blk-throttle.c 65.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Interface for controlling IO bandwidth on a request queue
 *
 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
12
#include <linux/blk-cgroup.h>
13
#include "blk.h"
14 15 16 17 18 19 20

/* Max dispatch from a group in 1 round */
static int throtl_grp_quantum = 8;

/* Total max dispatch from all groups in one round */
static int throtl_quantum = 32;

21 22 23
/* Throttling is performed over a slice and after that slice is renewed */
#define DFL_THROTL_SLICE_HD (HZ / 10)
#define DFL_THROTL_SLICE_SSD (HZ / 50)
24
#define MAX_THROTL_SLICE (HZ)
25 26 27
#define DFL_IDLE_THRESHOLD_SSD (1000L) /* 1 ms */
#define DFL_IDLE_THRESHOLD_HD (100L * 1000) /* 100 ms */
#define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
28 29
/* default latency target is 0, eg, guarantee IO latency by default */
#define DFL_LATENCY_TARGET (0)
30

31 32
#define SKIP_LATENCY (((u64)1) << BLK_STAT_RES_SHIFT)

T
Tejun Heo 已提交
33
static struct blkcg_policy blkcg_policy_throtl;
34

35 36 37
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
/*
 * To implement hierarchical throttling, throtl_grps form a tree and bios
 * are dispatched upwards level by level until they reach the top and get
 * issued.  When dispatching bios from the children and local group at each
 * level, if the bios are dispatched into a single bio_list, there's a risk
 * of a local or child group which can queue many bios at once filling up
 * the list starving others.
 *
 * To avoid such starvation, dispatched bios are queued separately
 * according to where they came from.  When they are again dispatched to
 * the parent, they're popped in round-robin order so that no single source
 * hogs the dispatch window.
 *
 * throtl_qnode is used to keep the queued bios separated by their sources.
 * Bios are queued to throtl_qnode which in turn is queued to
 * throtl_service_queue and then dispatched in round-robin order.
 *
 * It's also used to track the reference counts on blkg's.  A qnode always
 * belongs to a throtl_grp and gets queued on itself or the parent, so
 * incrementing the reference of the associated throtl_grp when a qnode is
 * queued and decrementing when dequeued is enough to keep the whole blkg
 * tree pinned while bios are in flight.
 */
struct throtl_qnode {
	struct list_head	node;		/* service_queue->queued[] */
	struct bio_list		bios;		/* queued bios */
	struct throtl_grp	*tg;		/* tg this qnode belongs to */
};

67
struct throtl_service_queue {
68 69
	struct throtl_service_queue *parent_sq;	/* the parent service_queue */

70 71 72 73
	/*
	 * Bios queued directly to this service_queue or dispatched from
	 * children throtl_grp's.
	 */
74
	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
75 76 77 78 79 80
	unsigned int		nr_queued[2];	/* number of queued bios */

	/*
	 * RB tree of active children throtl_grp's, which are sorted by
	 * their ->disptime.
	 */
81 82 83 84
	struct rb_root		pending_tree;	/* RB tree of active tgs */
	struct rb_node		*first_pending;	/* first node in the tree */
	unsigned int		nr_pending;	/* # queued in the tree */
	unsigned long		first_pending_disptime;	/* disptime of the first tg */
85
	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
86 87
};

88 89
enum tg_state_flags {
	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
90
	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
91 92
};

93 94
#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)

95
enum {
S
Shaohua Li 已提交
96
	LIMIT_LOW,
97 98 99 100
	LIMIT_MAX,
	LIMIT_CNT,
};

101
struct throtl_grp {
102 103 104
	/* must be the first member */
	struct blkg_policy_data pd;

105
	/* active throtl group service_queue member */
106 107
	struct rb_node rb_node;

108 109 110
	/* throtl_data this group belongs to */
	struct throtl_data *td;

111 112 113
	/* this group's service queue */
	struct throtl_service_queue service_queue;

114 115 116 117 118 119 120 121 122 123 124
	/*
	 * qnode_on_self is used when bios are directly queued to this
	 * throtl_grp so that local bios compete fairly with bios
	 * dispatched from children.  qnode_on_parent is used when bios are
	 * dispatched from this throtl_grp into its parent and will compete
	 * with the sibling qnode_on_parents and the parent's
	 * qnode_on_self.
	 */
	struct throtl_qnode qnode_on_self[2];
	struct throtl_qnode qnode_on_parent[2];

125 126 127 128 129 130 131 132 133
	/*
	 * Dispatch time in jiffies. This is the estimated time when group
	 * will unthrottle and is ready to dispatch more bio. It is used as
	 * key to sort active groups in service tree.
	 */
	unsigned long disptime;

	unsigned int flags;

134 135 136
	/* are there any throtl rules between this group and td? */
	bool has_rules[2];

S
Shaohua Li 已提交
137
	/* internally used bytes per second rate limits */
138
	uint64_t bps[2][LIMIT_CNT];
S
Shaohua Li 已提交
139 140
	/* user configured bps limits */
	uint64_t bps_conf[2][LIMIT_CNT];
141

S
Shaohua Li 已提交
142
	/* internally used IOPS limits */
143
	unsigned int iops[2][LIMIT_CNT];
S
Shaohua Li 已提交
144 145
	/* user configured IOPS limits */
	unsigned int iops_conf[2][LIMIT_CNT];
146

147 148
	/* Number of bytes disptached in current slice */
	uint64_t bytes_disp[2];
149 150
	/* Number of bio's dispatched in current slice */
	unsigned int io_disp[2];
151

S
Shaohua Li 已提交
152 153 154 155 156 157 158
	unsigned long last_low_overflow_time[2];

	uint64_t last_bytes_disp[2];
	unsigned int last_io_disp[2];

	unsigned long last_check_time;

159
	unsigned long latency_target; /* us */
160 161 162
	/* When did we start a new slice */
	unsigned long slice_start[2];
	unsigned long slice_end[2];
163 164 165 166 167

	unsigned long last_finish_time; /* ns / 1024 */
	unsigned long checked_last_finish_time; /* ns / 1024 */
	unsigned long avg_idletime; /* ns / 1024 */
	unsigned long idletime_threshold; /* us */
168 169 170 171

	unsigned int bio_cnt; /* total bios */
	unsigned int bad_bio_cnt; /* bios exceeding latency threshold */
	unsigned long bio_cnt_reset_time;
172 173
};

