blk-throttle.c 68.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2 3 4 5 6 7 8 9 10 11 12
/*
 * Interface for controlling IO bandwidth on a request queue
 *
 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
13
#include <linux/blk-cgroup.h>
14
#include "blk.h"
15 16 17 18 19 20 21

/* Max dispatch from a group in 1 round */
static int throtl_grp_quantum = 8;

/* Total max dispatch from all groups in one round */
static int throtl_quantum = 32;

22 23 24
/* Throttling is performed over a slice and after that slice is renewed */
#define DFL_THROTL_SLICE_HD (HZ / 10)
#define DFL_THROTL_SLICE_SSD (HZ / 50)
25
#define MAX_THROTL_SLICE (HZ)
26
#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
27 28
#define MIN_THROTL_BPS (320 * 1024)
#define MIN_THROTL_IOPS (10)
29 30
#define DFL_LATENCY_TARGET (-1L)
#define DFL_IDLE_THRESHOLD (0)
31 32 33 34 35 36 37
#define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
#define LATENCY_FILTERED_SSD (0)
/*
 * For HD, very small latency comes from sequential IO. Such IO is helpless to
 * help determine if its IO is impacted by others, hence we ignore the IO
 */
#define LATENCY_FILTERED_HD (1000L) /* 1ms */
38

T
Tejun Heo 已提交
39
static struct blkcg_policy blkcg_policy_throtl;
40

41 42 43
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
/*
 * To implement hierarchical throttling, throtl_grps form a tree and bios
 * are dispatched upwards level by level until they reach the top and get
 * issued.  When dispatching bios from the children and local group at each
 * level, if the bios are dispatched into a single bio_list, there's a risk
 * of a local or child group which can queue many bios at once filling up
 * the list starving others.
 *
 * To avoid such starvation, dispatched bios are queued separately
 * according to where they came from.  When they are again dispatched to
 * the parent, they're popped in round-robin order so that no single source
 * hogs the dispatch window.
 *
 * throtl_qnode is used to keep the queued bios separated by their sources.
 * Bios are queued to throtl_qnode which in turn is queued to
 * throtl_service_queue and then dispatched in round-robin order.
 *
 * It's also used to track the reference counts on blkg's.  A qnode always
 * belongs to a throtl_grp and gets queued on itself or the parent, so
 * incrementing the reference of the associated throtl_grp when a qnode is
 * queued and decrementing when dequeued is enough to keep the whole blkg
 * tree pinned while bios are in flight.
 */
struct throtl_qnode {
	struct list_head	node;		/* service_queue->queued[] */
	struct bio_list		bios;		/* queued bios */
	struct throtl_grp	*tg;		/* tg this qnode belongs to */
};

73
struct throtl_service_queue {
74 75
	struct throtl_service_queue *parent_sq;	/* the parent service_queue */

76 77 78 79
	/*
	 * Bios queued directly to this service_queue or dispatched from
	 * children throtl_grp's.
	 */
80
	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
81 82 83 84 85 86
	unsigned int		nr_queued[2];	/* number of queued bios */

	/*
	 * RB tree of active children throtl_grp's, which are sorted by
	 * their ->disptime.
	 */
87 88 89 90
	struct rb_root		pending_tree;	/* RB tree of active tgs */
	struct rb_node		*first_pending;	/* first node in the tree */
	unsigned int		nr_pending;	/* # queued in the tree */
	unsigned long		first_pending_disptime;	/* disptime of the first tg */
91
	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
92 93
};

94 95
enum tg_state_flags {
	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
96
	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
97 98
};

99 100
#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)

101
enum {
S
Shaohua Li 已提交
102
	LIMIT_LOW,
103 104 105 106
	LIMIT_MAX,
	LIMIT_CNT,
};

107
struct throtl_grp {
108 109 110
	/* must be the first member */
	struct blkg_policy_data pd;

111
	/* active throtl group service_queue member */
112 113
	struct rb_node rb_node;

114 115 116
	/* throtl_data this group belongs to */
	struct throtl_data *td;

117 118 119
	/* this group's service queue */
	struct throtl_service_queue service_queue;

120 121 122 123 124 125 126 127 128 129 130
	/*
	 * qnode_on_self is used when bios are directly queued to this
	 * throtl_grp so that local bios compete fairly with bios
	 * dispatched from children.  qnode_on_parent is used when bios are
	 * dispatched from this throtl_grp into its parent and will compete
	 * with the sibling qnode_on_parents and the parent's
	 * qnode_on_self.
	 */
	struct throtl_qnode qnode_on_self[2];
	struct throtl_qnode qnode_on_parent[2];

131 132 133 134 135 136 137 138 139
	/*
	 * Dispatch time in jiffies. This is the estimated time when group
	 * will unthrottle and is ready to dispatch more bio. It is used as
	 * key to sort active groups in service tree.
	 */
	unsigned long disptime;

	unsigned int flags;

140 141 142
	/* are there any throtl rules between this group and td? */
	bool has_rules[2];

S
Shaohua Li 已提交
143
	/* internally used bytes per second rate limits */
144
	uint64_t bps[2][LIMIT_CNT];
S
Shaohua Li 已提交
145 146
	/* user configured bps limits */
	uint64_t bps_conf[2][LIMIT_CNT];
147

S
Shaohua Li 已提交
148
	/* internally used IOPS limits */
149
	unsigned int iops[2][LIMIT_CNT];
S
Shaohua Li 已提交
150 151
	/* user configured IOPS limits */
	unsigned int iops_conf[2][LIMIT_CNT];
152

153 154
	/* Number of bytes disptached in current slice */
	uint64_t bytes_disp[2];
155 156
	/* Number of bio's dispatched in current slice */
	unsigned int io_disp[2];
157

S
Shaohua Li 已提交
158 159 160 161 162 163 164
	unsigned long last_low_overflow_time[2];

	uint64_t last_bytes_disp[2];
	unsigned int last_io_disp[2];

	unsigned long last_check_time;

165
	unsigned long latency_target; /* us */
166
	unsigned long latency_target_conf; /* us */
167 168 169
	/* When did we start a new slice */
	unsigned long slice_start[2];
	unsigned long slice_end[2];
170 171 172 173 174

	unsigned long last_finish_time; /* ns / 1024 */
	unsigned long checked_last_finish_time; /* ns / 1024 */
	unsigned long avg_idletime; /* ns / 1024 */
	unsigned long idletime_threshold; /* us */
175
	unsigned long idletime_threshold_conf; /* us */
176 177 178 179

	unsigned int bio_cnt; /* total bios */
	unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
	unsigned long bio_cnt_reset_time;
180 181
};

182 183 184 185 186 187 188 189 190 191 192 193 194
/* We measure latency for request size from <= 4k to >= 1M */
#define LATENCY_BUCKET_SIZE 9

struct latency_bucket {
	unsigned long total_latency; /* ns / 1024 */
	int samples;
};

struct avg_latency_bucket {
	unsigned long latency; /* ns / 1024 */
	bool valid;
};

195 196 197
struct throtl_data
{
	/* service tree for active throtl groups */
198
	struct throtl_service_queue service_queue;
199 200 201 202 203 204

	struct request_queue *queue;

	/* Total Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

205 206
	unsigned int throtl_slice;

207
	/* Work for dispatching throttled bios */
208
	struct work_struct dispatch_work;
209 210
	unsigned int limit_index;
	bool limit_valid[LIMIT_CNT];
S
Shaohua Li 已提交
211 212 213

	unsigned long low_upgrade_time;
	unsigned long low_downgrade_time;
214 215

	unsigned int scale;
216

217 218 219
	struct latency_bucket tmp_buckets[2][LATENCY_BUCKET_SIZE];
	struct avg_latency_bucket avg_buckets[2][LATENCY_BUCKET_SIZE];
	struct latency_bucket __percpu *latency_buckets[2];
220
	unsigned long last_calculate_time;
221
	unsigned long filtered_latency;
222 223

	bool track_bio_latency;
224 225
};

226
static void throtl_pending_timer_fn(struct timer_list *t);
227

228 229 230 231 232
static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
{
	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
}

T
Tejun Heo 已提交
233
static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
234
{
235
	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
236 237
}

T
Tejun Heo 已提交
238
static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
239
{
240
	return pd_to_blkg(&tg->pd);
241 242
}

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
/**
 * sq_to_tg - return the throl_grp the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 * embedded in throtl_data, %NULL is returned.
 */
static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
{
	if (sq && sq->parent_sq)
		return container_of(sq, struct throtl_grp, service_queue);
	else
		return NULL;
}

/**
 * sq_to_td - return throtl_data the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
262
 * A service_queue can be embedded in either a throtl_grp or throtl_data.
263 264 265 266 267 268 269 270 271 272 273 274
 * Determine the associated throtl_data accordingly and return it.
 */
static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
{
	struct throtl_grp *tg = sq_to_tg(sq);

	if (tg)
		return tg->td;
	else
		return container_of(sq, struct throtl_data, service_queue);
}

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
/*
 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
 * make the IO dispatch more smooth.
 * Scale up: linearly scale up according to lapsed time since upgrade. For
 *           every throtl_slice, the limit scales up 1/2 .low limit till the
 *           limit hits .max limit
 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
 */
static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
{
	/* arbitrary value to avoid too big scale */
	if (td->scale < 4096 && time_after_eq(jiffies,
	    td->low_upgrade_time + td->scale * td->throtl_slice))
		td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;

	return low + (low >> 1) * td->scale;
}

293 294
static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
{
295
	struct blkcg_gq *blkg = tg_to_blkg(tg);
296
	struct throtl_data *td;
297 298 299 300
	uint64_t ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return U64_MAX;
301 302 303

	td = tg->td;
	ret = tg->bps[rw][td->limit_index];
304 305 306 307 308 309 310 311
	if (ret == 0 && td->limit_index == LIMIT_LOW) {
		/* intermediate node or iops isn't 0 */
		if (!list_empty(&blkg->blkcg->css.children) ||
		    tg->iops[rw][td->limit_index])
			return U64_MAX;
		else
			return MIN_THROTL_BPS;
	}
312 313 314 315 316 317 318 319

	if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
	    tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
		uint64_t adjusted;

		adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
		ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
	}
320
	return ret;
321 322 323 324
}

static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
{
325
	struct blkcg_gq *blkg = tg_to_blkg(tg);
326
	struct throtl_data *td;
327 328 329 330
	unsigned int ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return UINT_MAX;
331

