kvm-s390.c 85.1 KB
Newer Older
1
/*
2
 * hosting zSeries kernel virtual machines
3
 *
4
 * Copyright IBM Corp. 2008, 2009
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
13
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14
 *               Jason J. Herne <jjherne@us.ibm.com>
15 16 17 18 19
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
20
#include <linux/hrtimer.h>
21 22 23
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
24
#include <linux/mman.h>
25
#include <linux/module.h>
26
#include <linux/random.h>
27
#include <linux/slab.h>
28
#include <linux/timer.h>
29
#include <linux/vmalloc.h>
30
#include <linux/bitmap.h>
31
#include <asm/asm-offsets.h>
32
#include <asm/lowcore.h>
33
#include <asm/etr.h>
34
#include <asm/pgtable.h>
35
#include <asm/gmap.h>
36
#include <asm/nmi.h>
37
#include <asm/switch_to.h>
38
#include <asm/isc.h>
39
#include <asm/sclp.h>
40 41
#include <asm/cpacf.h>
#include <asm/etr.h>
42
#include "kvm-s390.h"
43 44
#include "gaccess.h"

45 46 47 48
#define KMSG_COMPONENT "kvm-s390"
#undef pr_fmt
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

49 50
#define CREATE_TRACE_POINTS
#include "trace.h"
51
#include "trace-s390.h"
52

53
#define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
54 55 56
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
			   (KVM_MAX_VCPUS + LOCAL_IRQS))
57

58 59 60 61
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
62
	{ "exit_null", VCPU_STAT(exit_null) },
63 64 65 66
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
67 68 69
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
70
	{ "exit_operation_exception", VCPU_STAT(exit_operation_exception) },
71
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
72
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
73
	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
74
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
75
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
76
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
77 78
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
79
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
80
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
81 82 83 84 85 86 87
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
88
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
89 90 91 92 93
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
	{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
94
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
95 96
	{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
	{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
97
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
98 99
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
100
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
J
Janosch Frank 已提交
101
	{ "instruction_sthyi", VCPU_STAT(instruction_sthyi) },
102
	{ "instruction_sie", VCPU_STAT(instruction_sie) },
103
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
104
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
105
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
106
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
107 108
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
109
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
110 111
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
112
	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
113 114 115
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
116 117 118
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
119
	{ "diagnose_10", VCPU_STAT(diagnose_10) },
120
	{ "diagnose_44", VCPU_STAT(diagnose_44) },
121
	{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
122 123 124
	{ "diagnose_258", VCPU_STAT(diagnose_258) },
	{ "diagnose_308", VCPU_STAT(diagnose_308) },
	{ "diagnose_500", VCPU_STAT(diagnose_500) },
125 126 127
	{ NULL }
};

128
/* upper facilities limit for kvm */
129 130 131
unsigned long kvm_s390_fac_list_mask[16] = {
	0xffe6000000000000UL,
	0x005e000000000000UL,
132
};
133

134
unsigned long kvm_s390_fac_list_mask_size(void)
135
{
136 137
	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
	return ARRAY_SIZE(kvm_s390_fac_list_mask);
138 139
}

140 141
/* available cpu features supported by kvm */
static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
142 143
/* available subfunctions indicated via query / "test bit" */
static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
144

145
static struct gmap_notifier gmap_notifier;
146
static struct gmap_notifier vsie_gmap_notifier;
147
debug_info_t *kvm_s390_dbf;
148

149
/* Section: not file related */
150
int kvm_arch_hardware_enable(void)
151 152
{
	/* every s390 is virtualization enabled ;-) */
153
	return 0;
154 155
}

156 157
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
			      unsigned long end);
158

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
/*
 * This callback is executed during stop_machine(). All CPUs are therefore
 * temporarily stopped. In order not to change guest behavior, we have to
 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
 * so a CPU won't be stopped while calculating with the epoch.
 */
static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
			  void *v)
{
	struct kvm *kvm;
	struct kvm_vcpu *vcpu;
	int i;
	unsigned long long *delta = v;

	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm->arch.epoch -= *delta;
		kvm_for_each_vcpu(i, vcpu, kvm) {
			vcpu->arch.sie_block->epoch -= *delta;
177 178
			if (vcpu->arch.cputm_enabled)
				vcpu->arch.cputm_start += *delta;
179 180
			if (vcpu->arch.vsie_block)
				vcpu->arch.vsie_block->epoch -= *delta;
181 182 183 184 185 186 187 188 189
		}
	}
	return NOTIFY_OK;
}

static struct notifier_block kvm_clock_notifier = {
	.notifier_call = kvm_clock_sync,
};

190 191
int kvm_arch_hardware_setup(void)
{
192
	gmap_notifier.notifier_call = kvm_gmap_notifier;
193
	gmap_register_pte_notifier(&gmap_notifier);
194 195
	vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier;
	gmap_register_pte_notifier(&vsie_gmap_notifier);
196 197
	atomic_notifier_chain_register(&s390_epoch_delta_notifier,
				       &kvm_clock_notifier);
198 199 200 201 202
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
203
	gmap_unregister_pte_notifier(&gmap_notifier);
204
	gmap_unregister_pte_notifier(&vsie_gmap_notifier);
205 206
	atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
					 &kvm_clock_notifier);
207 208
}

209 210 211 212 213
static void allow_cpu_feat(unsigned long nr)
{
	set_bit_inv(nr, kvm_s390_available_cpu_feat);
}

214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
static inline int plo_test_bit(unsigned char nr)
{
	register unsigned long r0 asm("0") = (unsigned long) nr | 0x100;
	int cc = 3; /* subfunction not available */

	asm volatile(
		/* Parameter registers are ignored for "test bit" */
		"	plo	0,0,0,0(0)\n"
		"	ipm	%0\n"
		"	srl	%0,28\n"
		: "=d" (cc)
		: "d" (r0)
		: "cc");
	return cc == 0;
}

230 231
static void kvm_s390_cpu_feat_init(void)
{
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
	int i;

	for (i = 0; i < 256; ++i) {
		if (plo_test_bit(i))
			kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
	}

	if (test_facility(28)) /* TOD-clock steering */
		etr_ptff(kvm_s390_available_subfunc.ptff, ETR_PTFF_QAF);

	if (test_facility(17)) { /* MSA */
		__cpacf_query(CPACF_KMAC, kvm_s390_available_subfunc.kmac);
		__cpacf_query(CPACF_KMC, kvm_s390_available_subfunc.kmc);
		__cpacf_query(CPACF_KM, kvm_s390_available_subfunc.km);
		__cpacf_query(CPACF_KIMD, kvm_s390_available_subfunc.kimd);
		__cpacf_query(CPACF_KLMD, kvm_s390_available_subfunc.klmd);
	}
	if (test_facility(76)) /* MSA3 */
		__cpacf_query(CPACF_PCKMO, kvm_s390_available_subfunc.pckmo);
	if (test_facility(77)) { /* MSA4 */
		__cpacf_query(CPACF_KMCTR, kvm_s390_available_subfunc.kmctr);
		__cpacf_query(CPACF_KMF, kvm_s390_available_subfunc.kmf);
		__cpacf_query(CPACF_KMO, kvm_s390_available_subfunc.kmo);
		__cpacf_query(CPACF_PCC, kvm_s390_available_subfunc.pcc);
	}
	if (test_facility(57)) /* MSA5 */
		__cpacf_query(CPACF_PPNO, kvm_s390_available_subfunc.ppno);

