kvm-s390.c 70.6 KB
Newer Older
1
/*
2
 * hosting zSeries kernel virtual machines
3
 *
4
 * Copyright IBM Corp. 2008, 2009
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
13
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14
 *               Jason J. Herne <jjherne@us.ibm.com>
15 16 17 18 19
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
20
#include <linux/hrtimer.h>
21 22 23 24
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/module.h>
25
#include <linux/random.h>
26
#include <linux/slab.h>
27
#include <linux/timer.h>
28
#include <linux/vmalloc.h>
29
#include <asm/asm-offsets.h>
30
#include <asm/lowcore.h>
31
#include <asm/etr.h>
32
#include <asm/pgtable.h>
33
#include <asm/nmi.h>
34
#include <asm/switch_to.h>
35
#include <asm/isc.h>
36
#include <asm/sclp.h>
37
#include "kvm-s390.h"
38 39
#include "gaccess.h"

40 41 42 43
#define KMSG_COMPONENT "kvm-s390"
#undef pr_fmt
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

44 45
#define CREATE_TRACE_POINTS
#include "trace.h"
46
#include "trace-s390.h"
47

48
#define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
49 50 51
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
			   (KVM_MAX_VCPUS + LOCAL_IRQS))
52

53 54 55 56
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
57
	{ "exit_null", VCPU_STAT(exit_null) },
58 59 60 61
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
62 63 64
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
65
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
66
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
67
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
68
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
69
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
70 71
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
72
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
73
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
74 75 76 77 78 79 80
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
81
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
82 83 84 85 86
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
	{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
87
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
88 89
	{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
	{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
90
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
91 92
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
93
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
94
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
95
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
96
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
97
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
98 99
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
100
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
101 102
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
103
	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
104 105 106
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
107 108 109
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
110
	{ "diagnose_10", VCPU_STAT(diagnose_10) },
111
	{ "diagnose_44", VCPU_STAT(diagnose_44) },
112
	{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
113 114 115
	{ "diagnose_258", VCPU_STAT(diagnose_258) },
	{ "diagnose_308", VCPU_STAT(diagnose_308) },
	{ "diagnose_500", VCPU_STAT(diagnose_500) },
116 117 118
	{ NULL }
};

119 120
/* upper facilities limit for kvm */
unsigned long kvm_s390_fac_list_mask[] = {
121
	0xffe6fffbfcfdfc40UL,
122
	0x005e800000000000UL,
123
};
124

125
unsigned long kvm_s390_fac_list_mask_size(void)
126
{
127 128
	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
	return ARRAY_SIZE(kvm_s390_fac_list_mask);
129 130
}

131
static struct gmap_notifier gmap_notifier;
132
debug_info_t *kvm_s390_dbf;
133

134
/* Section: not file related */
135
int kvm_arch_hardware_enable(void)
136 137
{
	/* every s390 is virtualization enabled ;-) */
138
	return 0;
139 140
}

141 142
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address);

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
/*
 * This callback is executed during stop_machine(). All CPUs are therefore
 * temporarily stopped. In order not to change guest behavior, we have to
 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
 * so a CPU won't be stopped while calculating with the epoch.
 */
static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
			  void *v)
{
	struct kvm *kvm;
	struct kvm_vcpu *vcpu;
	int i;
	unsigned long long *delta = v;

	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm->arch.epoch -= *delta;
		kvm_for_each_vcpu(i, vcpu, kvm) {
			vcpu->arch.sie_block->epoch -= *delta;
		}
	}
	return NOTIFY_OK;
}

static struct notifier_block kvm_clock_notifier = {
	.notifier_call = kvm_clock_sync,
};

170 171
int kvm_arch_hardware_setup(void)
{
172 173
	gmap_notifier.notifier_call = kvm_gmap_notifier;
	gmap_register_ipte_notifier(&gmap_notifier);
174 175
	atomic_notifier_chain_register(&s390_epoch_delta_notifier,
				       &kvm_clock_notifier);
176 177 178 179 180
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
181
	gmap_unregister_ipte_notifier(&gmap_notifier);
182 183
	atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
					 &kvm_clock_notifier);
184 185 186 187
}

int kvm_arch_init(void *opaque)
{
188 189 190 191 192 193 194 195 196
	kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
	if (!kvm_s390_dbf)
		return -ENOMEM;

	if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
		debug_unregister(kvm_s390_dbf);
		return -ENOMEM;
	}

197 198
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
199 200
}

201 202 203 204 205
void kvm_arch_exit(void)
{
	debug_unregister(kvm_s390_dbf);
}

206 207 208 209 210 211 212 213 214
/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

215
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
216
{
217 218
	int r;

219
	switch (ext) {
220
	case KVM_CAP_S390_PSW:
221
	case KVM_CAP_S390_GMAP:
222
	case KVM_CAP_SYNC_MMU:
223 224 225
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
226
	case KVM_CAP_ASYNC_PF:
227
	case KVM_CAP_SYNC_REGS:
228
	case KVM_CAP_ONE_REG:
229
	case KVM_CAP_ENABLE_CAP:
230
	case KVM_CAP_S390_CSS_SUPPORT:
C
Cornelia Huck 已提交
231
	case KVM_CAP_IOEVENTFD:
232
	case KVM_CAP_DEVICE_CTRL:
233
	case KVM_CAP_ENABLE_CAP_VM:
234
	case KVM_CAP_S390_IRQCHIP:
235
	case KVM_CAP_VM_ATTRIBUTES:
236
	case KVM_CAP_MP_STATE:
237
	case KVM_CAP_S390_INJECT_IRQ:
238
	case KVM_CAP_S390_USER_SIGP:
239
	case KVM_CAP_S390_USER_STSI:
240
	case KVM_CAP_S390_SKEYS:
241
	case KVM_CAP_S390_IRQ_STATE:
242 243
		r = 1;
		break;
244 245 246
	case KVM_CAP_S390_MEM_OP:
		r = MEM_OP_MAX_SIZE;
		break;
247 248 249 250
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
		r = KVM_MAX_VCPUS;
		break;
251 252 253
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
254
	case KVM_CAP_S390_COW:
255
		r = MACHINE_HAS_ESOP;
256
		break;
257 258 259
	case KVM_CAP_S390_VECTOR_REGISTERS:
		r = MACHINE_HAS_VX;
		break;
260
	default:
261
		r = 0;
262
	}
263
	return r;
264 265
}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	gfn_t cur_gfn, last_gfn;
	unsigned long address;
	struct gmap *gmap = kvm->arch.gmap;

	down_read(&gmap->mm->mmap_sem);
	/* Loop over all guest pages */
	last_gfn = memslot->base_gfn + memslot->npages;
	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
		address = gfn_to_hva_memslot(memslot, cur_gfn);

		if (gmap_test_and_clear_dirty(address, gmap))
			mark_page_dirty(kvm, cur_gfn);
	}
	up_read(&gmap->mm->mmap_sem);
}

