390_fac_list_mask[16] = {
	0xffe6000000000000UL,
	0x005e000000000000UL,
132
};
133

134
unsigned long kvm_s390_fac_list_mask_size(void)
135
{
136 137
	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
	return ARRAY_SIZE(kvm_s390_fac_list_mask);
138 139
}

140 141
/* available cpu features supported by kvm */
static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
142 143
/* available subfunctions indicated via query / "test bit" */
static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
144

145
static struct gmap_notifier gmap_notifier;
146
static struct gmap_notifier vsie_gmap_notifier;
147
debug_info_t *kvm_s390_dbf;
148

149
/* Section: not file related */
150
int kvm_arch_hardware_enable(void)
151 152
{
	/* every s390 is virtualization enabled ;-) */
153
	return 0;
154 155
}

156 157
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
			      unsigned long end);
158

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
/*
 * This callback is executed during stop_machine(). All CPUs are therefore
 * temporarily stopped. In order not to change guest behavior, we have to
 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
 * so a CPU won't be stopped while calculating with the epoch.
 */
static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
			  void *v)
{
	struct kvm *kvm;
	struct kvm_vcpu *vcpu;
	int i;
	unsigned long long *delta = v;

	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm->arch.epoch -= *delta;
		kvm_for_each_vcpu(i, vcpu, kvm) {
			vcpu->arch.sie_block->epoch -= *delta;
177 178
			if (vcpu->arch.cputm_enabled)
				vcpu->arch.cputm_start += *delta;
179 180 181 182 183 184 185 186 187
		}
	}
	return NOTIFY_OK;
}

static struct notifier_block kvm_clock_notifier = {
	.notifier_call = kvm_clock_sync,
};

188 189
int kvm_arch_hardware_setup(void)
{
190
	gmap_notifier.notifier_call = kvm_gmap_notifier;
191
	gmap_register_pte_notifier(&gmap_notifier);
192 193
	vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier;
	gmap_register_pte_notifier(&vsie_gmap_notifier);
194 195
	atomic_notifier_chain_register(&s390_epoch_delta_notifier,
				       &kvm_clock_notifier);
196 197 198 199 200
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
201
	gmap_unregister_pte_notifier(&gmap_notifier);
202
	gmap_unregister_pte_notifier(&vsie_gmap_notifier);
203 204
	atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
					 &kvm_clock_notifier);
205 206
}

207 208 209 210 211
static void allow_cpu_feat(unsigned long nr)
{
	set_bit_inv(nr, kvm_s390_available_cpu_feat);
}

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
static inline int plo_test_bit(unsigned char nr)
{
	register unsigned long r0 asm("0") = (unsigned long) nr | 0x100;
	int cc = 3; /* subfunction not available */

	asm volatile(
		/* Parameter registers are ignored for "test bit" */
		"	plo	0,0,0,0(0)\n"
		"	ipm	%0\n"
		"	srl	%0,28\n"
		: "=d" (cc)
		: "d" (r0)
		: "cc");
	return cc == 0;
}

228 229
static void kvm_s390_cpu_feat_init(void)
{
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
	int i;

	for (i = 0; i < 256; ++i) {
		if (plo_test_bit(i))
			kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
	}

	if (test_facility(28)) /* TOD-clock steering */
		etr_ptff(kvm_s390_available_subfunc.ptff, ETR_PTFF_QAF);

	if (test_facility(17)) { /* MSA */
		__cpacf_query(CPACF_KMAC, kvm_s390_available_subfunc.kmac);
		__cpacf_query(CPACF_KMC, kvm_s390_available_subfunc.kmc);
		__cpacf_query(CPACF_KM, kvm_s390_available_subfunc.km);
		__cpacf_query(CPACF_KIMD, kvm_s390_available_subfunc.kimd);
		__cpacf_query(CPACF_KLMD, kvm_s390_available_subfunc.klmd);
	}
	if (test_facility(76)) /* MSA3 */
		__cpacf_query(CPACF_PCKMO, kvm_s390_available_subfunc.pckmo);
	if (test_facility(77)) { /* MSA4 */
		__cpacf_query(CPACF_KMCTR, kvm_s390_available_subfunc.kmctr);
		__cpacf_query(CPACF_KMF, kvm_s390_available_subfunc.kmf);
		__cpacf_query(CPACF_KMO, kvm_s390_available_subfunc.kmo);
		__cpacf_query(CPACF_PCC, kvm_s390_available_subfunc.pcc);
	}
	if (test_facility(57)) /* MSA5 */
		__cpacf_query(CPACF_PPNO, kvm_s390_available_subfunc.ppno);

258 259
	if (MACHINE_HAS_ESOP)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
260 261 262 263 264 265 266 267
	/*
	 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow),
	 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing).
	 */
	if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao ||
	    !test_facility(3))
		return;
	allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2);
268 269
	if (sclp.has_64bscao)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO);
270 271
	if (sclp.has_siif)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF);
272 273
	if (sclp.has_gpere)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE);
274 275
	if (sclp.has_gsls)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS);
276 277
	if (sclp.has_ib)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB);
278 279
	if (sclp.has_cei)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI);
280 281
}

282 283
int kvm_arch_init(void *opaque)
{
284 285 286 287 288 289 290 291 292
	kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
	if (!kvm_s390_dbf)
		return -ENOMEM;

	if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
		debug_unregister(kvm_s390_dbf);
		return -ENOMEM;
	}

293 294
	kvm_s390_cpu_feat_init();

295 296
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
297 298
}

299 300 301 302 303
void kvm_arch_exit(void)
{
	debug_unregister(kvm_s390_dbf);
}

304 305 306 307 308 309 310 311 312
/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

313
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
314
{
315 316
	int r;

317
	switch (ext) {
318
	case KVM_CAP_S390_PSW:
319
	case KVM_CAP_S390_GMAP:
320
	case KVM_CAP_SYNC_MMU:
321 322 323
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
324
	case KVM_CAP_ASYNC_PF:
325
	case KVM_CAP_SYNC_REGS:
326
	case KVM_CAP_ONE_REG:
327
	case KVM_CAP_ENABLE_CAP:
328
	case KVM_CAP_S390_CSS_SUPPORT:
C
Cornelia Huck 已提交
329
	case KVM_CAP_IOEVENTFD:
330
	case KVM_CAP_DEVICE_CTRL:
331
	case KVM_CAP_ENABLE_CAP_VM:
332
	case KVM_CAP_S390_IRQCHIP:
333
	case KVM_CAP_VM_ATTRIBUTES:
334
	case KVM_CAP_MP_STATE:
335
	case KVM_CAP_S390_INJECT_IRQ:
336
	case KVM_CAP_S390_USER_SIGP:
337
	case KVM_CAP_S390_USER_STSI:
338
	case KVM_CAP_S390_SKEYS:
339
	case KVM_CAP_S390_IRQ_STATE:
340 341
		r = 1;
		break;
342 343 344
	case KVM_CAP_S390_MEM_OP:
		r = MEM_OP_MAX_SIZE;
		break;
345 346
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
347 348 349
		r = KVM_S390_BSCA_CPU_SLOTS;
		if (sclp.has_esca && sclp.has_64bscao)
			r = KVM_S390_ESCA_CPU_SLOTS;
350
		break;
351 352 353
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
354
	case KVM_CAP_S390_COW:
355
		r = MACHINE_HAS_ESOP;
356
		break;
357 358 359
	case KVM_CAP_S390_VECTOR_REGISTERS:
		r = MACHINE_HAS_VX;
		break;
360 361 362
	case KVM_CAP_S390_RI:
		r = test_facility(64);
		break;
363
	default:
364
		r = 0;
365
	}
366
	return r;
367 368
}