332 333
	td = tg->td;
	ret = tg->iops[rw][td->limit_index];
334 335 336 337 338 339 340 341
	if (ret == 0 && tg->td->limit_index == LIMIT_LOW) {
		/* intermediate node or bps isn't 0 */
		if (!list_empty(&blkg->blkcg->css.children) ||
		    tg->bps[rw][td->limit_index])
			return UINT_MAX;
		else
			return MIN_THROTL_IOPS;
	}
342 343 344 345 346 347 348 349 350 351

	if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
	    tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
		uint64_t adjusted;

		adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
		if (adjusted > UINT_MAX)
			adjusted = UINT_MAX;
		ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
	}
352
	return ret;
353 354
}

355 356 357
#define request_bucket_index(sectors) \
	clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)

358 359 360 361 362 363 364 365 366 367 368 369 370 371
/**
 * throtl_log - log debug message via blktrace
 * @sq: the service_queue being reported
 * @fmt: printf format string
 * @args: printf args
 *
 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 * throtl_grp; otherwise, just "throtl".
 */
#define throtl_log(sq, fmt, args...)	do {				\
	struct throtl_grp *__tg = sq_to_tg((sq));			\
	struct throtl_data *__td = sq_to_td((sq));			\
									\
	(void)__td;							\
372 373
	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
		break;							\
374
	if ((__tg)) {							\
375 376
		blk_add_cgroup_trace_msg(__td->queue,			\
			tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
377 378 379
	} else {							\
		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
	}								\
T
Tejun Heo 已提交
380
} while (0)
381

382 383 384 385 386 387 388 389
static inline unsigned int throtl_bio_data_size(struct bio *bio)
{
	/* assume it's one sector */
	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
		return 512;
	return bio->bi_iter.bi_size;
}

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
{
	INIT_LIST_HEAD(&qn->node);
	bio_list_init(&qn->bios);
	qn->tg = tg;
}

/**
 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 * @bio: bio being added
 * @qn: qnode to add bio to
 * @queued: the service_queue->queued[] list @qn belongs to
 *
 * Add @bio to @qn and put @qn on @queued if it's not already on.
 * @qn->tg's reference count is bumped when @qn is activated.  See the
 * comment on top of throtl_qnode definition for details.
 */
static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
				 struct list_head *queued)
{
	bio_list_add(&qn->bios, bio);
	if (list_empty(&qn->node)) {
		list_add_tail(&qn->node, queued);
		blkg_get(tg_to_blkg(qn->tg));
	}
}

/**
 * throtl_peek_queued - peek the first bio on a qnode list
 * @queued: the qnode list to peek
 */
static struct bio *throtl_peek_queued(struct list_head *queued)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_peek(&qn->bios);
	WARN_ON_ONCE(!bio);
	return bio;
}

/**
 * throtl_pop_queued - pop the first bio form a qnode list
 * @queued: the qnode list to pop a bio from
 * @tg_to_put: optional out argument for throtl_grp to put
 *
 * Pop the first bio from the qnode list @queued.  After popping, the first
 * qnode is removed from @queued if empty or moved to the end of @queued so
 * that the popping order is round-robin.
 *
 * When the first qnode is removed, its associated throtl_grp should be put
 * too.  If @tg_to_put is NULL, this function automatically puts it;
 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 * responsible for putting it.
 */
static struct bio *throtl_pop_queued(struct list_head *queued,
				     struct throtl_grp **tg_to_put)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_pop(&qn->bios);
	WARN_ON_ONCE(!bio);

	if (bio_list_empty(&qn->bios)) {
		list_del_init(&qn->node);
		if (tg_to_put)
			*tg_to_put = qn->tg;
		else
			blkg_put(tg_to_blkg(qn->tg));
	} else {
		list_move_tail(&qn->node, queued);
	}

	return bio;
}

473
/* init a service_queue, assumes the caller zeroed it */
474
static void throtl_service_queue_init(struct throtl_service_queue *sq)
475
{
476 477
	INIT_LIST_HEAD(&sq->queued[0]);
	INIT_LIST_HEAD(&sq->queued[1]);
478
	sq->pending_tree = RB_ROOT;
479
	timer_setup(&sq->pending_timer, throtl_pending_timer_fn, 0);
480 481
}

482 483
static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
{
484
	struct throtl_grp *tg;
T
Tejun Heo 已提交
485
	int rw;
486 487 488

	tg = kzalloc_node(sizeof(*tg), gfp, node);
	if (!tg)
489
		return NULL;
490

491 492 493 494 495 496 497 498
	throtl_service_queue_init(&tg->service_queue);

	for (rw = READ; rw <= WRITE; rw++) {
		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
	}

	RB_CLEAR_NODE(&tg->rb_node);
499 500 501 502
	tg->bps[READ][LIMIT_MAX] = U64_MAX;
	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
S
Shaohua Li 已提交
503 504 505 506 507
	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
	/* LIMIT_LOW will have default value 0 */
508

509
	tg->latency_target = DFL_LATENCY_TARGET;
510
	tg->latency_target_conf = DFL_LATENCY_TARGET;
511 512
	tg->idletime_threshold = DFL_IDLE_THRESHOLD;
	tg->idletime_threshold_conf = DFL_IDLE_THRESHOLD;
513

514
	return &tg->pd;
515 516
}

517
static void throtl_pd_init(struct blkg_policy_data *pd)
518
{
519 520
	struct throtl_grp *tg = pd_to_tg(pd);
	struct blkcg_gq *blkg = tg_to_blkg(tg);
521
	struct throtl_data *td = blkg->q->td;
522
	struct throtl_service_queue *sq = &tg->service_queue;
523

524
	/*
525
	 * If on the default hierarchy, we switch to properly hierarchical
526 527 528 529 530
	 * behavior where limits on a given throtl_grp are applied to the
	 * whole subtree rather than just the group itself.  e.g. If 16M
	 * read_bps limit is set on the root group, the whole system can't
	 * exceed 16M for the device.
	 *
531
	 * If not on the default hierarchy, the broken flat hierarchy
532 533 534 535 536
	 * behavior is retained where all throtl_grps are treated as if
	 * they're all separate root groups right below throtl_data.
	 * Limits of a group don't interact with limits of other groups
	 * regardless of the position of the group in the hierarchy.
	 */
537
	sq->parent_sq = &td->service_queue;
538
	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
539
		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
540
	tg->td = td;
541 542
}

543 544 545 546 547 548 549 550
/*
 * Set has_rules[] if @tg or any of its parents have limits configured.
 * This doesn't require walking up to the top of the hierarchy as the
 * parent's has_rules[] is guaranteed to be correct.
 */
static void tg_update_has_rules(struct throtl_grp *tg)
{
	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
551
	struct throtl_data *td = tg->td;
552 553 554 555
	int rw;

	for (rw = READ; rw <= WRITE; rw++)
		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
556 557 558
			(td->limit_valid[td->limit_index] &&
			 (tg_bps_limit(tg, rw) != U64_MAX ||
			  tg_iops_limit(tg, rw) != UINT_MAX));
559 560
}

561
static void throtl_pd_online(struct blkg_policy_data *pd)
562
{
563
	struct throtl_grp *tg = pd_to_tg(pd);
564 565 566 567
	/*
	 * We don't want new groups to escape the limits of its ancestors.
	 * Update has_rules[] after a new group is brought online.
	 */
568
	tg_update_has_rules(tg);
569 570
}

S
Shaohua Li 已提交
571 572 573 574 575 576 577 578 579 580 581
static void blk_throtl_update_limit_valid(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;
	bool low_valid = false;

	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
582
		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) {
S
Shaohua Li 已提交
583
			low_valid = true;
584 585
			break;
		}
S
Shaohua Li 已提交
586 587 588 589 590 591
	}
	rcu_read_unlock();

	td->limit_valid[LIMIT_LOW] = low_valid;
}

592
static void throtl_upgrade_state(struct throtl_data *td);
S
Shaohua Li 已提交
593 594 595 596 597 598 599 600 601 602 603
static void throtl_pd_offline(struct blkg_policy_data *pd)
{
	struct throtl_grp *tg = pd_to_tg(pd);

	tg->bps[READ][LIMIT_LOW] = 0;
	tg->bps[WRITE][LIMIT_LOW] = 0;
	tg->iops[READ][LIMIT_LOW] = 0;
	tg->iops[WRITE][LIMIT_LOW] = 0;

	blk_throtl_update_limit_valid(tg->td);

604 605
	if (!tg->td->limit_valid[tg->td->limit_index])
		throtl_upgrade_state(tg->td);
S
Shaohua Li 已提交
606 607
}

608 609
static void throtl_pd_free(struct blkg_policy_data *pd)
{
610 611
	struct throtl_grp *tg = pd_to_tg(pd);

612
	del_timer_sync(&tg->service_queue.pending_timer);
613
	kfree(tg);
614 615
}

616 617
static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue *parent_sq)
618 619
{
	/* Service tree is empty */
620
	if (!parent_sq->nr_pending)
621 622
		return NULL;

623 624
	if (!parent_sq->first_pending)
		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
625

626 627
	if (parent_sq->first_pending)
		return rb_entry_tg(parent_sq->first_pending);
628 629 630 631 632 633 634 635 636 637

	return NULL;
}

static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

638 639
static void throtl_rb_erase(struct rb_node *n,
			    struct throtl_service_queue *parent_sq)
640
{
641 642 643 644
	if (parent_sq->first_pending == n)
		parent_sq->first_pending = NULL;
	rb_erase_init(n, &parent_sq->pending_tree);
	--parent_sq->nr_pending;
645 646
}

647
static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
648 649 650
{
	struct throtl_grp *tg;

651
	tg = throtl_rb_first(parent_sq);
652 653 654
	if (!tg)
		return;