174 175 176 177 178 179 180 181 182 183 184 185 186
/* We measure latency for request size from <= 4k to >= 1M */
#define LATENCY_BUCKET_SIZE 9

struct latency_bucket {
	unsigned long total_latency; /* ns / 1024 */
	int samples;
};

struct avg_latency_bucket {
	unsigned long latency; /* ns / 1024 */
	bool valid;
};

187 188 189
struct throtl_data
{
	/* service tree for active throtl groups */
190
	struct throtl_service_queue service_queue;
191 192 193 194 195 196

	struct request_queue *queue;

	/* Total Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

197 198
	unsigned int throtl_slice;

199
	/* Work for dispatching throttled bios */
200
	struct work_struct dispatch_work;
201 202
	unsigned int limit_index;
	bool limit_valid[LIMIT_CNT];
S
Shaohua Li 已提交
203

204 205
	unsigned long dft_idletime_threshold; /* us */

S
Shaohua Li 已提交
206 207
	unsigned long low_upgrade_time;
	unsigned long low_downgrade_time;
208 209

	unsigned int scale;
210 211 212 213 214 215 216

	struct latency_bucket tmp_buckets[LATENCY_BUCKET_SIZE];
	struct avg_latency_bucket avg_buckets[LATENCY_BUCKET_SIZE];
	struct latency_bucket __percpu *latency_buckets;
	unsigned long last_calculate_time;

	bool track_bio_latency;
217 218
};

219 220
static void throtl_pending_timer_fn(unsigned long arg);

221 222 223 224 225
static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
{
	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
}

T
Tejun Heo 已提交
226
static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
227
{
228
	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
229 230
}

T
Tejun Heo 已提交
231
static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
232
{
233
	return pd_to_blkg(&tg->pd);
234 235
}

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
/**
 * sq_to_tg - return the throl_grp the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 * embedded in throtl_data, %NULL is returned.
 */
static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
{
	if (sq && sq->parent_sq)
		return container_of(sq, struct throtl_grp, service_queue);
	else
		return NULL;
}

/**
 * sq_to_td - return throtl_data the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
255
 * A service_queue can be embedded in either a throtl_grp or throtl_data.
256 257 258 259 260 261 262 263 264 265 266 267
 * Determine the associated throtl_data accordingly and return it.
 */
static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
{
	struct throtl_grp *tg = sq_to_tg(sq);

	if (tg)
		return tg->td;
	else
		return container_of(sq, struct throtl_data, service_queue);
}

268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
/*
 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
 * make the IO dispatch more smooth.
 * Scale up: linearly scale up according to lapsed time since upgrade. For
 *           every throtl_slice, the limit scales up 1/2 .low limit till the
 *           limit hits .max limit
 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
 */
static uint64_t throtl_adjusted_limit(uint64_t low, struct throtl_data *td)
{
	/* arbitrary value to avoid too big scale */
	if (td->scale < 4096 && time_after_eq(jiffies,
	    td->low_upgrade_time + td->scale * td->throtl_slice))
		td->scale = (jiffies - td->low_upgrade_time) / td->throtl_slice;

	return low + (low >> 1) * td->scale;
}

286 287
static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
{
288
	struct blkcg_gq *blkg = tg_to_blkg(tg);
289
	struct throtl_data *td;
290 291 292 293
	uint64_t ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return U64_MAX;
294 295 296 297

	td = tg->td;
	ret = tg->bps[rw][td->limit_index];
	if (ret == 0 && td->limit_index == LIMIT_LOW)
298
		return tg->bps[rw][LIMIT_MAX];
299 300 301 302 303 304 305 306

	if (td->limit_index == LIMIT_MAX && tg->bps[rw][LIMIT_LOW] &&
	    tg->bps[rw][LIMIT_LOW] != tg->bps[rw][LIMIT_MAX]) {
		uint64_t adjusted;

		adjusted = throtl_adjusted_limit(tg->bps[rw][LIMIT_LOW], td);
		ret = min(tg->bps[rw][LIMIT_MAX], adjusted);
	}
307
	return ret;
308 309 310 311
}

static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
{
312
	struct blkcg_gq *blkg = tg_to_blkg(tg);
313
	struct throtl_data *td;
314 315 316 317
	unsigned int ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return UINT_MAX;
318 319
	td = tg->td;
	ret = tg->iops[rw][td->limit_index];
320 321
	if (ret == 0 && tg->td->limit_index == LIMIT_LOW)
		return tg->iops[rw][LIMIT_MAX];
322 323 324 325 326 327 328 329 330 331

	if (td->limit_index == LIMIT_MAX && tg->iops[rw][LIMIT_LOW] &&
	    tg->iops[rw][LIMIT_LOW] != tg->iops[rw][LIMIT_MAX]) {
		uint64_t adjusted;

		adjusted = throtl_adjusted_limit(tg->iops[rw][LIMIT_LOW], td);
		if (adjusted > UINT_MAX)
			adjusted = UINT_MAX;
		ret = min_t(unsigned int, tg->iops[rw][LIMIT_MAX], adjusted);
	}
332
	return ret;
333 334
}

335 336 337
#define request_bucket_index(sectors) \
	clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)

338 339 340 341 342 343 344 345 346 347 348 349 350 351
/**
 * throtl_log - log debug message via blktrace
 * @sq: the service_queue being reported
 * @fmt: printf format string
 * @args: printf args
 *
 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 * throtl_grp; otherwise, just "throtl".
 */
#define throtl_log(sq, fmt, args...)	do {				\
	struct throtl_grp *__tg = sq_to_tg((sq));			\
	struct throtl_data *__td = sq_to_td((sq));			\
									\
	(void)__td;							\
352 353
	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
		break;							\
354 355
	if ((__tg)) {							\
		char __pbuf[128];					\
T
Tejun Heo 已提交
356
									\
357 358 359 360 361
		blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf));	\
		blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
	} else {							\
		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
	}								\
T
Tejun Heo 已提交
362
} while (0)
363

364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
{
	INIT_LIST_HEAD(&qn->node);
	bio_list_init(&qn->bios);
	qn->tg = tg;
}