285 286 287 288 289 290 291
/* Section: vm related */
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
292 293
	int r;
	unsigned long n;
294
	struct kvm_memslots *slots;
295 296 297 298 299 300 301 302 303
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

304 305
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
324 325
}

326 327 328 329 330 331 332 333
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
334
	case KVM_CAP_S390_IRQCHIP:
335
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
336 337 338
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
339
	case KVM_CAP_S390_USER_SIGP:
340
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
341 342 343
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
344
	case KVM_CAP_S390_VECTOR_REGISTERS:
345 346 347 348 349 350
		if (MACHINE_HAS_VX) {
			set_kvm_facility(kvm->arch.model.fac->mask, 129);
			set_kvm_facility(kvm->arch.model.fac->list, 129);
			r = 0;
		} else
			r = -EINVAL;
351 352
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
			 r ? "(not available)" : "(success)");
353
		break;
354
	case KVM_CAP_S390_USER_STSI:
355
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
356 357 358
		kvm->arch.user_stsi = 1;
		r = 0;
		break;
359 360 361 362 363 364 365
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

366 367 368 369 370 371 372
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
373 374
		VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
			 kvm->arch.gmap->asce_end);
375 376 377 378 379 380 381 382 383 384 385
		if (put_user(kvm->arch.gmap->asce_end, (u64 __user *)attr->addr))
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
386 387 388 389 390
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
391 392 393 394 395
		/* enable CMMA only for z10 and later (EDAT_1) */
		ret = -EINVAL;
		if (!MACHINE_IS_LPAR || !MACHINE_HAS_EDAT1)
			break;

396
		ret = -EBUSY;
397
		VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
398 399 400 401 402 403 404 405
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			kvm->arch.use_cmma = 1;
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
406 407 408 409
		ret = -EINVAL;
		if (!kvm->arch.use_cmma)
			break;

410
		VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
411 412
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
413
		s390_reset_cmma(kvm->arch.gmap->mm);
414 415 416 417
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

		if (new_limit > kvm->arch.gmap->asce_end)
			return -E2BIG;

		ret = -EBUSY;
		mutex_lock(&kvm->lock);
		if (atomic_read(&kvm->online_vcpus) == 0) {
			/* gmap_alloc will round the limit up */
			struct gmap *new = gmap_alloc(current->mm, new_limit);

			if (!new) {
				ret = -ENOMEM;
			} else {
				gmap_free(kvm->arch.gmap);
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
446
		VM_EVENT(kvm, 3, "SET: max guest memory: %lu bytes", new_limit);
447 448
		break;
	}
449 450 451 452 453 454 455
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

456 457 458 459 460 461 462
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *vcpu;
	int i;

463
	if (!test_kvm_facility(kvm, 76))
464 465 466 467 468 469 470 471 472
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
473
		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
474 475 476 477 478 479
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
480
		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
481 482 483 484 485
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
486
		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
487 488 489 490 491
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
492
		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
493 494 495 496 497 498 499 500 501 502 503 504 505 506
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_vcpu_crypto_setup(vcpu);
		exit_sie(vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

507 508 509 510 511 512 513 514 515 516
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;
517
	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x\n", gtod_high);
518 519 520 521 522 523

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
524
	u64 gtod;
525 526 527 528

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

529
	kvm_s390_set_tod_clock(kvm, gtod);
530
	VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx\n", gtod);
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;
562
	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x\n", gtod_high);
563 564 565 566 567 568

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
569
	u64 gtod;
570

571
	preempt_disable();
572
	gtod = get_tod_clock() + kvm->arch.epoch;
573
	preempt_enable();
574 575
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;
576
	VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx\n", gtod);
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	mutex_lock(&kvm->lock);
	if (atomic_read(&kvm->online_vcpus)) {
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
		memcpy(&kvm->arch.model.cpu_id, &proc->cpuid,
		       sizeof(struct cpuid));
		kvm->arch.model.ibc = proc->ibc;
622
		memcpy(kvm->arch.model.fac->list, proc->fac_list,
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	memcpy(&proc->cpuid, &kvm->arch.model.cpu_id, sizeof(struct cpuid));
	proc->ibc = kvm->arch.model.ibc;
656
	memcpy(&proc->fac_list, kvm->arch.model.fac->list, S390_ARCH_FAC_LIST_SIZE_BYTE);
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
675
	mach->ibc = sclp.ibc;
676 677
	memcpy(&mach->fac_mask, kvm->arch.model.fac->mask,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
678
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
679
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
	}
	return ret;
}