260 261
	if (MACHINE_HAS_ESOP)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
262 263 264 265 266 267 268 269
	/*
	 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow),
	 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing).
	 */
	if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao ||
	    !test_facility(3))
		return;
	allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2);
270 271
	if (sclp.has_64bscao)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO);
272 273
	if (sclp.has_siif)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF);
274 275
	if (sclp.has_gpere)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE);
276 277
	if (sclp.has_gsls)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS);
278 279
	if (sclp.has_ib)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB);
280 281
	if (sclp.has_cei)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI);
282 283
	if (sclp.has_ibs)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS);
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
	/*
	 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make
	 * all skey handling functions read/set the skey from the PGSTE
	 * instead of the real storage key.
	 *
	 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make
	 * pages being detected as preserved although they are resident.
	 *
	 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will
	 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY.
	 *
	 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and
	 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be
	 * correctly shadowed. We can do that for the PGSTE but not for PTE.I.
	 *
	 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We
	 * cannot easily shadow the SCA because of the ipte lock.
	 */
302 303
}

304 305
int kvm_arch_init(void *opaque)
{
306 307 308 309 310 311 312 313 314
	kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
	if (!kvm_s390_dbf)
		return -ENOMEM;

	if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
		debug_unregister(kvm_s390_dbf);
		return -ENOMEM;
	}

315 316
	kvm_s390_cpu_feat_init();

317 318
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
319 320
}

321 322 323 324 325
void kvm_arch_exit(void)
{
	debug_unregister(kvm_s390_dbf);
}

326 327 328 329 330 331 332 333 334
/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

335
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
336
{
337 338
	int r;

339
	switch (ext) {
340
	case KVM_CAP_S390_PSW:
341
	case KVM_CAP_S390_GMAP:
342
	case KVM_CAP_SYNC_MMU:
343 344 345
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
346
	case KVM_CAP_ASYNC_PF:
347
	case KVM_CAP_SYNC_REGS:
348
	case KVM_CAP_ONE_REG:
349
	case KVM_CAP_ENABLE_CAP:
350
	case KVM_CAP_S390_CSS_SUPPORT:
C
Cornelia Huck 已提交
351
	case KVM_CAP_IOEVENTFD:
352
	case KVM_CAP_DEVICE_CTRL:
353
	case KVM_CAP_ENABLE_CAP_VM:
354
	case KVM_CAP_S390_IRQCHIP:
355
	case KVM_CAP_VM_ATTRIBUTES:
356
	case KVM_CAP_MP_STATE:
357
	case KVM_CAP_S390_INJECT_IRQ:
358
	case KVM_CAP_S390_USER_SIGP:
359
	case KVM_CAP_S390_USER_STSI:
360
	case KVM_CAP_S390_SKEYS:
361
	case KVM_CAP_S390_IRQ_STATE:
362 363
		r = 1;
		break;
364 365 366
	case KVM_CAP_S390_MEM_OP:
		r = MEM_OP_MAX_SIZE;
		break;
367 368
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
369 370 371
		r = KVM_S390_BSCA_CPU_SLOTS;
		if (sclp.has_esca && sclp.has_64bscao)
			r = KVM_S390_ESCA_CPU_SLOTS;
372
		break;
373 374 375
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
376
	case KVM_CAP_S390_COW:
377
		r = MACHINE_HAS_ESOP;
378
		break;
379 380 381
	case KVM_CAP_S390_VECTOR_REGISTERS:
		r = MACHINE_HAS_VX;
		break;
382 383 384
	case KVM_CAP_S390_RI:
		r = test_facility(64);
		break;
385
	default:
386
		r = 0;
387
	}
388
	return r;
389 390
}

391 392 393 394 395 396 397 398 399 400 401 402
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	gfn_t cur_gfn, last_gfn;
	unsigned long address;
	struct gmap *gmap = kvm->arch.gmap;

	/* Loop over all guest pages */
	last_gfn = memslot->base_gfn + memslot->npages;
	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
		address = gfn_to_hva_memslot(memslot, cur_gfn);

403
		if (test_and_clear_guest_dirty(gmap->mm, address))
404
			mark_page_dirty(kvm, cur_gfn);
405 406
		if (fatal_signal_pending(current))
			return;
407
		cond_resched();
408 409 410
	}
}

411
/* Section: vm related */
412 413
static void sca_del_vcpu(struct kvm_vcpu *vcpu);

414 415 416 417 418 419
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
420 421
	int r;
	unsigned long n;
422
	struct kvm_memslots *slots;
423 424 425 426 427 428 429 430 431
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

432 433
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
452 453
}

454 455 456 457 458 459 460 461
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
462
	case KVM_CAP_S390_IRQCHIP:
463
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
464 465 466
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
467
	case KVM_CAP_S390_USER_SIGP:
468
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
469 470 471
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
472
	case KVM_CAP_S390_VECTOR_REGISTERS:
473
		mutex_lock(&kvm->lock);
474
		if (kvm->created_vcpus) {
475 476
			r = -EBUSY;
		} else if (MACHINE_HAS_VX) {
477 478
			set_kvm_facility(kvm->arch.model.fac_mask, 129);
			set_kvm_facility(kvm->arch.model.fac_list, 129);
479 480 481
			r = 0;
		} else
			r = -EINVAL;
482
		mutex_unlock(&kvm->lock);
483 484
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
			 r ? "(not available)" : "(success)");
485
		break;
486 487 488
	case KVM_CAP_S390_RI:
		r = -EINVAL;
		mutex_lock(&kvm->lock);
489
		if (kvm->created_vcpus) {
490 491
			r = -EBUSY;
		} else if (test_facility(64)) {
492 493
			set_kvm_facility(kvm->arch.model.fac_mask, 64);
			set_kvm_facility(kvm->arch.model.fac_list, 64);
494 495 496 497 498 499
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
			 r ? "(not available)" : "(success)");
		break;
500
	case KVM_CAP_S390_USER_STSI:
501
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
502 503 504
		kvm->arch.user_stsi = 1;
		r = 0;
		break;
505 506 507 508 509 510 511
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

512 513 514 515 516 517 518
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
519
		VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
520 521
			 kvm->arch.mem_limit);
		if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
522 523 524 525 526 527 528 529 530 531
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
532 533 534 535 536
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
537
		ret = -ENXIO;
538
		if (!sclp.has_cmma)
539 540
			break;

541
		ret = -EBUSY;
542
		VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
543
		mutex_lock(&kvm->lock);
544
		if (!kvm->created_vcpus) {
545 546 547 548 549 550
			kvm->arch.use_cmma = 1;
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
551 552 553
		ret = -ENXIO;
		if (!sclp.has_cmma)
			break;
554 555 556 557
		ret = -EINVAL;
		if (!kvm->arch.use_cmma)
			break;

558
		VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
559 560
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
561
		s390_reset_cmma(kvm->arch.gmap->mm);
562 563 564 565
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
566 567 568 569 570 571 572 573 574
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

575 576
		if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
		    new_limit > kvm->arch.mem_limit)
577 578
			return -E2BIG;

579 580 581
		if (!new_limit)
			return -EINVAL;

582
		/* gmap_create takes last usable address */
583 584 585
		if (new_limit != KVM_S390_NO_MEM_LIMIT)
			new_limit -= 1;

586 587
		ret = -EBUSY;
		mutex_lock(&kvm->lock);
588
		if (!kvm->created_vcpus) {
589 590
			/* gmap_create will round the limit up */
			struct gmap *new = gmap_create(current->mm, new_limit);
591 592 593 594

			if (!new) {
				ret = -ENOMEM;
			} else {
595
				gmap_remove(kvm->arch.gmap);
596 597 598 599 600 601
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
602 603 604
		VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
		VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
			 (void *) kvm->arch.gmap->asce);
605 606
		break;
	}
607 608 609 610 611 612 613
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

614 615 616 617 618 619 620
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *vcpu;
	int i;