369 370 371 372 373 374 375 376 377 378 379 380
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	gfn_t cur_gfn, last_gfn;
	unsigned long address;
	struct gmap *gmap = kvm->arch.gmap;

	/* Loop over all guest pages */
	last_gfn = memslot->base_gfn + memslot->npages;
	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
		address = gfn_to_hva_memslot(memslot, cur_gfn);

381
		if (test_and_clear_guest_dirty(gmap->mm, address))
382
			mark_page_dirty(kvm, cur_gfn);
383 384
		if (fatal_signal_pending(current))
			return;
385
		cond_resched();
386 387 388
	}
}

389
/* Section: vm related */
390 391
static void sca_del_vcpu(struct kvm_vcpu *vcpu);

392 393 394 395 396 397
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
398 399
	int r;
	unsigned long n;
400
	struct kvm_memslots *slots;
401 402 403 404 405 406 407 408 409
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

410 411
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
430 431
}

432 433 434 435 436 437 438 439
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
440
	case KVM_CAP_S390_IRQCHIP:
441
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
442 443 444
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
445
	case KVM_CAP_S390_USER_SIGP:
446
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
447 448 449
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
450
	case KVM_CAP_S390_VECTOR_REGISTERS:
451
		mutex_lock(&kvm->lock);
452
		if (kvm->created_vcpus) {
453 454
			r = -EBUSY;
		} else if (MACHINE_HAS_VX) {
455 456
			set_kvm_facility(kvm->arch.model.fac_mask, 129);
			set_kvm_facility(kvm->arch.model.fac_list, 129);
457 458 459
			r = 0;
		} else
			r = -EINVAL;
460
		mutex_unlock(&kvm->lock);
461 462
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
			 r ? "(not available)" : "(success)");
463
		break;
464 465 466
	case KVM_CAP_S390_RI:
		r = -EINVAL;
		mutex_lock(&kvm->lock);
467
		if (kvm->created_vcpus) {
468 469
			r = -EBUSY;
		} else if (test_facility(64)) {
470 471
			set_kvm_facility(kvm->arch.model.fac_mask, 64);
			set_kvm_facility(kvm->arch.model.fac_list, 64);
472 473 474 475 476 477
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
			 r ? "(not available)" : "(success)");
		break;
478
	case KVM_CAP_S390_USER_STSI:
479
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
480 481 482
		kvm->arch.user_stsi = 1;
		r = 0;
		break;
483 484 485 486 487 488 489
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

490 491 492 493 494 495 496
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
497
		VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
498 499
			 kvm->arch.mem_limit);
		if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
500 501 502 503 504 505 506 507 508 509
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
510 511 512 513 514
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
515
		ret = -ENXIO;
516
		if (!sclp.has_cmma)
517 518
			break;

519
		ret = -EBUSY;
520
		VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
521
		mutex_lock(&kvm->lock);
522
		if (!kvm->created_vcpus) {
523 524 525 526 527 528
			kvm->arch.use_cmma = 1;
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
529 530 531
		ret = -ENXIO;
		if (!sclp.has_cmma)
			break;
532 533 534 535
		ret = -EINVAL;
		if (!kvm->arch.use_cmma)
			break;

536
		VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
537 538
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
539
		s390_reset_cmma(kvm->arch.gmap->mm);
540 541 542 543
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
544 545 546 547 548 549 550 551 552
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

553 554
		if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
		    new_limit > kvm->arch.mem_limit)
555 556
			return -E2BIG;

557 558 559
		if (!new_limit)
			return -EINVAL;

560
		/* gmap_create takes last usable address */
561 562 563
		if (new_limit != KVM_S390_NO_MEM_LIMIT)
			new_limit -= 1;

564 565
		ret = -EBUSY;
		mutex_lock(&kvm->lock);
566
		if (!kvm->created_vcpus) {
567 568
			/* gmap_create will round the limit up */
			struct gmap *new = gmap_create(current->mm, new_limit);
569 570 571 572

			if (!new) {
				ret = -ENOMEM;
			} else {
573
				gmap_remove(kvm->arch.gmap);
574 575 576 577 578 579
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
580 581 582
		VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
		VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
			 (void *) kvm->arch.gmap->asce);
583 584
		break;
	}
585 586 587 588 589 590 591
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

592 593 594 595 596 597 598
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *vcpu;
	int i;

599
	if (!test_kvm_facility(kvm, 76))
600 601 602 603 604 605 606 607 608
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
609
		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
610 611 612 613 614 615
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
616
		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
617 618 619 620 621
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
622
		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
623 624 625 626 627
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
628
		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
629 630 631 632 633 634 635 636 637 638 639 640 641 642
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_vcpu_crypto_setup(vcpu);
		exit_sie(vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

643 644 645 646 647 648 649 650 651 652
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;
653
	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
654 655 656 657 658 659

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
660
	u64 gtod;
661 662 663 664

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

665
	kvm_s390_set_tod_clock(kvm, gtod);
666
	VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod);
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;
698
	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
699 700 701 702 703 704

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
705
	u64 gtod;
706

707
	gtod = kvm_s390_get_tod_clock_fast(kvm);
708 709
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;
710
	VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

736 737 738
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
739
	u16 lowest_ibc, unblocked_ibc;
740 741 742
	int ret = 0;

	mutex_lock(&kvm->lock);
743
	if (kvm->created_vcpus) {
744 745 746 747 748 749 750 751 752 753
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
754
		kvm->arch.model.cpuid = proc->cpuid;
755 756 757 758 759 760 761 762 763 764
		lowest_ibc = sclp.ibc >> 16 & 0xfff;
		unblocked_ibc = sclp.ibc & 0xfff;
		if (lowest_ibc) {
			if (proc->ibc > unblocked_ibc)
				kvm->arch.model.ibc = unblocked_ibc;
			else if (proc->ibc < lowest_ibc)
				kvm->arch.model.ibc = lowest_ibc;
			else
				kvm->arch.model.ibc = proc->ibc;
		}
765
		memcpy(kvm->arch.model.fac_list, proc->fac_list,
766 767 768 769 770 771 772 773 774
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
static int kvm_s390_set_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;
	int ret = -EBUSY;

	if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
		return -EFAULT;
	if (!bitmap_subset((unsigned long *) data.feat,
			   kvm_s390_available_cpu_feat,
			   KVM_S390_VM_CPU_FEAT_NR_BITS))
		return -EINVAL;

	mutex_lock(&kvm->lock);
	if (!atomic_read(&kvm->online_vcpus)) {
		bitmap_copy(kvm->arch.cpu_feat, (unsigned long *) data.feat,
			    KVM_S390_VM_CPU_FEAT_NR_BITS);
		ret = 0;
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

798 799 800 801 802 803 804 805 806 807
static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once supported by kernel + hw, we have to store the subfunctions
	 * in kvm->arch and remember that user space configured them.
	 */
	return -ENXIO;
}