702 703 704 705 706
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
707
	case KVM_S390_VM_MEM_CTRL:
708
		ret = kvm_s390_set_mem_control(kvm, attr);
709
		break;
710 711 712
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
713 714 715
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
716 717 718
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
719 720 721 722 723 724 725 726 727 728
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
729 730 731 732 733 734
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
735 736 737
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
738 739 740
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
741 742 743 744 745 746
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
747 748 749 750 751 752 753
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
754 755 756 757
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
758
		case KVM_S390_VM_MEM_LIMIT_SIZE:
759 760 761 762 763 764 765
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
766 767 768 769 770 771 772 773 774 775 776
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
777 778 779 780 781 782 783 784 785 786 787
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
788 789 790 791 792 793 794 795 796 797 798 799 800
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
801 802 803 804 805 806 807 808
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	unsigned long curkey;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Is this guest using storage keys? */
	if (!mm_use_skey(current->mm))
		return KVM_S390_GET_SKEYS_NONE;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			goto out;
		}

		curkey = get_guest_storage_key(current->mm, hva);
		if (IS_ERR_VALUE(curkey)) {
			r = curkey;
			goto out;
		}
		keys[i] = curkey;
	}

	r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
			 sizeof(uint8_t) * args->count);
	if (r)
		r = -EFAULT;
out:
	kvfree(keys);
	return r;
}

static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
			   sizeof(uint8_t) * args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	/* Enable storage key handling for the guest */
886 887 888
	r = s390_enable_skey();
	if (r)
		goto out;
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912

	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
			goto out;
		}

		/* Lowest order bit is reserved */
		if (keys[i] & 0x01) {
			r = -EINVAL;
			goto out;
		}

		r = set_guest_storage_key(current->mm, hva,
					  (unsigned long)keys[i], 0);
		if (r)
			goto out;
	}
out:
	kvfree(keys);
	return r;
}

913 914 915 916 917
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
918
	struct kvm_device_attr attr;
919 920 921
	int r;

	switch (ioctl) {
922 923 924 925 926 927 928 929 930
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
931 932 933 934 935 936 937 938
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
939 940 941 942 943 944 945
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
946
			r = kvm_set_irq_routing(kvm, &routing, 0, 0);
947 948 949
		}
		break;
	}
950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
	case KVM_S390_GET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_get_skeys(kvm, &args);
		break;
	}
	case KVM_S390_SET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_set_skeys(kvm, &args);
		break;
	}
991
	default:
992
		r = -ENOTTY;
993 994 995 996 997
	}

	return r;
}

998 999 1000
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
1001
	u32 cc = 0;
1002

1003
	memset(config, 0, 128);
1004 1005 1006 1007
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
1008
		"0: ipm %0\n"
1009
		"srl %0,28\n"
1010 1011 1012
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

	if (test_facility(2) && test_facility(12)) {
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

1047 1048 1049 1050 1051 1052
static void kvm_s390_get_cpu_id(struct cpuid *cpu_id)
{
	get_cpu_id(cpu_id);
	cpu_id->version = 0xff;
}

1053 1054
static int kvm_s390_crypto_init(struct kvm *kvm)
{
1055
	if (!test_kvm_facility(kvm, 76))
1056 1057 1058 1059 1060 1061 1062
		return 0;

	kvm->arch.crypto.crycb = kzalloc(sizeof(*kvm->arch.crypto.crycb),
					 GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.crypto.crycb)
		return -ENOMEM;

1063
	kvm_s390_set_crycb_format(kvm);
1064

1065 1066 1067 1068 1069 1070 1071
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1072

1073 1074 1075
	return 0;
}

1076
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1077
{
1078
	int i, rc;
1079
	char debug_name[16];
1080
	static unsigned long sca_offset;
1081

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

1093 1094
	rc = s390_enable_sie();
	if (rc)
1095
		goto out_err;
1096

1097 1098
	rc = -ENOMEM;

1099 1100
	kvm->arch.sca = (struct sca_block *) get_zeroed_page(GFP_KERNEL);
	if (!kvm->arch.sca)
1101
		goto out_err;
1102 1103 1104 1105
	spin_lock(&kvm_lock);
	sca_offset = (sca_offset + 16) & 0x7f0;
	kvm->arch.sca = (struct sca_block *) ((char *) kvm->arch.sca + sca_offset);
	spin_unlock(&kvm_lock);
1106 1107 1108

	sprintf(debug_name, "kvm-%u", current->pid);

1109
	kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1110
	if (!kvm->arch.dbf)
1111
		goto out_err;
1112

1113 1114 1115
	/*
	 * The architectural maximum amount of facilities is 16 kbit. To store
	 * this amount, 2 kbyte of memory is required. Thus we need a full
1116 1117
	 * page to hold the guest facility list (arch.model.fac->list) and the
	 * facility mask (arch.model.fac->mask). Its address size has to be
1118 1119 1120
	 * 31 bits and word aligned.
	 */
	kvm->arch.model.fac =
1121
		(struct kvm_s390_fac *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
1122
	if (!kvm->arch.model.fac)
1123
		goto out_err;
1124

1125
	/* Populate the facility mask initially. */
1126
	memcpy(kvm->arch.model.fac->mask, S390_lowcore.stfle_fac_list,
1127
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1128 1129
	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
		if (i < kvm_s390_fac_list_mask_size())
1130
			kvm->arch.model.fac->mask[i] &= kvm_s390_fac_list_mask[i];
1131
		else
1132
			kvm->arch.model.fac->mask[i] = 0UL;
1133 1134
	}

1135 1136 1137 1138
	/* Populate the facility list initially. */
	memcpy(kvm->arch.model.fac->list, kvm->arch.model.fac->mask,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);

1139
	kvm_s390_get_cpu_id(&kvm->arch.model.cpu_id);
1140
	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1141

1142
	if (kvm_s390_crypto_init(kvm) < 0)
1143
		goto out_err;
1144

1145
	spin_lock_init(&kvm->arch.float_int.lock);
1146 1147
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1148
	init_waitqueue_head(&kvm->arch.ipte_wq);
1149
	mutex_init(&kvm->arch.ipte_mutex);
1150

1151
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1152
	VM_EVENT(kvm, 3, "vm created with type %lu", type);
1153

1154 1155 1156
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
	} else {
1157
		kvm->arch.gmap = gmap_alloc(current->mm, (1UL << 44) - 1);
1158
		if (!kvm->arch.gmap)
1159
			goto out_err;
1160
		kvm->arch.gmap->private = kvm;
1161
		kvm->arch.gmap->pfault_enabled = 0;
1162
	}
1163 1164

	kvm->arch.css_support = 0;
1165
	kvm->arch.use_irqchip = 0;
1166
	kvm->arch.epoch = 0;
1167

