kvm-s390.c 84.0 KB
Newer Older
1
/*
2
 * hosting zSeries kernel virtual machines
3
 *
4
 * Copyright IBM Corp. 2008, 2009
5 6 7 8 9 10 11 12
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License (version 2 only)
 * as published by the Free Software Foundation.
 *
 *    Author(s): Carsten Otte <cotte@de.ibm.com>
 *               Christian Borntraeger <borntraeger@de.ibm.com>
 *               Heiko Carstens <heiko.carstens@de.ibm.com>
13
 *               Christian Ehrhardt <ehrhardt@de.ibm.com>
14
 *               Jason J. Herne <jjherne@us.ibm.com>
15 16 17 18 19
 */

#include <linux/compiler.h>
#include <linux/err.h>
#include <linux/fs.h>
20
#include <linux/hrtimer.h>
21 22 23
#include <linux/init.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
24
#include <linux/mman.h>
25
#include <linux/module.h>
26
#include <linux/random.h>
27
#include <linux/slab.h>
28
#include <linux/timer.h>
29
#include <linux/vmalloc.h>
30
#include <linux/bitmap.h>
31
#include <asm/asm-offsets.h>
32
#include <asm/lowcore.h>
33
#include <asm/etr.h>
34
#include <asm/pgtable.h>
35
#include <asm/gmap.h>
36
#include <asm/nmi.h>
37
#include <asm/switch_to.h>
38
#include <asm/isc.h>
39
#include <asm/sclp.h>
40 41
#include <asm/cpacf.h>
#include <asm/etr.h>
42
#include "kvm-s390.h"
43 44
#include "gaccess.h"

45 46 47 48
#define KMSG_COMPONENT "kvm-s390"
#undef pr_fmt
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt

49 50
#define CREATE_TRACE_POINTS
#include "trace.h"
51
#include "trace-s390.h"
52

53
#define MEM_OP_MAX_SIZE 65536	/* Maximum transfer size for KVM_S390_MEM_OP */
54 55 56
#define LOCAL_IRQS 32
#define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
			   (KVM_MAX_VCPUS + LOCAL_IRQS))
57

58 59 60 61
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU

struct kvm_stats_debugfs_item debugfs_entries[] = {
	{ "userspace_handled", VCPU_STAT(exit_userspace) },
62
	{ "exit_null", VCPU_STAT(exit_null) },
63 64 65 66
	{ "exit_validity", VCPU_STAT(exit_validity) },
	{ "exit_stop_request", VCPU_STAT(exit_stop_request) },
	{ "exit_external_request", VCPU_STAT(exit_external_request) },
	{ "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
67 68 69
	{ "exit_instruction", VCPU_STAT(exit_instruction) },
	{ "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
	{ "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
70
	{ "exit_operation_exception", VCPU_STAT(exit_operation_exception) },
71
	{ "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
72
	{ "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
73
	{ "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
74
	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
75
	{ "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
76
	{ "instruction_lctl", VCPU_STAT(instruction_lctl) },
77 78
	{ "instruction_stctl", VCPU_STAT(instruction_stctl) },
	{ "instruction_stctg", VCPU_STAT(instruction_stctg) },
79
	{ "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
80
	{ "deliver_external_call", VCPU_STAT(deliver_external_call) },
81 82 83 84 85 86 87
	{ "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
	{ "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
	{ "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
	{ "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
	{ "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
	{ "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
	{ "exit_wait_state", VCPU_STAT(exit_wait_state) },
88
	{ "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
89 90 91 92 93
	{ "instruction_stidp", VCPU_STAT(instruction_stidp) },
	{ "instruction_spx", VCPU_STAT(instruction_spx) },
	{ "instruction_stpx", VCPU_STAT(instruction_stpx) },
	{ "instruction_stap", VCPU_STAT(instruction_stap) },
	{ "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
94
	{ "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
95 96
	{ "instruction_stsch", VCPU_STAT(instruction_stsch) },
	{ "instruction_chsc", VCPU_STAT(instruction_chsc) },
97
	{ "instruction_essa", VCPU_STAT(instruction_essa) },
98 99
	{ "instruction_stsi", VCPU_STAT(instruction_stsi) },
	{ "instruction_stfl", VCPU_STAT(instruction_stfl) },
100
	{ "instruction_tprot", VCPU_STAT(instruction_tprot) },
J
Janosch Frank 已提交
101
	{ "instruction_sthyi", VCPU_STAT(instruction_sthyi) },
102
	{ "instruction_sie", VCPU_STAT(instruction_sie) },
103
	{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
104
	{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
105
	{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
106
	{ "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
107 108
	{ "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
	{ "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
109
	{ "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
110 111
	{ "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
	{ "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
112
	{ "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
113 114 115
	{ "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
	{ "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
	{ "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
116 117 118
	{ "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
	{ "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
	{ "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
119
	{ "diagnose_10", VCPU_STAT(diagnose_10) },
120
	{ "diagnose_44", VCPU_STAT(diagnose_44) },
121
	{ "diagnose_9c", VCPU_STAT(diagnose_9c) },
122 123 124
	{ "diagnose_258", VCPU_STAT(diagnose_258) },
	{ "diagnose_308", VCPU_STAT(diagnose_308) },
	{ "diagnose_500", VCPU_STAT(diagnose_500) },
125 126 127
	{ NULL }
};

128
/* upper facilities limit for kvm */
129 130 131
unsigned long kvm_s390_fac_list_mask[16] = {
	0xffe6000000000000UL,
	0x005e000000000000UL,
132
};
133

134
unsigned long kvm_s390_fac_list_mask_size(void)
135
{
136 137
	BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
	return ARRAY_SIZE(kvm_s390_fac_list_mask);
138 139
}

140 141
/* available cpu features supported by kvm */
static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
142 143
/* available subfunctions indicated via query / "test bit" */
static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
144

145
static struct gmap_notifier gmap_notifier;
146
static struct gmap_notifier vsie_gmap_notifier;
147
debug_info_t *kvm_s390_dbf;
148

149
/* Section: not file related */
150
int kvm_arch_hardware_enable(void)
151 152
{
	/* every s390 is virtualization enabled ;-) */
153
	return 0;
154 155
}

156 157
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
			      unsigned long end);
158

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
/*
 * This callback is executed during stop_machine(). All CPUs are therefore
 * temporarily stopped. In order not to change guest behavior, we have to
 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
 * so a CPU won't be stopped while calculating with the epoch.
 */
static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
			  void *v)
{
	struct kvm *kvm;
	struct kvm_vcpu *vcpu;
	int i;
	unsigned long long *delta = v;

	list_for_each_entry(kvm, &vm_list, vm_list) {
		kvm->arch.epoch -= *delta;
		kvm_for_each_vcpu(i, vcpu, kvm) {
			vcpu->arch.sie_block->epoch -= *delta;
177 178
			if (vcpu->arch.cputm_enabled)
				vcpu->arch.cputm_start += *delta;
179 180 181 182 183 184 185 186 187
		}
	}
	return NOTIFY_OK;
}

static struct notifier_block kvm_clock_notifier = {
	.notifier_call = kvm_clock_sync,
};

188 189
int kvm_arch_hardware_setup(void)
{
190
	gmap_notifier.notifier_call = kvm_gmap_notifier;
191
	gmap_register_pte_notifier(&gmap_notifier);
192 193
	vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier;
	gmap_register_pte_notifier(&vsie_gmap_notifier);
194 195
	atomic_notifier_chain_register(&s390_epoch_delta_notifier,
				       &kvm_clock_notifier);
196 197 198 199 200
	return 0;
}

void kvm_arch_hardware_unsetup(void)
{
201
	gmap_unregister_pte_notifier(&gmap_notifier);
202
	gmap_unregister_pte_notifier(&vsie_gmap_notifier);
203 204
	atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
					 &kvm_clock_notifier);
205 206
}

207 208 209 210 211
static void allow_cpu_feat(unsigned long nr)
{
	set_bit_inv(nr, kvm_s390_available_cpu_feat);
}

212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
static inline int plo_test_bit(unsigned char nr)
{
	register unsigned long r0 asm("0") = (unsigned long) nr | 0x100;
	int cc = 3; /* subfunction not available */

	asm volatile(
		/* Parameter registers are ignored for "test bit" */
		"	plo	0,0,0,0(0)\n"
		"	ipm	%0\n"
		"	srl	%0,28\n"
		: "=d" (cc)
		: "d" (r0)
		: "cc");
	return cc == 0;
}

228 229
static void kvm_s390_cpu_feat_init(void)
{
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
	int i;

	for (i = 0; i < 256; ++i) {
		if (plo_test_bit(i))
			kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
	}

	if (test_facility(28)) /* TOD-clock steering */
		etr_ptff(kvm_s390_available_subfunc.ptff, ETR_PTFF_QAF);

	if (test_facility(17)) { /* MSA */
		__cpacf_query(CPACF_KMAC, kvm_s390_available_subfunc.kmac);
		__cpacf_query(CPACF_KMC, kvm_s390_available_subfunc.kmc);
		__cpacf_query(CPACF_KM, kvm_s390_available_subfunc.km);
		__cpacf_query(CPACF_KIMD, kvm_s390_available_subfunc.kimd);
		__cpacf_query(CPACF_KLMD, kvm_s390_available_subfunc.klmd);
	}
	if (test_facility(76)) /* MSA3 */
		__cpacf_query(CPACF_PCKMO, kvm_s390_available_subfunc.pckmo);
	if (test_facility(77)) { /* MSA4 */
		__cpacf_query(CPACF_KMCTR, kvm_s390_available_subfunc.kmctr);
		__cpacf_query(CPACF_KMF, kvm_s390_available_subfunc.kmf);
		__cpacf_query(CPACF_KMO, kvm_s390_available_subfunc.kmo);
		__cpacf_query(CPACF_PCC, kvm_s390_available_subfunc.pcc);
	}
	if (test_facility(57)) /* MSA5 */
		__cpacf_query(CPACF_PPNO, kvm_s390_available_subfunc.ppno);

258 259
	if (MACHINE_HAS_ESOP)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
260 261 262 263 264 265 266 267
	/*
	 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow),
	 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing).
	 */
	if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao ||
	    !test_facility(3))
		return;
	allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2);
268 269
	if (sclp.has_64bscao)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO);
270 271
	if (sclp.has_siif)
		allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF);
272 273
}

274 275
int kvm_arch_init(void *opaque)
{
276 277 278 279 280 281 282 283 284
	kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
	if (!kvm_s390_dbf)
		return -ENOMEM;

	if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
		debug_unregister(kvm_s390_dbf);
		return -ENOMEM;
	}

285 286
	kvm_s390_cpu_feat_init();

287 288
	/* Register floating interrupt controller interface. */
	return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
289 290
}

291 292 293 294 295
void kvm_arch_exit(void)
{
	debug_unregister(kvm_s390_dbf);
}

296 297 298 299 300 301 302 303 304
/* Section: device related */
long kvm_arch_dev_ioctl(struct file *filp,
			unsigned int ioctl, unsigned long arg)
{
	if (ioctl == KVM_S390_ENABLE_SIE)
		return s390_enable_sie();
	return -EINVAL;
}

305
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
306
{
307 308
	int r;