655
	parent_sq->first_pending_disptime = tg->disptime;
656 657
}

658
static void tg_service_queue_add(struct throtl_grp *tg)
659
{
660
	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
661
	struct rb_node **node = &parent_sq->pending_tree.rb_node;
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
	struct rb_node *parent = NULL;
	struct throtl_grp *__tg;
	unsigned long key = tg->disptime;
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__tg = rb_entry_tg(parent);

		if (time_before(key, __tg->disptime))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
680
		parent_sq->first_pending = &tg->rb_node;
681 682

	rb_link_node(&tg->rb_node, parent, node);
683
	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
684 685
}

686
static void __throtl_enqueue_tg(struct throtl_grp *tg)
687
{
688
	tg_service_queue_add(tg);
689
	tg->flags |= THROTL_TG_PENDING;
690
	tg->service_queue.parent_sq->nr_pending++;
691 692
}

693
static void throtl_enqueue_tg(struct throtl_grp *tg)
694
{
695
	if (!(tg->flags & THROTL_TG_PENDING))
696
		__throtl_enqueue_tg(tg);
697 698
}

699
static void __throtl_dequeue_tg(struct throtl_grp *tg)
700
{
701
	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
702
	tg->flags &= ~THROTL_TG_PENDING;
703 704
}

705
static void throtl_dequeue_tg(struct throtl_grp *tg)
706
{
707
	if (tg->flags & THROTL_TG_PENDING)
708
		__throtl_dequeue_tg(tg);
709 710
}

711
/* Call with queue lock held */
712 713
static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
					  unsigned long expires)
714
{
715
	unsigned long max_expire = jiffies + 8 * sq_to_td(sq)->throtl_slice;
716 717 718 719 720 721 722 723 724 725

	/*
	 * Since we are adjusting the throttle limit dynamically, the sleep
	 * time calculated according to previous limit might be invalid. It's
	 * possible the cgroup sleep time is very long and no other cgroups
	 * have IO running so notify the limit changes. Make sure the cgroup
	 * doesn't sleep too long to avoid the missed notification.
	 */
	if (time_after(expires, max_expire))
		expires = max_expire;
726 727 728
	mod_timer(&sq->pending_timer, expires);
	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
		   expires - jiffies, jiffies);
729 730
}

731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
/**
 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 * @sq: the service_queue to schedule dispatch for
 * @force: force scheduling
 *
 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 * dispatch time of the first pending child.  Returns %true if either timer
 * is armed or there's no pending child left.  %false if the current
 * dispatch window is still open and the caller should continue
 * dispatching.
 *
 * If @force is %true, the dispatch timer is always scheduled and this
 * function is guaranteed to return %true.  This is to be used when the
 * caller can't dispatch itself and needs to invoke pending_timer
 * unconditionally.  Note that forced scheduling is likely to induce short
 * delay before dispatch starts even if @sq->first_pending_disptime is not
 * in the future and thus shouldn't be used in hot paths.
 */
static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
					  bool force)
751
{
752
	/* any pending children left? */
753
	if (!sq->nr_pending)
754
		return true;
755

756
	update_min_dispatch_time(sq);
757

758
	/* is the next dispatch time in the future? */
759
	if (force || time_after(sq->first_pending_disptime, jiffies)) {
760
		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
761
		return true;
762 763
	}

764 765
	/* tell the caller to continue dispatching */
	return false;
766 767
}

768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
		bool rw, unsigned long start)
{
	tg->bytes_disp[rw] = 0;
	tg->io_disp[rw] = 0;

	/*
	 * Previous slice has expired. We must have trimmed it after last
	 * bio dispatch. That means since start of last slice, we never used
	 * that bandwidth. Do try to make use of that bandwidth while giving
	 * credit.
	 */
	if (time_after_eq(start, tg->slice_start[rw]))
		tg->slice_start[rw] = start;

783
	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
784 785 786 787 788 789
	throtl_log(&tg->service_queue,
		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
}

790
static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
791 792
{
	tg->bytes_disp[rw] = 0;
793
	tg->io_disp[rw] = 0;
794
	tg->slice_start[rw] = jiffies;
795
	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
796 797 798 799
	throtl_log(&tg->service_queue,
		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
800 801
}

802 803
static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
					unsigned long jiffy_end)
804
{
805
	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
806 807
}

808 809
static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
				       unsigned long jiffy_end)
810
{
811
	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
812 813 814 815
	throtl_log(&tg->service_queue,
		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
816 817 818
}

/* Determine if previously allocated or extended slice is complete or not */
819
static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
820 821
{
	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
822
		return false;
823

824
	return true;
825 826 827
}

/* Trim the used slices and adjust slice start accordingly */
828
static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
829
{
830 831
	unsigned long nr_slices, time_elapsed, io_trim;
	u64 bytes_trim, tmp;
832 833 834 835 836 837 838 839

	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));

	/*
	 * If bps are unlimited (-1), then time slice don't get
	 * renewed. Don't try to trim the slice if slice is used. A new
	 * slice will start when appropriate.
	 */
840
	if (throtl_slice_used(tg, rw))
841 842
		return;

843 844 845 846 847 848 849 850
	/*
	 * A bio has been dispatched. Also adjust slice_end. It might happen
	 * that initially cgroup limit was very low resulting in high
	 * slice_end, but later limit was bumped up and bio was dispached
	 * sooner, then we need to reduce slice_end. A high bogus slice_end
	 * is bad because it does not allow new slice to start.
	 */

851
	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
852

853 854
	time_elapsed = jiffies - tg->slice_start[rw];

855
	nr_slices = time_elapsed / tg->td->throtl_slice;
856 857 858

	if (!nr_slices)
		return;
859
	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
860 861
	do_div(tmp, HZ);
	bytes_trim = tmp;
862

863 864
	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
		HZ;
865

866
	if (!bytes_trim && !io_trim)
867 868 869 870 871 872 873
		return;

	if (tg->bytes_disp[rw] >= bytes_trim)
		tg->bytes_disp[rw] -= bytes_trim;
	else
		tg->bytes_disp[rw] = 0;

874 875 876 877 878
	if (tg->io_disp[rw] >= io_trim)
		tg->io_disp[rw] -= io_trim;
	else
		tg->io_disp[rw] = 0;

879
	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
880

881 882 883 884
	throtl_log(&tg->service_queue,
		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
885 886
}

887 888
static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
				  unsigned long *wait)
889 890
{
	bool rw = bio_data_dir(bio);
891
	unsigned int io_allowed;
892
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
893
	u64 tmp;
894

895
	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
896

897 898
	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
899
		jiffy_elapsed_rnd = tg->td->throtl_slice;
900

901
	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
902

903 904 905 906 907 908 909
	/*
	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
	 * will allow dispatch after 1 second and after that slice should
	 * have been trimmed.
	 */

910
	tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
911 912 913 914 915 916
	do_div(tmp, HZ);

	if (tmp > UINT_MAX)
		io_allowed = UINT_MAX;
	else
		io_allowed = tmp;
917 918

	if (tg->io_disp[rw] + 1 <= io_allowed) {
919 920
		if (wait)
			*wait = 0;
921
		return true;
922 923
	}

924
	/* Calc approx time to dispatch */
925
	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1;
926 927 928 929 930 931 932 933

	if (jiffy_wait > jiffy_elapsed)
		jiffy_wait = jiffy_wait - jiffy_elapsed;
	else
		jiffy_wait = 1;

	if (wait)
		*wait = jiffy_wait;
934
	return false;
935 936
}

937 938
static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
				 unsigned long *wait)
939 940
{
	bool rw = bio_data_dir(bio);
941
	u64 bytes_allowed, extra_bytes, tmp;
942
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
943
	unsigned int bio_size = throtl_bio_data_size(bio);
944 945 946 947 948

	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];

	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
949
		jiffy_elapsed_rnd = tg->td->throtl_slice;
950

951
	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
952

953
	tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
954
	do_div(tmp, HZ);
955
	bytes_allowed = tmp;
956

957
	if (tg->bytes_disp[rw] + bio_size <= bytes_allowed) {
958 959
		if (wait)
			*wait = 0;
960
		return true;
961 962 963
	}

	/* Calc approx time to dispatch */
964
	extra_bytes = tg->bytes_disp[rw] + bio_size - bytes_allowed;
965
	jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
966 967 968 969 970 971 972 973 974 975 976

	if (!jiffy_wait)
		jiffy_wait = 1;

	/*
	 * This wait time is without taking into consideration the rounding
	 * up we did. Add that time also.
	 */
	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
	if (wait)
		*wait = jiffy_wait;
977
	return false;
978 979 980 981 982 983
}

/*
 * Returns whether one can dispatch a bio or not. Also returns approx number
 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 */
984 985
static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
			    unsigned long *wait)
986 987 988 989 990 991 992 993 994 995
{
	bool rw = bio_data_dir(bio);
	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;

	/*
 	 * Currently whole state machine of group depends on first bio
	 * queued in the group bio list. So one should not be calling
	 * this function with a different bio if there are other bios
	 * queued.
	 */
996
	BUG_ON(tg->service_queue.nr_queued[rw] &&
997
	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
998

999
	/* If tg->bps = -1, then BW is unlimited */
1000 1001
	if (tg_bps_limit(tg, rw) == U64_MAX &&
	    tg_iops_limit(tg, rw) == UINT_MAX) {
1002 1003
		if (wait)
			*wait = 0;
1004
		return true;
1005 1006 1007 1008 1009
	}

	/*
	 * If previous slice expired, start a new one otherwise renew/extend
	 * existing slice to make sure it is at least throtl_slice interval
1010 1011 1012
	 * long since now. New slice is started only for empty throttle group.
	 * If there is queued bio, that means there should be an active
	 * slice and it should be extended instead.
1013
	 */
1014
	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
1015
		throtl_start_new_slice(tg, rw);
1016
	else {
1017 1018 1019 1020
		if (time_before(tg->slice_end[rw],
		    jiffies + tg->td->throtl_slice))
			throtl_extend_slice(tg, rw,
				jiffies + tg->td->throtl_slice);
1021 1022
	}