1168
	spin_lock_init(&kvm->arch.start_stop_lock);
1169
	KVM_EVENT(3, "vm 0x%p created by pid %u", kvm, current->pid);
1170

1171
	return 0;
1172
out_err:
1173
	kfree(kvm->arch.crypto.crycb);
1174
	free_page((unsigned long)kvm->arch.model.fac);
1175
	debug_unregister(kvm->arch.dbf);
1176
	free_page((unsigned long)(kvm->arch.sca));
1177
	KVM_EVENT(3, "creation of vm failed: %d", rc);
1178
	return rc;
1179 1180
}

1181 1182 1183
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1184
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1185
	kvm_s390_clear_local_irqs(vcpu);
1186
	kvm_clear_async_pf_completion_queue(vcpu);
C
Carsten Otte 已提交
1187 1188 1189 1190 1191 1192 1193
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		clear_bit(63 - vcpu->vcpu_id,
			  (unsigned long *) &vcpu->kvm->arch.sca->mcn);
		if (vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sda ==
		    (__u64) vcpu->arch.sie_block)
			vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sda = 0;
	}
1194
	smp_mb();
1195 1196 1197 1198

	if (kvm_is_ucontrol(vcpu->kvm))
		gmap_free(vcpu->arch.gmap);

1199
	if (vcpu->kvm->arch.use_cmma)
1200
		kvm_s390_vcpu_unsetup_cmma(vcpu);
1201
	free_page((unsigned long)(vcpu->arch.sie_block));
1202

1203
	kvm_vcpu_uninit(vcpu);
1204
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1205 1206 1207 1208 1209
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
1210
	struct kvm_vcpu *vcpu;
1211

1212 1213 1214 1215 1216 1217 1218 1219 1220
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
1221 1222
}

1223 1224
void kvm_arch_destroy_vm(struct kvm *kvm)
{
1225
	kvm_free_vcpus(kvm);
1226
	free_page((unsigned long)kvm->arch.model.fac);
1227
	free_page((unsigned long)(kvm->arch.sca));
1228
	debug_unregister(kvm->arch.dbf);
1229
	kfree(kvm->arch.crypto.crycb);
1230 1231
	if (!kvm_is_ucontrol(kvm))
		gmap_free(kvm->arch.gmap);
1232
	kvm_s390_destroy_adapters(kvm);
1233
	kvm_s390_clear_float_irqs(kvm);
1234
	KVM_EVENT(3, "vm 0x%p destroyed", kvm);
1235 1236 1237
}

/* Section: vcpu related */
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
	vcpu->arch.gmap = gmap_alloc(current->mm, -1UL);
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

1248 1249
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1250 1251
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1252 1253
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
1254
				    KVM_SYNC_ACRS |
1255 1256 1257
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
1258 1259
	if (test_kvm_facility(vcpu->kvm, 129))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1260 1261 1262 1263

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

1264 1265 1266
	return 0;
}

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
/*
 * Backs up the current FP/VX register save area on a particular
 * destination.  Used to switch between different register save
 * areas.
 */
static inline void save_fpu_to(struct fpu *dst)
{
	dst->fpc = current->thread.fpu.fpc;
	dst->flags = current->thread.fpu.flags;
	dst->regs = current->thread.fpu.regs;
}

/*
 * Switches the FP/VX register save area from which to lazy
 * restore register contents.
 */
static inline void load_fpu_from(struct fpu *from)
{
	current->thread.fpu.fpc = from->fpc;
	current->thread.fpu.flags = from->flags;
	current->thread.fpu.regs = from->regs;
}

1290 1291
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
1292
	/* Save host register state */
1293
	save_fpu_regs();
1294
	save_fpu_to(&vcpu->arch.host_fpregs);
1295

1296
	if (test_kvm_facility(vcpu->kvm, 129)) {
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310
		current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
		current->thread.fpu.flags = FPU_USE_VX;
		/*
		 * Use the register save area in the SIE-control block
		 * for register restore and save in kvm_arch_vcpu_put()
		 */
		current->thread.fpu.vxrs =
			(__vector128 *)&vcpu->run->s.regs.vrs;
		/* Always enable the vector extension for KVM */
		__ctl_set_vx();
	} else
		load_fpu_from(&vcpu->arch.guest_fpregs);

	if (test_fp_ctl(current->thread.fpu.fpc))
1311
		/* User space provided an invalid FPC, let's clear it */
1312 1313 1314
		current->thread.fpu.fpc = 0;

	save_access_regs(vcpu->arch.host_acrs);
1315
	restore_access_regs(vcpu->run->s.regs.acrs);
1316
	gmap_enable(vcpu->arch.gmap);
1317
	atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1318 1319 1320 1321
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
1322
	atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1323
	gmap_disable(vcpu->arch.gmap);
1324

1325
	save_fpu_regs();
1326

1327
	if (test_kvm_facility(vcpu->kvm, 129))
1328 1329 1330 1331 1332 1333 1334
		/*
		 * kvm_arch_vcpu_load() set up the register save area to
		 * the &vcpu->run->s.regs.vrs and, thus, the vector registers
		 * are already saved.  Only the floating-point control must be
		 * copied.
		 */
		vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
1335
	else
1336 1337 1338 1339
		save_fpu_to(&vcpu->arch.guest_fpregs);
	load_fpu_from(&vcpu->arch.host_fpregs);

	save_access_regs(vcpu->run->s.regs.acrs);
1340 1341 1342 1343 1344 1345 1346 1347
	restore_access_regs(vcpu->arch.host_acrs);
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
1348
	kvm_s390_set_prefix(vcpu, 0);
1349 1350 1351 1352 1353 1354 1355 1356 1357
	vcpu->arch.sie_block->cputm     = 0UL;
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
	vcpu->arch.guest_fpregs.fpc = 0;
	asm volatile("lfpc %0" : : "Q" (vcpu->arch.guest_fpregs.fpc));
	vcpu->arch.sie_block->gbea = 1;
1358
	vcpu->arch.sie_block->pp = 0;
1359 1360
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1361 1362
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
1363
	kvm_s390_clear_local_irqs(vcpu);
1364 1365
}