309
	switch (ext) {
310
	case KVM_CAP_S390_PSW:
311
	case KVM_CAP_S390_GMAP:
312
	case KVM_CAP_SYNC_MMU:
313 314 315
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_CAP_S390_UCONTROL:
#endif
316
	case KVM_CAP_ASYNC_PF:
317
	case KVM_CAP_SYNC_REGS:
318
	case KVM_CAP_ONE_REG:
319
	case KVM_CAP_ENABLE_CAP:
320
	case KVM_CAP_S390_CSS_SUPPORT:
C
Cornelia Huck 已提交
321
	case KVM_CAP_IOEVENTFD:
322
	case KVM_CAP_DEVICE_CTRL:
323
	case KVM_CAP_ENABLE_CAP_VM:
324
	case KVM_CAP_S390_IRQCHIP:
325
	case KVM_CAP_VM_ATTRIBUTES:
326
	case KVM_CAP_MP_STATE:
327
	case KVM_CAP_S390_INJECT_IRQ:
328
	case KVM_CAP_S390_USER_SIGP:
329
	case KVM_CAP_S390_USER_STSI:
330
	case KVM_CAP_S390_SKEYS:
331
	case KVM_CAP_S390_IRQ_STATE:
332 333
		r = 1;
		break;
334 335 336
	case KVM_CAP_S390_MEM_OP:
		r = MEM_OP_MAX_SIZE;
		break;
337 338
	case KVM_CAP_NR_VCPUS:
	case KVM_CAP_MAX_VCPUS:
339 340 341
		r = KVM_S390_BSCA_CPU_SLOTS;
		if (sclp.has_esca && sclp.has_64bscao)
			r = KVM_S390_ESCA_CPU_SLOTS;
342
		break;
343 344 345
	case KVM_CAP_NR_MEMSLOTS:
		r = KVM_USER_MEM_SLOTS;
		break;
346
	case KVM_CAP_S390_COW:
347
		r = MACHINE_HAS_ESOP;
348
		break;
349 350 351
	case KVM_CAP_S390_VECTOR_REGISTERS:
		r = MACHINE_HAS_VX;
		break;
352 353 354
	case KVM_CAP_S390_RI:
		r = test_facility(64);
		break;
355
	default:
356
		r = 0;
357
	}
358
	return r;
359 360
}

361 362 363 364 365 366 367 368 369 370 371 372
static void kvm_s390_sync_dirty_log(struct kvm *kvm,
					struct kvm_memory_slot *memslot)
{
	gfn_t cur_gfn, last_gfn;
	unsigned long address;
	struct gmap *gmap = kvm->arch.gmap;

	/* Loop over all guest pages */
	last_gfn = memslot->base_gfn + memslot->npages;
	for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
		address = gfn_to_hva_memslot(memslot, cur_gfn);

373
		if (test_and_clear_guest_dirty(gmap->mm, address))
374
			mark_page_dirty(kvm, cur_gfn);
375 376
		if (fatal_signal_pending(current))
			return;
377
		cond_resched();
378 379 380
	}
}

381
/* Section: vm related */
382 383
static void sca_del_vcpu(struct kvm_vcpu *vcpu);

384 385 386 387 388 389
/*
 * Get (and clear) the dirty memory log for a memory slot.
 */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
			       struct kvm_dirty_log *log)
{
390 391
	int r;
	unsigned long n;
392
	struct kvm_memslots *slots;
393 394 395 396 397 398 399 400 401
	struct kvm_memory_slot *memslot;
	int is_dirty = 0;

	mutex_lock(&kvm->slots_lock);

	r = -EINVAL;
	if (log->slot >= KVM_USER_MEM_SLOTS)
		goto out;

402 403
	slots = kvm_memslots(kvm);
	memslot = id_to_memslot(slots, log->slot);
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
	r = -ENOENT;
	if (!memslot->dirty_bitmap)
		goto out;

	kvm_s390_sync_dirty_log(kvm, memslot);
	r = kvm_get_dirty_log(kvm, log, &is_dirty);
	if (r)
		goto out;

	/* Clear the dirty log */
	if (is_dirty) {
		n = kvm_dirty_bitmap_bytes(memslot);
		memset(memslot->dirty_bitmap, 0, n);
	}
	r = 0;
out:
	mutex_unlock(&kvm->slots_lock);
	return r;
422 423
}

424 425 426 427 428 429 430 431
static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
432
	case KVM_CAP_S390_IRQCHIP:
433
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
434 435 436
		kvm->arch.use_irqchip = 1;
		r = 0;
		break;
437
	case KVM_CAP_S390_USER_SIGP:
438
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
439 440 441
		kvm->arch.user_sigp = 1;
		r = 0;
		break;
442
	case KVM_CAP_S390_VECTOR_REGISTERS:
443
		mutex_lock(&kvm->lock);
444
		if (kvm->created_vcpus) {
445 446
			r = -EBUSY;
		} else if (MACHINE_HAS_VX) {
447 448
			set_kvm_facility(kvm->arch.model.fac_mask, 129);
			set_kvm_facility(kvm->arch.model.fac_list, 129);
449 450 451
			r = 0;
		} else
			r = -EINVAL;
452
		mutex_unlock(&kvm->lock);
453 454
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
			 r ? "(not available)" : "(success)");
455
		break;
456 457 458
	case KVM_CAP_S390_RI:
		r = -EINVAL;
		mutex_lock(&kvm->lock);
459
		if (kvm->created_vcpus) {
460 461
			r = -EBUSY;
		} else if (test_facility(64)) {
462 463
			set_kvm_facility(kvm->arch.model.fac_mask, 64);
			set_kvm_facility(kvm->arch.model.fac_list, 64);
464 465 466 467 468 469
			r = 0;
		}
		mutex_unlock(&kvm->lock);
		VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
			 r ? "(not available)" : "(success)");
		break;
470
	case KVM_CAP_S390_USER_STSI:
471
		VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
472 473 474
		kvm->arch.user_stsi = 1;
		r = 0;
		break;
475 476 477 478 479 480 481
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

482 483 484 485 486 487 488
static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->attr) {
	case KVM_S390_VM_MEM_LIMIT_SIZE:
		ret = 0;
489
		VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
490 491
			 kvm->arch.mem_limit);
		if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
492 493 494 495 496 497 498 499 500 501
			ret = -EFAULT;
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
502 503 504 505 506
{
	int ret;
	unsigned int idx;
	switch (attr->attr) {
	case KVM_S390_VM_MEM_ENABLE_CMMA:
507
		ret = -ENXIO;
508
		if (!sclp.has_cmma)
509 510
			break;

511
		ret = -EBUSY;
512
		VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
513
		mutex_lock(&kvm->lock);
514
		if (!kvm->created_vcpus) {
515 516 517 518 519 520
			kvm->arch.use_cmma = 1;
			ret = 0;
		}
		mutex_unlock(&kvm->lock);
		break;
	case KVM_S390_VM_MEM_CLR_CMMA:
521 522 523
		ret = -ENXIO;
		if (!sclp.has_cmma)
			break;
524 525 526 527
		ret = -EINVAL;
		if (!kvm->arch.use_cmma)
			break;

528
		VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
529 530
		mutex_lock(&kvm->lock);
		idx = srcu_read_lock(&kvm->srcu);
531
		s390_reset_cmma(kvm->arch.gmap->mm);
532 533 534 535
		srcu_read_unlock(&kvm->srcu, idx);
		mutex_unlock(&kvm->lock);
		ret = 0;
		break;
536 537 538 539 540 541 542 543 544
	case KVM_S390_VM_MEM_LIMIT_SIZE: {
		unsigned long new_limit;

		if (kvm_is_ucontrol(kvm))
			return -EINVAL;

		if (get_user(new_limit, (u64 __user *)attr->addr))
			return -EFAULT;

545 546
		if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
		    new_limit > kvm->arch.mem_limit)
547 548
			return -E2BIG;

549 550 551
		if (!new_limit)
			return -EINVAL;

552
		/* gmap_create takes last usable address */
553 554 555
		if (new_limit != KVM_S390_NO_MEM_LIMIT)
			new_limit -= 1;

556 557
		ret = -EBUSY;
		mutex_lock(&kvm->lock);
558
		if (!kvm->created_vcpus) {
559 560
			/* gmap_create will round the limit up */
			struct gmap *new = gmap_create(current->mm, new_limit);
561 562 563 564

			if (!new) {
				ret = -ENOMEM;
			} else {
565
				gmap_remove(kvm->arch.gmap);
566 567 568 569 570 571
				new->private = kvm;
				kvm->arch.gmap = new;
				ret = 0;
			}
		}
		mutex_unlock(&kvm->lock);
572 573 574
		VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
		VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
			 (void *) kvm->arch.gmap->asce);
575 576
		break;
	}
577 578 579 580 581 582 583
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

584 585 586 587 588 589 590
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);

static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_vcpu *vcpu;
	int i;

591
	if (!test_kvm_facility(kvm, 76))
592 593 594 595 596 597 598 599 600
		return -EINVAL;

	mutex_lock(&kvm->lock);
	switch (attr->attr) {
	case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
		kvm->arch.crypto.aes_kw = 1;
601
		VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
602 603 604 605 606 607
		break;
	case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		get_random_bytes(
			kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
		kvm->arch.crypto.dea_kw = 1;
608
		VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
609 610 611 612 613
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		kvm->arch.crypto.aes_kw = 0;
		memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
614
		VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
615 616 617 618 619
		break;
	case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
		kvm->arch.crypto.dea_kw = 0;
		memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
			sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
620
		VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
621 622 623 624 625 626 627 628 629 630 631 632 633 634
		break;
	default:
		mutex_unlock(&kvm->lock);
		return -ENXIO;
	}

	kvm_for_each_vcpu(i, vcpu, kvm) {
		kvm_s390_vcpu_crypto_setup(vcpu);
		exit_sie(vcpu);
	}
	mutex_unlock(&kvm->lock);
	return 0;
}

635 636 637 638 639 640 641 642 643 644
static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high;

	if (copy_from_user(&gtod_high, (void __user *)attr->addr,
					   sizeof(gtod_high)))
		return -EFAULT;

	if (gtod_high != 0)
		return -EINVAL;
645
	VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
646 647 648 649 650 651

	return 0;
}

static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
652
	u64 gtod;
653 654 655 656

	if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
		return -EFAULT;

657
	kvm_s390_set_tod_clock(kvm, gtod);
658
	VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod);
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
	return 0;
}

static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_set_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_set_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
{
	u8 gtod_high = 0;

	if (copy_to_user((void __user *)attr->addr, &gtod_high,
					 sizeof(gtod_high)))
		return -EFAULT;
690
	VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
691 692 693 694 695 696

	return 0;
}

static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
{
697
	u64 gtod;
698

699
	gtod = kvm_s390_get_tod_clock_fast(kvm);
700 701
	if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
		return -EFAULT;
702
	VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727

	return 0;
}

static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	if (attr->flags)
		return -EINVAL;

	switch (attr->attr) {
	case KVM_S390_VM_TOD_HIGH:
		ret = kvm_s390_get_tod_high(kvm, attr);
		break;
	case KVM_S390_VM_TOD_LOW:
		ret = kvm_s390_get_tod_low(kvm, attr);
		break;
	default:
		ret = -ENXIO;
		break;
	}
	return ret;
}

728 729 730
static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
731
	u16 lowest_ibc, unblocked_ibc;
732 733 734
	int ret = 0;

	mutex_lock(&kvm->lock);
735
	if (kvm->created_vcpus) {
736 737 738 739 740 741 742 743 744 745
		ret = -EBUSY;
		goto out;
	}
	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
	if (!copy_from_user(proc, (void __user *)attr->addr,
			    sizeof(*proc))) {
746
		kvm->arch.model.cpuid = proc->cpuid;
747 748 749 750 751 752 753 754 755 756
		lowest_ibc = sclp.ibc >> 16 & 0xfff;
		unblocked_ibc = sclp.ibc & 0xfff;
		if (lowest_ibc) {
			if (proc->ibc > unblocked_ibc)
				kvm->arch.model.ibc = unblocked_ibc;
			else if (proc->ibc < lowest_ibc)
				kvm->arch.model.ibc = lowest_ibc;
			else
				kvm->arch.model.ibc = proc->ibc;
		}
757
		memcpy(kvm->arch.model.fac_list, proc->fac_list,
758 759 760 761 762 763 764 765 766
		       S390_ARCH_FAC_LIST_SIZE_BYTE);
	} else
		ret = -EFAULT;
	kfree(proc);
out:
	mutex_unlock(&kvm->lock);
	return ret;
}