621
	if (!test_kvm_facility(kvm, 76))
622 623 624 625 626 627 628 629 630
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
631
		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
632 633 634 635 636 637
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
638
		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
639 640 641 642 643
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
644
		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
645 646 647 648 649
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
650
		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
651 652 653 654 655 656 657 658 659 660 661 662 663 664
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_vcpu_crypto_setup(vcpu);
		exit_sie(vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

665 666 667 668 669 670 671 672 673 674
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;
675
	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
676 677 678 679 680 681

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
682
	u64 gtod;
683 684 685 686

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

687
	kvm_s390_set_tod_clock(kvm, gtod);
688
	VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod);
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;
720
	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
721 722 723 724 725 726

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
727
	u64 gtod;
728

729
	gtod = kvm_s390_get_tod_clock_fast(kvm);
730 731
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;
732
	VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

758 759 760
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
761
	u16 lowest_ibc, unblocked_ibc;
762 763 764
	int ret = 0;

	mutex_lock(&kvm->lock);
765
	if (kvm->created_vcpus) {
766 767 768 769 770 771 772 773 774 775
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
776
		kvm->arch.model.cpuid = proc->cpuid;
777 778 779 780 781 782 783 784 785 786
		lowest_ibc = sclp.ibc >> 16 & 0xfff;
		unblocked_ibc = sclp.ibc & 0xfff;
		if (lowest_ibc) {
			if (proc->ibc > unblocked_ibc)
				kvm->arch.model.ibc = unblocked_ibc;
			else if (proc->ibc < lowest_ibc)
				kvm->arch.model.ibc = lowest_ibc;
			else
				kvm->arch.model.ibc = proc->ibc;
		}
787
		memcpy(kvm->arch.model.fac_list, proc->fac_list,
788 789 790 791 792 793 794 795 796
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
static int kvm_s390_set_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;
	int ret = -EBUSY;

	if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
		return -EFAULT;
	if (!bitmap_subset((unsigned long *) data.feat,
			   kvm_s390_available_cpu_feat,
			   KVM_S390_VM_CPU_FEAT_NR_BITS))
		return -EINVAL;

	mutex_lock(&kvm->lock);
	if (!atomic_read(&kvm->online_vcpus)) {
		bitmap_copy(kvm->arch.cpu_feat, (unsigned long *) data.feat,
			    KVM_S390_VM_CPU_FEAT_NR_BITS);
		ret = 0;
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

820 821 822 823 824 825 826 827 828 829
static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once supported by kernel + hw, we have to store the subfunctions
	 * in kvm->arch and remember that user space configured them.
	 */
	return -ENXIO;
}

830 831 832 833 834 835 836 837
static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
838 839 840
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_set_processor_feat(kvm, attr);
		break;
841 842 843
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_set_processor_subfunc(kvm, attr);
		break;
844 845 846 847 848 849 850 851 852 853 854 855 856 857
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
858
	proc->cpuid = kvm->arch.model.cpuid;
859
	proc->ibc = kvm->arch.model.ibc;
860 861
	memcpy(&proc->fac_list, kvm->arch.model.fac_list,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
880
	mach->ibc = sclp.ibc;
881
	memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
882
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
883
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
884
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
885 886 887 888 889 890 891
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
static int kvm_s390_get_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat, kvm->arch.cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

static int kvm_s390_get_machine_feat(struct kvm *kvm,
				     struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat,
		    kvm_s390_available_cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once we can actually configure subfunctions (kernel + hw support),
	 * we have to check if they were already set by user space, if so copy
	 * them from kvm->arch.
	 */
	return -ENXIO;
}

static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
					struct kvm_device_attr *attr)
{
	if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
	    sizeof(struct kvm_s390_vm_cpu_subfunc)))
		return -EFAULT;
	return 0;
}
936 937 938 939 940 941 942 943 944 945 946
static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
947 948 949 950 951 952
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_get_processor_feat(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_FEAT:
		ret = kvm_s390_get_machine_feat(kvm, attr);
		break;
953 954 955 956 957 958
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_get_processor_subfunc(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
		ret = kvm_s390_get_machine_subfunc(kvm, attr);
		break;
959 960 961 962
	}
	return ret;
}

963 964 965 966 967
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
968
	case KVM_S390_VM_MEM_CTRL:
969
		ret = kvm_s390_set_mem_control(kvm, attr);
970
		break;
971 972 973
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
974 975 976
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
977 978 979
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
980 981 982 983 984 985 986 987 988 989
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
990 991 992 993 994 995
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
996 997 998
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
999 1000 1001
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
1002 1003 1004 1005 1006 1007
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
1008 1009 1010 1011 1012 1013 1014
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
1015 1016 1017 1018
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
1019 1020
			ret = sclp.has_cmma ? 0 : -ENXIO;
			break;
1021
		case KVM_S390_VM_MEM_LIMIT_SIZE:
1022 1023 1024 1025 1026 1027 1028
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1040 1041 1042 1043
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
1044 1045
		case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		case KVM_S390_VM_CPU_MACHINE_FEAT:
1046
		case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
1047 1048
			ret = 0;
			break;
1049 1050
		/* configuring subfunctions is not supported yet */
		case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1051 1052 1053 1054 1055
		default:
			ret = -ENXIO;
			break;
		}
		break;
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1069 1070 1071 1072 1073 1074 1075 1076
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Is this guest using storage keys? */
	if (!mm_use_skey(current->mm))
		return KVM_S390_GET_SKEYS_NONE;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

1101
	down_read(&current->mm->mmap_sem);
1102 1103 1104 1105
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1106
			break;
1107 1108
		}

1109 1110
		r = get_guest_storage_key(current->mm, hva, &keys[i]);
		if (r)
1111
			break;
1112
	}
1113 1114 1115 1116 1117 1118 1119 1120
	up_read(&current->mm->mmap_sem);

	if (!r) {
		r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
				 sizeof(uint8_t) * args->count);
		if (r)
			r = -EFAULT;
	}
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153

	kvfree(keys);
	return r;
}

static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
			   sizeof(uint8_t) * args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	/* Enable storage key handling for the guest */
1154 1155 1156
	r = s390_enable_skey();
	if (r)
		goto out;
1157

1158
	down_read(&current->mm->mmap_sem);
1159 1160 1161 1162
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1163
			break;
1164 1165 1166 1167 1168
		}

		/* Lowest order bit is reserved */
		if (keys[i] & 0x01) {
			r = -EINVAL;
1169
			break;
1170 1171
		}

1172
		r = set_guest_storage_key(current->mm, hva, keys[i], 0);
1173
		if (r)
1174
			break;
1175
	}
1176
	up_read(&current->mm->mmap_sem);
1177 1178 1179 1180 1181
out:
	kvfree(keys);
	return r;
}

1182 1183 1184 1185 1186
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
1187
	struct kvm_device_attr attr;
1188 1189 1190
	int r;

	switch (ioctl) {
1191 1192 1193 1194 1195 1196 1197 1198 1199
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
1200 1201 1202 1203 1204 1205 1206 1207
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
1208 1209 1210 1211 1212 1213 1214
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
1215
			r = kvm_set_irq_routing(kvm, &routing, 0, 0);
1216 1217 1218
		}
		break;
	}
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
	case KVM_S390_GET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_get_skeys(kvm, &args);
		break;
	}
	case KVM_S390_SET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_set_skeys(kvm, &args);
		break;
	}
1260
	default:
1261
		r = -ENOTTY;
1262 1263 1264 1265 1266
	}

	return r;
}

1267 1268 1269
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
1270
	u32 cc = 0;
1271