808 809 810 811 812 813 814 815
static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
816 817 818
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_set_processor_feat(kvm, attr);
		break;
819 820 821
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_set_processor_subfunc(kvm, attr);
		break;
822 823 824 825 826 827 828 829 830 831 832 833 834 835
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
836
	proc->cpuid = kvm->arch.model.cpuid;
837
	proc->ibc = kvm->arch.model.ibc;
838 839
	memcpy(&proc->fac_list, kvm->arch.model.fac_list,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
858
	mach->ibc = sclp.ibc;
859
	memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
860
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
861
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
862
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
863 864 865 866 867 868 869
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
static int kvm_s390_get_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat, kvm->arch.cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

static int kvm_s390_get_machine_feat(struct kvm *kvm,
				     struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat,
		    kvm_s390_available_cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once we can actually configure subfunctions (kernel + hw support),
	 * we have to check if they were already set by user space, if so copy
	 * them from kvm->arch.
	 */
	return -ENXIO;
}

static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
					struct kvm_device_attr *attr)
{
	if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
	    sizeof(struct kvm_s390_vm_cpu_subfunc)))
		return -EFAULT;
	return 0;
}
914 915 916 917 918 919 920 921 922 923 924
static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
925 926 927 928 929 930
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_get_processor_feat(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_FEAT:
		ret = kvm_s390_get_machine_feat(kvm, attr);
		break;
931 932 933 934 935 936
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_get_processor_subfunc(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
		ret = kvm_s390_get_machine_subfunc(kvm, attr);
		break;
937 938 939 940
	}
	return ret;
}

941 942 943 944 945
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
946
	case KVM_S390_VM_MEM_CTRL:
947
		ret = kvm_s390_set_mem_control(kvm, attr);
948
		break;
949 950 951
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
952 953 954
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
955 956 957
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
958 959 960 961 962 963 964 965 966 967
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
968 969 970 971 972 973
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
974 975 976
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
977 978 979
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
980 981 982 983 984 985
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
986 987 988 989 990 991 992
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
993 994 995 996
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
997 998
			ret = sclp.has_cmma ? 0 : -ENXIO;
			break;
999
		case KVM_S390_VM_MEM_LIMIT_SIZE:
1000 1001 1002 1003 1004 1005 1006
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1018 1019 1020 1021
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
1022 1023
		case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		case KVM_S390_VM_CPU_MACHINE_FEAT:
1024
		case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
1025 1026
			ret = 0;
			break;
1027 1028
		/* configuring subfunctions is not supported yet */
		case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1029 1030 1031 1032 1033
		default:
			ret = -ENXIO;
			break;
		}
		break;
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1047 1048 1049 1050 1051 1052 1053 1054
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Is this guest using storage keys? */
	if (!mm_use_skey(current->mm))
		return KVM_S390_GET_SKEYS_NONE;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

1079
	down_read(&current->mm->mmap_sem);
1080 1081 1082 1083
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1084
			break;
1085 1086
		}

1087 1088
		r = get_guest_storage_key(current->mm, hva, &keys[i]);
		if (r)
1089
			break;
1090
	}
1091 1092 1093 1094 1095 1096 1097 1098
	up_read(&current->mm->mmap_sem);

	if (!r) {
		r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
				 sizeof(uint8_t) * args->count);
		if (r)
			r = -EFAULT;
	}
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131

	kvfree(keys);
	return r;
}

static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
			   sizeof(uint8_t) * args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	/* Enable storage key handling for the guest */
1132 1133 1134
	r = s390_enable_skey();
	if (r)
		goto out;
1135

1136
	down_read(&current->mm->mmap_sem);
1137 1138 1139 1140
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1141
			break;
1142 1143 1144 1145 1146
		}

		/* Lowest order bit is reserved */
		if (keys[i] & 0x01) {
			r = -EINVAL;
1147
			break;
1148 1149
		}

1150
		r = set_guest_storage_key(current->mm, hva, keys[i], 0);
1151
		if (r)
1152
			break;
1153
	}
1154
	up_read(&current->mm->mmap_sem);
1155 1156 1157 1158 1159
out:
	kvfree(keys);
	return r;
}

1160 1161 1162 1163 1164
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
1165
	struct kvm_device_attr attr;
1166 1167 1168
	int r;

	switch (ioctl) {
1169 1170 1171 1172 1173 1174 1175 1176 1177
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
1178 1179 1180 1181 1182 1183 1184 1185
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
1186 1187 1188 1189 1190 1191 1192
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
1193
			r = kvm_set_irq_routing(kvm, &routing, 0, 0);
1194 1195 1196
		}
		break;
	}
1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
	case KVM_S390_GET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_get_skeys(kvm, &args);
		break;
	}
	case KVM_S390_SET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_set_skeys(kvm, &args);
		break;
	}
1238
	default:
1239
		r = -ENOTTY;
1240 1241 1242 1243 1244
	}

	return r;
}

1245 1246 1247
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
1248
	u32 cc = 0;
1249

1250
	memset(config, 0, 128);
1251 1252 1253 1254
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
1255
		"0: ipm %0\n"
1256
		"srl %0,28\n"
1257 1258 1259
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

1272
	if (test_facility(12)) {
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

1294
static u64 kvm_s390_get_initial_cpuid(void)
1295
{
1296 1297 1298 1299 1300
	struct cpuid cpuid;

	get_cpu_id(&cpuid);
	cpuid.version = 0xff;
	return *((u64 *) &cpuid);
1301 1302
}

1303
static void kvm_s390_crypto_init(struct kvm *kvm)
1304
{
1305
	if (!test_kvm_facility(kvm, 76))
1306
		return;
1307

1308
	kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
1309
	kvm_s390_set_crycb_format(kvm);
1310

1311 1312 1313 1314 1315 1316 1317
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1318 1319
}

1320 1321 1322
static void sca_dispose(struct kvm *kvm)
{
	if (kvm->arch.use_esca)
1323
		free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
1324 1325 1326 1327 1328
	else
		free_page((unsigned long)(kvm->arch.sca));
	kvm->arch.sca = NULL;
}

1329
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1330
{
1331
	gfp_t alloc_flags = GFP_KERNEL;
1332
	int i, rc;
1333
	char debug_name[16];
1334
	static unsigned long sca_offset;
1335

1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

1347 1348
	rc = s390_enable_sie();
	if (rc)
1349
		goto out_err;
1350

1351 1352
	rc = -ENOMEM;

J
Janosch Frank 已提交
1353 1354
	ratelimit_state_init(&kvm->arch.sthyi_limit, 5 * HZ, 500);

1355
	kvm->arch.use_esca = 0; /* start with basic SCA */
1356 1357
	if (!sclp.has_64bscao)
		alloc_flags |= GFP_DMA;
1358
	rwlock_init(&kvm->arch.sca_lock);
1359
	kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags);
1360
	if (!kvm->arch.sca)
1361
		goto out_err;
1362
	spin_lock(&kvm_lock);
1363
	sca_offset += 16;
1364
	if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
1365
		sca_offset = 0;
1366 1367
	kvm->arch.sca = (struct bsca_block *)
			((char *) kvm->arch.sca + sca_offset);
1368
	spin_unlock(&kvm_lock);
1369 1370 1371

	sprintf(debug_name, "kvm-%u", current->pid);