/**
 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 * @bio: bio being added
 * @qn: qnode to add bio to
 * @queued: the service_queue->queued[] list @qn belongs to
 *
 * Add @bio to @qn and put @qn on @queued if it's not already on.
 * @qn->tg's reference count is bumped when @qn is activated.  See the
 * comment on top of throtl_qnode definition for details.
 */
static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
				 struct list_head *queued)
{
	bio_list_add(&qn->bios, bio);
	if (list_empty(&qn->node)) {
		list_add_tail(&qn->node, queued);
		blkg_get(tg_to_blkg(qn->tg));
	}
}

/**
 * throtl_peek_queued - peek the first bio on a qnode list
 * @queued: the qnode list to peek
 */
static struct bio *throtl_peek_queued(struct list_head *queued)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_peek(&qn->bios);
	WARN_ON_ONCE(!bio);
	return bio;
}

/**
 * throtl_pop_queued - pop the first bio form a qnode list
 * @queued: the qnode list to pop a bio from
 * @tg_to_put: optional out argument for throtl_grp to put
 *
 * Pop the first bio from the qnode list @queued.  After popping, the first
 * qnode is removed from @queued if empty or moved to the end of @queued so
 * that the popping order is round-robin.
 *
 * When the first qnode is removed, its associated throtl_grp should be put
 * too.  If @tg_to_put is NULL, this function automatically puts it;
 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 * responsible for putting it.
 */
static struct bio *throtl_pop_queued(struct list_head *queued,
				     struct throtl_grp **tg_to_put)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_pop(&qn->bios);
	WARN_ON_ONCE(!bio);

	if (bio_list_empty(&qn->bios)) {
		list_del_init(&qn->node);
		if (tg_to_put)
			*tg_to_put = qn->tg;
		else
			blkg_put(tg_to_blkg(qn->tg));
	} else {
		list_move_tail(&qn->node, queued);
	}

	return bio;
}

447
/* init a service_queue, assumes the caller zeroed it */
448
static void throtl_service_queue_init(struct throtl_service_queue *sq)
449
{
450 451
	INIT_LIST_HEAD(&sq->queued[0]);
	INIT_LIST_HEAD(&sq->queued[1]);
452
	sq->pending_tree = RB_ROOT;
453 454 455 456
	setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
		    (unsigned long)sq);
}

457 458
static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
{
459
	struct throtl_grp *tg;
T
Tejun Heo 已提交
460
	int rw;
461 462 463

	tg = kzalloc_node(sizeof(*tg), gfp, node);
	if (!tg)
464
		return NULL;
465

466 467 468 469 470 471 472 473
	throtl_service_queue_init(&tg->service_queue);

	for (rw = READ; rw <= WRITE; rw++) {
		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
	}

	RB_CLEAR_NODE(&tg->rb_node);
474 475 476 477
	tg->bps[READ][LIMIT_MAX] = U64_MAX;
	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
S
Shaohua Li 已提交
478 479 480 481 482
	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
	/* LIMIT_LOW will have default value 0 */
483

484 485
	tg->latency_target = DFL_LATENCY_TARGET;

486
	return &tg->pd;
487 488
}

489
static void throtl_pd_init(struct blkg_policy_data *pd)
490
{
491 492
	struct throtl_grp *tg = pd_to_tg(pd);
	struct blkcg_gq *blkg = tg_to_blkg(tg);
493
	struct throtl_data *td = blkg->q->td;
494
	struct throtl_service_queue *sq = &tg->service_queue;
495

496
	/*
497
	 * If on the default hierarchy, we switch to properly hierarchical
498 499 500 501 502
	 * behavior where limits on a given throtl_grp are applied to the
	 * whole subtree rather than just the group itself.  e.g. If 16M
	 * read_bps limit is set on the root group, the whole system can't
	 * exceed 16M for the device.
	 *
503
	 * If not on the default hierarchy, the broken flat hierarchy
504 505 506 507 508
	 * behavior is retained where all throtl_grps are treated as if
	 * they're all separate root groups right below throtl_data.
	 * Limits of a group don't interact with limits of other groups
	 * regardless of the position of the group in the hierarchy.
	 */
509
	sq->parent_sq = &td->service_queue;
510
	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
511
		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
512
	tg->td = td;
513

514
	tg->idletime_threshold = td->dft_idletime_threshold;
515 516
}

517 518 519 520 521 522 523 524
/*
 * Set has_rules[] if @tg or any of its parents have limits configured.
 * This doesn't require walking up to the top of the hierarchy as the
 * parent's has_rules[] is guaranteed to be correct.
 */
static void tg_update_has_rules(struct throtl_grp *tg)
{
	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
525
	struct throtl_data *td = tg->td;
526 527 528 529
	int rw;

	for (rw = READ; rw <= WRITE; rw++)
		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
530 531 532
			(td->limit_valid[td->limit_index] &&
			 (tg_bps_limit(tg, rw) != U64_MAX ||
			  tg_iops_limit(tg, rw) != UINT_MAX));
533 534
}

535
static void throtl_pd_online(struct blkg_policy_data *pd)
536
{
537
	struct throtl_grp *tg = pd_to_tg(pd);
538 539 540 541
	/*
	 * We don't want new groups to escape the limits of its ancestors.
	 * Update has_rules[] after a new group is brought online.
	 */
542
	tg_update_has_rules(tg);
543 544
}

S
Shaohua Li 已提交
545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
static void blk_throtl_update_limit_valid(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;
	bool low_valid = false;

	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
			low_valid = true;
	}
	rcu_read_unlock();

	td->limit_valid[LIMIT_LOW] = low_valid;
}

564
static void throtl_upgrade_state(struct throtl_data *td);
S
Shaohua Li 已提交
565 566 567 568 569 570 571 572 573 574 575
static void throtl_pd_offline(struct blkg_policy_data *pd)
{
	struct throtl_grp *tg = pd_to_tg(pd);

	tg->bps[READ][LIMIT_LOW] = 0;
	tg->bps[WRITE][LIMIT_LOW] = 0;
	tg->iops[READ][LIMIT_LOW] = 0;
	tg->iops[WRITE][LIMIT_LOW] = 0;

	blk_throtl_update_limit_valid(tg->td);