767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
static int kvm_s390_set_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;
	int ret = -EBUSY;

	if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
		return -EFAULT;
	if (!bitmap_subset((unsigned long *) data.feat,
			   kvm_s390_available_cpu_feat,
			   KVM_S390_VM_CPU_FEAT_NR_BITS))
		return -EINVAL;

	mutex_lock(&kvm->lock);
	if (!atomic_read(&kvm->online_vcpus)) {
		bitmap_copy(kvm->arch.cpu_feat, (unsigned long *) data.feat,
			    KVM_S390_VM_CPU_FEAT_NR_BITS);
		ret = 0;
	}
	mutex_unlock(&kvm->lock);
	return ret;
}

790 791 792 793 794 795 796 797 798 799
static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once supported by kernel + hw, we have to store the subfunctions
	 * in kvm->arch and remember that user space configured them.
	 */
	return -ENXIO;
}

800 801 802 803 804 805 806 807
static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_set_processor(kvm, attr);
		break;
808 809 810
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_set_processor_feat(kvm, attr);
		break;
811 812 813
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_set_processor_subfunc(kvm, attr);
		break;
814 815 816 817 818 819 820 821 822 823 824 825 826 827
	}
	return ret;
}

static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_processor *proc;
	int ret = 0;

	proc = kzalloc(sizeof(*proc), GFP_KERNEL);
	if (!proc) {
		ret = -ENOMEM;
		goto out;
	}
828
	proc->cpuid = kvm->arch.model.cpuid;
829
	proc->ibc = kvm->arch.model.ibc;
830 831
	memcpy(&proc->fac_list, kvm->arch.model.fac_list,
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
	if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
		ret = -EFAULT;
	kfree(proc);
out:
	return ret;
}

static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_machine *mach;
	int ret = 0;

	mach = kzalloc(sizeof(*mach), GFP_KERNEL);
	if (!mach) {
		ret = -ENOMEM;
		goto out;
	}
	get_cpu_id((struct cpuid *) &mach->cpuid);
850
	mach->ibc = sclp.ibc;
851
	memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
852
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
853
	memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
854
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
855 856 857 858 859 860 861
	if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
		ret = -EFAULT;
	kfree(mach);
out:
	return ret;
}

862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
static int kvm_s390_get_processor_feat(struct kvm *kvm,
				       struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat, kvm->arch.cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

static int kvm_s390_get_machine_feat(struct kvm *kvm,
				     struct kvm_device_attr *attr)
{
	struct kvm_s390_vm_cpu_feat data;

	bitmap_copy((unsigned long *) data.feat,
		    kvm_s390_available_cpu_feat,
		    KVM_S390_VM_CPU_FEAT_NR_BITS);
	if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
		return -EFAULT;
	return 0;
}

887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
					  struct kvm_device_attr *attr)
{
	/*
	 * Once we can actually configure subfunctions (kernel + hw support),
	 * we have to check if they were already set by user space, if so copy
	 * them from kvm->arch.
	 */
	return -ENXIO;
}

static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
					struct kvm_device_attr *attr)
{
	if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
	    sizeof(struct kvm_s390_vm_cpu_subfunc)))
		return -EFAULT;
	return 0;
}
906 907 908 909 910 911 912 913 914 915 916
static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret = -ENXIO;

	switch (attr->attr) {
	case KVM_S390_VM_CPU_PROCESSOR:
		ret = kvm_s390_get_processor(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE:
		ret = kvm_s390_get_machine(kvm, attr);
		break;
917 918 919 920 921 922
	case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		ret = kvm_s390_get_processor_feat(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_FEAT:
		ret = kvm_s390_get_machine_feat(kvm, attr);
		break;
923 924 925 926 927 928
	case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
		ret = kvm_s390_get_processor_subfunc(kvm, attr);
		break;
	case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
		ret = kvm_s390_get_machine_subfunc(kvm, attr);
		break;
929 930 931 932
	}
	return ret;
}

933 934 935 936 937
static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
938
	case KVM_S390_VM_MEM_CTRL:
939
		ret = kvm_s390_set_mem_control(kvm, attr);
940
		break;
941 942 943
	case KVM_S390_VM_TOD:
		ret = kvm_s390_set_tod(kvm, attr);
		break;
944 945 946
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_set_cpu_model(kvm, attr);
		break;
947 948 949
	case KVM_S390_VM_CRYPTO:
		ret = kvm_s390_vm_set_crypto(kvm, attr);
		break;
950 951 952 953 954 955 956 957 958 959
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
960 961 962 963 964 965
	int ret;

	switch (attr->group) {
	case KVM_S390_VM_MEM_CTRL:
		ret = kvm_s390_get_mem_control(kvm, attr);
		break;
966 967 968
	case KVM_S390_VM_TOD:
		ret = kvm_s390_get_tod(kvm, attr);
		break;
969 970 971
	case KVM_S390_VM_CPU_MODEL:
		ret = kvm_s390_get_cpu_model(kvm, attr);
		break;
972 973 974 975 976 977
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
978 979 980 981 982 983 984
}

static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
{
	int ret;

	switch (attr->group) {
985 986 987 988
	case KVM_S390_VM_MEM_CTRL:
		switch (attr->attr) {
		case KVM_S390_VM_MEM_ENABLE_CMMA:
		case KVM_S390_VM_MEM_CLR_CMMA:
989 990
			ret = sclp.has_cmma ? 0 : -ENXIO;
			break;
991
		case KVM_S390_VM_MEM_LIMIT_SIZE:
992 993 994 995 996 997 998
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
	case KVM_S390_VM_TOD:
		switch (attr->attr) {
		case KVM_S390_VM_TOD_LOW:
		case KVM_S390_VM_TOD_HIGH:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1010 1011 1012 1013
	case KVM_S390_VM_CPU_MODEL:
		switch (attr->attr) {
		case KVM_S390_VM_CPU_PROCESSOR:
		case KVM_S390_VM_CPU_MACHINE:
1014 1015
		case KVM_S390_VM_CPU_PROCESSOR_FEAT:
		case KVM_S390_VM_CPU_MACHINE_FEAT:
1016
		case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
1017 1018
			ret = 0;
			break;
1019 1020
		/* configuring subfunctions is not supported yet */
		case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1021 1022 1023 1024 1025
		default:
			ret = -ENXIO;
			break;
		}
		break;
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
	case KVM_S390_VM_CRYPTO:
		switch (attr->attr) {
		case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
		case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
			ret = 0;
			break;
		default:
			ret = -ENXIO;
			break;
		}
		break;
1039 1040 1041 1042 1043 1044 1045 1046
	default:
		ret = -ENXIO;
		break;
	}

	return ret;
}

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Is this guest using storage keys? */
	if (!mm_use_skey(current->mm))
		return KVM_S390_GET_SKEYS_NONE;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

1071
	down_read(&current->mm->mmap_sem);
1072 1073 1074 1075
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1076
			break;
1077 1078
		}

1079 1080
		r = get_guest_storage_key(current->mm, hva, &keys[i]);
		if (r)
1081
			break;
1082
	}
1083 1084 1085 1086 1087 1088 1089 1090
	up_read(&current->mm->mmap_sem);

	if (!r) {
		r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
				 sizeof(uint8_t) * args->count);
		if (r)
			r = -EFAULT;
	}
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123

	kvfree(keys);
	return r;
}

static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
{
	uint8_t *keys;
	uint64_t hva;
	int i, r = 0;

	if (args->flags != 0)
		return -EINVAL;

	/* Enforce sane limit on memory allocation */
	if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
		return -EINVAL;

	keys = kmalloc_array(args->count, sizeof(uint8_t),
			     GFP_KERNEL | __GFP_NOWARN);
	if (!keys)
		keys = vmalloc(sizeof(uint8_t) * args->count);
	if (!keys)
		return -ENOMEM;

	r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
			   sizeof(uint8_t) * args->count);
	if (r) {
		r = -EFAULT;
		goto out;
	}

	/* Enable storage key handling for the guest */
1124 1125 1126
	r = s390_enable_skey();
	if (r)
		goto out;
1127

1128
	down_read(&current->mm->mmap_sem);
1129 1130 1131 1132
	for (i = 0; i < args->count; i++) {
		hva = gfn_to_hva(kvm, args->start_gfn + i);
		if (kvm_is_error_hva(hva)) {
			r = -EFAULT;
1133
			break;
1134 1135 1136 1137 1138
		}

		/* Lowest order bit is reserved */
		if (keys[i] & 0x01) {
			r = -EINVAL;
1139
			break;
1140 1141
		}

1142
		r = set_guest_storage_key(current->mm, hva, keys[i], 0);
1143
		if (r)
1144
			break;
1145
	}
1146
	up_read(&current->mm->mmap_sem);
1147 1148 1149 1150 1151
out:
	kvfree(keys);
	return r;
}

1152 1153 1154 1155 1156
long kvm_arch_vm_ioctl(struct file *filp,
		       unsigned int ioctl, unsigned long arg)
{
	struct kvm *kvm = filp->private_data;
	void __user *argp = (void __user *)arg;
1157
	struct kvm_device_attr attr;
1158 1159 1160
	int r;

	switch (ioctl) {
1161 1162 1163 1164 1165 1166 1167 1168 1169
	case KVM_S390_INTERRUPT: {
		struct kvm_s390_interrupt s390int;

		r = -EFAULT;
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
			break;
		r = kvm_s390_inject_vm(kvm, &s390int);
		break;
	}
1170 1171 1172 1173 1174 1175 1176 1177
	case KVM_ENABLE_CAP: {
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vm_ioctl_enable_cap(kvm, &cap);
		break;
	}
1178 1179 1180 1181 1182 1183 1184
	case KVM_CREATE_IRQCHIP: {
		struct kvm_irq_routing_entry routing;

		r = -EINVAL;
		if (kvm->arch.use_irqchip) {
			/* Set up dummy routing. */
			memset(&routing, 0, sizeof(routing));
1185
			r = kvm_set_irq_routing(kvm, &routing, 0, 0);
1186 1187 1188
		}
		break;
	}
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
	case KVM_SET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_set_attr(kvm, &attr);
		break;
	}
	case KVM_GET_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_get_attr(kvm, &attr);
		break;
	}
	case KVM_HAS_DEVICE_ATTR: {
		r = -EFAULT;
		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
			break;
		r = kvm_s390_vm_has_attr(kvm, &attr);
		break;
	}
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
	case KVM_S390_GET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_get_skeys(kvm, &args);
		break;
	}
	case KVM_S390_SET_SKEYS: {
		struct kvm_s390_skeys args;

		r = -EFAULT;
		if (copy_from_user(&args, argp,
				   sizeof(struct kvm_s390_skeys)))
			break;
		r = kvm_s390_set_skeys(kvm, &args);
		break;
	}
1230
	default:
1231
		r = -ENOTTY;
1232 1233 1234 1235 1236
	}

	return r;
}

1237 1238 1239
static int kvm_s390_query_ap_config(u8 *config)
{
	u32 fcn_code = 0x04000000UL;
1240
	u32 cc = 0;
1241

1242
	memset(config, 0, 128);
1243 1244 1245 1246
	asm volatile(
		"lgr 0,%1\n"
		"lgr 2,%2\n"
		".long 0xb2af0000\n"		/* PQAP(QCI) */
1247
		"0: ipm %0\n"
1248
		"srl %0,28\n"
1249 1250 1251
		"1:\n"
		EX_TABLE(0b, 1b)
		: "+r" (cc)
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
		: "r" (fcn_code), "r" (config)
		: "cc", "0", "2", "memory"
	);

	return cc;
}

static int kvm_s390_apxa_installed(void)
{
	u8 config[128];
	int cc;