1023 1024
	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
1025 1026
		if (wait)
			*wait = 0;
1027
		return true;
1028 1029 1030 1031 1032 1033 1034 1035
	}

	max_wait = max(bps_wait, iops_wait);

	if (wait)
		*wait = max_wait;

	if (time_before(tg->slice_end[rw], jiffies + max_wait))
1036
		throtl_extend_slice(tg, rw, jiffies + max_wait);
1037

1038
	return false;
1039 1040 1041 1042 1043
}

static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
	bool rw = bio_data_dir(bio);
1044
	unsigned int bio_size = throtl_bio_data_size(bio);
1045 1046

	/* Charge the bio to the group */
1047
	tg->bytes_disp[rw] += bio_size;
1048
	tg->io_disp[rw]++;
1049
	tg->last_bytes_disp[rw] += bio_size;
S
Shaohua Li 已提交
1050
	tg->last_io_disp[rw]++;
1051

1052
	/*
1053
	 * BIO_THROTTLED is used to prevent the same bio to be throttled
1054 1055 1056 1057
	 * more than once as a throttled bio will go through blk-throtl the
	 * second time when it eventually gets issued.  Set it when a bio
	 * is being charged to a tg.
	 */
1058 1059
	if (!bio_flagged(bio, BIO_THROTTLED))
		bio_set_flag(bio, BIO_THROTTLED);
1060 1061
}

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
/**
 * throtl_add_bio_tg - add a bio to the specified throtl_grp
 * @bio: bio to add
 * @qn: qnode to use
 * @tg: the target throtl_grp
 *
 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
 * tg->qnode_on_self[] is used.
 */
static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
			      struct throtl_grp *tg)
1073
{
1074
	struct throtl_service_queue *sq = &tg->service_queue;
1075 1076
	bool rw = bio_data_dir(bio);

1077 1078 1079
	if (!qn)
		qn = &tg->qnode_on_self[rw];

1080 1081 1082 1083 1084 1085 1086 1087 1088
	/*
	 * If @tg doesn't currently have any bios queued in the same
	 * direction, queueing @bio can change when @tg should be
	 * dispatched.  Mark that @tg was empty.  This is automatically
	 * cleaered on the next tg_update_disptime().
	 */
	if (!sq->nr_queued[rw])
		tg->flags |= THROTL_TG_WAS_EMPTY;

1089 1090
	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);

1091
	sq->nr_queued[rw]++;
1092
	throtl_enqueue_tg(tg);
1093 1094
}

1095
static void tg_update_disptime(struct throtl_grp *tg)
1096
{
1097
	struct throtl_service_queue *sq = &tg->service_queue;
1098 1099 1100
	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
	struct bio *bio;

1101 1102
	bio = throtl_peek_queued(&sq->queued[READ]);
	if (bio)
1103
		tg_may_dispatch(tg, bio, &read_wait);
1104

1105 1106
	bio = throtl_peek_queued(&sq->queued[WRITE]);
	if (bio)
1107
		tg_may_dispatch(tg, bio, &write_wait);
1108 1109 1110 1111 1112

	min_wait = min(read_wait, write_wait);
	disptime = jiffies + min_wait;

	/* Update dispatch time */
1113
	throtl_dequeue_tg(tg);
1114
	tg->disptime = disptime;
1115
	throtl_enqueue_tg(tg);
1116 1117 1118

	/* see throtl_add_bio_tg() */
	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1119 1120
}

1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
					struct throtl_grp *parent_tg, bool rw)
{
	if (throtl_slice_used(parent_tg, rw)) {
		throtl_start_new_slice_with_credit(parent_tg, rw,
				child_tg->slice_start[rw]);
	}

}

1131
static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1132
{
1133
	struct throtl_service_queue *sq = &tg->service_queue;
1134 1135
	struct throtl_service_queue *parent_sq = sq->parent_sq;
	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1136
	struct throtl_grp *tg_to_put = NULL;
1137 1138
	struct bio *bio;

1139 1140 1141 1142 1143 1144 1145
	/*
	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
	 * from @tg may put its reference and @parent_sq might end up
	 * getting released prematurely.  Remember the tg to put and put it
	 * after @bio is transferred to @parent_sq.
	 */
	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1146
	sq->nr_queued[rw]--;
1147 1148

	throtl_charge_bio(tg, bio);
1149 1150 1151 1152 1153 1154 1155 1156 1157

	/*
	 * If our parent is another tg, we just need to transfer @bio to
	 * the parent using throtl_add_bio_tg().  If our parent is
	 * @td->service_queue, @bio is ready to be issued.  Put it on its
	 * bio_lists[] and decrease total number queued.  The caller is
	 * responsible for issuing these bios.
	 */
	if (parent_tg) {
1158
		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1159
		start_parent_slice_with_credit(tg, parent_tg, rw);
1160
	} else {
1161 1162
		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
				     &parent_sq->queued[rw]);
1163 1164 1165
		BUG_ON(tg->td->nr_queued[rw] <= 0);
		tg->td->nr_queued[rw]--;
	}
1166

1167
	throtl_trim_slice(tg, rw);
1168

1169 1170
	if (tg_to_put)
		blkg_put(tg_to_blkg(tg_to_put));
1171 1172
}

1173
static int throtl_dispatch_tg(struct throtl_grp *tg)
1174
{
1175
	struct throtl_service_queue *sq = &tg->service_queue;
1176 1177
	unsigned int nr_reads = 0, nr_writes = 0;
	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1178
	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1179 1180 1181 1182
	struct bio *bio;

	/* Try to dispatch 75% READS and 25% WRITES */

1183
	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1184
	       tg_may_dispatch(tg, bio, NULL)) {
1185

1186
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1187 1188 1189 1190 1191 1192
		nr_reads++;

		if (nr_reads >= max_nr_reads)
			break;
	}

1193
	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1194
	       tg_may_dispatch(tg, bio, NULL)) {
1195

1196
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1197 1198 1199 1200 1201 1202 1203 1204 1205
		nr_writes++;

		if (nr_writes >= max_nr_writes)
			break;
	}

	return nr_reads + nr_writes;
}

1206
static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1207 1208 1209 1210
{
	unsigned int nr_disp = 0;

	while (1) {
1211
		struct throtl_grp *tg = throtl_rb_first(parent_sq);
1212
		struct throtl_service_queue *sq;
1213 1214 1215 1216 1217 1218 1219

		if (!tg)
			break;

		if (time_before(jiffies, tg->disptime))
			break;

1220
		throtl_dequeue_tg(tg);
1221

1222
		nr_disp += throtl_dispatch_tg(tg);
1223

1224
		sq = &tg->service_queue;
1225
		if (sq->nr_queued[0] || sq->nr_queued[1])
1226
			tg_update_disptime(tg);
1227 1228 1229 1230 1231 1232 1233 1234

		if (nr_disp >= throtl_quantum)
			break;
	}

	return nr_disp;
}

1235 1236
static bool throtl_can_upgrade(struct throtl_data *td,
	struct throtl_grp *this_tg);
1237 1238 1239 1240 1241 1242 1243
/**
 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
 * @arg: the throtl_service_queue being serviced
 *
 * This timer is armed when a child throtl_grp with active bio's become
 * pending and queued on the service_queue's pending_tree and expires when
 * the first child throtl_grp should be dispatched.  This function
1244 1245 1246 1247 1248 1249 1250
 * dispatches bio's from the children throtl_grps to the parent
 * service_queue.
 *
 * If the parent's parent is another throtl_grp, dispatching is propagated
 * by either arming its pending_timer or repeating dispatch directly.  If
 * the top-level service_tree is reached, throtl_data->dispatch_work is
 * kicked so that the ready bio's are issued.
1251
 */
1252
static void throtl_pending_timer_fn(struct timer_list *t)
1253
{
1254
	struct throtl_service_queue *sq = from_timer(sq, t, pending_timer);
1255
	struct throtl_grp *tg = sq_to_tg(sq);
1256
	struct throtl_data *td = sq_to_td(sq);
1257
	struct request_queue *q = td->queue;
1258 1259
	struct throtl_service_queue *parent_sq;
	bool dispatched;
1260
	int ret;
1261 1262

	spin_lock_irq(q->queue_lock);
1263 1264 1265
	if (throtl_can_upgrade(td, NULL))
		throtl_upgrade_state(td);

1266 1267 1268
again:
	parent_sq = sq->parent_sq;
	dispatched = false;
1269

1270 1271
	while (true) {
		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1272 1273
			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1274 1275 1276 1277 1278 1279

		ret = throtl_select_dispatch(sq);
		if (ret) {
			throtl_log(sq, "bios disp=%u", ret);
			dispatched = true;
		}
1280

1281 1282
		if (throtl_schedule_next_dispatch(sq, false))
			break;
1283

1284 1285 1286 1287
		/* this dispatch windows is still open, relax and repeat */
		spin_unlock_irq(q->queue_lock);
		cpu_relax();
		spin_lock_irq(q->queue_lock);
1288
	}
1289

1290 1291
	if (!dispatched)
		goto out_unlock;
1292

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308
	if (parent_sq) {
		/* @parent_sq is another throl_grp, propagate dispatch */
		if (tg->flags & THROTL_TG_WAS_EMPTY) {
			tg_update_disptime(tg);
			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
				/* window is already open, repeat dispatching */
				sq = parent_sq;
				tg = sq_to_tg(sq);
				goto again;
			}
		}
	} else {
		/* reached the top-level, queue issueing */
		queue_work(kthrotld_workqueue, &td->dispatch_work);
	}
out_unlock:
1309
	spin_unlock_irq(q->queue_lock);
1310
}
1311

1312 1313 1314 1315 1316 1317 1318 1319
/**
 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
 * @work: work item being executed
 *
 * This function is queued for execution when bio's reach the bio_lists[]
 * of throtl_data->service_queue.  Those bio's are ready and issued by this
 * function.
 */
1320
static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
{
	struct throtl_data *td = container_of(work, struct throtl_data,
					      dispatch_work);
	struct throtl_service_queue *td_sq = &td->service_queue;
	struct request_queue *q = td->queue;
	struct bio_list bio_list_on_stack;
	struct bio *bio;
	struct blk_plug plug;
	int rw;

	bio_list_init(&bio_list_on_stack);

	spin_lock_irq(q->queue_lock);
1334 1335 1336
	for (rw = READ; rw <= WRITE; rw++)
		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
			bio_list_add(&bio_list_on_stack, bio);
1337 1338 1339
	spin_unlock_irq(q->queue_lock);

	if (!bio_list_empty(&bio_list_on_stack)) {
1340
		blk_start_plug(&plug);
1341 1342
		while((bio = bio_list_pop(&bio_list_on_stack)))
			generic_make_request(bio);
1343
		blk_finish_plug(&plug);
1344 1345 1346
	}
}