576 577
	if (!tg->td->limit_valid[tg->td->limit_index])
		throtl_upgrade_state(tg->td);
S
Shaohua Li 已提交
578 579
}

580 581
static void throtl_pd_free(struct blkg_policy_data *pd)
{
582 583
	struct throtl_grp *tg = pd_to_tg(pd);

584
	del_timer_sync(&tg->service_queue.pending_timer);
585
	kfree(tg);
586 587
}

588 589
static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue *parent_sq)
590 591
{
	/* Service tree is empty */
592
	if (!parent_sq->nr_pending)
593 594
		return NULL;

595 596
	if (!parent_sq->first_pending)
		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
597

598 599
	if (parent_sq->first_pending)
		return rb_entry_tg(parent_sq->first_pending);
600 601 602 603 604 605 606 607 608 609

	return NULL;
}

static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

610 611
static void throtl_rb_erase(struct rb_node *n,
			    struct throtl_service_queue *parent_sq)
612
{
613 614 615 616
	if (parent_sq->first_pending == n)
		parent_sq->first_pending = NULL;
	rb_erase_init(n, &parent_sq->pending_tree);
	--parent_sq->nr_pending;
617 618
}

619
static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
620 621 622
{
	struct throtl_grp *tg;

623
	tg = throtl_rb_first(parent_sq);
624 625 626
	if (!tg)
		return;

627
	parent_sq->first_pending_disptime = tg->disptime;
628 629
}

630
static void tg_service_queue_add(struct throtl_grp *tg)
631
{
632
	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
633
	struct rb_node **node = &parent_sq->pending_tree.rb_node;
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
	struct rb_node *parent = NULL;
	struct throtl_grp *__tg;
	unsigned long key = tg->disptime;
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__tg = rb_entry_tg(parent);

		if (time_before(key, __tg->disptime))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
652
		parent_sq->first_pending = &tg->rb_node;
653 654

	rb_link_node(&tg->rb_node, parent, node);
655
	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
656 657
}

658
static void __throtl_enqueue_tg(struct throtl_grp *tg)
659
{
660
	tg_service_queue_add(tg);
661
	tg->flags |= THROTL_TG_PENDING;
662
	tg->service_queue.parent_sq->nr_pending++;
663 664
}

665
static void throtl_enqueue_tg(struct throtl_grp *tg)
666
{
667
	if (!(tg->flags & THROTL_TG_PENDING))
668
		__throtl_enqueue_tg(tg);
669 670
}

671
static void __throtl_dequeue_tg(struct throtl_grp *tg)
672
{
673
	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
674
	tg->flags &= ~THROTL_TG_PENDING;
675 676
}

677
static void throtl_dequeue_tg(struct throtl_grp *tg)
678
{
679
	if (tg->flags & THROTL_TG_PENDING)
680
		__throtl_dequeue_tg(tg);
681 682
}

683
/* Call with queue lock held */
684 685
static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
					  unsigned long expires)
686
{
687
	unsigned long max_expire = jiffies + 8 * sq_to_tg(sq)->td->throtl_slice;
688 689 690 691 692 693 694 695 696 697

	/*
	 * Since we are adjusting the throttle limit dynamically, the sleep
	 * time calculated according to previous limit might be invalid. It's
	 * possible the cgroup sleep time is very long and no other cgroups
	 * have IO running so notify the limit changes. Make sure the cgroup
	 * doesn't sleep too long to avoid the missed notification.
	 */
	if (time_after(expires, max_expire))
		expires = max_expire;
698 699 700
	mod_timer(&sq->pending_timer, expires);
	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
		   expires - jiffies, jiffies);
701 702
}

703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
/**
 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 * @sq: the service_queue to schedule dispatch for
 * @force: force scheduling
 *
 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 * dispatch time of the first pending child.  Returns %true if either timer
 * is armed or there's no pending child left.  %false if the current
 * dispatch window is still open and the caller should continue
 * dispatching.
 *
 * If @force is %true, the dispatch timer is always scheduled and this
 * function is guaranteed to return %true.  This is to be used when the
 * caller can't dispatch itself and needs to invoke pending_timer
 * unconditionally.  Note that forced scheduling is likely to induce short
 * delay before dispatch starts even if @sq->first_pending_disptime is not
 * in the future and thus shouldn't be used in hot paths.
 */
static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
					  bool force)
723
{
724
	/* any pending children left? */
725
	if (!sq->nr_pending)
726
		return true;
727

728
	update_min_dispatch_time(sq);
729

730
	/* is the next dispatch time in the future? */
731
	if (force || time_after(sq->first_pending_disptime, jiffies)) {
732
		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
733
		return true;
734 735
	}

736 737
	/* tell the caller to continue dispatching */
	return false;
738 739
}

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
		bool rw, unsigned long start)
{
	tg->bytes_disp[rw] = 0;
	tg->io_disp[rw] = 0;

	/*
	 * Previous slice has expired. We must have trimmed it after last
	 * bio dispatch. That means since start of last slice, we never used
	 * that bandwidth. Do try to make use of that bandwidth while giving
	 * credit.
	 */
	if (time_after_eq(start, tg->slice_start[rw]))
		tg->slice_start[rw] = start;

755
	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
756 757 758 759 760 761
	throtl_log(&tg->service_queue,
		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
}

762
static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
763 764
{
	tg->bytes_disp[rw] = 0;
765
	tg->io_disp[rw] = 0;
766
	tg->slice_start[rw] = jiffies;
767
	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
768 769 770 771
	throtl_log(&tg->service_queue,
		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
772 773
}

774 775
static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
					unsigned long jiffy_end)
776
{
777
	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
778 779
}

780 781
static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
				       unsigned long jiffy_end)
782
{
783
	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
784 785 786 787
	throtl_log(&tg->service_queue,
		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
788 789 790
}

/* Determine if previously allocated or extended slice is complete or not */
791
static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
792 793
{
	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
794
		return false;
795 796 797 798 799

	return 1;
}

/* Trim the used slices and adjust slice start accordingly */
800
static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
801
{
802 803
	unsigned long nr_slices, time_elapsed, io_trim;
	u64 bytes_trim, tmp;
804 805 806 807 808 809 810 811

	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));