1366
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1367
{
1368
	mutex_lock(&vcpu->kvm->lock);
1369
	preempt_disable();
1370
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
1371
	preempt_enable();
1372
	mutex_unlock(&vcpu->kvm->lock);
1373 1374
	if (!kvm_is_ucontrol(vcpu->kvm))
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1375 1376
}

1377 1378
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
1379
	if (!test_kvm_facility(vcpu->kvm, 76))
1380 1381
		return;

1382 1383 1384 1385 1386 1387 1388
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

1389 1390 1391
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;

	vcpu->arch.sie_block->ecb2 |= 0x80;
	vcpu->arch.sie_block->ecb2 &= ~0x08;
	return 0;
}

1409 1410 1411 1412 1413 1414 1415 1416 1417
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;

	vcpu->arch.cpu_id = model->cpu_id;
	vcpu->arch.sie_block->ibc = model->ibc;
	vcpu->arch.sie_block->fac = (int) (long) model->fac->list;
}

1418 1419
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
1420
	int rc = 0;
1421

1422 1423
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
1424 1425
						    CPUSTAT_STOPPED);

1426
	if (test_kvm_facility(vcpu->kvm, 78))
1427
		atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
1428
	else if (test_kvm_facility(vcpu->kvm, 8))
1429
		atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
1430

1431 1432
	kvm_s390_vcpu_setup_model(vcpu);

1433
	vcpu->arch.sie_block->ecb   = 6;
1434
	if (test_kvm_facility(vcpu->kvm, 50) && test_kvm_facility(vcpu->kvm, 73))
1435 1436
		vcpu->arch.sie_block->ecb |= 0x10;

1437
	vcpu->arch.sie_block->ecb2  = 8;
1438
	vcpu->arch.sie_block->eca   = 0xC1002000U;
1439
	if (sclp.has_siif)
1440
		vcpu->arch.sie_block->eca |= 1;
1441
	if (sclp.has_sigpif)
1442
		vcpu->arch.sie_block->eca |= 0x10000000U;
1443
	if (test_kvm_facility(vcpu->kvm, 129)) {
1444 1445 1446
		vcpu->arch.sie_block->eca |= 0x00020000;
		vcpu->arch.sie_block->ecd |= 0x20000000;
	}
1447
	vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
1448

1449
	if (vcpu->kvm->arch.use_cmma) {
1450 1451 1452
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
1453
	}
1454
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1455
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1456

1457 1458
	kvm_s390_vcpu_crypto_setup(vcpu);

1459
	return rc;
1460 1461 1462 1463 1464
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
1465
	struct kvm_vcpu *vcpu;
1466
	struct sie_page *sie_page;
1467 1468 1469 1470 1471 1472
	int rc = -EINVAL;

	if (id >= KVM_MAX_VCPUS)
		goto out;

	rc = -ENOMEM;
1473

1474
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1475
	if (!vcpu)
1476
		goto out;
1477

1478 1479
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
1480 1481
		goto out_free_cpu;

1482 1483 1484
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;

1485
	vcpu->arch.sie_block->icpua = id;
C
Carsten Otte 已提交
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
	if (!kvm_is_ucontrol(kvm)) {
		if (!kvm->arch.sca) {
			WARN_ON_ONCE(1);
			goto out_free_cpu;
		}
		if (!kvm->arch.sca->cpu[id].sda)
			kvm->arch.sca->cpu[id].sda =
				(__u64) vcpu->arch.sie_block;
		vcpu->arch.sie_block->scaoh =
			(__u32)(((__u64)kvm->arch.sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)kvm->arch.sca;
		set_bit(63 - id, (unsigned long *) &kvm->arch.sca->mcn);
	}
1499

1500 1501
	spin_lock_init(&vcpu->arch.local_int.lock);
	vcpu->arch.local_int.float_int = &kvm->arch.float_int;
1502
	vcpu->arch.local_int.wq = &vcpu->wq;
1503
	vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
1504

1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
	/*
	 * Allocate a save area for floating-point registers.  If the vector
	 * extension is available, register contents are saved in the SIE
	 * control block.  The allocated save area is still required in
	 * particular places, for example, in kvm_s390_vcpu_store_status().
	 */
	vcpu->arch.guest_fpregs.fprs = kzalloc(sizeof(freg_t) * __NUM_FPRS,
					       GFP_KERNEL);
	if (!vcpu->arch.guest_fpregs.fprs) {
		rc = -ENOMEM;
		goto out_free_sie_block;
	}

1518 1519
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
1520
		goto out_free_sie_block;
1521 1522
	VM_EVENT(kvm, 3, "create cpu %d at %p, sie block at %p", id, vcpu,
		 vcpu->arch.sie_block);
1523
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
1524 1525

	return vcpu;
1526 1527
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
1528
out_free_cpu:
1529
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1530
out:
1531 1532 1533 1534 1535
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
1536
	return kvm_s390_vcpu_has_irq(vcpu, 0);
1537 1538
}

1539
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
1540
{
1541
	atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1542
	exit_sie(vcpu);
1543 1544
}

1545
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
1546
{
1547
	atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1548 1549
}

1550 1551
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
{
1552
	atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1553
	exit_sie(vcpu);
1554 1555 1556 1557
}

static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
1558
	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1559 1560
}

1561 1562 1563 1564 1565 1566
/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
1567
	atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
1568 1569 1570 1571
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

1572 1573
/* Kick a guest cpu out of SIE to process a request synchronously */
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
1574
{
1575 1576
	kvm_make_request(req, vcpu);
	kvm_s390_vcpu_request(vcpu);
1577 1578
}

1579 1580 1581 1582 1583 1584 1585 1586
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address)
{
	int i;
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
1587
		if (kvm_s390_get_prefix(vcpu) == (address & ~0x1000UL)) {
1588
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx", address);
1589
			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
1590 1591 1592 1593
		}
	}
}