1264
	if (test_facility(12)) {
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
		cc = kvm_s390_query_ap_config(config);

		if (cc)
			pr_err("PQAP(QCI) failed with cc=%d", cc);
		else
			return config[0] & 0x40;
	}

	return 0;
}

static void kvm_s390_set_crycb_format(struct kvm *kvm)
{
	kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;

	if (kvm_s390_apxa_installed())
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
	else
		kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
}

1286
static u64 kvm_s390_get_initial_cpuid(void)
1287
{
1288 1289 1290 1291 1292
	struct cpuid cpuid;

	get_cpu_id(&cpuid);
	cpuid.version = 0xff;
	return *((u64 *) &cpuid);
1293 1294
}

1295
static void kvm_s390_crypto_init(struct kvm *kvm)
1296
{
1297
	if (!test_kvm_facility(kvm, 76))
1298
		return;
1299

1300
	kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
1301
	kvm_s390_set_crycb_format(kvm);
1302

1303 1304 1305 1306 1307 1308 1309
	/* Enable AES/DEA protected key functions by default */
	kvm->arch.crypto.aes_kw = 1;
	kvm->arch.crypto.dea_kw = 1;
	get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
	get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
			 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1310 1311
}

1312 1313 1314
static void sca_dispose(struct kvm *kvm)
{
	if (kvm->arch.use_esca)
1315
		free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
1316 1317 1318 1319 1320
	else
		free_page((unsigned long)(kvm->arch.sca));
	kvm->arch.sca = NULL;
}

1321
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1322
{
1323
	gfp_t alloc_flags = GFP_KERNEL;
1324
	int i, rc;
1325
	char debug_name[16];
1326
	static unsigned long sca_offset;
1327

1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
	rc = -EINVAL;
#ifdef CONFIG_KVM_S390_UCONTROL
	if (type & ~KVM_VM_S390_UCONTROL)
		goto out_err;
	if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
		goto out_err;
#else
	if (type)
		goto out_err;
#endif

1339 1340
	rc = s390_enable_sie();
	if (rc)
1341
		goto out_err;
1342

1343 1344
	rc = -ENOMEM;

J
Janosch Frank 已提交
1345 1346
	ratelimit_state_init(&kvm->arch.sthyi_limit, 5 * HZ, 500);

1347
	kvm->arch.use_esca = 0; /* start with basic SCA */
1348 1349
	if (!sclp.has_64bscao)
		alloc_flags |= GFP_DMA;
1350
	rwlock_init(&kvm->arch.sca_lock);
1351
	kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags);
1352
	if (!kvm->arch.sca)
1353
		goto out_err;
1354
	spin_lock(&kvm_lock);
1355
	sca_offset += 16;
1356
	if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
1357
		sca_offset = 0;
1358 1359
	kvm->arch.sca = (struct bsca_block *)
			((char *) kvm->arch.sca + sca_offset);
1360
	spin_unlock(&kvm_lock);
1361 1362 1363

	sprintf(debug_name, "kvm-%u", current->pid);

1364
	kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1365
	if (!kvm->arch.dbf)
1366
		goto out_err;
1367

1368 1369 1370
	kvm->arch.sie_page2 =
	     (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
	if (!kvm->arch.sie_page2)
1371
		goto out_err;
1372

1373
	/* Populate the facility mask initially. */
1374
	memcpy(kvm->arch.model.fac_mask, S390_lowcore.stfle_fac_list,
1375
	       S390_ARCH_FAC_LIST_SIZE_BYTE);
1376 1377
	for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
		if (i < kvm_s390_fac_list_mask_size())
1378
			kvm->arch.model.fac_mask[i] &= kvm_s390_fac_list_mask[i];
1379
		else
1380
			kvm->arch.model.fac_mask[i] = 0UL;
1381 1382
	}

1383
	/* Populate the facility list initially. */
1384 1385
	kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
	memcpy(kvm->arch.model.fac_list, kvm->arch.model.fac_mask,
1386 1387
	       S390_ARCH_FAC_LIST_SIZE_BYTE);

J
Janosch Frank 已提交
1388 1389 1390
	set_kvm_facility(kvm->arch.model.fac_mask, 74);
	set_kvm_facility(kvm->arch.model.fac_list, 74);

1391
	kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
1392
	kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1393

1394
	kvm_s390_crypto_init(kvm);
1395

1396
	spin_lock_init(&kvm->arch.float_int.lock);
1397 1398
	for (i = 0; i < FIRQ_LIST_COUNT; i++)
		INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1399
	init_waitqueue_head(&kvm->arch.ipte_wq);
1400
	mutex_init(&kvm->arch.ipte_mutex);
1401

1402
	debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1403
	VM_EVENT(kvm, 3, "vm created with type %lu", type);
1404

1405 1406
	if (type & KVM_VM_S390_UCONTROL) {
		kvm->arch.gmap = NULL;
1407
		kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
1408
	} else {
1409 1410 1411 1412 1413
		if (sclp.hamax == U64_MAX)
			kvm->arch.mem_limit = TASK_MAX_SIZE;
		else
			kvm->arch.mem_limit = min_t(unsigned long, TASK_MAX_SIZE,
						    sclp.hamax + 1);
1414
		kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1);
1415
		if (!kvm->arch.gmap)
1416
			goto out_err;
1417
		kvm->arch.gmap->private = kvm;
1418
		kvm->arch.gmap->pfault_enabled = 0;
1419
	}
1420 1421

	kvm->arch.css_support = 0;
1422
	kvm->arch.use_irqchip = 0;
1423
	kvm->arch.epoch = 0;
1424

1425
	spin_lock_init(&kvm->arch.start_stop_lock);
1426
	kvm_s390_vsie_init(kvm);
1427
	KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
1428

1429
	return 0;
1430
out_err:
1431
	free_page((unsigned long)kvm->arch.sie_page2);
1432
	debug_unregister(kvm->arch.dbf);
1433
	sca_dispose(kvm);
1434
	KVM_EVENT(3, "creation of vm failed: %d", rc);
1435
	return rc;
1436 1437
}

1438 1439 1440
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
	VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1441
	trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1442
	kvm_s390_clear_local_irqs(vcpu);
1443
	kvm_clear_async_pf_completion_queue(vcpu);
1444
	if (!kvm_is_ucontrol(vcpu->kvm))
1445
		sca_del_vcpu(vcpu);
1446 1447

	if (kvm_is_ucontrol(vcpu->kvm))
1448
		gmap_remove(vcpu->arch.gmap);
1449

1450
	if (vcpu->kvm->arch.use_cmma)
1451
		kvm_s390_vcpu_unsetup_cmma(vcpu);
1452
	free_page((unsigned long)(vcpu->arch.sie_block));
1453

1454
	kvm_vcpu_uninit(vcpu);
1455
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1456 1457 1458 1459 1460
}

static void kvm_free_vcpus(struct kvm *kvm)
{
	unsigned int i;
1461
	struct kvm_vcpu *vcpu;
1462

1463 1464 1465 1466 1467 1468 1469 1470 1471
	kvm_for_each_vcpu(i, vcpu, kvm)
		kvm_arch_vcpu_destroy(vcpu);

	mutex_lock(&kvm->lock);
	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
		kvm->vcpus[i] = NULL;

	atomic_set(&kvm->online_vcpus, 0);
	mutex_unlock(&kvm->lock);
1472 1473
}

1474 1475
void kvm_arch_destroy_vm(struct kvm *kvm)
{
1476
	kvm_free_vcpus(kvm);
1477
	sca_dispose(kvm);
1478
	debug_unregister(kvm->arch.dbf);
1479
	free_page((unsigned long)kvm->arch.sie_page2);
1480
	if (!kvm_is_ucontrol(kvm))
1481
		gmap_remove(kvm->arch.gmap);
1482
	kvm_s390_destroy_adapters(kvm);
1483
	kvm_s390_clear_float_irqs(kvm);
1484
	kvm_s390_vsie_destroy(kvm);
1485
	KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
1486 1487 1488
}

/* Section: vcpu related */
1489 1490
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{
1491
	vcpu->arch.gmap = gmap_create(current->mm, -1UL);
1492 1493 1494 1495 1496 1497 1498
	if (!vcpu->arch.gmap)
		return -ENOMEM;
	vcpu->arch.gmap->private = vcpu->kvm;

	return 0;
}

1499 1500
static void sca_del_vcpu(struct kvm_vcpu *vcpu)
{
1501
	read_lock(&vcpu->kvm->arch.sca_lock);
1502 1503
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1504

1505
		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1506
		sca->cpu[vcpu->vcpu_id].sda = 0;
1507 1508 1509 1510
	} else {
		struct bsca_block *sca = vcpu->kvm->arch.sca;

		clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1511
		sca->cpu[vcpu->vcpu_id].sda = 0;
1512
	}
1513
	read_unlock(&vcpu->kvm->arch.sca_lock);
1514 1515
}

1516
static void sca_add_vcpu(struct kvm_vcpu *vcpu)
1517
{
1518 1519 1520
	read_lock(&vcpu->kvm->arch.sca_lock);
	if (vcpu->kvm->arch.use_esca) {
		struct esca_block *sca = vcpu->kvm->arch.sca;
1521

1522
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1523 1524
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
1525
		vcpu->arch.sie_block->ecb2 |= 0x04U;
1526
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1527
	} else {
1528
		struct bsca_block *sca = vcpu->kvm->arch.sca;
1529

1530
		sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1531 1532
		vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
		vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
1533
		set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1534
	}
1535
	read_unlock(&vcpu->kvm->arch.sca_lock);
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
}

/* Basic SCA to Extended SCA data copy routines */
static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
{
	d->sda = s->sda;
	d->sigp_ctrl.c = s->sigp_ctrl.c;
	d->sigp_ctrl.scn = s->sigp_ctrl.scn;
}

static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
{
	int i;

	d->ipte_control = s->ipte_control;
	d->mcn[0] = s->mcn;
	for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
		sca_copy_entry(&d->cpu[i], &s->cpu[i]);
}

static int sca_switch_to_extended(struct kvm *kvm)
{
	struct bsca_block *old_sca = kvm->arch.sca;
	struct esca_block *new_sca;
	struct kvm_vcpu *vcpu;
	unsigned int vcpu_idx;
	u32 scaol, scaoh;

	new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
	if (!new_sca)
		return -ENOMEM;

	scaoh = (u32)((u64)(new_sca) >> 32);
	scaol = (u32)(u64)(new_sca) & ~0x3fU;

	kvm_s390_vcpu_block_all(kvm);
	write_lock(&kvm->arch.sca_lock);

	sca_copy_b_to_e(new_sca, old_sca);

	kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
		vcpu->arch.sie_block->scaoh = scaoh;
		vcpu->arch.sie_block->scaol = scaol;
		vcpu->arch.sie_block->ecb2 |= 0x04U;
	}
	kvm->arch.sca = new_sca;
	kvm->arch.use_esca = 1;

	write_unlock(&kvm->arch.sca_lock);
	kvm_s390_vcpu_unblock_all(kvm);

	free_page((unsigned long)old_sca);

1589 1590
	VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
		 old_sca, kvm->arch.sca);
1591
	return 0;
1592 1593 1594 1595
}

static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
{
1596 1597 1598 1599
	int rc;

	if (id < KVM_S390_BSCA_CPU_SLOTS)
		return true;
1600
	if (!sclp.has_esca || !sclp.has_64bscao)
1601 1602 1603 1604 1605 1606 1607
		return false;

	mutex_lock(&kvm->lock);
	rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
	mutex_unlock(&kvm->lock);

	return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
1608 1609
}

1610 1611
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
1612 1613
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1614 1615
	vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
				    KVM_SYNC_GPRS |
1616
				    KVM_SYNC_ACRS |
1617 1618 1619
				    KVM_SYNC_CRS |
				    KVM_SYNC_ARCH0 |
				    KVM_SYNC_PFAULT;
1620 1621
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
1622 1623 1624 1625
	/* fprs can be synchronized via vrs, even if the guest has no vx. With
	 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
	 */
	if (MACHINE_HAS_VX)
1626
		vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1627 1628
	else
		vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
1629 1630 1631 1632

	if (kvm_is_ucontrol(vcpu->kvm))
		return __kvm_ucontrol_vcpu_init(vcpu);