	/*
	 * If bps are unlimited (-1), then time slice don't get
	 * renewed. Don't try to trim the slice if slice is used. A new
	 * slice will start when appropriate.
	 */
812
	if (throtl_slice_used(tg, rw))
813 814
		return;

815 816 817 818 819 820 821 822
	/*
	 * A bio has been dispatched. Also adjust slice_end. It might happen
	 * that initially cgroup limit was very low resulting in high
	 * slice_end, but later limit was bumped up and bio was dispached
	 * sooner, then we need to reduce slice_end. A high bogus slice_end
	 * is bad because it does not allow new slice to start.
	 */

823
	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
824

825 826
	time_elapsed = jiffies - tg->slice_start[rw];

827
	nr_slices = time_elapsed / tg->td->throtl_slice;
828 829 830

	if (!nr_slices)
		return;
831
	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
832 833
	do_div(tmp, HZ);
	bytes_trim = tmp;
834

835 836
	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
		HZ;
837

838
	if (!bytes_trim && !io_trim)
839 840 841 842 843 844 845
		return;

	if (tg->bytes_disp[rw] >= bytes_trim)
		tg->bytes_disp[rw] -= bytes_trim;
	else
		tg->bytes_disp[rw] = 0;

846 847 848 849 850
	if (tg->io_disp[rw] >= io_trim)
		tg->io_disp[rw] -= io_trim;
	else
		tg->io_disp[rw] = 0;

851
	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
852

853 854 855 856
	throtl_log(&tg->service_queue,
		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
857 858
}

859 860
static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
				  unsigned long *wait)
861 862
{
	bool rw = bio_data_dir(bio);
863
	unsigned int io_allowed;
864
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
865
	u64 tmp;
866

867
	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
868

869 870
	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
871
		jiffy_elapsed_rnd = tg->td->throtl_slice;
872

873
	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
874

875 876 877 878 879 880 881
	/*
	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
	 * will allow dispatch after 1 second and after that slice should
	 * have been trimmed.
	 */

882
	tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
883 884 885 886 887 888
	do_div(tmp, HZ);

	if (tmp > UINT_MAX)
		io_allowed = UINT_MAX;
	else
		io_allowed = tmp;
889 890

	if (tg->io_disp[rw] + 1 <= io_allowed) {
891 892
		if (wait)
			*wait = 0;
893
		return true;
894 895
	}

896
	/* Calc approx time to dispatch */
897
	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1;
898 899 900 901 902 903 904 905 906 907 908

	if (jiffy_wait > jiffy_elapsed)
		jiffy_wait = jiffy_wait - jiffy_elapsed;
	else
		jiffy_wait = 1;

	if (wait)
		*wait = jiffy_wait;
	return 0;
}

909 910
static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
				 unsigned long *wait)
911 912
{
	bool rw = bio_data_dir(bio);
913
	u64 bytes_allowed, extra_bytes, tmp;
914
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
915 916 917 918 919

	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];

	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
920
		jiffy_elapsed_rnd = tg->td->throtl_slice;
921

922
	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
923

924
	tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
925
	do_div(tmp, HZ);
926
	bytes_allowed = tmp;
927

928
	if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
929 930
		if (wait)
			*wait = 0;
931
		return true;
932 933 934
	}

	/* Calc approx time to dispatch */
935
	extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
936
	jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
937 938 939 940 941 942 943 944 945 946 947

	if (!jiffy_wait)
		jiffy_wait = 1;

	/*
	 * This wait time is without taking into consideration the rounding
	 * up we did. Add that time also.
	 */
	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
	if (wait)
		*wait = jiffy_wait;
948 949 950 951 952 953 954
	return 0;
}

/*
 * Returns whether one can dispatch a bio or not. Also returns approx number
 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 */
955 956
static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
			    unsigned long *wait)
957 958 959 960 961 962 963 964 965 966
{
	bool rw = bio_data_dir(bio);
	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;

	/*
 	 * Currently whole state machine of group depends on first bio
	 * queued in the group bio list. So one should not be calling
	 * this function with a different bio if there are other bios
	 * queued.
	 */
967
	BUG_ON(tg->service_queue.nr_queued[rw] &&
968
	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
969

970
	/* If tg->bps = -1, then BW is unlimited */
971 972
	if (tg_bps_limit(tg, rw) == U64_MAX &&
	    tg_iops_limit(tg, rw) == UINT_MAX) {
973 974
		if (wait)
			*wait = 0;
975
		return true;
976 977 978 979 980
	}

	/*
	 * If previous slice expired, start a new one otherwise renew/extend
	 * existing slice to make sure it is at least throtl_slice interval
981 982 983
	 * long since now. New slice is started only for empty throttle group.
	 * If there is queued bio, that means there should be an active
	 * slice and it should be extended instead.
984
	 */
985
	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
986
		throtl_start_new_slice(tg, rw);
987
	else {
988 989 990 991
		if (time_before(tg->slice_end[rw],
		    jiffies + tg->td->throtl_slice))
			throtl_extend_slice(tg, rw,
				jiffies + tg->td->throtl_slice);
992 993
	}

994 995
	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
996 997 998 999 1000 1001 1002 1003 1004 1005 1006
		if (wait)
			*wait = 0;
		return 1;
	}

	max_wait = max(bps_wait, iops_wait);

	if (wait)
		*wait = max_wait;

	if (time_before(tg->slice_end[rw], jiffies + max_wait))
1007
		throtl_extend_slice(tg, rw, jiffies + max_wait);
1008 1009 1010 1011 1012 1013 1014 1015 1016

	return 0;
}

static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
	bool rw = bio_data_dir(bio);

	/* Charge the bio to the group */
1017
	tg->bytes_disp[rw] += bio->bi_iter.bi_size;
1018
	tg->io_disp[rw]++;
S
Shaohua Li 已提交
1019 1020
	tg->last_bytes_disp[rw] += bio->bi_iter.bi_size;
	tg->last_io_disp[rw]++;
1021

1022
	/*
1023
	 * BIO_THROTTLED is used to prevent the same bio to be throttled
1024 1025 1026 1027
	 * more than once as a throttled bio will go through blk-throtl the
	 * second time when it eventually gets issued.  Set it when a bio
	 * is being charged to a tg.
	 */
1028 1029
	if (!bio_flagged(bio, BIO_THROTTLED))
		bio_set_flag(bio, BIO_THROTTLED);
1030 1031
}