1272
	memset(config, 0, 128);
1273 1274 1275 1276
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
1277
		"0: ipm %0\n"
1278
		"srl %0,28\n"
1279 1280 1281
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

1294
	if (test_facility(12)) {
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

1316
static u64 kvm_s390_get_initial_cpuid(void)
1317
{
1318 1319 1320 1321 1322
	struct cpuid cpuid;

	get_cpu_id(&cpuid);
	cpuid.version = 0xff;
	return *((u64 *) &cpuid);
1323 1324
}

1325
static void kvm_s390_crypto_init(struct kvm *kvm)
1326
{
1327
	if (!test_kvm_facility(kvm, 76))
1328
		return;
1329

1330
	kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
1331
	kvm_s390_set_crycb_format(kvm);
1332

1333 1334 1335 1336 1337 1338 1339
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1340 1341
}

1342 1343 1344
static void sca_dispose(struct kvm *kvm)
{
	if (kvm->arch.use_esca)
1345
		free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
1346 1347 1348 1349 1350
	else
		free_page((unsigned long)(kvm->arch.sca));
	kvm->arch.sca = NULL;
}

1351
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1352
{
1353
	gfp_t alloc_flags = GFP_KERNEL;
1354
	int i, rc;
1355
	char debug_name[16];
1356
	static unsigned long sca_offset;
1357

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

1369 1370
	rc = s390_enable_sie();
	if (rc)
1371
		goto out_err;
1372

1373 1374
	rc = -ENOMEM;

J
Janosch Frank 已提交
1375 1376
	ratelimit_state_init(&kvm->arch.sthyi_limit, 5 * HZ, 500);

1377
	kvm->arch.use_esca = 0; /* start with basic SCA */
1378 1379
	if (!sclp.has_64bscao)
		alloc_flags |= GFP_DMA;
1380
	rwlock_init(&kvm->arch.sca_lock);
1381
	kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags);
1382
	if (!kvm->arch.sca)
1383
		goto out_err;
1384
	spin_lock(&kvm_lock);
1385
	sca_offset += 16;
1386
	if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
1387
		sca_offset = 0;
1388 1389
	kvm->arch.sca = (struct bsca_block *)
			((char *) kvm->arch.sca + sca_offset);
1390
	spin_unlock(&kvm_lock);
1391 1392 1393

	sprintf(debug_name, "kvm-%u", current->pid);

1394
	kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1395
	if (!kvm->arch.dbf)
1396
		goto out_err;
1397

1398 1399 1400
	kvm->arch.sie_page2 =
	     (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.sie_page2)
1401
		goto out_err;
1402

1403
	/* Populate the facility mask initially. */
1404
	memcpy(kvm->arch.model.fac_mask, S390_lowcore.stfle_fac_list,
1405
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1406 1407
	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
		if (i < kvm_s390_fac_list_mask_size())
1408
			kvm->arch.model.fac_mask[i] &= kvm_s390_fac_list_mask[i];
1409
		else
1410
			kvm->arch.model.fac_mask[i] = 0UL;
1411 1412
	}

1413
	/* Populate the facility list initially. */
1414 1415
	kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
	memcpy(kvm->arch.model.fac_list, kvm->arch.model.fac_mask,
1416 1417
	       S390_ARCH_FAC_LIST_SIZE_BYTE);

J
Janosch Frank 已提交
1418 1419 1420
	set_kvm_facility(kvm->arch.model.fac_mask, 74);
	set_kvm_facility(kvm->arch.model.fac_list, 74);

1421
	kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
1422
	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1423

1424
	kvm_s390_crypto_init(kvm);
1425

1426
	spin_lock_init(&kvm->arch.float_int.lock);
1427 1428
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1429
	init_waitqueue_head(&kvm->arch.ipte_wq);
1430
	mutex_init(&kvm->arch.ipte_mutex);
1431

1432
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1433
	VM_EVENT(kvm, 3, "vm created with type %lu", type);
1434

1435 1436
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
1437
		kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
1438
	} else {
1439 1440 1441 1442 1443
		if (sclp.hamax == U64_MAX)
			kvm->arch.mem_limit = TASK_MAX_SIZE;
		else
			kvm->arch.mem_limit = min_t(unsigned long, TASK_MAX_SIZE,
						    sclp.hamax + 1);
1444
		kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1);
1445
		if (!kvm->arch.gmap)
1446
			goto out_err;
1447
		kvm->arch.gmap->private = kvm;
1448
		kvm->arch.gmap->pfault_enabled = 0;
1449
	}
1450 1451

	kvm->arch.css_support = 0;
1452
	kvm->arch.use_irqchip = 0;
1453
	kvm->arch.epoch = 0;
1454

1455
	spin_lock_init(&kvm->arch.start_stop_lock);
1456
	kvm_s390_vsie_init(kvm);
1457
	KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
1458

1459
	return 0;
1460
out_err:
1461
	free_page((unsigned long)kvm->arch.sie_page2);
1462
	debug_unregister(kvm->arch.dbf);
1463
	sca_dispose(kvm);
1464
	KVM_EVENT(3, "creation of vm failed: %d", rc);
1465
	return rc;
1466 1467
}

1468 1469 1470
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1471
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1472
	kvm_s390_clear_local_irqs(vcpu);
1473
	kvm_clear_async_pf_completion_queue(vcpu);
1474
	if (!kvm_is_ucontrol(vcpu->kvm))
1475
		sca_del_vcpu(vcpu);
1476 1477

	if (kvm_is_ucontrol(vcpu->kvm))
1478
		gmap_remove(vcpu->arch.gmap);
1479

1480
	if (vcpu->kvm->arch.use_cmma)
1481
		kvm_s390_vcpu_unsetup_cmma(vcpu);
1482
	free_page((unsigned long)(vcpu->arch.sie_block));
1483

1484
	kvm_vcpu_uninit(vcpu);
1485
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1486 1487 1488 1489 1490
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
1491
	struct kvm_vcpu *vcpu;
1492

1493 1494 1495 1496 1497 1498 1499 1500 1501
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
1502 1503
}

1504 1505
void kvm_arch_destroy_vm(struct kvm *kvm)
{
1506
	kvm_free_vcpus(kvm);
1507
	sca_dispose(kvm);
1508
	debug_unregister(kvm->arch.dbf);
1509
	free_page((unsigned long)kvm->arch.sie_page2);
1510
	if (!kvm_is_ucontrol(kvm))
1511
		gmap_remove(kvm->arch.gmap);
1512
	kvm_s390_destroy_adapters(kvm);
1513
	kvm_s390_clear_float_irqs(kvm);
1514
	kvm_s390_vsie_destroy(kvm);
1515
	KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
1516 1517 1518
}

/* Section: vcpu related */
1519 1520
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
1521
	vcpu->arch.gmap = gmap_create(current->mm, -1UL);
1522 1523 1524 1525 1526 1527 1528
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

1529 1530
static void sca_del_vcpu(struct kvm_vcpu *vcpu)
{
1531
	read_lock(&vcpu->kvm->arch.sca_lock);
1532 1533
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1534

1535
		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1536
		sca->cpu[vcpu->vcpu_id].sda = 0;
1537 1538 1539 1540
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1541
		sca->cpu[vcpu->vcpu_id].sda = 0;
1542
	}
1543
	read_unlock(&vcpu->kvm->arch.sca_lock);
1544 1545
}

1546
static void sca_add_vcpu(struct kvm_vcpu *vcpu)
1547
{
1548 1549 1550
	read_lock(&vcpu->kvm->arch.sca_lock);
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1551

1552
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1553 1554
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
1555
		vcpu->arch.sie_block->ecb2 |= 0x04U;
1556
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1557
	} else {
1558
		struct bsca_block *sca = vcpu->kvm->arch.sca;
1559