1633 1634 1635
	return 0;
}

1636 1637 1638 1639
/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
1640
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1641
	vcpu->arch.cputm_start = get_tod_clock_fast();
1642
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1643 1644 1645 1646 1647 1648
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
1649
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1650 1651
	vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	vcpu->arch.cputm_start = 0;
1652
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(vcpu->arch.cputm_enabled);
	vcpu->arch.cputm_enabled = true;
	__start_cpu_timer_accounting(vcpu);
}

/* needs disabled preemption to protect from TOD sync and vcpu_load/put */
static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
	__stop_cpu_timer_accounting(vcpu);
	vcpu->arch.cputm_enabled = false;
}

static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__enable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
{
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	__disable_cpu_timer_accounting(vcpu);
	preempt_enable();
}

1685 1686 1687
/* set the cpu timer - may only be called from the VCPU thread itself */
void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
{
1688
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1689
	raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1690 1691
	if (vcpu->arch.cputm_enabled)
		vcpu->arch.cputm_start = get_tod_clock_fast();
1692
	vcpu->arch.sie_block->cputm = cputm;
1693
	raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1694
	preempt_enable();
1695 1696
}

1697
/* update and get the cpu timer - can also be called from other VCPU threads */
1698 1699
__u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
{
1700
	unsigned int seq;
1701 1702 1703 1704 1705
	__u64 value;

	if (unlikely(!vcpu->arch.cputm_enabled))
		return vcpu->arch.sie_block->cputm;

1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
	preempt_disable(); /* protect from TOD sync and vcpu_load/put */
	do {
		seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
		/*
		 * If the writer would ever execute a read in the critical
		 * section, e.g. in irq context, we have a deadlock.
		 */
		WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
		value = vcpu->arch.sie_block->cputm;
		/* if cputm_start is 0, accounting is being started/stopped */
		if (likely(vcpu->arch.cputm_start))
			value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
	} while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
	preempt_enable();
1720
	return value;
1721 1722
}

1723 1724
void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
1725
	/* Save host register state */
1726
	save_fpu_regs();
1727 1728
	vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
	vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
1729

1730 1731 1732 1733
	if (MACHINE_HAS_VX)
		current->thread.fpu.regs = vcpu->run->s.regs.vrs;
	else
		current->thread.fpu.regs = vcpu->run->s.regs.fprs;
1734
	current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
1735
	if (test_fp_ctl(current->thread.fpu.fpc))
1736
		/* User space provided an invalid FPC, let's clear it */
1737 1738 1739
		current->thread.fpu.fpc = 0;

	save_access_regs(vcpu->arch.host_acrs);
1740
	restore_access_regs(vcpu->run->s.regs.acrs);
1741
	gmap_enable(vcpu->arch.enabled_gmap);
1742
	atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1743
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1744
		__start_cpu_timer_accounting(vcpu);
1745
	vcpu->cpu = cpu;
1746 1747 1748 1749
}

void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
{
1750
	vcpu->cpu = -1;
1751
	if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1752
		__stop_cpu_timer_accounting(vcpu);
1753
	atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1754 1755
	vcpu->arch.enabled_gmap = gmap_get_enabled();
	gmap_disable(vcpu->arch.enabled_gmap);
1756

1757
	/* Save guest register state */
1758
	save_fpu_regs();
1759
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
1760

1761 1762 1763
	/* Restore host register state */
	current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
	current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
1764 1765

	save_access_regs(vcpu->run->s.regs.acrs);
1766 1767 1768 1769 1770 1771 1772 1773
	restore_access_regs(vcpu->arch.host_acrs);
}

static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
{
	/* this equals initial cpu reset in pop, but we don't switch to ESA */
	vcpu->arch.sie_block->gpsw.mask = 0UL;
	vcpu->arch.sie_block->gpsw.addr = 0UL;
1774
	kvm_s390_set_prefix(vcpu, 0);
1775
	kvm_s390_set_cpu_timer(vcpu, 0);
1776 1777 1778 1779 1780
	vcpu->arch.sie_block->ckc       = 0UL;
	vcpu->arch.sie_block->todpr     = 0;
	memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
	vcpu->arch.sie_block->gcr[0]  = 0xE0UL;
	vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
1781 1782 1783
	/* make sure the new fpc will be lazily loaded */
	save_fpu_regs();
	current->thread.fpu.fpc = 0;
1784
	vcpu->arch.sie_block->gbea = 1;
1785
	vcpu->arch.sie_block->pp = 0;
1786 1787
	vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
	kvm_clear_async_pf_completion_queue(vcpu);
1788 1789
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
		kvm_s390_vcpu_stop(vcpu);
1790
	kvm_s390_clear_local_irqs(vcpu);
1791 1792
}

1793
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1794
{
1795
	mutex_lock(&vcpu->kvm->lock);
1796
	preempt_disable();
1797
	vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
1798
	preempt_enable();
1799
	mutex_unlock(&vcpu->kvm->lock);
1800
	if (!kvm_is_ucontrol(vcpu->kvm)) {
1801
		vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1802
		sca_add_vcpu(vcpu);
1803
	}
1804 1805
	/* make vcpu_load load the right gmap on the first trigger */
	vcpu->arch.enabled_gmap = vcpu->arch.gmap;
1806 1807
}

1808 1809
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
{
1810
	if (!test_kvm_facility(vcpu->kvm, 76))
1811 1812
		return;

1813 1814 1815 1816 1817 1818 1819
	vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);

	if (vcpu->kvm->arch.crypto.aes_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_AES;
	if (vcpu->kvm->arch.crypto.dea_kw)
		vcpu->arch.sie_block->ecb3 |= ECB3_DEA;

1820 1821 1822
	vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
}

1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
{
	free_page(vcpu->arch.sie_block->cbrlo);
	vcpu->arch.sie_block->cbrlo = 0;
}

int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
{
	vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
	if (!vcpu->arch.sie_block->cbrlo)
		return -ENOMEM;

	vcpu->arch.sie_block->ecb2 |= 0x80;
	vcpu->arch.sie_block->ecb2 &= ~0x08;
	return 0;
}

1840 1841 1842 1843 1844
static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
{
	struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;

	vcpu->arch.sie_block->ibc = model->ibc;
1845
	if (test_kvm_facility(vcpu->kvm, 7))
1846
		vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list;
1847 1848
}

1849 1850
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
1851
	int rc = 0;
1852

1853 1854
	atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
						    CPUSTAT_SM |
1855 1856
						    CPUSTAT_STOPPED);

1857
	if (test_kvm_facility(vcpu->kvm, 78))
1858
		atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
1859
	else if (test_kvm_facility(vcpu->kvm, 8))
1860
		atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
1861

1862 1863
	kvm_s390_vcpu_setup_model(vcpu);

1864 1865 1866
	/* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */
	if (MACHINE_HAS_ESOP)
		vcpu->arch.sie_block->ecb |= 0x02;
1867 1868
	if (test_kvm_facility(vcpu->kvm, 9))
		vcpu->arch.sie_block->ecb |= 0x04;
1869
	if (test_kvm_facility(vcpu->kvm, 73))
1870 1871
		vcpu->arch.sie_block->ecb |= 0x10;

1872
	if (test_kvm_facility(vcpu->kvm, 8) && sclp.has_pfmfi)
1873
		vcpu->arch.sie_block->ecb2 |= 0x08;
1874 1875 1876
	vcpu->arch.sie_block->eca = 0x1002000U;
	if (sclp.has_cei)
		vcpu->arch.sie_block->eca |= 0x80000000U;
1877 1878
	if (sclp.has_ib)
		vcpu->arch.sie_block->eca |= 0x40000000U;
1879
	if (sclp.has_siif)
1880
		vcpu->arch.sie_block->eca |= 1;
1881
	if (sclp.has_sigpif)
1882
		vcpu->arch.sie_block->eca |= 0x10000000U;
1883 1884
	if (test_kvm_facility(vcpu->kvm, 64))
		vcpu->arch.sie_block->ecb3 |= 0x01;
1885
	if (test_kvm_facility(vcpu->kvm, 129)) {
1886 1887 1888
		vcpu->arch.sie_block->eca |= 0x00020000;
		vcpu->arch.sie_block->ecd |= 0x20000000;
	}
1889
	vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
1890
	vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
J
Janosch Frank 已提交
1891 1892
	if (test_kvm_facility(vcpu->kvm, 74))
		vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
1893

1894
	if (vcpu->kvm->arch.use_cmma) {
1895 1896 1897
		rc = kvm_s390_vcpu_setup_cmma(vcpu);
		if (rc)
			return rc;
1898
	}
1899
	hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1900
	vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1901

1902 1903
	kvm_s390_vcpu_crypto_setup(vcpu);

1904
	return rc;
1905 1906 1907 1908 1909
}

struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
				      unsigned int id)
{
1910
	struct kvm_vcpu *vcpu;
1911
	struct sie_page *sie_page;
1912 1913
	int rc = -EINVAL;

1914
	if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
1915 1916 1917
		goto out;

	rc = -ENOMEM;
1918

1919
	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1920
	if (!vcpu)
1921
		goto out;
1922

1923 1924
	sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
	if (!sie_page)
1925 1926
		goto out_free_cpu;

1927 1928 1929
	vcpu->arch.sie_block = &sie_page->sie_block;
	vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;

1930 1931 1932 1933
	/* the real guest size will always be smaller than msl */
	vcpu->arch.sie_block->mso = 0;
	vcpu->arch.sie_block->msl = sclp.hamax;

1934
	vcpu->arch.sie_block->icpua = id;
1935 1936
	spin_lock_init(&vcpu->arch.local_int.lock);
	vcpu->arch.local_int.float_int = &kvm->arch.float_int;
1937
	vcpu->arch.local_int.wq = &vcpu->wq;
1938
	vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
1939
	seqcount_init(&vcpu->arch.cputm_seqcount);
1940

1941 1942
	rc = kvm_vcpu_init(vcpu, kvm, id);
	if (rc)
1943
		goto out_free_sie_block;
1944
	VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu,
1945
		 vcpu->arch.sie_block);
1946
	trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
1947 1948

	return vcpu;
1949 1950
out_free_sie_block:
	free_page((unsigned long)(vcpu->arch.sie_block));
1951
out_free_cpu:
1952
	kmem_cache_free(kvm_vcpu_cache, vcpu);
1953
out:
1954 1955 1956 1957 1958
	return ERR_PTR(rc);
}

int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
1959
	return kvm_s390_vcpu_has_irq(vcpu, 0);
1960 1961
}

1962
void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
1963
{
1964
	atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1965
	exit_sie(vcpu);
1966 1967
}

1968
void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
1969
{
1970
	atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1971 1972
}

1973 1974
static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
{
1975
	atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1976
	exit_sie(vcpu);
1977 1978 1979 1980
}

static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
{
1981
	atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1982 1983
}

1984 1985 1986 1987 1988 1989
/*
 * Kick a guest cpu out of SIE and wait until SIE is not running.
 * If the CPU is not running (e.g. waiting as idle) the function will
 * return immediately. */
void exit_sie(struct kvm_vcpu *vcpu)
{
1990
	atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
1991 1992 1993 1994
	while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
		cpu_relax();
}

1995 1996
/* Kick a guest cpu out of SIE to process a request synchronously */
void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
1997
{
1998 1999
	kvm_make_request(req, vcpu);
	kvm_s390_vcpu_request(vcpu);
2000 2001
}