1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
/**
 * throtl_add_bio_tg - add a bio to the specified throtl_grp
 * @bio: bio to add
 * @qn: qnode to use
 * @tg: the target throtl_grp
 *
 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
 * tg->qnode_on_self[] is used.
 */
static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
			      struct throtl_grp *tg)
1043
{
1044
	struct throtl_service_queue *sq = &tg->service_queue;
1045 1046
	bool rw = bio_data_dir(bio);

1047 1048 1049
	if (!qn)
		qn = &tg->qnode_on_self[rw];

1050 1051 1052 1053 1054 1055 1056 1057 1058
	/*
	 * If @tg doesn't currently have any bios queued in the same
	 * direction, queueing @bio can change when @tg should be
	 * dispatched.  Mark that @tg was empty.  This is automatically
	 * cleaered on the next tg_update_disptime().
	 */
	if (!sq->nr_queued[rw])
		tg->flags |= THROTL_TG_WAS_EMPTY;

1059 1060
	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);

1061
	sq->nr_queued[rw]++;
1062
	throtl_enqueue_tg(tg);
1063 1064
}

1065
static void tg_update_disptime(struct throtl_grp *tg)
1066
{
1067
	struct throtl_service_queue *sq = &tg->service_queue;
1068 1069 1070
	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
	struct bio *bio;

1071 1072
	bio = throtl_peek_queued(&sq->queued[READ]);
	if (bio)
1073
		tg_may_dispatch(tg, bio, &read_wait);
1074

1075 1076
	bio = throtl_peek_queued(&sq->queued[WRITE]);
	if (bio)
1077
		tg_may_dispatch(tg, bio, &write_wait);
1078 1079 1080 1081 1082

	min_wait = min(read_wait, write_wait);
	disptime = jiffies + min_wait;

	/* Update dispatch time */
1083
	throtl_dequeue_tg(tg);
1084
	tg->disptime = disptime;
1085
	throtl_enqueue_tg(tg);
1086 1087 1088

	/* see throtl_add_bio_tg() */
	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1089 1090
}

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
					struct throtl_grp *parent_tg, bool rw)
{
	if (throtl_slice_used(parent_tg, rw)) {
		throtl_start_new_slice_with_credit(parent_tg, rw,
				child_tg->slice_start[rw]);
	}

}

1101
static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1102
{
1103
	struct throtl_service_queue *sq = &tg->service_queue;
1104 1105
	struct throtl_service_queue *parent_sq = sq->parent_sq;
	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1106
	struct throtl_grp *tg_to_put = NULL;
1107 1108
	struct bio *bio;

1109 1110 1111 1112 1113 1114 1115
	/*
	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
	 * from @tg may put its reference and @parent_sq might end up
	 * getting released prematurely.  Remember the tg to put and put it
	 * after @bio is transferred to @parent_sq.
	 */
	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1116
	sq->nr_queued[rw]--;
1117 1118

	throtl_charge_bio(tg, bio);
1119 1120 1121 1122 1123 1124 1125 1126 1127

	/*
	 * If our parent is another tg, we just need to transfer @bio to
	 * the parent using throtl_add_bio_tg().  If our parent is
	 * @td->service_queue, @bio is ready to be issued.  Put it on its
	 * bio_lists[] and decrease total number queued.  The caller is
	 * responsible for issuing these bios.
	 */
	if (parent_tg) {
1128
		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1129
		start_parent_slice_with_credit(tg, parent_tg, rw);
1130
	} else {
1131 1132
		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
				     &parent_sq->queued[rw]);
1133 1134 1135
		BUG_ON(tg->td->nr_queued[rw] <= 0);
		tg->td->nr_queued[rw]--;
	}
1136

1137
	throtl_trim_slice(tg, rw);
1138

1139 1140
	if (tg_to_put)
		blkg_put(tg_to_blkg(tg_to_put));
1141 1142
}

1143
static int throtl_dispatch_tg(struct throtl_grp *tg)
1144
{
1145
	struct throtl_service_queue *sq = &tg->service_queue;
1146 1147
	unsigned int nr_reads = 0, nr_writes = 0;
	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1148
	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1149 1150 1151 1152
	struct bio *bio;

	/* Try to dispatch 75% READS and 25% WRITES */

1153
	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1154
	       tg_may_dispatch(tg, bio, NULL)) {
1155

1156
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1157 1158 1159 1160 1161 1162
		nr_reads++;

		if (nr_reads >= max_nr_reads)
			break;
	}

1163
	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1164
	       tg_may_dispatch(tg, bio, NULL)) {
1165

1166
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1167 1168 1169 1170 1171 1172 1173 1174 1175
		nr_writes++;

		if (nr_writes >= max_nr_writes)
			break;
	}

	return nr_reads + nr_writes;
}

1176
static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1177 1178 1179 1180
{
	unsigned int nr_disp = 0;

	while (1) {
1181 1182
		struct throtl_grp *tg = throtl_rb_first(parent_sq);
		struct throtl_service_queue *sq = &tg->service_queue;
1183 1184 1185 1186 1187 1188 1189

		if (!tg)
			break;

		if (time_before(jiffies, tg->disptime))
			break;

1190
		throtl_dequeue_tg(tg);
1191

1192
		nr_disp += throtl_dispatch_tg(tg);
1193

1194
		if (sq->nr_queued[0] || sq->nr_queued[1])
1195
			tg_update_disptime(tg);
1196 1197 1198 1199 1200 1201 1202 1203

		if (nr_disp >= throtl_quantum)
			break;
	}

	return nr_disp;
}

1204 1205
static bool throtl_can_upgrade(struct throtl_data *td,
	struct throtl_grp *this_tg);
1206 1207 1208 1209 1210 1211 1212
/**
 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
 * @arg: the throtl_service_queue being serviced
 *
 * This timer is armed when a child throtl_grp with active bio's become
 * pending and queued on the service_queue's pending_tree and expires when
 * the first child throtl_grp should be dispatched.  This function
1213 1214 1215 1216 1217 1218 1219
 * dispatches bio's from the children throtl_grps to the parent
 * service_queue.
 *
 * If the parent's parent is another throtl_grp, dispatching is propagated
 * by either arming its pending_timer or repeating dispatch directly.  If
 * the top-level service_tree is reached, throtl_data->dispatch_work is
 * kicked so that the ready bio's are issued.
1220
 */
1221 1222 1223
static void throtl_pending_timer_fn(unsigned long arg)
{
	struct throtl_service_queue *sq = (void *)arg;
1224
	struct throtl_grp *tg = sq_to_tg(sq);
1225
	struct throtl_data *td = sq_to_td(sq);
1226
	struct request_queue *q = td->queue;
1227 1228
	struct throtl_service_queue *parent_sq;
	bool dispatched;
1229
	int ret;
1230 1231

	spin_lock_irq(q->queue_lock);
1232 1233 1234
	if (throtl_can_upgrade(td, NULL))
		throtl_upgrade_state(td);