1594 1595 1596 1597 1598 1599 1600
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

1601 1602 1603 1604 1605 1606
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
1607 1608 1609 1610 1611 1612 1613 1614
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
1615 1616 1617 1618 1619 1620 1621 1622
	case KVM_REG_S390_CPU_TIMER:
		r = put_user(vcpu->arch.sie_block->cputm,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
1635 1636 1637 1638
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
1639 1640 1641 1642
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
1656 1657 1658 1659 1660 1661 1662 1663
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
1664 1665 1666 1667 1668 1669 1670 1671
	case KVM_REG_S390_CPU_TIMER:
		r = get_user(vcpu->arch.sie_block->cputm,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
1672 1673 1674
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
1675 1676
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
1677 1678 1679 1680 1681 1682 1683 1684 1685
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
1686 1687 1688 1689
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
1690 1691 1692 1693
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
1694 1695 1696 1697 1698 1699
	default:
		break;
	}

	return r;
}
1700

1701 1702 1703 1704 1705 1706 1707 1708
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
1709
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
1710 1711 1712 1713 1714
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
1715
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
1716 1717 1718 1719 1720 1721
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
1722
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
1723
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
1724
	restore_access_regs(vcpu->run->s.regs.acrs);
1725 1726 1727 1728 1729 1730
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
1731
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
1732 1733 1734 1735 1736 1737
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
1738 1739
	if (test_fp_ctl(fpu->fpc))
		return -EINVAL;
1740
	memcpy(vcpu->arch.guest_fpregs.fprs, &fpu->fprs, sizeof(fpu->fprs));
1741
	vcpu->arch.guest_fpregs.fpc = fpu->fpc;
1742
	save_fpu_regs();
1743
	load_fpu_from(&vcpu->arch.guest_fpregs);
1744 1745 1746 1747 1748
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
1749
	memcpy(&fpu->fprs, vcpu->arch.guest_fpregs.fprs, sizeof(fpu->fprs));
1750 1751 1752 1753 1754 1755 1756 1757
	fpu->fpc = vcpu->arch.guest_fpregs.fpc;
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

1758
	if (!is_vcpu_stopped(vcpu))
1759
		rc = -EBUSY;
1760 1761 1762 1763
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
1764 1765 1766 1767 1768 1769 1770 1771 1772
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

1773 1774 1775 1776
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
1777 1778
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
1779
{
1780 1781 1782 1783 1784
	int rc = 0;

	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

1785
	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
1786 1787 1788 1789 1790
		return -EINVAL;

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
1791
		atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
1792 1793 1794 1795

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
1796
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
1797 1798 1799 1800 1801 1802
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
1803
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
1804 1805 1806
	}

	return rc;
1807 1808
}

1809 1810 1811
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
1812 1813 1814
	/* CHECK_STOP and LOAD are not supported yet */
	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				       KVM_MP_STATE_OPERATING;
1815 1816 1817 1818 1819
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
	int rc = 0;

	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

	return rc;
1840 1841
}

1842 1843 1844 1845 1846
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
	return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
}

1847 1848
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
1849
retry:
1850
	kvm_s390_vcpu_request_handled(vcpu);
1851 1852
	if (!vcpu->requests)
		return 0;
1853 1854 1855 1856 1857 1858 1859
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
	 * guest prefix page. gmap_ipte_notify will wait on the ptl lock.
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
1860
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
1861 1862
		int rc;
		rc = gmap_ipte_notify(vcpu->arch.gmap,
1863
				      kvm_s390_get_prefix(vcpu),
1864 1865 1866
				      PAGE_SIZE * 2);
		if (rc)
			return rc;
1867
		goto retry;
1868
	}
1869

1870 1871 1872 1873 1874
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

1875 1876 1877
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
1878
			atomic_or(CPUSTAT_IBS,
1879 1880 1881
					&vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
1882
	}
1883 1884 1885 1886

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
1887
			atomic_andnot(CPUSTAT_IBS,
1888 1889 1890 1891 1892
					  &vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
	}

1893 1894 1895
	/* nothing to do, just clear the request */
	clear_bit(KVM_REQ_UNHALT, &vcpu->requests);

1896 1897 1898
	return 0;
}

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
{
	struct kvm_vcpu *vcpu;
	int i;

	mutex_lock(&kvm->lock);
	preempt_disable();
	kvm->arch.epoch = tod - get_tod_clock();
	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
	kvm_s390_vcpu_unblock_all(kvm);
	preempt_enable();
	mutex_unlock(&kvm->lock);
}

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
1926
{
1927 1928
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
1929 1930
}

1931 1932 1933 1934
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
1935
	struct kvm_s390_irq irq;
1936 1937

	if (start_token) {
1938 1939 1940
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
1941 1942
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
1943
		inti.parm64 = token;
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
1990
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
1991 1992 1993 1994 1995 1996
		return 0;
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
1997 1998 1999
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
2000 2001 2002 2003 2004 2005
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

2006
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
2007
{
2008
	int rc, cpuflags;
2009

2010 2011 2012 2013 2014 2015 2016
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

2017
	memcpy(&vcpu->arch.sie_block->gg14, &vcpu->run->s.regs.gprs[14], 16);
2018 2019 2020 2021

	if (need_resched())
		schedule();

2022
	if (test_cpu_flag(CIF_MCCK_PENDING))
2023 2024
		s390_handle_mcck();

2025 2026 2027 2028 2029
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
2030

2031 2032 2033 2034
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

2035 2036 2037 2038 2039
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

2040
	vcpu->arch.sie_block->icptcode = 0;
2041 2042 2043
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
2044

2045 2046 2047
	return 0;
}

2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
	psw_t *psw = &vcpu->arch.sie_block->gpsw;
	u8 opcode;
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
2065
	rc = read_guest(vcpu, psw->addr, 0, &opcode, 1);
2066 2067 2068 2069 2070 2071 2072
	if (rc)
		return kvm_s390_inject_prog_cond(vcpu, rc);
	psw->addr = __rewind_psw(*psw, -insn_length(opcode));

	return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
}

2073 2074
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
2075
	int rc = -1;
2076 2077 2078 2079 2080