2002 2003
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
			      unsigned long end)
2004 2005 2006
{
	struct kvm *kvm = gmap->private;
	struct kvm_vcpu *vcpu;
2007 2008
	unsigned long prefix;
	int i;
2009

2010 2011
	if (gmap_is_shadow(gmap))
		return;
2012 2013 2014
	if (start >= 1UL << 31)
		/* We are only interested in prefix pages */
		return;
2015 2016
	kvm_for_each_vcpu(i, vcpu, kvm) {
		/* match against both prefix pages */
2017 2018 2019 2020
		prefix = kvm_s390_get_prefix(vcpu);
		if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) {
			VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx",
				   start, end);
2021
			kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
2022 2023 2024 2025
		}
	}
}

2026 2027 2028 2029 2030 2031 2032
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
	/* kvm common code refers to this, but never calls it */
	BUG();
	return 0;
}

2033 2034 2035 2036 2037 2038
static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;

	switch (reg->id) {
2039 2040 2041 2042 2043 2044 2045 2046
	case KVM_REG_S390_TODPR:
		r = put_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = put_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2047
	case KVM_REG_S390_CPU_TIMER:
2048
		r = put_user(kvm_s390_get_cpu_timer(vcpu),
2049 2050 2051 2052 2053 2054
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = put_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
	case KVM_REG_S390_PFTOKEN:
		r = put_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = put_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = put_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2067 2068 2069 2070
	case KVM_REG_S390_PP:
		r = put_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2071 2072 2073 2074
	case KVM_REG_S390_GBEA:
		r = put_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
	default:
		break;
	}

	return r;
}

static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
					   struct kvm_one_reg *reg)
{
	int r = -EINVAL;
2086
	__u64 val;
2087 2088

	switch (reg->id) {
2089 2090 2091 2092 2093 2094 2095 2096
	case KVM_REG_S390_TODPR:
		r = get_user(vcpu->arch.sie_block->todpr,
			     (u32 __user *)reg->addr);
		break;
	case KVM_REG_S390_EPOCHDIFF:
		r = get_user(vcpu->arch.sie_block->epoch,
			     (u64 __user *)reg->addr);
		break;
2097
	case KVM_REG_S390_CPU_TIMER:
2098 2099 2100
		r = get_user(val, (u64 __user *)reg->addr);
		if (!r)
			kvm_s390_set_cpu_timer(vcpu, val);
2101 2102 2103 2104 2105
		break;
	case KVM_REG_S390_CLOCK_COMP:
		r = get_user(vcpu->arch.sie_block->ckc,
			     (u64 __user *)reg->addr);
		break;
2106 2107 2108
	case KVM_REG_S390_PFTOKEN:
		r = get_user(vcpu->arch.pfault_token,
			     (u64 __user *)reg->addr);
2109 2110
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2111 2112 2113 2114 2115 2116 2117 2118 2119
		break;
	case KVM_REG_S390_PFCOMPARE:
		r = get_user(vcpu->arch.pfault_compare,
			     (u64 __user *)reg->addr);
		break;
	case KVM_REG_S390_PFSELECT:
		r = get_user(vcpu->arch.pfault_select,
			     (u64 __user *)reg->addr);
		break;
2120 2121 2122 2123
	case KVM_REG_S390_PP:
		r = get_user(vcpu->arch.sie_block->pp,
			     (u64 __user *)reg->addr);
		break;
2124 2125 2126 2127
	case KVM_REG_S390_GBEA:
		r = get_user(vcpu->arch.sie_block->gbea,
			     (u64 __user *)reg->addr);
		break;
2128 2129 2130 2131 2132 2133
	default:
		break;
	}

	return r;
}
2134

2135 2136 2137 2138 2139 2140 2141 2142
static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
{
	kvm_s390_vcpu_initial_reset(vcpu);
	return 0;
}

int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2143
	memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
2144 2145 2146 2147 2148
	return 0;
}

int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
2149
	memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
2150 2151 2152 2153 2154 2155
	return 0;
}

int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2156
	memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
2157
	memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
2158
	restore_access_regs(vcpu->run->s.regs.acrs);
2159 2160 2161 2162 2163 2164
	return 0;
}

int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
				  struct kvm_sregs *sregs)
{
2165
	memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
2166 2167 2168 2169 2170 2171
	memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
	return 0;
}

int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2172 2173
	/* make sure the new values will be lazily loaded */
	save_fpu_regs();
2174 2175
	if (test_fp_ctl(fpu->fpc))
		return -EINVAL;
2176 2177 2178 2179 2180
	current->thread.fpu.fpc = fpu->fpc;
	if (MACHINE_HAS_VX)
		convert_fp_to_vx(current->thread.fpu.vxrs, (freg_t *)fpu->fprs);
	else
		memcpy(current->thread.fpu.fprs, &fpu->fprs, sizeof(fpu->fprs));
2181 2182 2183 2184 2185
	return 0;
}

int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
2186 2187 2188 2189 2190 2191 2192
	/* make sure we have the latest values */
	save_fpu_regs();
	if (MACHINE_HAS_VX)
		convert_vx_to_fp((freg_t *)fpu->fprs, current->thread.fpu.vxrs);
	else
		memcpy(fpu->fprs, current->thread.fpu.fprs, sizeof(fpu->fprs));
	fpu->fpc = current->thread.fpu.fpc;
2193 2194 2195 2196 2197 2198 2199
	return 0;
}

static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
{
	int rc = 0;

2200
	if (!is_vcpu_stopped(vcpu))
2201
		rc = -EBUSY;
2202 2203 2204 2205
	else {
		vcpu->run->psw_mask = psw.mask;
		vcpu->run->psw_addr = psw.addr;
	}
2206 2207 2208 2209 2210 2211 2212 2213 2214
	return rc;
}

int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
				  struct kvm_translation *tr)
{
	return -EINVAL; /* not implemented yet */
}

2215 2216 2217 2218
#define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
			      KVM_GUESTDBG_USE_HW_BP | \
			      KVM_GUESTDBG_ENABLE)

J
Jan Kiszka 已提交
2219 2220
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
					struct kvm_guest_debug *dbg)
2221
{
2222 2223 2224 2225 2226
	int rc = 0;

	vcpu->guest_debug = 0;
	kvm_s390_clear_bp_data(vcpu);

2227
	if (dbg->control & ~VALID_GUESTDBG_FLAGS)
2228
		return -EINVAL;
2229 2230
	if (!sclp.has_gpere)
		return -EINVAL;
2231 2232 2233 2234

	if (dbg->control & KVM_GUESTDBG_ENABLE) {
		vcpu->guest_debug = dbg->control;
		/* enforce guest PER */
2235
		atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2236 2237 2238 2239

		if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
			rc = kvm_s390_import_bp_data(vcpu, dbg);
	} else {
2240
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2241 2242 2243 2244 2245 2246
		vcpu->arch.guestdbg.last_bp = 0;
	}

	if (rc) {
		vcpu->guest_debug = 0;
		kvm_s390_clear_bp_data(vcpu);
2247
		atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2248 2249 2250
	}

	return rc;
2251 2252
}

2253 2254 2255
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2256 2257 2258
	/* CHECK_STOP and LOAD are not supported yet */
	return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
				       KVM_MP_STATE_OPERATING;
2259 2260 2261 2262 2263
}

int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
				    struct kvm_mp_state *mp_state)
{
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
	int rc = 0;

	/* user space knows about this interface - let it control the state */
	vcpu->kvm->arch.user_cpu_state_ctrl = 1;

	switch (mp_state->mp_state) {
	case KVM_MP_STATE_STOPPED:
		kvm_s390_vcpu_stop(vcpu);
		break;
	case KVM_MP_STATE_OPERATING:
		kvm_s390_vcpu_start(vcpu);
		break;
	case KVM_MP_STATE_LOAD:
	case KVM_MP_STATE_CHECK_STOP:
		/* fall through - CHECK_STOP and LOAD are not supported yet */
	default:
		rc = -ENXIO;
	}

	return rc;
2284 2285
}

2286 2287 2288 2289 2290
static bool ibs_enabled(struct kvm_vcpu *vcpu)
{
	return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
}

2291 2292
static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
{
2293
retry:
2294
	kvm_s390_vcpu_request_handled(vcpu);
2295 2296
	if (!vcpu->requests)
		return 0;
2297 2298
	/*
	 * We use MMU_RELOAD just to re-arm the ipte notifier for the
2299
	 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock.
2300 2301 2302 2303
	 * This ensures that the ipte instruction for this request has
	 * already finished. We might race against a second unmapper that
	 * wants to set the blocking bit. Lets just retry the request loop.
	 */
2304
	if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
2305
		int rc;
2306 2307 2308
		rc = gmap_mprotect_notify(vcpu->arch.gmap,
					  kvm_s390_get_prefix(vcpu),
					  PAGE_SIZE * 2, PROT_WRITE);
2309 2310
		if (rc)
			return rc;
2311
		goto retry;
2312
	}
2313

2314 2315 2316 2317 2318
	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
		vcpu->arch.sie_block->ihcpu = 0xffff;
		goto retry;
	}

2319 2320 2321
	if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
		if (!ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
2322
			atomic_or(CPUSTAT_IBS,
2323 2324 2325
					&vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
2326
	}
2327 2328 2329 2330

	if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
		if (ibs_enabled(vcpu)) {
			trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
2331
			atomic_andnot(CPUSTAT_IBS,
2332 2333 2334 2335 2336
					  &vcpu->arch.sie_block->cpuflags);
		}
		goto retry;
	}

2337 2338 2339
	/* nothing to do, just clear the request */
	clear_bit(KVM_REQ_UNHALT, &vcpu->requests);

2340 2341 2342
	return 0;
}

2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
{
	struct kvm_vcpu *vcpu;
	int i;

	mutex_lock(&kvm->lock);
	preempt_disable();
	kvm->arch.epoch = tod - get_tod_clock();
	kvm_s390_vcpu_block_all(kvm);
	kvm_for_each_vcpu(i, vcpu, kvm)
		vcpu->arch.sie_block->epoch = kvm->arch.epoch;
	kvm_s390_vcpu_unblock_all(kvm);
	preempt_enable();
	mutex_unlock(&kvm->lock);
}

2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369
/**
 * kvm_arch_fault_in_page - fault-in guest page if necessary
 * @vcpu: The corresponding virtual cpu
 * @gpa: Guest physical address
 * @writable: Whether the page should be writable or not
 *
 * Make sure that a guest page has been faulted-in on the host.
 *
 * Return: Zero on success, negative error code otherwise.
 */
long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
2370
{
2371 2372
	return gmap_fault(vcpu->arch.gmap, gpa,
			  writable ? FAULT_FLAG_WRITE : 0);
2373 2374
}

2375 2376 2377 2378
static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
				      unsigned long token)
{
	struct kvm_s390_interrupt inti;
2379
	struct kvm_s390_irq irq;
2380 2381

	if (start_token) {
2382 2383 2384
		irq.u.ext.ext_params2 = token;
		irq.type = KVM_S390_INT_PFAULT_INIT;
		WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
2385 2386
	} else {
		inti.type = KVM_S390_INT_PFAULT_DONE;
2387
		inti.parm64 = token;
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433
		WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
	}
}

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
				     struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
}

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
				 struct kvm_async_pf *work)
{
	trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
	__kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
}

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
			       struct kvm_async_pf *work)
{
	/* s390 will always inject the page directly */
}