1235 1236 1237
again:
	parent_sq = sq->parent_sq;
	dispatched = false;
1238

1239 1240
	while (true) {
		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1241 1242
			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1243 1244 1245 1246 1247 1248

		ret = throtl_select_dispatch(sq);
		if (ret) {
			throtl_log(sq, "bios disp=%u", ret);
			dispatched = true;
		}
1249

1250 1251
		if (throtl_schedule_next_dispatch(sq, false))
			break;
1252

1253 1254 1255 1256
		/* this dispatch windows is still open, relax and repeat */
		spin_unlock_irq(q->queue_lock);
		cpu_relax();
		spin_lock_irq(q->queue_lock);
1257
	}
1258

1259 1260
	if (!dispatched)
		goto out_unlock;
1261

1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
	if (parent_sq) {
		/* @parent_sq is another throl_grp, propagate dispatch */
		if (tg->flags & THROTL_TG_WAS_EMPTY) {
			tg_update_disptime(tg);
			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
				/* window is already open, repeat dispatching */
				sq = parent_sq;
				tg = sq_to_tg(sq);
				goto again;
			}
		}
	} else {
		/* reached the top-level, queue issueing */
		queue_work(kthrotld_workqueue, &td->dispatch_work);
	}
out_unlock:
1278
	spin_unlock_irq(q->queue_lock);
1279
}
1280

1281 1282 1283 1284 1285 1286 1287 1288
/**
 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
 * @work: work item being executed
 *
 * This function is queued for execution when bio's reach the bio_lists[]
 * of throtl_data->service_queue.  Those bio's are ready and issued by this
 * function.
 */
1289
static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
{
	struct throtl_data *td = container_of(work, struct throtl_data,
					      dispatch_work);
	struct throtl_service_queue *td_sq = &td->service_queue;
	struct request_queue *q = td->queue;
	struct bio_list bio_list_on_stack;
	struct bio *bio;
	struct blk_plug plug;
	int rw;

	bio_list_init(&bio_list_on_stack);

	spin_lock_irq(q->queue_lock);
1303 1304 1305
	for (rw = READ; rw <= WRITE; rw++)
		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
			bio_list_add(&bio_list_on_stack, bio);
1306 1307 1308
	spin_unlock_irq(q->queue_lock);

	if (!bio_list_empty(&bio_list_on_stack)) {
1309
		blk_start_plug(&plug);
1310 1311
		while((bio = bio_list_pop(&bio_list_on_stack)))
			generic_make_request(bio);
1312
		blk_finish_plug(&plug);
1313 1314 1315
	}
}

1316 1317
static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
			      int off)
1318
{
1319 1320
	struct throtl_grp *tg = pd_to_tg(pd);
	u64 v = *(u64 *)((void *)tg + off);
1321

1322
	if (v == U64_MAX)
1323
		return 0;
1324
	return __blkg_prfill_u64(sf, pd, v);
1325 1326
}

1327 1328
static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
			       int off)
1329
{
1330 1331
	struct throtl_grp *tg = pd_to_tg(pd);
	unsigned int v = *(unsigned int *)((void *)tg + off);
1332

1333
	if (v == UINT_MAX)
1334
		return 0;
1335
	return __blkg_prfill_u64(sf, pd, v);
1336 1337
}

1338
static int tg_print_conf_u64(struct seq_file *sf, void *v)
1339
{
1340 1341
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1342
	return 0;
1343 1344
}

1345
static int tg_print_conf_uint(struct seq_file *sf, void *v)
1346
{
1347 1348
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1349
	return 0;
1350 1351
}

1352
static void tg_conf_updated(struct throtl_grp *tg)
1353
{
1354
	struct throtl_service_queue *sq = &tg->service_queue;
1355
	struct cgroup_subsys_state *pos_css;
1356
	struct blkcg_gq *blkg;
1357

1358 1359
	throtl_log(&tg->service_queue,
		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1360 1361
		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1362

1363 1364 1365 1366 1367 1368 1369
	/*
	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
	 * considered to have rules if either the tg itself or any of its
	 * ancestors has rules.  This identifies groups without any
	 * restrictions in the whole hierarchy and allows them to bypass
	 * blk-throttle.
	 */
1370
	blkg_for_each_descendant_pre(blkg, pos_css, tg_to_blkg(tg))
1371 1372
		tg_update_has_rules(blkg_to_tg(blkg));

1373 1374 1375 1376 1377 1378 1379 1380
	/*
	 * We're already holding queue_lock and know @tg is valid.  Let's
	 * apply the new config directly.
	 *
	 * Restart the slices for both READ and WRITES. It might happen
	 * that a group's limit are dropped suddenly and we don't want to
	 * account recently dispatched IO with new low rate.
	 */
1381 1382
	throtl_start_new_slice(tg, 0);
	throtl_start_new_slice(tg, 1);
1383

1384
	if (tg->flags & THROTL_TG_PENDING) {
1385
		tg_update_disptime(tg);
1386
		throtl_schedule_next_dispatch(sq->parent_sq, true);
1387
	}
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
}

static ssize_t tg_set_conf(struct kernfs_open_file *of,
			   char *buf, size_t nbytes, loff_t off, bool is_u64)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	int ret;
	u64 v;