1560
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1561 1562
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
1563
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1564
	}
1565
	read_unlock(&vcpu->kvm->arch.sca_lock);
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
}

/* Basic SCA to Extended SCA data copy routines */
static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
{
	d->sda = s->sda;
	d->sigp_ctrl.c = s->sigp_ctrl.c;
	d->sigp_ctrl.scn = s->sigp_ctrl.scn;
}

static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
{
	int i;

	d->ipte_control = s->ipte_control;
	d->mcn[0] = s->mcn;
	for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
		sca_copy_entry(&d->cpu[i], &s->cpu[i]);
}

static int sca_switch_to_extended(struct kvm *kvm)
{
	struct bsca_block *old_sca = kvm->arch.sca;
	struct esca_block *new_sca;
	struct kvm_vcpu *vcpu;
	unsigned int vcpu_idx;
	u32 scaol, scaoh;

	new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
	if (!new_sca)
		return -ENOMEM;

	scaoh = (u32)((u64)(new_sca) >> 32);
	scaol = (u32)(u64)(new_sca) & ~0x3fU;

	kvm_s390_vcpu_block_all(kvm);
	write_lock(&kvm->arch.sca_lock);

	sca_copy_b_to_e(new_sca, old_sca);

	kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
		vcpu->arch.sie_block->scaoh = scaoh;
		vcpu->arch.sie_block->scaol = scaol;
		vcpu->arch.sie_block->ecb2 |= 0x04U;
	}
	kvm->arch.sca = new_sca;
	kvm->arch.use_esca = 1;

	write_unlock(&kvm->arch.sca_lock);
	kvm_s390_vcpu_unblock_all(kvm);

	free_page((unsigned long)old_sca);

1619 1620
	VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
		 old_sca, kvm->arch.sca);
1621
	return 0;
1622 1623 1624 1625
}

static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
{
1626 1627 1628 1629
	int rc;

	if (id < KVM_S390_BSCA_CPU_SLOTS)
		return true;
1630
	if (!sclp.has_esca || !sclp.has_64bscao)
1631 1632 1633 1634 1635 1636 1637
		return false;

	mutex_lock(&kvm->lock);
	rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
	mutex_unlock(&kvm->lock);

	return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
1638 1639
}

1640 1641
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1642 1643
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1644 1645
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
1646
				    KVM_SYNC_ACRS |
1647 1648 1649
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
1650 1651
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
1652 1653 1654 1655
	/* fprs can be synchronized via vrs, even if the guest has no vx. With
	 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
	 */
	if (MACHINE_HAS_VX)
1656
		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1657 1658
	else
		vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
1659 1660 1661 1662

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

1663 1664 1665
	return 0;
}

1666 1667 1668 1669
/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
1670
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1671
	vcpu->arch.cputm_start = get_tod_clock_fast();
1672
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1673 1674 1675 1676 1677 1678
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
1679
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1680 1681
	vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	vcpu->arch.cputm_start = 0;
1682
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_enabled);
	vcpu->arch.cputm_enabled = true;
	__start_cpu_timer_accounting(vcpu);
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
	__stop_cpu_timer_accounting(vcpu);
	vcpu->arch.cputm_enabled = false;
}

static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__enable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__disable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

1715 1716 1717
/* set the cpu timer - may only be called from the VCPU thread itself */
void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
{
1718
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1719
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1720 1721
	if (vcpu->arch.cputm_enabled)
		vcpu->arch.cputm_start = get_tod_clock_fast();
1722
	vcpu->arch.sie_block->cputm = cputm;
1723
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1724
	preempt_enable();
1725 1726
}

1727
/* update and get the cpu timer - can also be called from other VCPU threads */
1728 1729
__u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
{
1730
	unsigned int seq;
1731 1732 1733 1734 1735
	__u64 value;

	if (unlikely(!vcpu->arch.cputm_enabled))
		return vcpu->arch.sie_block->cputm;

1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	do {
		seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
		/*
		 * If the writer would ever execute a read in the critical
		 * section, e.g. in irq context, we have a deadlock.
		 */
		WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
		value = vcpu->arch.sie_block->cputm;
		/* if cputm_start is 0, accounting is being started/stopped */
		if (likely(vcpu->arch.cputm_start))
			value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	} while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
	preempt_enable();
1750
	return value;
1751 1752
}

1753 1754
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
1755
	/* Save host register state */
1756
	save_fpu_regs();
1757 1758
	vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
	vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
1759

1760 1761 1762 1763
	if (MACHINE_HAS_VX)
		current->thread.fpu.regs = vcpu->run->s.regs.vrs;
	else
		current->thread.fpu.regs = vcpu->run->s.regs.fprs;
1764
	current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
1765
	if (test_fp_ctl(current->thread.fpu.fpc))
1766
		/* User space provided an invalid FPC, let's clear it */
1767 1768 1769
		current->thread.fpu.fpc = 0;

	save_access_regs(vcpu->arch.host_acrs);
1770
	restore_access_regs(vcpu->run->s.regs.acrs);
1771
	gmap_enable(vcpu->arch.enabled_gmap);
1772
	atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1773
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1774
		__start_cpu_timer_accounting(vcpu);
1775
	vcpu->cpu = cpu;
1776 1777 1778 1779
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
1780
	vcpu->cpu = -1;
1781
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1782
		__stop_cpu_timer_accounting(vcpu);
1783
	atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1784 1785
	vcpu->arch.enabled_gmap = gmap_get_enabled();
	gmap_disable(vcpu->arch.enabled_gmap);
1786

1787
	/* Save guest register state */
1788
	save_fpu_regs();
1789
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
1790

1791 1792 1793
	/* Restore host register state */
	current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
	current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
1794 1795

	save_access_regs(vcpu->run->s.regs.acrs);
1796 1797 1798 1799 1800 1801 1802 1803
	restore_access_regs(vcpu->arch.host_acrs);
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
1804
	kvm_s390_set_prefix(vcpu, 0);
1805
	kvm_s390_set_cpu_timer(vcpu, 0);
1806 1807 1808 1809 1810
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
1811 1812 1813
	/* make sure the new fpc will be lazily loaded */
	save_fpu_regs();
	current->thread.fpu.fpc = 0;
1814
	vcpu->arch.sie_block->gbea = 1;
1815
	vcpu->arch.sie_block->pp = 0;
1816 1817
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1818 1819
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
1820
	kvm_s390_clear_local_irqs(vcpu);
1821 1822
}

1823
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1824
{
1825
	mutex_lock(&vcpu->kvm->lock);
1826
	preempt_disable();
1827
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
1828
	preempt_enable();
1829
	mutex_unlock(&vcpu->kvm->lock);
1830
	if (!kvm_is_ucontrol(vcpu->kvm)) {
1831
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1832
		sca_add_vcpu(vcpu);
1833
	}
1834 1835
	/* make vcpu_load load the right gmap on the first trigger */
	vcpu->arch.enabled_gmap = vcpu->arch.gmap;
1836 1837
}

1838 1839
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
1840
	if (!test_kvm_facility(vcpu->kvm, 76))
1841 1842
		return;

1843 1844 1845 1846 1847 1848 1849
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

1850 1851 1852
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;

	vcpu->arch.sie_block->ecb2 |= 0x80;
	vcpu->arch.sie_block->ecb2 &= ~0x08;
	return 0;
}

1870 1871 1872 1873 1874
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;

	vcpu->arch.sie_block->ibc = model->ibc;
1875
	if (test_kvm_facility(vcpu->kvm, 7))
1876
		vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list;
1877 1878
}

1879 1880
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
1881
	int rc = 0;
1882