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
{
	/*
	 * s390 will always inject the page directly,
	 * but we still want check_async_completion to cleanup
	 */
	return true;
}

static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
{
	hva_t hva;
	struct kvm_arch_async_pf arch;
	int rc;

	if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
		return 0;
	if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
	    vcpu->arch.pfault_compare)
		return 0;
	if (psw_extint_disabled(vcpu))
		return 0;
2434
	if (kvm_s390_vcpu_has_irq(vcpu, 0))
2435 2436 2437 2438 2439 2440
		return 0;
	if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
		return 0;
	if (!vcpu->arch.gmap->pfault_enabled)
		return 0;

H
Heiko Carstens 已提交
2441 2442 2443
	hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
	hva += current->thread.gmap_addr & ~PAGE_MASK;
	if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
2444 2445 2446 2447 2448 2449
		return 0;

	rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
	return rc;
}

2450
static int vcpu_pre_run(struct kvm_vcpu *vcpu)
2451
{
2452
	int rc, cpuflags;
2453

2454 2455 2456 2457 2458 2459 2460
	/*
	 * On s390 notifications for arriving pages will be delivered directly
	 * to the guest but the house keeping for completed pfaults is
	 * handled outside the worker.
	 */
	kvm_check_async_pf_completion(vcpu);

2461 2462
	vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
	vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
2463 2464 2465 2466

	if (need_resched())
		schedule();

2467
	if (test_cpu_flag(CIF_MCCK_PENDING))
2468 2469
		s390_handle_mcck();

2470 2471 2472 2473 2474
	if (!kvm_is_ucontrol(vcpu->kvm)) {
		rc = kvm_s390_deliver_pending_interrupts(vcpu);
		if (rc)
			return rc;
	}
C
Carsten Otte 已提交
2475

2476 2477 2478 2479
	rc = kvm_s390_handle_requests(vcpu);
	if (rc)
		return rc;

2480 2481 2482 2483 2484
	if (guestdbg_enabled(vcpu)) {
		kvm_s390_backup_guest_per_regs(vcpu);
		kvm_s390_patch_guest_per_regs(vcpu);
	}

2485
	vcpu->arch.sie_block->icptcode = 0;
2486 2487 2488
	cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
	VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
	trace_kvm_s390_sie_enter(vcpu, cpuflags);
2489

2490 2491 2492
	return 0;
}

2493 2494
static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
{
2495 2496 2497 2498
	struct kvm_s390_pgm_info pgm_info = {
		.code = PGM_ADDRESSING,
	};
	u8 opcode, ilen;
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
	int rc;

	VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
	trace_kvm_s390_sie_fault(vcpu);

	/*
	 * We want to inject an addressing exception, which is defined as a
	 * suppressing or terminating exception. However, since we came here
	 * by a DAT access exception, the PSW still points to the faulting
	 * instruction since DAT exceptions are nullifying. So we've got
	 * to look up the current opcode to get the length of the instruction
	 * to be able to forward the PSW.
	 */
2512
	rc = read_guest_instr(vcpu, &opcode, 1);
2513
	ilen = insn_length(opcode);
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
	if (rc < 0) {
		return rc;
	} else if (rc) {
		/* Instruction-Fetching Exceptions - we can't detect the ilen.
		 * Forward by arbitrary ilc, injection will take care of
		 * nullification if necessary.
		 */
		pgm_info = vcpu->arch.pgm;
		ilen = 4;
	}
2524 2525 2526
	pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
	kvm_s390_forward_psw(vcpu, ilen);
	return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
2527 2528
}

2529 2530
static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
{
2531 2532 2533 2534
	VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
		   vcpu->arch.sie_block->icptcode);
	trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);

2535 2536 2537
	if (guestdbg_enabled(vcpu))
		kvm_s390_restore_guest_per_regs(vcpu);

2538 2539
	vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
	vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553

	if (vcpu->arch.sie_block->icptcode > 0) {
		int rc = kvm_handle_sie_intercept(vcpu);

		if (rc != -EOPNOTSUPP)
			return rc;
		vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
		vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
		vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
		vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
		return -EREMOTE;
	} else if (exit_reason != -EFAULT) {
		vcpu->stat.exit_null++;
		return 0;
2554 2555 2556 2557 2558
	} else if (kvm_is_ucontrol(vcpu->kvm)) {
		vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
		vcpu->run->s390_ucontrol.trans_exc_code =
						current->thread.gmap_addr;
		vcpu->run->s390_ucontrol.pgm_code = 0x10;
2559
		return -EREMOTE;
2560
	} else if (current->thread.gmap_pfault) {
2561
		trace_kvm_s390_major_guest_pfault(vcpu);
2562
		current->thread.gmap_pfault = 0;
2563 2564 2565
		if (kvm_arch_setup_async_pf(vcpu))
			return 0;
		return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
2566
	}
2567
	return vcpu_post_run_fault_in_sie(vcpu);
2568 2569 2570 2571 2572 2573
}

static int __vcpu_run(struct kvm_vcpu *vcpu)
{
	int rc, exit_reason;

2574 2575 2576 2577 2578 2579
	/*
	 * We try to hold kvm->srcu during most of vcpu_run (except when run-
	 * ning the guest), so that memslots (and other stuff) are protected
	 */
	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

2580 2581 2582 2583
	do {
		rc = vcpu_pre_run(vcpu);
		if (rc)
			break;
2584

2585
		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2586 2587 2588 2589
		/*
		 * As PF_VCPU will be used in fault handler, between
		 * guest_enter and guest_exit should be no uaccess.
		 */
2590 2591
		local_irq_disable();
		__kvm_guest_enter();
2592
		__disable_cpu_timer_accounting(vcpu);
2593
		local_irq_enable();
2594 2595
		exit_reason = sie64a(vcpu->arch.sie_block,
				     vcpu->run->s.regs.gprs);
2596
		local_irq_disable();
2597
		__enable_cpu_timer_accounting(vcpu);
2598 2599
		__kvm_guest_exit();
		local_irq_enable();
2600
		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2601 2602

		rc = vcpu_post_run(vcpu, exit_reason);
2603
	} while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2604

2605
	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2606
	return rc;
2607 2608
}

2609 2610 2611 2612 2613 2614 2615 2616
static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
	vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
		kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
		memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2617 2618
		/* some control register changes require a tlb flush */
		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2619 2620
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
2621
		kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
2622 2623 2624 2625 2626 2627 2628 2629 2630
		vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
		vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
		vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
		vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
	}
	if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
		vcpu->arch.pfault_token = kvm_run->s.regs.pft;
		vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
		vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2631 2632
		if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
			kvm_clear_async_pf_completion_queue(vcpu);
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
	}
	kvm_run->kvm_dirty_regs = 0;
}

static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
	kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
	kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
	kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
	memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
2643
	kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
2644 2645 2646 2647 2648 2649 2650 2651 2652
	kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
	kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
	kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
	kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
	kvm_run->s.regs.pft = vcpu->arch.pfault_token;
	kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
	kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
}

2653 2654
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
2655
	int rc;
2656 2657
	sigset_t sigsaved;

2658 2659 2660 2661 2662
	if (guestdbg_exit_pending(vcpu)) {
		kvm_s390_prepare_debug_exit(vcpu);
		return 0;
	}

2663 2664 2665
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);

2666 2667 2668
	if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
		kvm_s390_vcpu_start(vcpu);
	} else if (is_vcpu_stopped(vcpu)) {
2669
		pr_err_ratelimited("can't run stopped vcpu %d\n",
2670 2671 2672
				   vcpu->vcpu_id);
		return -EINVAL;
	}
2673

2674
	sync_regs(vcpu, kvm_run);
2675
	enable_cpu_timer_accounting(vcpu);
2676

2677
	might_fault();
2678
	rc = __vcpu_run(vcpu);
2679

2680 2681
	if (signal_pending(current) && !rc) {
		kvm_run->exit_reason = KVM_EXIT_INTR;
2682
		rc = -EINTR;
2683
	}
2684

2685 2686 2687 2688 2689
	if (guestdbg_exit_pending(vcpu) && !rc)  {
		kvm_s390_prepare_debug_exit(vcpu);
		rc = 0;
	}

2690
	if (rc == -EREMOTE) {
2691
		/* userspace support is needed, kvm_run has been prepared */
2692 2693
		rc = 0;
	}
2694

2695
	disable_cpu_timer_accounting(vcpu);
2696
	store_regs(vcpu, kvm_run);
2697

2698 2699 2700 2701
	if (vcpu->sigset_active)
		sigprocmask(SIG_SETMASK, &sigsaved, NULL);

	vcpu->stat.exit_userspace++;
2702
	return rc;
2703 2704 2705 2706 2707 2708 2709 2710
}

/*
 * store status at address
 * we use have two special cases:
 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
 */
2711
int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2712
{
2713
	unsigned char archmode = 1;
2714
	freg_t fprs[NUM_FPRS];
2715
	unsigned int px;
2716
	u64 clkcomp, cputm;
2717
	int rc;
2718

2719
	px = kvm_s390_get_prefix(vcpu);
2720 2721
	if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
		if (write_guest_abs(vcpu, 163, &archmode, 1))
2722
			return -EFAULT;
2723
		gpa = 0;
2724 2725
	} else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
		if (write_guest_real(vcpu, 163, &archmode, 1))
2726
			return -EFAULT;
2727 2728 2729
		gpa = px;
	} else
		gpa -= __LC_FPREGS_SAVE_AREA;
2730 2731 2732

	/* manually convert vector registers if necessary */
	if (MACHINE_HAS_VX) {
2733
		convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
2734 2735 2736 2737
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
				     fprs, 128);
	} else {
		rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
2738
				     vcpu->run->s.regs.fprs, 128);
2739
	}
2740
	rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
2741
			      vcpu->run->s.regs.gprs, 128);
2742
	rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
2743
			      &vcpu->arch.sie_block->gpsw, 16);
2744
	rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
2745
			      &px, 4);
2746
	rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
2747
			      &vcpu->run->s.regs.fpc, 4);
2748
	rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
2749
			      &vcpu->arch.sie_block->todpr, 4);
2750
	cputm = kvm_s390_get_cpu_timer(vcpu);
2751
	rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
2752
			      &cputm, 8);
2753
	clkcomp = vcpu->arch.sie_block->ckc >> 8;
2754
	rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
2755
			      &clkcomp, 8);
2756
	rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
2757
			      &vcpu->run->s.regs.acrs, 64);
2758
	rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
2759 2760
			      &vcpu->arch.sie_block->gcr, 128);
	return rc ? -EFAULT : 0;
2761 2762
}

2763 2764 2765 2766 2767 2768 2769
int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	/*
	 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
	 * copying in vcpu load/put. Lets update our copies before we save
	 * it into the save area
	 */
2770
	save_fpu_regs();
2771
	vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
2772 2773 2774 2775 2776
	save_access_regs(vcpu->run->s.regs.acrs);

	return kvm_s390_store_status_unloaded(vcpu, addr);
}

E
Eric Farman 已提交
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
/*
 * store additional status at address
 */
int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu,
					unsigned long gpa)
{
	/* Only bits 0-53 are used for address formation */
	if (!(gpa & ~0x3ff))
		return 0;

	return write_guest_abs(vcpu, gpa & ~0x3ff,
			       (void *)&vcpu->run->s.regs.vrs, 512);
}

int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr)
{
	if (!test_kvm_facility(vcpu->kvm, 129))
		return 0;

	/*
	 * The guest VXRS are in the host VXRs due to the lazy
2798 2799 2800 2801 2802
	 * copying in vcpu load/put. We can simply call save_fpu_regs()
	 * to save the current register state because we are in the
	 * middle of a load/put cycle.
	 *
	 * Let's update our copies before we save it into the save area.
E
Eric Farman 已提交
2803
	 */
2804
	save_fpu_regs();
E
Eric Farman 已提交
2805 2806 2807 2808

	return kvm_s390_store_adtl_status_unloaded(vcpu, addr);
}

2809 2810 2811
static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
	kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2812
	kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826
}

static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
{
	unsigned int i;
	struct kvm_vcpu *vcpu;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		__disable_ibs_on_vcpu(vcpu);
	}
}

static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
{
2827 2828
	if (!sclp.has_ibs)
		return;
2829
	kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2830
	kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2831 2832
}