1347 1348
static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
			      int off)
1349
{
1350 1351
	struct throtl_grp *tg = pd_to_tg(pd);
	u64 v = *(u64 *)((void *)tg + off);
1352

1353
	if (v == U64_MAX)
1354
		return 0;
1355
	return __blkg_prfill_u64(sf, pd, v);
1356 1357
}

1358 1359
static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
			       int off)
1360
{
1361 1362
	struct throtl_grp *tg = pd_to_tg(pd);
	unsigned int v = *(unsigned int *)((void *)tg + off);
1363

1364
	if (v == UINT_MAX)
1365
		return 0;
1366
	return __blkg_prfill_u64(sf, pd, v);
1367 1368
}

1369
static int tg_print_conf_u64(struct seq_file *sf, void *v)
1370
{
1371 1372
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1373
	return 0;
1374 1375
}

1376
static int tg_print_conf_uint(struct seq_file *sf, void *v)
1377
{
1378 1379
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1380
	return 0;
1381 1382
}

1383
static void tg_conf_updated(struct throtl_grp *tg, bool global)
1384
{
1385
	struct throtl_service_queue *sq = &tg->service_queue;
1386
	struct cgroup_subsys_state *pos_css;
1387
	struct blkcg_gq *blkg;
1388

1389 1390
	throtl_log(&tg->service_queue,
		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1391 1392
		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1393

1394 1395 1396 1397 1398 1399 1400
	/*
	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
	 * considered to have rules if either the tg itself or any of its
	 * ancestors has rules.  This identifies groups without any
	 * restrictions in the whole hierarchy and allows them to bypass
	 * blk-throttle.
	 */
1401 1402
	blkg_for_each_descendant_pre(blkg, pos_css,
			global ? tg->td->queue->root_blkg : tg_to_blkg(tg)) {
1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
		struct throtl_grp *this_tg = blkg_to_tg(blkg);
		struct throtl_grp *parent_tg;

		tg_update_has_rules(this_tg);
		/* ignore root/second level */
		if (!cgroup_subsys_on_dfl(io_cgrp_subsys) || !blkg->parent ||
		    !blkg->parent->parent)
			continue;
		parent_tg = blkg_to_tg(blkg->parent);
		/*
		 * make sure all children has lower idle time threshold and
		 * higher latency target
		 */
		this_tg->idletime_threshold = min(this_tg->idletime_threshold,
				parent_tg->idletime_threshold);
		this_tg->latency_target = max(this_tg->latency_target,
				parent_tg->latency_target);
	}
1421

1422 1423 1424 1425 1426 1427 1428 1429
	/*
	 * We're already holding queue_lock and know @tg is valid.  Let's
	 * apply the new config directly.
	 *
	 * Restart the slices for both READ and WRITES. It might happen
	 * that a group's limit are dropped suddenly and we don't want to
	 * account recently dispatched IO with new low rate.
	 */
1430 1431
	throtl_start_new_slice(tg, 0);
	throtl_start_new_slice(tg, 1);
1432

1433
	if (tg->flags & THROTL_TG_PENDING) {
1434
		tg_update_disptime(tg);
1435
		throtl_schedule_next_dispatch(sq->parent_sq, true);
1436
	}
1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
}

static ssize_t tg_set_conf(struct kernfs_open_file *of,
			   char *buf, size_t nbytes, loff_t off, bool is_u64)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	int ret;
	u64 v;

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	ret = -EINVAL;
	if (sscanf(ctx.body, "%llu", &v) != 1)
		goto out_finish;
	if (!v)
1456
		v = U64_MAX;
1457 1458 1459 1460 1461 1462 1463

	tg = blkg_to_tg(ctx.blkg);

	if (is_u64)
		*(u64 *)((void *)tg + of_cft(of)->private) = v;
	else
		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1464

1465
	tg_conf_updated(tg, false);
1466 1467
	ret = 0;
out_finish:
1468
	blkg_conf_finish(&ctx);
1469
	return ret ?: nbytes;
1470 1471
}

1472 1473
static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
1474
{
1475
	return tg_set_conf(of, buf, nbytes, off, true);
1476 1477
}

1478 1479
static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
1480
{
1481
	return tg_set_conf(of, buf, nbytes, off, false);
1482 1483
}

1484
static struct cftype throtl_legacy_files[] = {
1485 1486
	{
		.name = "throttle.read_bps_device",
1487
		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1488
		.seq_show = tg_print_conf_u64,
1489
		.write = tg_set_conf_u64,
1490 1491 1492
	},
	{
		.name = "throttle.write_bps_device",
1493
		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1494
		.seq_show = tg_print_conf_u64,
1495
		.write = tg_set_conf_u64,
1496 1497 1498
	},
	{
		.name = "throttle.read_iops_device",
1499
		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1500
		.seq_show = tg_print_conf_uint,
1501
		.write = tg_set_conf_uint,
1502 1503 1504
	},
	{
		.name = "throttle.write_iops_device",
1505
		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1506
		.seq_show = tg_print_conf_uint,
1507
		.write = tg_set_conf_uint,
1508 1509 1510
	},
	{
		.name = "throttle.io_service_bytes",
1511 1512
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_bytes,
1513
	},
1514 1515 1516 1517 1518
	{
		.name = "throttle.io_service_bytes_recursive",
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_bytes_recursive,
	},
1519 1520
	{
		.name = "throttle.io_serviced",
1521 1522
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_ios,
1523
	},
1524 1525 1526 1527 1528
	{
		.name = "throttle.io_serviced_recursive",
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_ios_recursive,
	},
1529 1530 1531
	{ }	/* terminate */
};

S
Shaohua Li 已提交
1532
static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1533 1534 1535 1536 1537
			 int off)
{
	struct throtl_grp *tg = pd_to_tg(pd);
	const char *dname = blkg_dev_name(pd->blkg);
	char bufs[4][21] = { "max", "max", "max", "max" };
S
Shaohua Li 已提交
1538 1539
	u64 bps_dft;
	unsigned int iops_dft;
1540
	char idle_time[26] = "";
1541
	char latency_time[26] = "";
1542 1543 1544

	if (!dname)
		return 0;
1545

S
Shaohua Li 已提交
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
	if (off == LIMIT_LOW) {
		bps_dft = 0;
		iops_dft = 0;
	} else {
		bps_dft = U64_MAX;
		iops_dft = UINT_MAX;
	}

	if (tg->bps_conf[READ][off] == bps_dft &&
	    tg->bps_conf[WRITE][off] == bps_dft &&
	    tg->iops_conf[READ][off] == iops_dft &&
1557
	    tg->iops_conf[WRITE][off] == iops_dft &&
1558
	    (off != LIMIT_LOW ||
1559
	     (tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD &&
1560
	      tg->latency_target_conf == DFL_LATENCY_TARGET)))
1561 1562
		return 0;

1563
	if (tg->bps_conf[READ][off] != U64_MAX)
1564
		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
S
Shaohua Li 已提交
1565
			tg->bps_conf[READ][off]);
1566
	if (tg->bps_conf[WRITE][off] != U64_MAX)
1567
		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
S
Shaohua Li 已提交
1568
			tg->bps_conf[WRITE][off]);
1569
	if (tg->iops_conf[READ][off] != UINT_MAX)
1570
		snprintf(bufs[2], sizeof(bufs[2]), "%u",
S
Shaohua Li 已提交
1571
			tg->iops_conf[READ][off]);
1572
	if (tg->iops_conf[WRITE][off] != UINT_MAX)
1573
		snprintf(bufs[3], sizeof(bufs[3]), "%u",
S
Shaohua Li 已提交
1574
			tg->iops_conf[WRITE][off]);
1575
	if (off == LIMIT_LOW) {
1576
		if (tg->idletime_threshold_conf == ULONG_MAX)
1577 1578 1579
			strcpy(idle_time, " idle=max");
		else
			snprintf(idle_time, sizeof(idle_time), " idle=%lu",
1580
				tg->idletime_threshold_conf);
1581

1582
		if (tg->latency_target_conf == ULONG_MAX)
1583 1584 1585
			strcpy(latency_time, " latency=max");
		else
			snprintf(latency_time, sizeof(latency_time),
1586
				" latency=%lu", tg->latency_target_conf);
1587
	}
1588

1589 1590 1591
	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
		   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
		   latency_time);
1592 1593 1594
	return 0;
}

S
Shaohua Li 已提交
1595
static int tg_print_limit(struct seq_file *sf, void *v)
1596
{
S
Shaohua Li 已提交
1597
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1598 1599 1600 1601
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
	return 0;
}

S
Shaohua Li 已提交
1602
static ssize_t tg_set_limit(struct kernfs_open_file *of,
1603 1604 1605 1606 1607 1608
			  char *buf, size_t nbytes, loff_t off)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	u64 v[4];
1609
	unsigned long idle_time;
1610
	unsigned long latency_time;
1611
	int ret;
S
Shaohua Li 已提交
1612
	int index = of_cft(of)->private;
1613 1614 1615 1616 1617 1618 1619

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	tg = blkg_to_tg(ctx.blkg);

S
Shaohua Li 已提交
1620 1621 1622 1623
	v[0] = tg->bps_conf[READ][index];
	v[1] = tg->bps_conf[WRITE][index];
	v[2] = tg->iops_conf[READ][index];
	v[3] = tg->iops_conf[WRITE][index];
1624

1625 1626
	idle_time = tg->idletime_threshold_conf;
	latency_time = tg->latency_target_conf;
1627 1628 1629
	while (true) {
		char tok[27];	/* wiops=18446744073709551616 */
		char *p;
1630
		u64 val = U64_MAX;
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
		int len;