1883 1884
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
1885 1886
						    CPUSTAT_STOPPED);

1887
	if (test_kvm_facility(vcpu->kvm, 78))
1888
		atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
1889
	else if (test_kvm_facility(vcpu->kvm, 8))
1890
		atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
1891

1892 1893
	kvm_s390_vcpu_setup_model(vcpu);

1894 1895 1896
	/* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */
	if (MACHINE_HAS_ESOP)
		vcpu->arch.sie_block->ecb |= 0x02;
1897 1898
	if (test_kvm_facility(vcpu->kvm, 9))
		vcpu->arch.sie_block->ecb |= 0x04;
1899
	if (test_kvm_facility(vcpu->kvm, 73))
1900 1901
		vcpu->arch.sie_block->ecb |= 0x10;

1902
	if (test_kvm_facility(vcpu->kvm, 8) && sclp.has_pfmfi)
1903
		vcpu->arch.sie_block->ecb2 |= 0x08;
1904 1905 1906
	vcpu->arch.sie_block->eca = 0x1002000U;
	if (sclp.has_cei)
		vcpu->arch.sie_block->eca |= 0x80000000U;
1907 1908
	if (sclp.has_ib)
		vcpu->arch.sie_block->eca |= 0x40000000U;
1909
	if (sclp.has_siif)
1910
		vcpu->arch.sie_block->eca |= 1;
1911
	if (sclp.has_sigpif)
1912
		vcpu->arch.sie_block->eca |= 0x10000000U;
1913 1914
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->arch.sie_block->ecb3 |= 0x01;
1915
	if (test_kvm_facility(vcpu->kvm, 129)) {
1916 1917 1918
		vcpu->arch.sie_block->eca |= 0x00020000;
		vcpu->arch.sie_block->ecd |= 0x20000000;
	}
1919
	vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
1920
	vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
J
Janosch Frank 已提交
1921 1922
	if (test_kvm_facility(vcpu->kvm, 74))
		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
1923

1924
	if (vcpu->kvm->arch.use_cmma) {
1925 1926 1927
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
1928
	}
1929
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1930
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1931

1932 1933
	kvm_s390_vcpu_crypto_setup(vcpu);

1934
	return rc;
1935 1936 1937 1938 1939
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
1940
	struct kvm_vcpu *vcpu;
1941
	struct sie_page *sie_page;
1942 1943
	int rc = -EINVAL;

1944
	if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
1945 1946 1947
		goto out;

	rc = -ENOMEM;
1948

1949
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1950
	if (!vcpu)
1951
		goto out;
1952

1953 1954
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
1955 1956
		goto out_free_cpu;

1957 1958 1959
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;

1960 1961 1962 1963
	/* the real guest size will always be smaller than msl */
	vcpu->arch.sie_block->mso = 0;
	vcpu->arch.sie_block->msl = sclp.hamax;

1964
	vcpu->arch.sie_block->icpua = id;
1965 1966
	spin_lock_init(&vcpu->arch.local_int.lock);
	vcpu->arch.local_int.float_int = &kvm->arch.float_int;
1967
	vcpu->arch.local_int.wq = &vcpu->wq;
1968
	vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
1969
	seqcount_init(&vcpu->arch.cputm_seqcount);
1970

1971 1972
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
1973
		goto out_free_sie_block;
1974
	VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu,
1975
		 vcpu->arch.sie_block);
1976
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
1977 1978

	return vcpu;
1979 1980
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
1981
out_free_cpu:
1982
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1983
out:
1984 1985 1986 1987 1988
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
1989
	return kvm_s390_vcpu_has_irq(vcpu, 0);
1990 1991
}

1992
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
1993
{
1994
	atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1995
	exit_sie(vcpu);
1996 1997
}

1998
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
1999
{
2000
	atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
2001 2002
}

2003 2004
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
{
2005
	atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
2006
	exit_sie(vcpu);
2007 2008 2009 2010
}

static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
2011
	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
2012 2013
}

2014 2015 2016 2017 2018 2019
/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
2020
	atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
2021 2022 2023 2024
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

2025 2026
/* Kick a guest cpu out of SIE to process a request synchronously */
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
2027
{
2028 2029
	kvm_make_request(req, vcpu);
	kvm_s390_vcpu_request(vcpu);
2030 2031
}

2032 2033
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
			      unsigned long end)
2034 2035 2036
{
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;
2037 2038
	unsigned long prefix;
	int i;
2039

2040 2041
	if (gmap_is_shadow(gmap))
		return;
2042 2043 2044
	if (start >= 1UL << 31)
		/* We are only interested in prefix pages */
		return;
2045 2046
	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
2047 2048 2049 2050
		prefix = kvm_s390_get_prefix(vcpu);
		if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) {
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx",
				   start, end);
2051
			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
2052 2053 2054 2055
		}
	}
}

2056 2057 2058 2059 2060 2061 2062
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

2063 2064 2065 2066 2067 2068
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
2069 2070 2071 2072 2073 2074 2075 2076
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2077
	case KVM_REG_S390_CPU_TIMER:
2078
		r = put_user(kvm_s390_get_cpu_timer(vcpu),
2079 2080 2081 2082 2083 2084
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2097 2098 2099 2100
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2101 2102 2103 2104
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;
2116
	__u64 val;
2117 2118

	switch (reg->id) {
2119 2120 2121 2122 2123 2124 2125 2126
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2127
	case KVM_REG_S390_CPU_TIMER:
2128 2129 2130
		r = get_user(val, (u64 __user *)reg->addr);
		if (!r)
			kvm_s390_set_cpu_timer(vcpu, val);
2131 2132 2133 2134 2135
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2136 2137 2138
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
2139 2140
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2141 2142 2143 2144 2145 2146 2147 2148 2149
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2150 2151 2152 2153
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2154 2155 2156 2157
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2158 2159 2160 2161 2162 2163
	default:
		break;
	}

	return r;
}
2164

2165 2166 2167 2168 2169 2170 2171 2172
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2173
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
2174 2175 2176 2177 2178
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2179
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
2180 2181 2182 2183 2184 2185
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2186
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
2187
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
2188
	restore_access_regs(vcpu->run->s.regs.acrs);
2189 2190 2191 2192 2193 2194
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2195
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
2196 2197 2198 2199 2200 2201
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2202 2203
	/* make sure the new values will be lazily loaded */
	save_fpu_regs();
2204 2205
	if (test_fp_ctl(fpu->fpc))
		return -EINVAL;
2206 2207 2208 2209 2210
	current->thread.fpu.fpc = fpu->fpc;
	if (MACHINE_HAS_VX)
		convert_fp_to_vx(current->thread.fpu.vxrs, (freg_t *)fpu->fprs);
	else
		memcpy(current->thread.fpu.fprs, &fpu->fprs, sizeof(fpu->fprs));
2211 2212 2213 2214 2215
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2216 2217 2218 2219 2220 2221 2222
	/* make sure we have the latest values */
	save_fpu_regs();
	if (MACHINE_HAS_VX)
		convert_vx_to_fp((freg_t *)fpu->fprs, current->thread.fpu.vxrs);
	else
		memcpy(fpu->fprs, current->thread.fpu.fprs, sizeof(fpu->fprs));
	fpu->fpc = current->thread.fpu.fpc;
2223 2224 2225 2226 2227 2228 2229
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

2230
	if (!is_vcpu_stopped(vcpu))
2231
		rc = -EBUSY;
2232 2233 2234 2235
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
2236 2237 2238 2239 2240 2241 2242 2243 2244
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

2245 2246 2247 2248
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
2249 2250
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
2251
{
2252 2253 2254 2255 2256
	int rc = 0;