2833 2834
void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
{
2835 2836 2837 2838 2839
	int i, online_vcpus, started_vcpus = 0;

	if (!is_vcpu_stopped(vcpu))
		return;

2840
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2841
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2842
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
			started_vcpus++;
	}

	if (started_vcpus == 0) {
		/* we're the only active VCPU -> speed it up */
		__enable_ibs_on_vcpu(vcpu);
	} else if (started_vcpus == 1) {
		/*
		 * As we are starting a second VCPU, we have to disable
		 * the IBS facility on all VCPUs to remove potentially
		 * oustanding ENABLE requests.
		 */
		__disable_ibs_on_all_vcpus(vcpu->kvm);
	}

2862
	atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2863 2864 2865 2866
	/*
	 * Another VCPU might have used IBS while we were offline.
	 * Let's play safe and flush the VCPU at startup.
	 */
2867
	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2868
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2869
	return;
2870 2871 2872 2873
}

void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
{
2874 2875 2876 2877 2878 2879
	int i, online_vcpus, started_vcpus = 0;
	struct kvm_vcpu *started_vcpu = NULL;

	if (is_vcpu_stopped(vcpu))
		return;

2880
	trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2881
	/* Only one cpu at a time may enter/leave the STOPPED state. */
2882
	spin_lock(&vcpu->kvm->arch.start_stop_lock);
2883 2884
	online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);

2885
	/* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2886
	kvm_s390_clear_stop_irq(vcpu);
2887

2888
	atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
	__disable_ibs_on_vcpu(vcpu);

	for (i = 0; i < online_vcpus; i++) {
		if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
			started_vcpus++;
			started_vcpu = vcpu->kvm->vcpus[i];
		}
	}

	if (started_vcpus == 1) {
		/*
		 * As we only have one VCPU left, we want to enable the
		 * IBS facility for that VCPU to speed it up.
		 */
		__enable_ibs_on_vcpu(started_vcpu);
	}

2906
	spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2907
	return;
2908 2909
}

2910 2911 2912 2913 2914 2915 2916 2917 2918
static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
				     struct kvm_enable_cap *cap)
{
	int r;

	if (cap->flags)
		return -EINVAL;

	switch (cap->cap) {
2919 2920 2921
	case KVM_CAP_S390_CSS_SUPPORT:
		if (!vcpu->kvm->arch.css_support) {
			vcpu->kvm->arch.css_support = 1;
2922
			VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
2923 2924 2925 2926
			trace_kvm_s390_enable_css(vcpu->kvm);
		}
		r = 0;
		break;
2927 2928 2929 2930 2931 2932 2933
	default:
		r = -EINVAL;
		break;
	}
	return r;
}

2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
				  struct kvm_s390_mem_op *mop)
{
	void __user *uaddr = (void __user *)mop->buf;
	void *tmpbuf = NULL;
	int r, srcu_idx;
	const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
				    | KVM_S390_MEMOP_F_CHECK_ONLY;

	if (mop->flags & ~supported_flags)
		return -EINVAL;

	if (mop->size > MEM_OP_MAX_SIZE)
		return -E2BIG;

	if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
		tmpbuf = vmalloc(mop->size);
		if (!tmpbuf)
			return -ENOMEM;
	}

	srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);

	switch (mop->op) {
	case KVM_S390_MEMOP_LOGICAL_READ:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2960 2961
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_FETCH);
2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
			break;
		}
		r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		if (r == 0) {
			if (copy_to_user(uaddr, tmpbuf, mop->size))
				r = -EFAULT;
		}
		break;
	case KVM_S390_MEMOP_LOGICAL_WRITE:
		if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2972 2973
			r = check_gva_range(vcpu, mop->gaddr, mop->ar,
					    mop->size, GACC_STORE);
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
			break;
		}
		if (copy_from_user(tmpbuf, uaddr, mop->size)) {
			r = -EFAULT;
			break;
		}
		r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
		break;
	default:
		r = -EINVAL;
	}

	srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);

	if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
		kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);

	vfree(tmpbuf);
	return r;
}

2995 2996 2997 2998 2999
long kvm_arch_vcpu_ioctl(struct file *filp,
			 unsigned int ioctl, unsigned long arg)
{
	struct kvm_vcpu *vcpu = filp->private_data;
	void __user *argp = (void __user *)arg;
3000
	int idx;
3001
	long r;
3002

3003
	switch (ioctl) {
3004 3005 3006 3007 3008 3009 3010 3011 3012
	case KVM_S390_IRQ: {
		struct kvm_s390_irq s390irq;

		r = -EFAULT;
		if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
			break;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
		break;
	}
3013
	case KVM_S390_INTERRUPT: {
3014
		struct kvm_s390_interrupt s390int;
3015
		struct kvm_s390_irq s390irq;
3016

3017
		r = -EFAULT;
3018
		if (copy_from_user(&s390int, argp, sizeof(s390int)))
3019
			break;
3020 3021 3022
		if (s390int_to_s390irq(&s390int, &s390irq))
			return -EINVAL;
		r = kvm_s390_inject_vcpu(vcpu, &s390irq);
3023
		break;
3024
	}
3025
	case KVM_S390_STORE_STATUS:
3026
		idx = srcu_read_lock(&vcpu->kvm->srcu);
3027
		r = kvm_s390_vcpu_store_status(vcpu, arg);
3028
		srcu_read_unlock(&vcpu->kvm->srcu, idx);
3029
		break;
3030 3031 3032
	case KVM_S390_SET_INITIAL_PSW: {
		psw_t psw;

3033
		r = -EFAULT;
3034
		if (copy_from_user(&psw, argp, sizeof(psw)))
3035 3036 3037
			break;
		r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
		break;
3038 3039
	}
	case KVM_S390_INITIAL_RESET:
3040 3041
		r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
		break;
3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
	case KVM_SET_ONE_REG:
	case KVM_GET_ONE_REG: {
		struct kvm_one_reg reg;
		r = -EFAULT;
		if (copy_from_user(&reg, argp, sizeof(reg)))
			break;
		if (ioctl == KVM_SET_ONE_REG)
			r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
		else
			r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
		break;
	}
3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
#ifdef CONFIG_KVM_S390_UCONTROL
	case KVM_S390_UCAS_MAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
				     ucasmap.vcpu_addr, ucasmap.length);
		break;
	}
	case KVM_S390_UCAS_UNMAP: {
		struct kvm_s390_ucas_mapping ucasmap;

		if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
			r = -EFAULT;
			break;
		}

		if (!kvm_is_ucontrol(vcpu->kvm)) {
			r = -EINVAL;
			break;
		}

		r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
			ucasmap.length);
		break;
	}
#endif
3090
	case KVM_S390_VCPU_FAULT: {
3091
		r = gmap_fault(vcpu->arch.gmap, arg, 0);
3092 3093
		break;
	}
3094 3095 3096 3097 3098 3099 3100 3101 3102
	case KVM_ENABLE_CAP:
	{
		struct kvm_enable_cap cap;
		r = -EFAULT;
		if (copy_from_user(&cap, argp, sizeof(cap)))
			break;
		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
		break;
	}
3103 3104 3105 3106 3107 3108 3109 3110 3111
	case KVM_S390_MEM_OP: {
		struct kvm_s390_mem_op mem_op;

		if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
			r = kvm_s390_guest_mem_op(vcpu, &mem_op);
		else
			r = -EFAULT;
		break;
	}
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
	case KVM_S390_SET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len > VCPU_IRQS_MAX_BUF ||
		    irq_state.len == 0 ||
		    irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_set_irq_state(vcpu,
					   (void __user *) irq_state.buf,
					   irq_state.len);
		break;
	}
	case KVM_S390_GET_IRQ_STATE: {
		struct kvm_s390_irq_state irq_state;

		r = -EFAULT;
		if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
			break;
		if (irq_state.len == 0) {
			r = -EINVAL;
			break;
		}
		r = kvm_s390_get_irq_state(vcpu,
					   (__u8 __user *)  irq_state.buf,
					   irq_state.len);
		break;
	}
3144
	default:
3145
		r = -ENOTTY;
3146
	}
3147
	return r;
3148 3149
}

3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
#ifdef CONFIG_KVM_S390_UCONTROL
	if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
		 && (kvm_is_ucontrol(vcpu->kvm))) {
		vmf->page = virt_to_page(vcpu->arch.sie_block);
		get_page(vmf->page);
		return 0;
	}
#endif
	return VM_FAULT_SIGBUS;
}

3163 3164
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
			    unsigned long npages)
3165 3166 3167 3168
{
	return 0;
}

3169
/* Section: memory related */
3170 3171
int kvm_arch_prepare_memory_region(struct kvm *kvm,
				   struct kvm_memory_slot *memslot,
3172
				   const struct kvm_userspace_memory_region *mem,
3173
				   enum kvm_mr_change change)
3174
{
3175 3176 3177 3178
	/* A few sanity checks. We can have memory slots which have to be
	   located/ended at a segment boundary (1MB). The memory in userland is
	   ok to be fragmented into various different vmas. It is okay to mmap()
	   and munmap() stuff in this slot after doing this call at any time */
3179

3180
	if (mem->userspace_addr & 0xffffful)
3181 3182
		return -EINVAL;

3183
	if (mem->memory_size & 0xffffful)
3184 3185
		return -EINVAL;

3186 3187 3188
	if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
		return -EINVAL;

3189 3190 3191 3192
	return 0;
}

void kvm_arch_commit_memory_region(struct kvm *kvm,
3193
				const struct kvm_userspace_memory_region *mem,
3194
				const struct kvm_memory_slot *old,
3195
				const struct kvm_memory_slot *new,
3196
				enum kvm_mr_change change)
3197
{
3198
	int rc;
3199

3200 3201 3202 3203 3204 3205 3206 3207 3208 3209
	/* If the basics of the memslot do not change, we do not want
	 * to update the gmap. Every update causes several unnecessary
	 * segment translation exceptions. This is usually handled just
	 * fine by the normal fault handler + gmap, but it will also
	 * cause faults on the prefix page of running guest CPUs.
	 */
	if (old->userspace_addr == mem->userspace_addr &&
	    old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
	    old->npages * PAGE_SIZE == mem->memory_size)
		return;
3210 3211 3212 3213

	rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
		mem->guest_phys_addr, mem->memory_size);
	if (rc)
3214
		pr_warn("failed to commit memory region\n");
3215
	return;
3216 3217
}

3218 3219 3220 3221 3222 3223 3224
static inline unsigned long nonhyp_mask(int i)
{
	unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;

	return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
}

3225 3226 3227 3228 3229
void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu)
{
	vcpu->valid_wakeup = false;
}

3230 3231
static int __init kvm_s390_init(void)
{
3232 3233
	int i;

3234 3235 3236 3237 3238
	if (!sclp.has_sief2) {
		pr_info("SIE not available\n");
		return -ENODEV;
	}

3239 3240 3241 3242
	for (i = 0; i < 16; i++)
		kvm_s390_fac_list_mask[i] |=
			S390_lowcore.stfle_fac_list[i] & nonhyp_mask(i);

3243
	return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
3244 3245 3246 3247 3248 3249 3250 3251 3252
}

static void __exit kvm_s390_exit(void)
{
	kvm_exit();
}

module_init(kvm_s390_init);
module_exit(kvm_s390_exit);
3253 3254 3255 3256 3257 3258 3259 3260 3261

/*
 * Enable autoloading of the kvm module.
 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
 * since x86 takes a different approach.
 */
#include <linux/miscdevice.h>
MODULE_ALIAS_MISCDEV(KVM_MINOR);
MODULE_ALIAS("devname:kvm");