		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
			break;
		if (tok[0] == '\0')
			break;
		ctx.body += len;

		ret = -EINVAL;
		p = tok;
		strsep(&p, "=");
		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
			goto out_finish;

		ret = -ERANGE;
		if (!val)
			goto out_finish;

		ret = -EINVAL;
		if (!strcmp(tok, "rbps"))
			v[0] = val;
		else if (!strcmp(tok, "wbps"))
			v[1] = val;
		else if (!strcmp(tok, "riops"))
			v[2] = min_t(u64, val, UINT_MAX);
		else if (!strcmp(tok, "wiops"))
			v[3] = min_t(u64, val, UINT_MAX);
1658 1659
		else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
			idle_time = val;
1660 1661
		else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
			latency_time = val;
1662 1663 1664 1665
		else
			goto out_finish;
	}

S
Shaohua Li 已提交
1666 1667 1668 1669
	tg->bps_conf[READ][index] = v[0];
	tg->bps_conf[WRITE][index] = v[1];
	tg->iops_conf[READ][index] = v[2];
	tg->iops_conf[WRITE][index] = v[3];
1670

S
Shaohua Li 已提交
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
	if (index == LIMIT_MAX) {
		tg->bps[READ][index] = v[0];
		tg->bps[WRITE][index] = v[1];
		tg->iops[READ][index] = v[2];
		tg->iops[WRITE][index] = v[3];
	}
	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
		tg->bps_conf[READ][LIMIT_MAX]);
	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
		tg->bps_conf[WRITE][LIMIT_MAX]);
	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
		tg->iops_conf[READ][LIMIT_MAX]);
	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
		tg->iops_conf[WRITE][LIMIT_MAX]);
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
	tg->idletime_threshold_conf = idle_time;
	tg->latency_target_conf = latency_time;

	/* force user to configure all settings for low limit  */
	if (!(tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW] ||
	      tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW]) ||
	    tg->idletime_threshold_conf == DFL_IDLE_THRESHOLD ||
	    tg->latency_target_conf == DFL_LATENCY_TARGET) {
		tg->bps[READ][LIMIT_LOW] = 0;
		tg->bps[WRITE][LIMIT_LOW] = 0;
		tg->iops[READ][LIMIT_LOW] = 0;
		tg->iops[WRITE][LIMIT_LOW] = 0;
		tg->idletime_threshold = DFL_IDLE_THRESHOLD;
		tg->latency_target = DFL_LATENCY_TARGET;
	} else if (index == LIMIT_LOW) {
1700 1701
		tg->idletime_threshold = tg->idletime_threshold_conf;
		tg->latency_target = tg->latency_target_conf;
S
Shaohua Li 已提交
1702
	}
1703 1704 1705 1706 1707 1708 1709

	blk_throtl_update_limit_valid(tg->td);
	if (tg->td->limit_valid[LIMIT_LOW]) {
		if (index == LIMIT_LOW)
			tg->td->limit_index = LIMIT_LOW;
	} else
		tg->td->limit_index = LIMIT_MAX;
1710 1711
	tg_conf_updated(tg, index == LIMIT_LOW &&
		tg->td->limit_valid[LIMIT_LOW]);
1712 1713 1714 1715 1716 1717 1718
	ret = 0;
out_finish:
	blkg_conf_finish(&ctx);
	return ret ?: nbytes;
}

static struct cftype throtl_files[] = {
S
Shaohua Li 已提交
1719 1720 1721 1722 1723 1724 1725 1726 1727
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_LOW,
	},
#endif
1728 1729 1730
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
S
Shaohua Li 已提交
1731 1732 1733
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_MAX,
1734 1735 1736 1737
	},
	{ }	/* terminate */
};

1738
static void throtl_shutdown_wq(struct request_queue *q)
1739 1740 1741
{
	struct throtl_data *td = q->td;

1742
	cancel_work_sync(&td->dispatch_work);
1743 1744
}

T
Tejun Heo 已提交
1745
static struct blkcg_policy blkcg_policy_throtl = {
1746
	.dfl_cftypes		= throtl_files,
1747
	.legacy_cftypes		= throtl_legacy_files,
1748

1749
	.pd_alloc_fn		= throtl_pd_alloc,
1750
	.pd_init_fn		= throtl_pd_init,
1751
	.pd_online_fn		= throtl_pd_online,
S
Shaohua Li 已提交
1752
	.pd_offline_fn		= throtl_pd_offline,
1753
	.pd_free_fn		= throtl_pd_free,
1754 1755
};

S
Shaohua Li 已提交
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
{
	unsigned long rtime = jiffies, wtime = jiffies;

	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
		rtime = tg->last_low_overflow_time[READ];
	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
		wtime = tg->last_low_overflow_time[WRITE];
	return min(rtime, wtime);
}

/* tg should not be an intermediate node */
static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
{
	struct throtl_service_queue *parent_sq;
	struct throtl_grp *parent = tg;
	unsigned long ret = __tg_last_low_overflow_time(tg);

	while (true) {
		parent_sq = parent->service_queue.parent_sq;
		parent = sq_to_tg(parent_sq);
		if (!parent)
			break;

		/*
		 * The parent doesn't have low limit, it always reaches low
		 * limit. Its overflow time is useless for children
		 */
		if (!parent->bps[READ][LIMIT_LOW] &&
		    !parent->iops[READ][LIMIT_LOW] &&
		    !parent->bps[WRITE][LIMIT_LOW] &&
		    !parent->iops[WRITE][LIMIT_LOW])
			continue;
		if (time_after(__tg_last_low_overflow_time(parent), ret))
			ret = __tg_last_low_overflow_time(parent);
	}
	return ret;
}

1795 1796 1797 1798 1799
static bool throtl_tg_is_idle(struct throtl_grp *tg)
{
	/*
	 * cgroup is idle if:
	 * - single idle is too long, longer than a fixed value (in case user
1800
	 *   configure a too big threshold) or 4 times of idletime threshold
1801
	 * - average think time is more than threshold
1802
	 * - IO latency is largely below threshold
1803
	 */
1804
	unsigned long time;
1805
	bool ret;
1806

1807 1808 1809 1810 1811 1812
	time = min_t(unsigned long, MAX_IDLE_TIME, 4 * tg->idletime_threshold);
	ret = tg->latency_target == DFL_LATENCY_TARGET ||
	      tg->idletime_threshold == DFL_IDLE_THRESHOLD ||
	      (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
	      tg->avg_idletime > tg->idletime_threshold ||
	      (tg->latency_target && tg->bio_cnt &&
1813
		tg->bad_bio_cnt * 5 < tg->bio_cnt);
1814 1815 1816 1817 1818
	throtl_log(&tg->service_queue,
		"avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
		tg->avg_idletime, tg->idletime_threshold, tg->bad_bio_cnt,
		tg->bio_cnt, ret, tg->td->scale);
	return ret;
1819 1820
}

1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
{
	struct throtl_service_queue *sq = &tg->service_queue;
	bool read_limit, write_limit;

	/*
	 * if cgroup reaches low limit (if low limit is 0, the cgroup always
	 * reaches), it's ok to upgrade to next limit
	 */
	read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
	write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
	if (!read_limit && !write_limit)
		return true;
	if (read_limit && sq->nr_queued[READ] &&
	    (!write_limit || sq->nr_queued[WRITE]))
		return true;
	if (write_limit && sq->nr_queued[WRITE] &&
	    (!read_limit || sq->nr_queued[READ]))
		return true;
1840 1841

	if (time_after_eq(jiffies,
1842 1843
		tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
	    throtl_tg_is_idle(tg))
1844
		return true;
1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
	return false;
}

static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
{
	while (true) {
		if (throtl_tg_can_upgrade(tg))
			return true;
		tg = sq_to_tg(tg->service_queue.parent_sq);
		if (!tg || !tg_to_blkg(tg)->parent)
			return false;
	}
	return false;
}

static bool throtl_can_upgrade(struct throtl_data *td,
	struct throtl_grp *this_tg)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;

	if (td->limit_index != LIMIT_LOW)
		return false;

1869
	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
S
Shaohua Li 已提交
1870 1871
		return false;

1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg == this_tg)
			continue;
		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
			continue;
		if (!throtl_hierarchy_can_upgrade(tg)) {
			rcu_read_unlock();
			return false;
		}
	}
	rcu_read_unlock();
	return true;
}

1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
static void throtl_upgrade_check(struct throtl_grp *tg)
{
	unsigned long now = jiffies;

	if (tg->td->limit_index != LIMIT_LOW)
		return;

	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
		return;

	tg->last_check_time = now;

	if (!time_after_eq(now,
	     __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
		return;

	if (throtl_can_upgrade(tg->td, NULL))
		throtl_upgrade_state(tg->td);
}

1909 1910 1911 1912 1913
static void throtl_upgrade_state(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;

1914
	throtl_log(&td->service_queue, "upgrade to max");
1915
	td->limit_index = LIMIT_MAX;
S
Shaohua Li 已提交
1916
	td->low_upgrade_time = jiffies;
1917
	td->scale = 0;
1918 1919 1920 1921 1922 1923 1924
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);
		struct throtl_service_queue *sq = &tg->service_queue;

		tg->disptime = jiffies - 1;
		throtl_select_dispatch(sq);
1925
		throtl_schedule_next_dispatch(sq, true);
1926 1927 1928
	}
	rcu_read_unlock();
	throtl_select_dispatch(&td->service_queue);
1929
	throtl_schedule_next_dispatch(&td->service_queue, true);
1930 1931 1932
	queue_work(kthrotld_workqueue, &td->dispatch_work);
}

S
Shaohua Li 已提交
1933 1934
static void throtl_downgrade_state(struct throtl_data *td, int new)
{
1935 1936
	td->scale /= 2;

1937
	throtl_log(&td->service_queue, "downgrade, scale %d", td->scale);
1938 1939 1940 1941 1942
	if (td->scale) {
		td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
		return;
	}

S
Shaohua Li 已提交
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
	td->limit_index = new;
	td->low_downgrade_time = jiffies;
}

static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
{
	struct throtl_data *td = tg->td;
	unsigned long now = jiffies;