	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

2081 2082 2083
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

2084
	if (exit_reason >= 0) {
2085
		rc = 0;
2086 2087 2088 2089 2090 2091
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
		rc = -EREMOTE;
2092 2093

	} else if (current->thread.gmap_pfault) {
2094
		trace_kvm_s390_major_guest_pfault(vcpu);
2095
		current->thread.gmap_pfault = 0;
2096
		if (kvm_arch_setup_async_pf(vcpu)) {
2097
			rc = 0;
2098 2099 2100 2101
		} else {
			gpa_t gpa = current->thread.gmap_addr;
			rc = kvm_arch_fault_in_page(vcpu, gpa, 1);
		}
2102 2103
	}

2104 2105
	if (rc == -1)
		rc = vcpu_post_run_fault_in_sie(vcpu);
2106

2107
	memcpy(&vcpu->run->s.regs.gprs[14], &vcpu->arch.sie_block->gg14, 16);
2108

2109 2110
	if (rc == 0) {
		if (kvm_is_ucontrol(vcpu->kvm))
2111 2112
			/* Don't exit for host interrupts. */
			rc = vcpu->arch.sie_block->icptcode ? -EOPNOTSUPP : 0;
2113 2114 2115 2116
		else
			rc = kvm_handle_sie_intercept(vcpu);
	}

2117 2118 2119 2120 2121 2122 2123
	return rc;
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

2124 2125 2126 2127 2128 2129
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

2130 2131 2132 2133
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
2134

2135
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2136 2137 2138 2139
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
2140 2141 2142
		local_irq_disable();
		__kvm_guest_enter();
		local_irq_enable();
2143 2144
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
2145 2146 2147
		local_irq_disable();
		__kvm_guest_exit();
		local_irq_enable();
2148
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2149 2150

		rc = vcpu_post_run(vcpu, exit_reason);
2151
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2152

2153
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2154
	return rc;
2155 2156
}

2157 2158 2159 2160 2161 2162 2163 2164
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2165 2166
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
		vcpu->arch.sie_block->cputm = kvm_run->s.regs.cputm;
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2179 2180
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
	}
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
	kvm_run->s.regs.cputm = vcpu->arch.sie_block->cputm;
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
}

2201 2202
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
2203
	int rc;
2204 2205
	sigset_t sigsaved;

2206 2207 2208 2209 2210
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
		return 0;
	}

2211 2212 2213
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

2214 2215 2216
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
2217
		pr_err_ratelimited("can't run stopped vcpu %d\n",
2218 2219 2220
				   vcpu->vcpu_id);
		return -EINVAL;
	}
2221

2222
	sync_regs(vcpu, kvm_run);
2223

2224
	might_fault();
2225
	rc = __vcpu_run(vcpu);
2226

2227 2228
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
2229
		rc = -EINTR;
2230
	}
2231

2232 2233 2234 2235 2236
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

2237
	if (rc == -EOPNOTSUPP) {
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
		/* intercept cannot be handled in-kernel, prepare kvm-run */
		kvm_run->exit_reason         = KVM_EXIT_S390_SIEIC;
		kvm_run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		kvm_run->s390_sieic.ipa      = vcpu->arch.sie_block->ipa;
		kvm_run->s390_sieic.ipb      = vcpu->arch.sie_block->ipb;
		rc = 0;
	}

	if (rc == -EREMOTE) {
		/* intercept was handled, but userspace support is needed
		 * kvm_run has been prepared by the handler */
		rc = 0;
	}
2251

2252
	store_regs(vcpu, kvm_run);
2253

2254 2255 2256 2257
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu->stat.exit_userspace++;
2258
	return rc;
2259 2260 2261 2262 2263 2264 2265 2266
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
2267
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2268
{
2269
	unsigned char archmode = 1;
2270
	unsigned int px;
2271
	u64 clkcomp;
2272
	int rc;
2273

2274 2275
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
2276
			return -EFAULT;
2277 2278 2279
		gpa = SAVE_AREA_BASE;
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
2280
			return -EFAULT;
2281 2282 2283 2284 2285 2286 2287 2288
		gpa = kvm_s390_real_to_abs(vcpu, SAVE_AREA_BASE);
	}
	rc = write_guest_abs(vcpu, gpa + offsetof(struct save_area, fp_regs),
			     vcpu->arch.guest_fpregs.fprs, 128);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, gp_regs),
			      vcpu->run->s.regs.gprs, 128);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, psw),
			      &vcpu->arch.sie_block->gpsw, 16);
2289
	px = kvm_s390_get_prefix(vcpu);
2290
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, pref_reg),
2291
			      &px, 4);
2292 2293 2294 2295 2296 2297 2298
	rc |= write_guest_abs(vcpu,
			      gpa + offsetof(struct save_area, fp_ctrl_reg),
			      &vcpu->arch.guest_fpregs.fpc, 4);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, tod_reg),
			      &vcpu->arch.sie_block->todpr, 4);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, timer),
			      &vcpu->arch.sie_block->cputm, 8);
2299
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
2300 2301 2302 2303 2304 2305 2306
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, clk_cmp),
			      &clkcomp, 8);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, acc_regs),
			      &vcpu->run->s.regs.acrs, 64);
	rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, ctrl_regs),
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
2307 2308
}

2309 2310 2311 2312 2313 2314 2315
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
	 * copying in vcpu load/put. Lets update our copies before we save
	 * it into the save area
	 */
2316
	save_fpu_regs();
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
	if (test_kvm_facility(vcpu->kvm, 129)) {
		/*
		 * If the vector extension is available, the vector registers
		 * which overlaps with floating-point registers are saved in
		 * the SIE-control block.  Hence, extract the floating-point
		 * registers and the FPC value and store them in the
		 * guest_fpregs structure.
		 */
		WARN_ON(!is_vx_task(current));	  /* XXX remove later */
		vcpu->arch.guest_fpregs.fpc = current->thread.fpu.fpc;
		convert_vx_to_fp(vcpu->arch.guest_fpregs.fprs,
				 current->thread.fpu.vxrs);
	} else
		save_fpu_to(&vcpu->arch.guest_fpregs);
2331 2332 2333 2334 2335
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