	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

2257
	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
2258
		return -EINVAL;
2259 2260
	if (!sclp.has_gpere)
		return -EINVAL;
2261 2262 2263 2264

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
2265
		atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2266 2267 2268 2269

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
2270
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2271 2272 2273 2274 2275 2276
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
2277
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2278 2279 2280
	}

	return rc;
2281 2282
}

2283 2284 2285
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2286 2287 2288
	/* CHECK_STOP and LOAD are not supported yet */
	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				       KVM_MP_STATE_OPERATING;
2289 2290 2291 2292 2293
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
	int rc = 0;

	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

	return rc;
2314 2315
}

2316 2317 2318 2319 2320
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
	return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
}

2321 2322
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
2323
retry:
2324
	kvm_s390_vcpu_request_handled(vcpu);
2325 2326
	if (!vcpu->requests)
		return 0;
2327 2328
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
2329
	 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock.
2330 2331 2332 2333
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
2334
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
2335
		int rc;
2336 2337 2338
		rc = gmap_mprotect_notify(vcpu->arch.gmap,
					  kvm_s390_get_prefix(vcpu),
					  PAGE_SIZE * 2, PROT_WRITE);
2339 2340
		if (rc)
			return rc;
2341
		goto retry;
2342
	}
2343

2344 2345 2346 2347 2348
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

2349 2350 2351
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
2352
			atomic_or(CPUSTAT_IBS,
2353 2354 2355
					&vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
2356
	}
2357 2358 2359 2360

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
2361
			atomic_andnot(CPUSTAT_IBS,
2362 2363 2364 2365 2366
					  &vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
	}

2367 2368 2369
	/* nothing to do, just clear the request */
	clear_bit(KVM_REQ_UNHALT, &vcpu->requests);

2370 2371 2372
	return 0;
}

2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388
void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
{
	struct kvm_vcpu *vcpu;
	int i;

	mutex_lock(&kvm->lock);
	preempt_disable();
	kvm->arch.epoch = tod - get_tod_clock();
	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
	kvm_s390_vcpu_unblock_all(kvm);
	preempt_enable();
	mutex_unlock(&kvm->lock);
}

2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
2400
{
2401 2402
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
2403 2404
}

2405 2406 2407 2408
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
2409
	struct kvm_s390_irq irq;
2410 2411

	if (start_token) {
2412 2413 2414
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
2415 2416
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
2417
		inti.parm64 = token;
2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
2464
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
2465 2466 2467 2468 2469 2470
		return 0;
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
2471 2472 2473
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
2474 2475 2476 2477 2478 2479
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

2480
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
2481
{
2482
	int rc, cpuflags;
2483

2484 2485 2486 2487 2488 2489 2490
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

2491 2492
	vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
	vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
2493 2494 2495 2496

	if (need_resched())
		schedule();

2497
	if (test_cpu_flag(CIF_MCCK_PENDING))
2498 2499
		s390_handle_mcck();

2500 2501 2502 2503 2504
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
2505

2506 2507 2508 2509
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

2510 2511 2512 2513 2514
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

2515
	vcpu->arch.sie_block->icptcode = 0;
2516 2517 2518
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
2519

2520 2521 2522
	return 0;
}

2523 2524
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
2525 2526 2527 2528
	struct kvm_s390_pgm_info pgm_info = {
		.code = PGM_ADDRESSING,
	};
	u8 opcode, ilen;
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
2542
	rc = read_guest_instr(vcpu, &opcode, 1);
2543
	ilen = insn_length(opcode);
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
	if (rc < 0) {
		return rc;
	} else if (rc) {
		/* Instruction-Fetching Exceptions - we can't detect the ilen.
		 * Forward by arbitrary ilc, injection will take care of
		 * nullification if necessary.
		 */
		pgm_info = vcpu->arch.pgm;
		ilen = 4;
	}
2554 2555 2556
	pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
	kvm_s390_forward_psw(vcpu, ilen);
	return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
2557 2558
}

2559 2560
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
2561 2562 2563 2564
	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

2565 2566 2567
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

2568 2569
	vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
	vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583

	if (vcpu->arch.sie_block->icptcode > 0) {
		int rc = kvm_handle_sie_intercept(vcpu);

		if (rc != -EOPNOTSUPP)
			return rc;
		vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
		vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
		vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
		return -EREMOTE;
	} else if (exit_reason != -EFAULT) {
		vcpu->stat.exit_null++;
		return 0;
2584 2585 2586 2587 2588
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
2589
		return -EREMOTE;
2590
	} else if (current->thread.gmap_pfault) {
2591
		trace_kvm_s390_major_guest_pfault(vcpu);
2592
		current->thread.gmap_pfault = 0;
2593 2594 2595
		if (kvm_arch_setup_async_pf(vcpu))
			return 0;
		return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
2596
	}
2597
	return vcpu_post_run_fault_in_sie(vcpu);
2598 2599 2600 2601 2602 2603
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

2604 2605 2606 2607 2608 2609
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

2610 2611 2612 2613
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
2614

2615
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2616 2617 2618 2619
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
2620 2621
		local_irq_disable();
		__kvm_guest_enter();
2622
		__disable_cpu_timer_accounting(vcpu);
2623
		local_irq_enable();
2624 2625
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
2626
		local_irq_disable();
2627
		__enable_cpu_timer_accounting(vcpu);
2628 2629
		__kvm_guest_exit();
		local_irq_enable();
2630
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2631 2632

		rc = vcpu_post_run(vcpu, exit_reason);
2633
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2634

2635
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2636
	return rc;
2637 2638
}

2639 2640 2641 2642 2643 2644 2645 2646
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2647 2648
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2649 2650
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
2651
		kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
2652 2653 2654 2655 2656 2657 2658 2659 2660
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2661 2662
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
	}
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
2673
	kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
2674 2675 2676 2677 2678 2679 2680 2681 2682
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
}

2683 2684
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
2685
	int rc;
2686 2687
	sigset_t sigsaved;

2688 2689 2690 2691 2692
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
		return 0;
	}

2693 2694 2695
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

2696 2697 2698
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
2699
		pr_err_ratelimited("can't run stopped vcpu %d\n",
2700 2701 2702
				   vcpu->vcpu_id);
		return -EINVAL;
	}
2703

2704
	sync_regs(vcpu, kvm_run);
2705
	enable_cpu_timer_accounting(vcpu);
2706

2707
	might_fault();
2708
	rc = __vcpu_run(vcpu);
2709

2710 2711
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
2712
		rc = -EINTR;
2713
	}
2714

2715 2716 2717 2718 2719
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

2720
	if (rc == -EREMOTE) {
2721
		/* userspace support is needed, kvm_run has been prepared */
2722 2723
		rc = 0;
	}
2724

2725
	disable_cpu_timer_accounting(vcpu);
2726
	store_regs(vcpu, kvm_run);
2727

2728 2729 2730 2731
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu->stat.exit_userspace++;
2732
	return rc;
2733 2734 2735 2736 2737 2738 2739 2740
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
2741
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2742
{
2743
	unsigned char archmode = 1;
2744
	freg_t fprs[NUM_FPRS];
2745
	unsigned int px;
2746
	u64 clkcomp, cputm;
2747
	int rc;
2748

2749
	px = kvm_s390_get_prefix(vcpu);
2750 2751
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
2752
			return -EFAULT;
2753
		gpa = 0;
2754 2755
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
2756
			return -EFAULT;
2757 2758 2759
		gpa = px;
	} else
		gpa -= __LC_FPREGS_SAVE_AREA;
2760 2761 2762