	/*
	 * If cgroup is below low limit, consider downgrade and throttle other
	 * cgroups
	 */
1956 1957
	if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
	    time_after_eq(now, tg_last_low_overflow_time(tg) +
1958 1959 1960
					td->throtl_slice) &&
	    (!throtl_tg_is_idle(tg) ||
	     !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
S
Shaohua Li 已提交
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
		return true;
	return false;
}

static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
{
	while (true) {
		if (!throtl_tg_can_downgrade(tg))
			return false;
		tg = sq_to_tg(tg->service_queue.parent_sq);
		if (!tg || !tg_to_blkg(tg)->parent)
			break;
	}
	return true;
}

static void throtl_downgrade_check(struct throtl_grp *tg)
{
	uint64_t bps;
	unsigned int iops;
	unsigned long elapsed_time;
	unsigned long now = jiffies;

	if (tg->td->limit_index != LIMIT_MAX ||
	    !tg->td->limit_valid[LIMIT_LOW])
		return;
	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
		return;
1989
	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
S
Shaohua Li 已提交
1990 1991 1992 1993 1994
		return;

	elapsed_time = now - tg->last_check_time;
	tg->last_check_time = now;

1995 1996
	if (time_before(now, tg_last_low_overflow_time(tg) +
			tg->td->throtl_slice))
S
Shaohua Li 已提交
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
		return;

	if (tg->bps[READ][LIMIT_LOW]) {
		bps = tg->last_bytes_disp[READ] * HZ;
		do_div(bps, elapsed_time);
		if (bps >= tg->bps[READ][LIMIT_LOW])
			tg->last_low_overflow_time[READ] = now;
	}

	if (tg->bps[WRITE][LIMIT_LOW]) {
		bps = tg->last_bytes_disp[WRITE] * HZ;
		do_div(bps, elapsed_time);
		if (bps >= tg->bps[WRITE][LIMIT_LOW])
			tg->last_low_overflow_time[WRITE] = now;
	}

	if (tg->iops[READ][LIMIT_LOW]) {
		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
		if (iops >= tg->iops[READ][LIMIT_LOW])
			tg->last_low_overflow_time[READ] = now;
	}

	if (tg->iops[WRITE][LIMIT_LOW]) {
		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
		if (iops >= tg->iops[WRITE][LIMIT_LOW])
			tg->last_low_overflow_time[WRITE] = now;
	}

	/*
	 * If cgroup is below low limit, consider downgrade and throttle other
	 * cgroups
	 */
	if (throtl_hierarchy_can_downgrade(tg))
		throtl_downgrade_state(tg->td, LIMIT_LOW);

	tg->last_bytes_disp[READ] = 0;
	tg->last_bytes_disp[WRITE] = 0;
	tg->last_io_disp[READ] = 0;
	tg->last_io_disp[WRITE] = 0;
}

2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
static void blk_throtl_update_idletime(struct throtl_grp *tg)
{
	unsigned long now = ktime_get_ns() >> 10;
	unsigned long last_finish_time = tg->last_finish_time;

	if (now <= last_finish_time || last_finish_time == 0 ||
	    last_finish_time == tg->checked_last_finish_time)
		return;

	tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
	tg->checked_last_finish_time = last_finish_time;
}

2051 2052 2053
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
static void throtl_update_latency_buckets(struct throtl_data *td)
{
2054 2055 2056 2057
	struct avg_latency_bucket avg_latency[2][LATENCY_BUCKET_SIZE];
	int i, cpu, rw;
	unsigned long last_latency[2] = { 0 };
	unsigned long latency[2];
2058 2059 2060 2061 2062 2063 2064 2065

	if (!blk_queue_nonrot(td->queue))
		return;
	if (time_before(jiffies, td->last_calculate_time + HZ))
		return;
	td->last_calculate_time = jiffies;

	memset(avg_latency, 0, sizeof(avg_latency));
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
	for (rw = READ; rw <= WRITE; rw++) {
		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
			struct latency_bucket *tmp = &td->tmp_buckets[rw][i];

			for_each_possible_cpu(cpu) {
				struct latency_bucket *bucket;

				/* this isn't race free, but ok in practice */
				bucket = per_cpu_ptr(td->latency_buckets[rw],
					cpu);
				tmp->total_latency += bucket[i].total_latency;
				tmp->samples += bucket[i].samples;
				bucket[i].total_latency = 0;
				bucket[i].samples = 0;
			}
2081

2082 2083
			if (tmp->samples >= 32) {
				int samples = tmp->samples;
2084

2085
				latency[rw] = tmp->total_latency;
2086

2087 2088 2089 2090 2091 2092 2093
				tmp->total_latency = 0;
				tmp->samples = 0;
				latency[rw] /= samples;
				if (latency[rw] == 0)
					continue;
				avg_latency[rw][i].latency = latency[rw];
			}
2094 2095 2096
		}
	}

2097 2098 2099 2100 2101 2102 2103 2104
	for (rw = READ; rw <= WRITE; rw++) {
		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
			if (!avg_latency[rw][i].latency) {
				if (td->avg_buckets[rw][i].latency < last_latency[rw])
					td->avg_buckets[rw][i].latency =
						last_latency[rw];
				continue;
			}
2105

2106 2107 2108 2109 2110
			if (!td->avg_buckets[rw][i].valid)
				latency[rw] = avg_latency[rw][i].latency;
			else
				latency[rw] = (td->avg_buckets[rw][i].latency * 7 +
					avg_latency[rw][i].latency) >> 3;
2111

2112 2113 2114 2115 2116
			td->avg_buckets[rw][i].latency = max(latency[rw],
				last_latency[rw]);
			td->avg_buckets[rw][i].valid = true;
			last_latency[rw] = td->avg_buckets[rw][i].latency;
		}
2117
	}
2118 2119 2120

	for (i = 0; i < LATENCY_BUCKET_SIZE; i++)
		throtl_log(&td->service_queue,
2121 2122 2123 2124 2125 2126
			"Latency bucket %d: read latency=%ld, read valid=%d, "
			"write latency=%ld, write valid=%d", i,
			td->avg_buckets[READ][i].latency,
			td->avg_buckets[READ][i].valid,
			td->avg_buckets[WRITE][i].latency,
			td->avg_buckets[WRITE][i].valid);
2127 2128 2129 2130 2131 2132 2133
}
#else
static inline void throtl_update_latency_buckets(struct throtl_data *td)
{
}
#endif

2134 2135 2136
static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio)
{
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2137 2138 2139
	if (bio->bi_css) {
		if (bio->bi_cg_private)
			blkg_put(tg_to_blkg(bio->bi_cg_private));
2140
		bio->bi_cg_private = tg;
2141 2142
		blkg_get(tg_to_blkg(tg));
	}
2143
	bio_issue_init(&bio->bi_issue, bio_sectors(bio));
2144 2145 2146
#endif
}

2147 2148
bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
		    struct bio *bio)
2149
{
2150
	struct throtl_qnode *qn = NULL;
2151
	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
2152
	struct throtl_service_queue *sq;
2153
	bool rw = bio_data_dir(bio);
2154
	bool throttled = false;
2155
	struct throtl_data *td = tg->td;
2156

2157 2158
	WARN_ON_ONCE(!rcu_read_lock_held());

2159
	/* see throtl_charge_bio() */
2160
	if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
2161
		goto out;
2162 2163

	spin_lock_irq(q->queue_lock);
2164

2165 2166
	throtl_update_latency_buckets(td);

2167
	if (unlikely(blk_queue_bypass(q)))
2168
		goto out_unlock;
2169

2170
	blk_throtl_assoc_bio(tg, bio);
2171 2172
	blk_throtl_update_idletime(tg);

2173 2174
	sq = &tg->service_queue;

2175
again:
2176
	while (true) {
S
Shaohua Li 已提交
2177 2178 2179
		if (tg->last_low_overflow_time[rw] == 0)
			tg->last_low_overflow_time[rw] = jiffies;
		throtl_downgrade_check(tg);
2180
		throtl_upgrade_check(tg);
2181 2182 2183
		/* throtl is FIFO - if bios are already queued, should queue */
		if (sq->nr_queued[rw])
			break;
2184

2185
		/* if above limits, break to queue */
2186
		if (!tg_may_dispatch(tg, bio, NULL)) {
S
Shaohua Li 已提交
2187
			tg->last_low_overflow_time[rw] = jiffies;
2188 2189
			if (throtl_can_upgrade(td, tg)) {
				throtl_upgrade_state(td);
2190 2191
				goto again;
			}
2192
			break;
2193
		}
2194 2195

		/* within limits, let's charge and dispatch directly */
2196
		throtl_charge_bio(tg, bio);
2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208

		/*
		 * We need to trim slice even when bios are not being queued
		 * otherwise it might happen that a bio is not queued for
		 * a long time and slice keeps on extending and trim is not
		 * called for a long time. Now if limits are reduced suddenly
		 * we take into account all the IO dispatched so far at new
		 * low rate and * newly queued IO gets a really long dispatch
		 * time.
		 *
		 * So keep on trimming slice even if bio is not queued.
		 */
2209
		throtl_trim_slice(tg, rw);
2210 2211 2212 2213 2214 2215

		/*
		 * @bio passed through this layer without being throttled.
		 * Climb up the ladder.  If we''re already at the top, it
		 * can be executed directly.
		 */
2216
		qn = &tg->qnode_on_parent[rw];
2217 2218 2219 2220
		sq = sq->parent_sq;
		tg = sq_to_tg(sq);
		if (!tg)
			goto out_unlock;
2221 2222
	}

2223
	/* out-of-limit, queue to @tg */
2224 2225
	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
		   rw == READ ? 'R' : 'W',
2226 2227 2228
		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
		   tg_bps_limit(tg, rw),
		   tg->io_disp[rw], tg_iops_limit(tg, rw),
2229
		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2230

S
Shaohua Li 已提交
2231 2232
	tg->last_low_overflow_time[rw] = jiffies;

2233
	td->nr_queued[rw]++;
2234
	throtl_add_bio_tg(bio, qn, tg);
2235
	throttled = true;
2236