1372
	kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1373
	if (!kvm->arch.dbf)
1374
		goto out_err;
1375

1376 1377 1378
	kvm->arch.sie_page2 =
	     (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.sie_page2)
1379
		goto out_err;
1380

1381
	/* Populate the facility mask initially. */
1382
	memcpy(kvm->arch.model.fac_mask, S390_lowcore.stfle_fac_list,
1383
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1384 1385
	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
		if (i < kvm_s390_fac_list_mask_size())
1386
			kvm->arch.model.fac_mask[i] &= kvm_s390_fac_list_mask[i];
1387
		else
1388
			kvm->arch.model.fac_mask[i] = 0UL;
1389 1390
	}

1391
	/* Populate the facility list initially. */
1392 1393
	kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
	memcpy(kvm->arch.model.fac_list, kvm->arch.model.fac_mask,
1394 1395
	       S390_ARCH_FAC_LIST_SIZE_BYTE);

J
Janosch Frank 已提交
1396 1397 1398
	set_kvm_facility(kvm->arch.model.fac_mask, 74);
	set_kvm_facility(kvm->arch.model.fac_list, 74);

1399
	kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
1400
	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1401

1402
	kvm_s390_crypto_init(kvm);
1403

1404
	spin_lock_init(&kvm->arch.float_int.lock);
1405 1406
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1407
	init_waitqueue_head(&kvm->arch.ipte_wq);
1408
	mutex_init(&kvm->arch.ipte_mutex);
1409

1410
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1411
	VM_EVENT(kvm, 3, "vm created with type %lu", type);
1412

1413 1414
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
1415
		kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
1416
	} else {
1417 1418 1419 1420 1421
		if (sclp.hamax == U64_MAX)
			kvm->arch.mem_limit = TASK_MAX_SIZE;
		else
			kvm->arch.mem_limit = min_t(unsigned long, TASK_MAX_SIZE,
						    sclp.hamax + 1);
1422
		kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1);
1423
		if (!kvm->arch.gmap)
1424
			goto out_err;
1425
		kvm->arch.gmap->private = kvm;
1426
		kvm->arch.gmap->pfault_enabled = 0;
1427
	}
1428 1429

	kvm->arch.css_support = 0;
1430
	kvm->arch.use_irqchip = 0;
1431
	kvm->arch.epoch = 0;
1432

1433
	spin_lock_init(&kvm->arch.start_stop_lock);
1434
	kvm_s390_vsie_init(kvm);
1435
	KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
1436

1437
	return 0;
1438
out_err:
1439
	free_page((unsigned long)kvm->arch.sie_page2);
1440
	debug_unregister(kvm->arch.dbf);
1441
	sca_dispose(kvm);
1442
	KVM_EVENT(3, "creation of vm failed: %d", rc);
1443
	return rc;
1444 1445
}

1446 1447 1448
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1449
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1450
	kvm_s390_clear_local_irqs(vcpu);
1451
	kvm_clear_async_pf_completion_queue(vcpu);
1452
	if (!kvm_is_ucontrol(vcpu->kvm))
1453
		sca_del_vcpu(vcpu);
1454 1455

	if (kvm_is_ucontrol(vcpu->kvm))
1456
		gmap_remove(vcpu->arch.gmap);
1457

1458
	if (vcpu->kvm->arch.use_cmma)
1459
		kvm_s390_vcpu_unsetup_cmma(vcpu);
1460
	free_page((unsigned long)(vcpu->arch.sie_block));
1461

1462
	kvm_vcpu_uninit(vcpu);
1463
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1464 1465 1466 1467 1468
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
1469
	struct kvm_vcpu *vcpu;
1470

1471 1472 1473 1474 1475 1476 1477 1478 1479
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
1480 1481
}

1482 1483
void kvm_arch_destroy_vm(struct kvm *kvm)
{
1484
	kvm_free_vcpus(kvm);
1485
	sca_dispose(kvm);
1486
	debug_unregister(kvm->arch.dbf);
1487
	free_page((unsigned long)kvm->arch.sie_page2);
1488
	if (!kvm_is_ucontrol(kvm))
1489
		gmap_remove(kvm->arch.gmap);
1490
	kvm_s390_destroy_adapters(kvm);
1491
	kvm_s390_clear_float_irqs(kvm);
1492
	kvm_s390_vsie_destroy(kvm);
1493
	KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
1494 1495 1496
}

/* Section: vcpu related */
1497 1498
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
1499
	vcpu->arch.gmap = gmap_create(current->mm, -1UL);
1500 1501 1502 1503 1504 1505 1506
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

1507 1508
static void sca_del_vcpu(struct kvm_vcpu *vcpu)
{
1509
	read_lock(&vcpu->kvm->arch.sca_lock);
1510 1511
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1512

1513
		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1514
		sca->cpu[vcpu->vcpu_id].sda = 0;
1515 1516 1517 1518
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1519
		sca->cpu[vcpu->vcpu_id].sda = 0;
1520
	}
1521
	read_unlock(&vcpu->kvm->arch.sca_lock);
1522 1523
}

1524
static void sca_add_vcpu(struct kvm_vcpu *vcpu)
1525
{
1526 1527 1528
	read_lock(&vcpu->kvm->arch.sca_lock);
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1529

1530
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1531 1532
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
1533
		vcpu->arch.sie_block->ecb2 |= 0x04U;
1534
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1535
	} else {
1536
		struct bsca_block *sca = vcpu->kvm->arch.sca;
1537

1538
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1539 1540
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
1541
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1542
	}
1543
	read_unlock(&vcpu->kvm->arch.sca_lock);
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
}

/* Basic SCA to Extended SCA data copy routines */
static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
{
	d->sda = s->sda;
	d->sigp_ctrl.c = s->sigp_ctrl.c;
	d->sigp_ctrl.scn = s->sigp_ctrl.scn;
}

static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
{
	int i;

	d->ipte_control = s->ipte_control;
	d->mcn[0] = s->mcn;
	for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
		sca_copy_entry(&d->cpu[i], &s->cpu[i]);
}

static int sca_switch_to_extended(struct kvm *kvm)
{
	struct bsca_block *old_sca = kvm->arch.sca;
	struct esca_block *new_sca;
	struct kvm_vcpu *vcpu;
	unsigned int vcpu_idx;
	u32 scaol, scaoh;

	new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
	if (!new_sca)
		return -ENOMEM;

	scaoh = (u32)((u64)(new_sca) >> 32);
	scaol = (u32)(u64)(new_sca) & ~0x3fU;

	kvm_s390_vcpu_block_all(kvm);
	write_lock(&kvm->arch.sca_lock);

	sca_copy_b_to_e(new_sca, old_sca);

	kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
		vcpu->arch.sie_block->scaoh = scaoh;
		vcpu->arch.sie_block->scaol = scaol;
		vcpu->arch.sie_block->ecb2 |= 0x04U;
	}
	kvm->arch.sca = new_sca;
	kvm->arch.use_esca = 1;

	write_unlock(&kvm->arch.sca_lock);
	kvm_s390_vcpu_unblock_all(kvm);

	free_page((unsigned long)old_sca);