E
Eric Farman 已提交
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
/*
 * store additional status at address
 */
int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu,
					unsigned long gpa)
{
	/* Only bits 0-53 are used for address formation */
	if (!(gpa & ~0x3ff))
		return 0;

	return write_guest_abs(vcpu, gpa & ~0x3ff,
			       (void *)&vcpu->run->s.regs.vrs, 512);
}

int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	if (!test_kvm_facility(vcpu->kvm, 129))
		return 0;

	/*
	 * The guest VXRS are in the host VXRs due to the lazy
2357 2358 2359 2360 2361
	 * copying in vcpu load/put. We can simply call save_fpu_regs()
	 * to save the current register state because we are in the
	 * middle of a load/put cycle.
	 *
	 * Let's update our copies before we save it into the save area.
E
Eric Farman 已提交
2362
	 */
2363
	save_fpu_regs();
E
Eric Farman 已提交
2364 2365 2366 2367

	return kvm_s390_store_adtl_status_unloaded(vcpu, addr);
}

2368 2369 2370
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2371
	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2387
	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2388 2389
}

2390 2391
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
2392 2393 2394 2395 2396
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

2397
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2398
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2399
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

2419
	atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2420 2421 2422 2423
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
2424
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2425
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2426
	return;
2427 2428 2429 2430
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
2431 2432 2433 2434 2435 2436
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

2437
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2438
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2439
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2440 2441
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

2442
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2443
	kvm_s390_clear_stop_irq(vcpu);
2444

2445
	atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

2463
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2464
	return;
2465 2466
}

2467 2468 2469 2470 2471 2472 2473 2474 2475
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
2476 2477 2478
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
2479
			VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
2480 2481 2482 2483
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
2484 2485 2486 2487 2488 2489 2490
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
				  struct kvm_s390_mem_op *mop)
{
	void __user *uaddr = (void __user *)mop->buf;
	void *tmpbuf = NULL;
	int r, srcu_idx;
	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
				    | KVM_S390_MEMOP_F_CHECK_ONLY;

	if (mop->flags & ~supported_flags)
		return -EINVAL;

	if (mop->size > MEM_OP_MAX_SIZE)
		return -E2BIG;

	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
		tmpbuf = vmalloc(mop->size);
		if (!tmpbuf)
			return -ENOMEM;
	}

	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

	switch (mop->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
			r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size, false);
			break;
		}
		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		if (r == 0) {
			if (copy_to_user(uaddr, tmpbuf, mop->size))
				r = -EFAULT;
		}
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
			r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size, true);
			break;
		}
		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
			r = -EFAULT;
			break;
		}
		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		break;
	default:
		r = -EINVAL;
	}

	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);

	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);

	vfree(tmpbuf);
	return r;
}

2550 2551 2552 2553 2554
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
2555
	int idx;
2556
	long r;
2557

2558
	switch (ioctl) {
2559 2560 2561 2562 2563 2564 2565 2566 2567
	case KVM_S390_IRQ: {
		struct kvm_s390_irq s390irq;

		r = -EFAULT;
		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
			break;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
		break;
	}
2568
	case KVM_S390_INTERRUPT: {
2569
		struct kvm_s390_interrupt s390int;
2570
		struct kvm_s390_irq s390irq;
2571

2572
		r = -EFAULT;
2573
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
2574
			break;
2575 2576 2577
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
2578
		break;
2579
	}
2580
	case KVM_S390_STORE_STATUS:
2581
		idx = srcu_read_lock(&vcpu->kvm->srcu);
2582
		r = kvm_s390_vcpu_store_status(vcpu, arg);
2583
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
2584
		break;
2585 2586 2587
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

2588
		r = -EFAULT;
2589
		if (copy_from_user(&psw, argp, sizeof(psw)))
2590 2591 2592
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
2593 2594
	}
	case KVM_S390_INITIAL_RESET:
2595 2596
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
2645
	case KVM_S390_VCPU_FAULT: {
2646
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
2647 2648
		break;
	}
2649 2650 2651 2652 2653 2654 2655 2656 2657
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
2658 2659 2660 2661 2662 2663 2664 2665 2666
	case KVM_S390_MEM_OP: {
		struct kvm_s390_mem_op mem_op;

		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
		else
			r = -EFAULT;
		break;
	}
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698
	case KVM_S390_SET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
		    irq_state.len == 0 ||
		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_set_irq_state(vcpu,
					   (void __user *) irq_state.buf,
					   irq_state.len);
		break;
	}
	case KVM_S390_GET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len == 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_get_irq_state(vcpu,
					   (__u8 __user *)  irq_state.buf,
					   irq_state.len);
		break;
	}
2699
	default:
2700
		r = -ENOTTY;
2701
	}
2702
	return r;
2703 2704
}

2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

2718 2719
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
2720 2721 2722 2723
{
	return 0;
}

2724
/* Section: memory related */
2725 2726
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
2727
				   const struct kvm_userspace_memory_region *mem,
2728
				   enum kvm_mr_change change)
2729
{
2730 2731 2732 2733
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
2734

2735
	if (mem->userspace_addr & 0xffffful)
2736 2737
		return -EINVAL;

2738
	if (mem->memory_size & 0xffffful)
2739 2740
		return -EINVAL;

2741 2742 2743 2744
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
2745
				const struct kvm_userspace_memory_region *mem,
2746
				const struct kvm_memory_slot *old,
2747
				const struct kvm_memory_slot *new,
2748
				enum kvm_mr_change change)
2749
{
2750
	int rc;
2751

2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
2762 2763 2764 2765

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
2766
		pr_warn("failed to commit memory region\n");
2767
	return;
2768 2769 2770 2771
}

static int __init kvm_s390_init(void)
{
2772
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2773 2774 2775 2776 2777 2778 2779 2780 2781
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
2782 2783 2784 2785 2786 2787 2788 2789 2790

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");