2237 2238 2239 2240 2241 2242
	/*
	 * Update @tg's dispatch time and force schedule dispatch if @tg
	 * was empty before @bio.  The forced scheduling isn't likely to
	 * cause undue delay as @bio is likely to be dispatched directly if
	 * its @tg's disptime is not in the future.
	 */
2243
	if (tg->flags & THROTL_TG_WAS_EMPTY) {
2244
		tg_update_disptime(tg);
2245
		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2246 2247
	}

2248
out_unlock:
2249
	spin_unlock_irq(q->queue_lock);
2250
out:
S
Shaohua Li 已提交
2251
	bio_set_flag(bio, BIO_THROTTLED);
2252 2253 2254

#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	if (throttled || !td->track_bio_latency)
2255
		bio->bi_issue.value |= BIO_ISSUE_THROTL_SKIP_LATENCY;
2256
#endif
2257
	return throttled;
2258 2259
}

2260
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2261 2262 2263 2264 2265 2266
static void throtl_track_latency(struct throtl_data *td, sector_t size,
	int op, unsigned long time)
{
	struct latency_bucket *latency;
	int index;

2267 2268
	if (!td || td->limit_index != LIMIT_LOW ||
	    !(op == REQ_OP_READ || op == REQ_OP_WRITE) ||
2269 2270 2271 2272 2273
	    !blk_queue_nonrot(td->queue))
		return;

	index = request_bucket_index(size);

2274
	latency = get_cpu_ptr(td->latency_buckets[op]);
2275 2276
	latency[index].total_latency += time;
	latency[index].samples++;
2277
	put_cpu_ptr(td->latency_buckets[op]);
2278 2279 2280 2281 2282 2283 2284
}

void blk_throtl_stat_add(struct request *rq, u64 time_ns)
{
	struct request_queue *q = rq->q;
	struct throtl_data *td = q->td;

2285
	throtl_track_latency(td, rq->throtl_size, req_op(rq), time_ns >> 10);
2286 2287
}

2288 2289 2290
void blk_throtl_bio_endio(struct bio *bio)
{
	struct throtl_grp *tg;
2291 2292 2293 2294
	u64 finish_time_ns;
	unsigned long finish_time;
	unsigned long start_time;
	unsigned long lat;
2295
	int rw = bio_data_dir(bio);
2296 2297 2298 2299 2300 2301

	tg = bio->bi_cg_private;
	if (!tg)
		return;
	bio->bi_cg_private = NULL;

2302 2303 2304
	finish_time_ns = ktime_get_ns();
	tg->last_finish_time = finish_time_ns >> 10;

2305 2306
	start_time = bio_issue_time(&bio->bi_issue) >> 10;
	finish_time = __bio_issue_time(finish_time_ns) >> 10;
2307 2308
	if (!start_time || finish_time <= start_time) {
		blkg_put(tg_to_blkg(tg));
2309
		return;
2310
	}
2311 2312

	lat = finish_time - start_time;
2313
	/* this is only for bio based driver */
2314 2315 2316
	if (!(bio->bi_issue.value & BIO_ISSUE_THROTL_SKIP_LATENCY))
		throtl_track_latency(tg->td, bio_issue_size(&bio->bi_issue),
				     bio_op(bio), lat);
2317

2318
	if (tg->latency_target && lat >= tg->td->filtered_latency) {
2319 2320 2321
		int bucket;
		unsigned int threshold;

2322
		bucket = request_bucket_index(bio_issue_size(&bio->bi_issue));
2323
		threshold = tg->td->avg_buckets[rw][bucket].latency +
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
			tg->latency_target;
		if (lat > threshold)
			tg->bad_bio_cnt++;
		/*
		 * Not race free, could get wrong count, which means cgroups
		 * will be throttled
		 */
		tg->bio_cnt++;
	}

	if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
		tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
		tg->bio_cnt /= 2;
		tg->bad_bio_cnt /= 2;
2338
	}
2339 2340

	blkg_put(tg_to_blkg(tg));
2341 2342 2343
}
#endif

2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
/*
 * Dispatch all bios from all children tg's queued on @parent_sq.  On
 * return, @parent_sq is guaranteed to not have any active children tg's
 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
 */
static void tg_drain_bios(struct throtl_service_queue *parent_sq)
{
	struct throtl_grp *tg;

	while ((tg = throtl_rb_first(parent_sq))) {
		struct throtl_service_queue *sq = &tg->service_queue;
		struct bio *bio;

		throtl_dequeue_tg(tg);

2359
		while ((bio = throtl_peek_queued(&sq->queued[READ])))
2360
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
2361
		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2362 2363 2364 2365
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
	}
}

2366 2367 2368 2369 2370 2371 2372 2373 2374 2375
/**
 * blk_throtl_drain - drain throttled bios
 * @q: request_queue to drain throttled bios for
 *
 * Dispatch all currently throttled bios on @q through ->make_request_fn().
 */
void blk_throtl_drain(struct request_queue *q)
	__releases(q->queue_lock) __acquires(q->queue_lock)
{
	struct throtl_data *td = q->td;
2376
	struct blkcg_gq *blkg;
2377
	struct cgroup_subsys_state *pos_css;
2378
	struct bio *bio;
2379
	int rw;
2380

2381
	queue_lockdep_assert_held(q);
2382
	rcu_read_lock();
2383

2384 2385 2386 2387 2388 2389
	/*
	 * Drain each tg while doing post-order walk on the blkg tree, so
	 * that all bios are propagated to td->service_queue.  It'd be
	 * better to walk service_queue tree directly but blkg walk is
	 * easier.
	 */
2390
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2391
		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
2392

2393 2394 2395 2396
	/* finally, transfer bios from top-level tg's into the td */
	tg_drain_bios(&td->service_queue);

	rcu_read_unlock();
2397 2398
	spin_unlock_irq(q->queue_lock);

2399
	/* all bios now should be in td->service_queue, issue them */
2400
	for (rw = READ; rw <= WRITE; rw++)
2401 2402
		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
						NULL)))
2403
			generic_make_request(bio);
2404 2405 2406 2407

	spin_lock_irq(q->queue_lock);
}

2408 2409 2410
int blk_throtl_init(struct request_queue *q)
{
	struct throtl_data *td;
2411
	int ret;
2412 2413 2414 2415

	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
	if (!td)
		return -ENOMEM;
2416
	td->latency_buckets[READ] = __alloc_percpu(sizeof(struct latency_bucket) *
2417
		LATENCY_BUCKET_SIZE, __alignof__(u64));
2418 2419 2420 2421 2422
	if (!td->latency_buckets[READ]) {
		kfree(td);
		return -ENOMEM;
	}
	td->latency_buckets[WRITE] = __alloc_percpu(sizeof(struct latency_bucket) *
2423
		LATENCY_BUCKET_SIZE, __alignof__(u64));
2424 2425
	if (!td->latency_buckets[WRITE]) {
		free_percpu(td->latency_buckets[READ]);
2426 2427 2428
		kfree(td);
		return -ENOMEM;
	}
2429

2430
	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2431
	throtl_service_queue_init(&td->service_queue);
2432

2433
	q->td = td;
2434
	td->queue = q;
V
Vivek Goyal 已提交
2435

2436
	td->limit_valid[LIMIT_MAX] = true;
S
Shaohua Li 已提交
2437
	td->limit_index = LIMIT_MAX;
S
Shaohua Li 已提交
2438 2439
	td->low_upgrade_time = jiffies;
	td->low_downgrade_time = jiffies;
2440

2441
	/* activate policy */
T
Tejun Heo 已提交
2442
	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2443
	if (ret) {
2444 2445
		free_percpu(td->latency_buckets[READ]);
		free_percpu(td->latency_buckets[WRITE]);
2446
		kfree(td);
2447
	}
2448
	return ret;
2449 2450 2451 2452
}

void blk_throtl_exit(struct request_queue *q)
{
T
Tejun Heo 已提交
2453
	BUG_ON(!q->td);
2454
	throtl_shutdown_wq(q);
T
Tejun Heo 已提交
2455
	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2456 2457
	free_percpu(q->td->latency_buckets[READ]);
	free_percpu(q->td->latency_buckets[WRITE]);
2458
	kfree(q->td);
2459 2460
}

2461 2462 2463
void blk_throtl_register_queue(struct request_queue *q)
{
	struct throtl_data *td;
2464
	int i;
2465 2466 2467 2468

	td = q->td;
	BUG_ON(!td);

2469
	if (blk_queue_nonrot(q)) {
2470
		td->throtl_slice = DFL_THROTL_SLICE_SSD;
2471 2472
		td->filtered_latency = LATENCY_FILTERED_SSD;
	} else {
2473
		td->throtl_slice = DFL_THROTL_SLICE_HD;
2474
		td->filtered_latency = LATENCY_FILTERED_HD;
2475 2476 2477 2478
		for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
			td->avg_buckets[READ][i].latency = DFL_HD_BASELINE_LATENCY;
			td->avg_buckets[WRITE][i].latency = DFL_HD_BASELINE_LATENCY;
		}
2479
	}
2480 2481 2482 2483
#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
	/* if no low limit, use previous default */
	td->throtl_slice = DFL_THROTL_SLICE_HD;
#endif
2484

2485
	td->track_bio_latency = !queue_is_rq_based(q);
2486 2487
	if (!td->track_bio_latency)
		blk_stat_enable_accounting(q);
2488 2489
}

2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
{
	if (!q->td)
		return -EINVAL;
	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
}

ssize_t blk_throtl_sample_time_store(struct request_queue *q,
	const char *page, size_t count)
{
	unsigned long v;
	unsigned long t;

	if (!q->td)
		return -EINVAL;
	if (kstrtoul(page, 10, &v))
		return -EINVAL;
	t = msecs_to_jiffies(v);
	if (t == 0 || t > MAX_THROTL_SLICE)
		return -EINVAL;
	q->td->throtl_slice = t;
	return count;
}
#endif

2516 2517
static int __init throtl_init(void)
{
2518 2519 2520 2521
	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
	if (!kthrotld_workqueue)
		panic("Failed to create kthrotld\n");

T
Tejun Heo 已提交
2522
	return blkcg_policy_register(&blkcg_policy_throtl);
2523 2524 2525
}

module_init(throtl_init);