1597 1598
	VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
		 old_sca, kvm->arch.sca);
1599
	return 0;
1600 1601 1602 1603
}

static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
{
1604 1605 1606 1607
	int rc;

	if (id < KVM_S390_BSCA_CPU_SLOTS)
		return true;
1608
	if (!sclp.has_esca || !sclp.has_64bscao)
1609 1610 1611 1612 1613 1614 1615
		return false;

	mutex_lock(&kvm->lock);
	rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
	mutex_unlock(&kvm->lock);

	return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
1616 1617
}

1618 1619
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1620 1621
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1622 1623
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
1624
				    KVM_SYNC_ACRS |
1625 1626 1627
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
1628 1629
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
1630 1631 1632 1633
	/* fprs can be synchronized via vrs, even if the guest has no vx. With
	 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
	 */
	if (MACHINE_HAS_VX)
1634
		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1635 1636
	else
		vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
1637 1638 1639 1640

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

1641 1642 1643
	return 0;
}

1644 1645 1646 1647
/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
1648
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1649
	vcpu->arch.cputm_start = get_tod_clock_fast();
1650
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1651 1652 1653 1654 1655 1656
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
1657
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1658 1659
	vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	vcpu->arch.cputm_start = 0;
1660
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_enabled);
	vcpu->arch.cputm_enabled = true;
	__start_cpu_timer_accounting(vcpu);
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
	__stop_cpu_timer_accounting(vcpu);
	vcpu->arch.cputm_enabled = false;
}

static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__enable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__disable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

1693 1694 1695
/* set the cpu timer - may only be called from the VCPU thread itself */
void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
{
1696
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1697
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1698 1699
	if (vcpu->arch.cputm_enabled)
		vcpu->arch.cputm_start = get_tod_clock_fast();
1700
	vcpu->arch.sie_block->cputm = cputm;
1701
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1702
	preempt_enable();
1703 1704
}

1705
/* update and get the cpu timer - can also be called from other VCPU threads */
1706 1707
__u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
{
1708
	unsigned int seq;
1709 1710 1711 1712 1713
	__u64 value;

	if (unlikely(!vcpu->arch.cputm_enabled))
		return vcpu->arch.sie_block->cputm;

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	do {
		seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
		/*
		 * If the writer would ever execute a read in the critical
		 * section, e.g. in irq context, we have a deadlock.
		 */
		WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
		value = vcpu->arch.sie_block->cputm;
		/* if cputm_start is 0, accounting is being started/stopped */
		if (likely(vcpu->arch.cputm_start))
			value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	} while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
	preempt_enable();
1728
	return value;
1729 1730
}

1731 1732
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
1733
	/* Save host register state */
1734
	save_fpu_regs();
1735 1736
	vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
	vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
1737

1738 1739 1740 1741
	if (MACHINE_HAS_VX)
		current->thread.fpu.regs = vcpu->run->s.regs.vrs;
	else
		current->thread.fpu.regs = vcpu->run->s.regs.fprs;
1742
	current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
1743
	if (test_fp_ctl(current->thread.fpu.fpc))
1744
		/* User space provided an invalid FPC, let's clear it */
1745 1746 1747
		current->thread.fpu.fpc = 0;

	save_access_regs(vcpu->arch.host_acrs);
1748
	restore_access_regs(vcpu->run->s.regs.acrs);
1749
	gmap_enable(vcpu->arch.enabled_gmap);
1750
	atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1751
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1752
		__start_cpu_timer_accounting(vcpu);
1753
	vcpu->cpu = cpu;
1754 1755 1756 1757
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
1758
	vcpu->cpu = -1;
1759
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1760
		__stop_cpu_timer_accounting(vcpu);
1761
	atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1762 1763
	vcpu->arch.enabled_gmap = gmap_get_enabled();
	gmap_disable(vcpu->arch.enabled_gmap);
1764

1765
	/* Save guest register state */
1766
	save_fpu_regs();
1767
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
1768

1769 1770 1771
	/* Restore host register state */
	current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
	current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
1772 1773

	save_access_regs(vcpu->run->s.regs.acrs);
1774 1775 1776 1777 1778 1779 1780 1781
	restore_access_regs(vcpu->arch.host_acrs);
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
1782
	kvm_s390_set_prefix(vcpu, 0);
1783
	kvm_s390_set_cpu_timer(vcpu, 0);
1784 1785 1786 1787 1788
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
1789 1790 1791
	/* make sure the new fpc will be lazily loaded */
	save_fpu_regs();
	current->thread.fpu.fpc = 0;
1792
	vcpu->arch.sie_block->gbea = 1;
1793
	vcpu->arch.sie_block->pp = 0;
1794 1795
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1796 1797
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
1798
	kvm_s390_clear_local_irqs(vcpu);
1799 1800
}

1801
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1802
{
1803
	mutex_lock(&vcpu->kvm->lock);
1804
	preempt_disable();
1805
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
1806
	preempt_enable();
1807
	mutex_unlock(&vcpu->kvm->lock);
1808
	if (!kvm_is_ucontrol(vcpu->kvm)) {
1809
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1810
		sca_add_vcpu(vcpu);
1811
	}
1812 1813
	/* make vcpu_load load the right gmap on the first trigger */
	vcpu->arch.enabled_gmap = vcpu->arch.gmap;
1814 1815
}

1816 1817
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
1818
	if (!test_kvm_facility(vcpu->kvm, 76))
1819 1820
		return;

1821 1822 1823 1824 1825 1826 1827
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

1828 1829 1830
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;

	vcpu->arch.sie_block->ecb2 |= 0x80;
	vcpu->arch.sie_block->ecb2 &= ~0x08;
	return 0;
}

1848 1849 1850 1851 1852
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;

	vcpu->arch.sie_block->ibc = model->ibc;
1853
	if (test_kvm_facility(vcpu->kvm, 7))
1854
		vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list;
1855 1856
}

1857 1858
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
1859
	int rc = 0;
1860

1861 1862
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
1863 1864
						    CPUSTAT_STOPPED);

1865
	if (test_kvm_facility(vcpu->kvm, 78))
1866
		atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
1867
	else if (test_kvm_facility(vcpu->kvm, 8))
1868
		atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
1869

1870 1871
	kvm_s390_vcpu_setup_model(vcpu);

1872 1873 1874
	/* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */
	if (MACHINE_HAS_ESOP)
		vcpu->arch.sie_block->ecb |= 0x02;
1875 1876
	if (test_kvm_facility(vcpu->kvm, 9))
		vcpu->arch.sie_block->ecb |= 0x04;
1877
	if (test_kvm_facility(vcpu->kvm, 73))
1878 1879
		vcpu->arch.sie_block->ecb |= 0x10;

1880
	if (test_kvm_facility(vcpu->kvm, 8) && sclp.has_pfmfi)
1881
		vcpu->arch.sie_block->ecb2 |= 0x08;
1882 1883 1884
	vcpu->arch.sie_block->eca = 0x1002000U;
	if (sclp.has_cei)
		vcpu->arch.sie_block->eca |= 0x80000000U;
1885 1886
	if (sclp.has_ib)
		vcpu->arch.sie_block->eca |= 0x40000000U;
1887
	if (sclp.has_siif)
1888
		vcpu->arch.sie_block->eca |= 1;
1889
	if (sclp.has_sigpif)
1890
		vcpu->arch.sie_block->eca |= 0x10000000U;
1891 1892
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->arch.sie_block->ecb3 |= 0x01;
1893
	if (test_kvm_facility(vcpu->kvm, 129)) {
1894 1895 1896
		vcpu->arch.sie_block->eca |= 0x00020000;
		vcpu->arch.sie_block->ecd |= 0x20000000;
	}
1897
	vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
1898
	vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
J
Janosch Frank 已提交
1899 1900
	if (test_kvm_facility(vcpu->kvm, 74))
		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
1901