	/* manually convert vector registers if necessary */
	if (MACHINE_HAS_VX) {
2763
		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
2764 2765 2766 2767
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
				     fprs, 128);
	} else {
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
2768
				     vcpu->run->s.regs.fprs, 128);
2769
	}
2770
	rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
2771
			      vcpu->run->s.regs.gprs, 128);
2772
	rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
2773
			      &vcpu->arch.sie_block->gpsw, 16);
2774
	rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
2775
			      &px, 4);
2776
	rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
2777
			      &vcpu->run->s.regs.fpc, 4);
2778
	rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
2779
			      &vcpu->arch.sie_block->todpr, 4);
2780
	cputm = kvm_s390_get_cpu_timer(vcpu);
2781
	rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
2782
			      &cputm, 8);
2783
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
2784
	rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
2785
			      &clkcomp, 8);
2786
	rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
2787
			      &vcpu->run->s.regs.acrs, 64);
2788
	rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
2789 2790
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
2791 2792
}

2793 2794 2795 2796 2797 2798 2799
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
	 * copying in vcpu load/put. Lets update our copies before we save
	 * it into the save area
	 */
2800
	save_fpu_regs();
2801
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
2802 2803 2804 2805 2806
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

E
Eric Farman 已提交
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
/*
 * store additional status at address
 */
int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu,
					unsigned long gpa)
{
	/* Only bits 0-53 are used for address formation */
	if (!(gpa & ~0x3ff))
		return 0;

	return write_guest_abs(vcpu, gpa & ~0x3ff,
			       (void *)&vcpu->run->s.regs.vrs, 512);
}

int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	if (!test_kvm_facility(vcpu->kvm, 129))
		return 0;

	/*
	 * The guest VXRS are in the host VXRs due to the lazy
2828 2829 2830 2831 2832
	 * copying in vcpu load/put. We can simply call save_fpu_regs()
	 * to save the current register state because we are in the
	 * middle of a load/put cycle.
	 *
	 * Let's update our copies before we save it into the save area.
E
Eric Farman 已提交
2833
	 */
2834
	save_fpu_regs();
E
Eric Farman 已提交
2835 2836 2837 2838

	return kvm_s390_store_adtl_status_unloaded(vcpu, addr);
}

2839 2840 2841
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2842
	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
2857 2858
	if (!sclp.has_ibs)
		return;
2859
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2860
	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2861 2862
}

2863 2864
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
2865 2866 2867 2868 2869
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

2870
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2871
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2872
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

2892
	atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2893 2894 2895 2896
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
2897
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2898
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2899
	return;
2900 2901 2902 2903
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
2904 2905 2906 2907 2908 2909
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

2910
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2911
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2912
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2913 2914
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

2915
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2916
	kvm_s390_clear_stop_irq(vcpu);
2917

2918
	atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

2936
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2937
	return;
2938 2939
}

2940 2941 2942 2943 2944 2945 2946 2947 2948
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
2949 2950 2951
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
2952
			VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
2953 2954 2955 2956
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
2957 2958 2959 2960 2961 2962 2963
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
				  struct kvm_s390_mem_op *mop)
{
	void __user *uaddr = (void __user *)mop->buf;
	void *tmpbuf = NULL;
	int r, srcu_idx;
	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
				    | KVM_S390_MEMOP_F_CHECK_ONLY;

	if (mop->flags & ~supported_flags)
		return -EINVAL;

	if (mop->size > MEM_OP_MAX_SIZE)
		return -E2BIG;

	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
		tmpbuf = vmalloc(mop->size);
		if (!tmpbuf)
			return -ENOMEM;
	}

	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

	switch (mop->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2990 2991
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_FETCH);
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
			break;
		}
		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		if (r == 0) {
			if (copy_to_user(uaddr, tmpbuf, mop->size))
				r = -EFAULT;
		}
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
3002 3003
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_STORE);
3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
			break;
		}
		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
			r = -EFAULT;
			break;
		}
		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		break;
	default:
		r = -EINVAL;
	}

	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);

	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);

	vfree(tmpbuf);
	return r;
}

3025 3026 3027 3028 3029
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
3030
	int idx;
3031
	long r;
3032

3033
	switch (ioctl) {
3034 3035 3036 3037 3038 3039 3040 3041 3042
	case KVM_S390_IRQ: {
		struct kvm_s390_irq s390irq;

		r = -EFAULT;
		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
			break;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
		break;
	}
3043
	case KVM_S390_INTERRUPT: {
3044
		struct kvm_s390_interrupt s390int;
3045
		struct kvm_s390_irq s390irq;
3046

3047
		r = -EFAULT;
3048
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
3049
			break;
3050 3051 3052
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
3053
		break;
3054
	}
3055
	case KVM_S390_STORE_STATUS:
3056
		idx = srcu_read_lock(&vcpu->kvm->srcu);
3057
		r = kvm_s390_vcpu_store_status(vcpu, arg);
3058
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3059
		break;
3060 3061 3062
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

3063
		r = -EFAULT;
3064
		if (copy_from_user(&psw, argp, sizeof(psw)))
3065 3066 3067
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
3068 3069
	}
	case KVM_S390_INITIAL_RESET:
3070 3071
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
3120
	case KVM_S390_VCPU_FAULT: {
3121
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
3122 3123
		break;
	}
3124 3125 3126 3127 3128 3129 3130 3131 3132
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
3133 3134 3135 3136 3137 3138 3139 3140 3141
	case KVM_S390_MEM_OP: {
		struct kvm_s390_mem_op mem_op;

		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
		else
			r = -EFAULT;
		break;
	}
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173
	case KVM_S390_SET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
		    irq_state.len == 0 ||
		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_set_irq_state(vcpu,
					   (void __user *) irq_state.buf,
					   irq_state.len);
		break;
	}
	case KVM_S390_GET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len == 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_get_irq_state(vcpu,
					   (__u8 __user *)  irq_state.buf,
					   irq_state.len);
		break;
	}
3174
	default:
3175
		r = -ENOTTY;
3176
	}
3177
	return r;
3178 3179
}

3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

3193 3194
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
3195 3196 3197 3198
{
	return 0;
}

3199
/* Section: memory related */
3200 3201
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
3202
				   const struct kvm_userspace_memory_region *mem,
3203
				   enum kvm_mr_change change)
3204
{
3205 3206 3207 3208
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
3209

3210
	if (mem->userspace_addr & 0xffffful)
3211 3212
		return -EINVAL;

3213
	if (mem->memory_size & 0xffffful)
3214 3215
		return -EINVAL;

3216 3217 3218
	if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
		return -EINVAL;

3219 3220 3221 3222
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
3223
				const struct kvm_userspace_memory_region *mem,
3224
				const struct kvm_memory_slot *old,
3225
				const struct kvm_memory_slot *new,
3226
				enum kvm_mr_change change)
3227
{
3228
	int rc;
3229

3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
3240 3241 3242 3243

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
3244
		pr_warn("failed to commit memory region\n");
3245
	return;
3246 3247
}

3248 3249 3250 3251 3252 3253 3254
static inline unsigned long nonhyp_mask(int i)
{
	unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;

	return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
}

3255 3256 3257 3258 3259
void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu)
{
	vcpu->valid_wakeup = false;
}

3260 3261
static int __init kvm_s390_init(void)
{
3262 3263
	int i;

3264 3265 3266 3267 3268
	if (!sclp.has_sief2) {
		pr_info("SIE not available\n");
		return -ENODEV;
	}

3269 3270 3271 3272
	for (i = 0; i < 16; i++)
		kvm_s390_fac_list_mask[i] |=
			S390_lowcore.stfle_fac_list[i] & nonhyp_mask(i);

3273
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
3274 3275 3276 3277 3278 3279 3280 3281 3282
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
3283 3284 3285 3286 3287 3288 3289 3290 3291

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");