1902
	if (vcpu->kvm->arch.use_cmma) {
1903 1904 1905
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
1906
	}
1907
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1908
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1909

1910 1911
	kvm_s390_vcpu_crypto_setup(vcpu);

1912
	return rc;
1913 1914 1915 1916 1917
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
1918
	struct kvm_vcpu *vcpu;
1919
	struct sie_page *sie_page;
1920 1921
	int rc = -EINVAL;

1922
	if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
1923 1924 1925
		goto out;

	rc = -ENOMEM;
1926

1927
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1928
	if (!vcpu)
1929
		goto out;
1930

1931 1932
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
1933 1934
		goto out_free_cpu;

1935 1936 1937
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;

1938 1939 1940 1941
	/* the real guest size will always be smaller than msl */
	vcpu->arch.sie_block->mso = 0;
	vcpu->arch.sie_block->msl = sclp.hamax;

1942
	vcpu->arch.sie_block->icpua = id;
1943 1944
	spin_lock_init(&vcpu->arch.local_int.lock);
	vcpu->arch.local_int.float_int = &kvm->arch.float_int;
1945
	vcpu->arch.local_int.wq = &vcpu->wq;
1946
	vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
1947
	seqcount_init(&vcpu->arch.cputm_seqcount);
1948

1949 1950
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
1951
		goto out_free_sie_block;
1952
	VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu,
1953
		 vcpu->arch.sie_block);
1954
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
1955 1956

	return vcpu;
1957 1958
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
1959
out_free_cpu:
1960
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1961
out:
1962 1963 1964 1965 1966
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
1967
	return kvm_s390_vcpu_has_irq(vcpu, 0);
1968 1969
}

1970
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
1971
{
1972
	atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1973
	exit_sie(vcpu);
1974 1975
}

1976
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
1977
{
1978
	atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1979 1980
}

1981 1982
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
{
1983
	atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1984
	exit_sie(vcpu);
1985 1986 1987 1988
}

static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
1989
	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1990 1991
}

1992 1993 1994 1995 1996 1997
/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
1998
	atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
1999 2000 2001 2002
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

2003 2004
/* Kick a guest cpu out of SIE to process a request synchronously */
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
2005
{
2006 2007
	kvm_make_request(req, vcpu);
	kvm_s390_vcpu_request(vcpu);
2008 2009
}

2010 2011
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
			      unsigned long end)
2012 2013 2014
{
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;
2015 2016
	unsigned long prefix;
	int i;
2017

2018 2019
	if (gmap_is_shadow(gmap))
		return;
2020 2021 2022
	if (start >= 1UL << 31)
		/* We are only interested in prefix pages */
		return;
2023 2024
	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
2025 2026 2027 2028
		prefix = kvm_s390_get_prefix(vcpu);
		if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) {
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx",
				   start, end);
2029
			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
2030 2031 2032 2033
		}
	}
}

2034 2035 2036 2037 2038 2039 2040
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

2041 2042 2043 2044 2045 2046
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
2047 2048 2049 2050 2051 2052 2053 2054
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2055
	case KVM_REG_S390_CPU_TIMER:
2056
		r = put_user(kvm_s390_get_cpu_timer(vcpu),
2057 2058 2059 2060 2061 2062
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2075 2076 2077 2078
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2079 2080 2081 2082
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;
2094
	__u64 val;
2095 2096

	switch (reg->id) {
2097 2098 2099 2100 2101 2102 2103 2104
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2105
	case KVM_REG_S390_CPU_TIMER:
2106 2107 2108
		r = get_user(val, (u64 __user *)reg->addr);
		if (!r)
			kvm_s390_set_cpu_timer(vcpu, val);
2109 2110 2111 2112 2113
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2114 2115 2116
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
2117 2118
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2119 2120 2121 2122 2123 2124 2125 2126 2127
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2128 2129 2130 2131
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2132 2133 2134 2135
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2136 2137 2138 2139 2140 2141
	default:
		break;
	}

	return r;
}
2142

2143 2144 2145 2146 2147 2148 2149 2150
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2151
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
2152 2153 2154 2155 2156
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2157
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
2158 2159 2160 2161 2162 2163
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2164
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
2165
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
2166
	restore_access_regs(vcpu->run->s.regs.acrs);
2167 2168 2169 2170 2171 2172
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2173
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
2174 2175 2176 2177 2178 2179
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2180 2181
	/* make sure the new values will be lazily loaded */
	save_fpu_regs();
2182 2183
	if (test_fp_ctl(fpu->fpc))
		return -EINVAL;
2184 2185 2186 2187 2188
	current->thread.fpu.fpc = fpu->fpc;
	if (MACHINE_HAS_VX)
		convert_fp_to_vx(current->thread.fpu.vxrs, (freg_t *)fpu->fprs);
	else
		memcpy(current->thread.fpu.fprs, &fpu->fprs, sizeof(fpu->fprs));
2189 2190 2191 2192 2193
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2194 2195 2196 2197 2198 2199 2200
	/* make sure we have the latest values */
	save_fpu_regs();
	if (MACHINE_HAS_VX)
		convert_vx_to_fp((freg_t *)fpu->fprs, current->thread.fpu.vxrs);
	else
		memcpy(fpu->fprs, current->thread.fpu.fprs, sizeof(fpu->fprs));
	fpu->fpc = current->thread.fpu.fpc;
2201 2202 2203 2204 2205 2206 2207
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

2208
	if (!is_vcpu_stopped(vcpu))
2209
		rc = -EBUSY;
2210 2211 2212 2213
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
2214 2215 2216 2217 2218 2219 2220 2221 2222
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

2223 2224 2225 2226
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
2227 2228
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
2229
{
2230 2231 2232 2233 2234
	int rc = 0;

	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

2235
	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
2236
		return -EINVAL;
2237 2238
	if (!sclp.has_gpere)
		return -EINVAL;
2239 2240 2241 2242

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
2243
		atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2244 2245 2246 2247

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
2248
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2249 2250 2251 2252 2253 2254
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
2255
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2256 2257 2258
	}

	return rc;
2259 2260
}

2261 2262 2263
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2264 2265 2266
	/* CHECK_STOP and LOAD are not supported yet */
	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				       KVM_MP_STATE_OPERATING;
2267 2268 2269 2270 2271
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
	int rc = 0;

	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

	return rc;
2292 2293
}

2294 2295 2296 2297 2298
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
	return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
}

2299 2300
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
2301
retry:
2302
	kvm_s390_vcpu_request_handled(vcpu);
2303 2304
	if (!vcpu->requests)
		return 0;
2305 2306
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
2307
	 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock.
2308 2309 2310 2311
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
2312
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
2313
		int rc;
2314 2315 2316
		rc = gmap_mprotect_notify(vcpu->arch.gmap,
					  kvm_s390_get_prefix(vcpu),
					  PAGE_SIZE * 2, PROT_WRITE);
2317 2318
		if (rc)
			return rc;
2319
		goto retry;
2320
	}
2321

2322 2323 2324 2325 2326
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

2327 2328 2329
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
2330
			atomic_or(CPUSTAT_IBS,
2331 2332 2333
					&vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
2334
	}
2335 2336 2337 2338

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
2339
			atomic_andnot(CPUSTAT_IBS,
2340 2341 2342 2343 2344
					  &vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
	}

2345 2346 2347
	/* nothing to do, just clear the request */
	clear_bit(KVM_REQ_UNHALT, &vcpu->requests);

2348 2349 2350
	return 0;
}

2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
{
	struct kvm_vcpu *vcpu;
	int i;

	mutex_lock(&kvm->lock);
	preempt_disable();
	kvm->arch.epoch = tod - get_tod_clock();
	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
	kvm_s390_vcpu_unblock_all(kvm);
	preempt_enable();
	mutex_unlock(&kvm->lock);
}

2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
2378
{
2379 2380
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
2381 2382
}

2383 2384 2385 2386
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
2387
	struct kvm_s390_irq irq;
2388 2389

	if (start_token) {
2390 2391 2392
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
2393 2394
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
2395
		inti.parm64 = token;
2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
2442
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
2443 2444 2445 2446 2447 2448
		return 0;
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
2449 2450 2451
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
2452 2453 2454 2455 2456 2457
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

2458
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
2459
{
2460
	int rc, cpuflags;
2461

2462 2463 2464 2465 2466 2467 2468
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

2469 2470
	vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
	vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
2471 2472 2473 2474

	if (need_resched())
		schedule();

2475
	if (test_cpu_flag(CIF_MCCK_PENDING))
2476 2477
		s390_handle_mcck();

2478 2479 2480 2481 2482
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
2483

2484 2485 2486 2487
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

2488 2489 2490 2491 2492
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

2493
	vcpu->arch.sie_block->icptcode = 0;
2494 2495 2496
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
2497

2498 2499 2500
	return 0;
}

2501 2502
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
2503 2504 2505 2506
	struct kvm_s390_pgm_info pgm_info = {
		.code = PGM_ADDRESSING,
	};
	u8 opcode, ilen;
2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
2520
	rc = read_guest_instr(vcpu, &opcode, 1);
2521
	ilen = insn_length(opcode);
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531
	if (rc < 0) {
		return rc;
	} else if (rc) {
		/* Instruction-Fetching Exceptions - we can't detect the ilen.
		 * Forward by arbitrary ilc, injection will take care of
		 * nullification if necessary.
		 */
		pgm_info = vcpu->arch.pgm;
		ilen = 4;
	}
2532 2533 2534
	pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
	kvm_s390_forward_psw(vcpu, ilen);
	return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
2535 2536
}

2537 2538
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
2539 2540 2541 2542
	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

2543 2544 2545
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

2546 2547
	vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
	vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561

	if (vcpu->arch.sie_block->icptcode > 0) {
		int rc = kvm_handle_sie_intercept(vcpu);

		if (rc != -EOPNOTSUPP)
			return rc;
		vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
		vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
		vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
		return -EREMOTE;
	} else if (exit_reason != -EFAULT) {
		vcpu->stat.exit_null++;
		return 0;
2562 2563 2564 2565 2566
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
2567
		return -EREMOTE;
2568
	} else if (current->thread.gmap_pfault) {
2569
		trace_kvm_s390_major_guest_pfault(vcpu);
2570
		current->thread.gmap_pfault = 0;
2571 2572 2573
		if (kvm_arch_setup_async_pf(vcpu))
			return 0;
		return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
2574
	}
2575
	return vcpu_post_run_fault_in_sie(vcpu);
2576 2577 2578 2579 2580 2581
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

2582 2583 2584 2585 2586 2587
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

2588 2589 2590 2591
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
2592

2593
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2594 2595 2596 2597
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
2598 2599
		local_irq_disable();
		__kvm_guest_enter();
2600
		__disable_cpu_timer_accounting(vcpu);
2601
		local_irq_enable();
2602 2603
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
2604
		local_irq_disable();
2605
		__enable_cpu_timer_accounting(vcpu);
2606 2607
		__kvm_guest_exit();
		local_irq_enable();
2608
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2609 2610

		rc = vcpu_post_run(vcpu, exit_reason);
2611
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2612

2613
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2614
	return rc;
2615 2616
}

2617 2618 2619 2620 2621 2622 2623 2624
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2625 2626
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2627 2628
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
2629
		kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
2630 2631 2632 2633 2634 2635 2636 2637 2638
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2639 2640
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
	}
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
2651
	kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
2652 2653 2654 2655 2656 2657 2658 2659 2660
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
}

2661 2662
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
2663
	int rc;
2664 2665
	sigset_t sigsaved;

2666 2667 2668 2669 2670
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
		return 0;
	}

2671 2672 2673
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

2674 2675 2676
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
2677
		pr_err_ratelimited("can't run stopped vcpu %d\n",
2678 2679 2680
				   vcpu->vcpu_id);
		return -EINVAL;
	}
2681

2682
	sync_regs(vcpu, kvm_run);
2683
	enable_cpu_timer_accounting(vcpu);
2684

2685
	might_fault();
2686
	rc = __vcpu_run(vcpu);
2687

2688 2689
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
2690
		rc = -EINTR;
2691
	}
2692

2693 2694 2695 2696 2697
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

2698
	if (rc == -EREMOTE) {
2699
		/* userspace support is needed, kvm_run has been prepared */
2700 2701
		rc = 0;
	}
2702

2703
	disable_cpu_timer_accounting(vcpu);
2704
	store_regs(vcpu, kvm_run);
2705

2706 2707 2708 2709
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu->stat.exit_userspace++;
2710
	return rc;
2711 2712 2713 2714 2715 2716 2717 2718
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
2719
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2720
{
2721
	unsigned char archmode = 1;
2722
	freg_t fprs[NUM_FPRS];
2723
	unsigned int px;
2724
	u64 clkcomp, cputm;
2725
	int rc;
2726

2727
	px = kvm_s390_get_prefix(vcpu);
2728 2729
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
2730
			return -EFAULT;
2731
		gpa = 0;
2732 2733
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
2734
			return -EFAULT;
2735 2736 2737
		gpa = px;
	} else
		gpa -= __LC_FPREGS_SAVE_AREA;
2738 2739 2740

	/* manually convert vector registers if necessary */
	if (MACHINE_HAS_VX) {
2741
		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
2742 2743 2744 2745
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
				     fprs, 128);
	} else {
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
2746
				     vcpu->run->s.regs.fprs, 128);
2747
	}
2748
	rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
2749
			      vcpu->run->s.regs.gprs, 128);
2750
	rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
2751
			      &vcpu->arch.sie_block->gpsw, 16);
2752
	rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
2753
			      &px, 4);
2754
	rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
2755
			      &vcpu->run->s.regs.fpc, 4);
2756
	rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
2757
			      &vcpu->arch.sie_block->todpr, 4);
2758
	cputm = kvm_s390_get_cpu_timer(vcpu);
2759
	rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
2760
			      &cputm, 8);
2761
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
2762
	rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
2763
			      &clkcomp, 8);
2764
	rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
2765
			      &vcpu->run->s.regs.acrs, 64);
2766
	rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
2767 2768
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
2769 2770
}

2771 2772 2773 2774 2775 2776 2777
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
	 * copying in vcpu load/put. Lets update our copies before we save
	 * it into the save area
	 */
2778
	save_fpu_regs();
2779
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
2780 2781 2782 2783 2784
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

E
Eric Farman 已提交
2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
/*
 * store additional status at address
 */
int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu,
					unsigned long gpa)
{
	/* Only bits 0-53 are used for address formation */
	if (!(gpa & ~0x3ff))
		return 0;

	return write_guest_abs(vcpu, gpa & ~0x3ff,
			       (void *)&vcpu->run->s.regs.vrs, 512);
}

int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	if (!test_kvm_facility(vcpu->kvm, 129))
		return 0;

	/*
	 * The guest VXRS are in the host VXRs due to the lazy
2806 2807 2808 2809 2810
	 * copying in vcpu load/put. We can simply call save_fpu_regs()
	 * to save the current register state because we are in the
	 * middle of a load/put cycle.
	 *
	 * Let's update our copies before we save it into the save area.
E
Eric Farman 已提交
2811
	 */
2812
	save_fpu_regs();
E
Eric Farman 已提交
2813 2814 2815 2816

	return kvm_s390_store_adtl_status_unloaded(vcpu, addr);
}

2817 2818 2819
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2820
	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
2835 2836
	if (!sclp.has_ibs)
		return;
2837
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2838
	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2839 2840
}

2841 2842
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
2843 2844 2845 2846 2847
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

2848
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2849
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2850
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

2870
	atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2871 2872 2873 2874
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
2875
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2876
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2877
	return;
2878 2879 2880 2881
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
2882 2883 2884 2885 2886 2887
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

2888
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2889
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2890
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2891 2892
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

2893
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2894
	kvm_s390_clear_stop_irq(vcpu);
2895

2896
	atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

2914
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2915
	return;
2916 2917
}

2918 2919 2920 2921 2922 2923 2924 2925 2926
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
2927 2928 2929
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
2930
			VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
2931 2932 2933 2934
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
2935 2936 2937 2938 2939 2940 2941
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
				  struct kvm_s390_mem_op *mop)
{
	void __user *uaddr = (void __user *)mop->buf;
	void *tmpbuf = NULL;
	int r, srcu_idx;
	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
				    | KVM_S390_MEMOP_F_CHECK_ONLY;

	if (mop->flags & ~supported_flags)
		return -EINVAL;

	if (mop->size > MEM_OP_MAX_SIZE)
		return -E2BIG;

	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
		tmpbuf = vmalloc(mop->size);
		if (!tmpbuf)
			return -ENOMEM;
	}

	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

	switch (mop->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2968 2969
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_FETCH);
2970 2971 2972 2973 2974 2975 2976 2977 2978 2979
			break;
		}
		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		if (r == 0) {
			if (copy_to_user(uaddr, tmpbuf, mop->size))
				r = -EFAULT;
		}
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2980 2981
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_STORE);
2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
			break;
		}
		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
			r = -EFAULT;
			break;
		}
		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		break;
	default:
		r = -EINVAL;
	}

	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);

	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);

	vfree(tmpbuf);
	return r;
}

3003 3004 3005 3006 3007
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
3008
	int idx;
3009
	long r;
3010

3011
	switch (ioctl) {
3012 3013 3014 3015 3016 3017 3018 3019 3020
	case KVM_S390_IRQ: {
		struct kvm_s390_irq s390irq;

		r = -EFAULT;
		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
			break;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
		break;
	}
3021
	case KVM_S390_INTERRUPT: {
3022
		struct kvm_s390_interrupt s390int;
3023
		struct kvm_s390_irq s390irq;
3024

3025
		r = -EFAULT;
3026
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
3027
			break;
3028 3029 3030
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
3031
		break;
3032
	}
3033
	case KVM_S390_STORE_STATUS:
3034
		idx = srcu_read_lock(&vcpu->kvm->srcu);
3035
		r = kvm_s390_vcpu_store_status(vcpu, arg);
3036
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3037
		break;
3038 3039 3040
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

3041
		r = -EFAULT;
3042
		if (copy_from_user(&psw, argp, sizeof(psw)))
3043 3044 3045
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
3046 3047
	}
	case KVM_S390_INITIAL_RESET:
3048 3049
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
3098
	case KVM_S390_VCPU_FAULT: {
3099
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
3100 3101
		break;
	}
3102 3103 3104 3105 3106 3107 3108 3109 3110
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
3111 3112 3113 3114 3115 3116 3117 3118 3119
	case KVM_S390_MEM_OP: {
		struct kvm_s390_mem_op mem_op;

		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
		else
			r = -EFAULT;
		break;
	}
3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
	case KVM_S390_SET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
		    irq_state.len == 0 ||
		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_set_irq_state(vcpu,
					   (void __user *) irq_state.buf,
					   irq_state.len);
		break;
	}
	case KVM_S390_GET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len == 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_get_irq_state(vcpu,
					   (__u8 __user *)  irq_state.buf,
					   irq_state.len);
		break;
	}
3152
	default:
3153
		r = -ENOTTY;
3154
	}
3155
	return r;
3156 3157
}

3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

3171 3172
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
3173 3174 3175 3176
{
	return 0;
}

3177
/* Section: memory related */
3178 3179
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
3180
				   const struct kvm_userspace_memory_region *mem,
3181
				   enum kvm_mr_change change)
3182
{
3183 3184 3185 3186
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
3187

3188
	if (mem->userspace_addr & 0xffffful)
3189 3190
		return -EINVAL;

3191
	if (mem->memory_size & 0xffffful)
3192 3193
		return -EINVAL;

3194 3195 3196
	if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
		return -EINVAL;

3197 3198 3199 3200
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
3201
				const struct kvm_userspace_memory_region *mem,
3202
				const struct kvm_memory_slot *old,
3203
				const struct kvm_memory_slot *new,
3204
				enum kvm_mr_change change)
3205
{
3206
	int rc;
3207

3208 3209 3210 3211 3212 3213 3214 3215 3216 3217
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
3218 3219 3220 3221

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
3222
		pr_warn("failed to commit memory region\n");
3223
	return;
3224 3225
}

3226 3227 3228 3229 3230 3231 3232
static inline unsigned long nonhyp_mask(int i)
{
	unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;

	return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
}

3233 3234 3235 3236 3237
void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu)
{
	vcpu->valid_wakeup = false;
}

3238 3239
static int __init kvm_s390_init(void)
{
3240 3241
	int i;

3242 3243 3244 3245 3246
	if (!sclp.has_sief2) {
		pr_info("SIE not available\n");
		return -ENODEV;
	}

3247 3248 3249 3250
	for (i = 0; i < 16; i++)
		kvm_s390_fac_list_mask[i] |=
			S390_lowcore.stfle_fac_list[i] & nonhyp_mask(i);

3251
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
3252 3253 3254 3255 3256 3257 3258 3259 3260
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
3261 3262 3263 3264 3265 3266 3267 3268 3269

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");