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	ret = -EINVAL;
	if (sscanf(ctx.body, "%llu", &v) != 1)
		goto out_finish;
	if (!v)
1407
		v = U64_MAX;
1408 1409 1410 1411 1412 1413 1414

	tg = blkg_to_tg(ctx.blkg);

	if (is_u64)
		*(u64 *)((void *)tg + of_cft(of)->private) = v;
	else
		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1415

1416
	tg_conf_updated(tg);
1417 1418
	ret = 0;
out_finish:
1419
	blkg_conf_finish(&ctx);
1420
	return ret ?: nbytes;
1421 1422
}

1423 1424
static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
1425
{
1426
	return tg_set_conf(of, buf, nbytes, off, true);
1427 1428
}

1429 1430
static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
1431
{
1432
	return tg_set_conf(of, buf, nbytes, off, false);
1433 1434
}

1435
static struct cftype throtl_legacy_files[] = {
1436 1437
	{
		.name = "throttle.read_bps_device",
1438
		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1439
		.seq_show = tg_print_conf_u64,
1440
		.write = tg_set_conf_u64,
1441 1442 1443
	},
	{
		.name = "throttle.write_bps_device",
1444
		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1445
		.seq_show = tg_print_conf_u64,
1446
		.write = tg_set_conf_u64,
1447 1448 1449
	},
	{
		.name = "throttle.read_iops_device",
1450
		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1451
		.seq_show = tg_print_conf_uint,
1452
		.write = tg_set_conf_uint,
1453 1454 1455
	},
	{
		.name = "throttle.write_iops_device",
1456
		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1457
		.seq_show = tg_print_conf_uint,
1458
		.write = tg_set_conf_uint,
1459 1460 1461
	},
	{
		.name = "throttle.io_service_bytes",
1462 1463
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_bytes,
1464 1465 1466
	},
	{
		.name = "throttle.io_serviced",
1467 1468
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_ios,
1469 1470 1471 1472
	},
	{ }	/* terminate */
};

S
Shaohua Li 已提交
1473
static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1474 1475 1476 1477 1478
			 int off)
{
	struct throtl_grp *tg = pd_to_tg(pd);
	const char *dname = blkg_dev_name(pd->blkg);
	char bufs[4][21] = { "max", "max", "max", "max" };
S
Shaohua Li 已提交
1479 1480
	u64 bps_dft;
	unsigned int iops_dft;
1481
	char idle_time[26] = "";
1482
	char latency_time[26] = "";
1483 1484 1485

	if (!dname)
		return 0;
1486

S
Shaohua Li 已提交
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
	if (off == LIMIT_LOW) {
		bps_dft = 0;
		iops_dft = 0;
	} else {
		bps_dft = U64_MAX;
		iops_dft = UINT_MAX;
	}

	if (tg->bps_conf[READ][off] == bps_dft &&
	    tg->bps_conf[WRITE][off] == bps_dft &&
	    tg->iops_conf[READ][off] == iops_dft &&
1498
	    tg->iops_conf[WRITE][off] == iops_dft &&
1499 1500 1501
	    (off != LIMIT_LOW ||
	     (tg->idletime_threshold == tg->td->dft_idletime_threshold &&
	      tg->latency_target == DFL_LATENCY_TARGET)))
1502 1503
		return 0;

S
Shaohua Li 已提交
1504
	if (tg->bps_conf[READ][off] != bps_dft)
1505
		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
S
Shaohua Li 已提交
1506 1507
			tg->bps_conf[READ][off]);
	if (tg->bps_conf[WRITE][off] != bps_dft)
1508
		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
S
Shaohua Li 已提交
1509 1510
			tg->bps_conf[WRITE][off]);
	if (tg->iops_conf[READ][off] != iops_dft)
1511
		snprintf(bufs[2], sizeof(bufs[2]), "%u",
S
Shaohua Li 已提交
1512 1513
			tg->iops_conf[READ][off]);
	if (tg->iops_conf[WRITE][off] != iops_dft)
1514
		snprintf(bufs[3], sizeof(bufs[3]), "%u",
S
Shaohua Li 已提交
1515
			tg->iops_conf[WRITE][off]);
1516 1517 1518 1519 1520 1521
	if (off == LIMIT_LOW) {
		if (tg->idletime_threshold == ULONG_MAX)
			strcpy(idle_time, " idle=max");
		else
			snprintf(idle_time, sizeof(idle_time), " idle=%lu",
				tg->idletime_threshold);
1522 1523 1524 1525 1526 1527

		if (tg->latency_target == ULONG_MAX)
			strcpy(latency_time, " latency=max");
		else
			snprintf(latency_time, sizeof(latency_time),
				" latency=%lu", tg->latency_target);
1528
	}
1529

1530 1531 1532
	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
		   dname, bufs[0], bufs[1], bufs[2], bufs[3], idle_time,
		   latency_time);
1533 1534 1535
	return 0;
}

S
Shaohua Li 已提交
1536
static int tg_print_limit(struct seq_file *sf, void *v)
1537
{
S
Shaohua Li 已提交
1538
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1539 1540 1541 1542
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
	return 0;
}

S
Shaohua Li 已提交
1543
static ssize_t tg_set_limit(struct kernfs_open_file *of,
1544 1545 1546 1547 1548 1549
			  char *buf, size_t nbytes, loff_t off)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	u64 v[4];
1550
	unsigned long idle_time;
1551
	unsigned long latency_time;
1552
	int ret;
S
Shaohua Li 已提交
1553
	int index = of_cft(of)->private;
1554 1555 1556 1557 1558 1559 1560

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	tg = blkg_to_tg(ctx.blkg);

S
Shaohua Li 已提交
1561 1562 1563 1564
	v[0] = tg->bps_conf[READ][index];
	v[1] = tg->bps_conf[WRITE][index];
	v[2] = tg->iops_conf[READ][index];
	v[3] = tg->iops_conf[WRITE][index];
1565

1566
	idle_time = tg->idletime_threshold;
1567
	latency_time = tg->latency_target;
1568 1569 1570
	while (true) {
		char tok[27];	/* wiops=18446744073709551616 */
		char *p;
1571
		u64 val = U64_MAX;
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
		int len;

		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
			break;
		if (tok[0] == '\0')
			break;
		ctx.body += len;

		ret = -EINVAL;
		p = tok;
		strsep(&p, "=");
		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
			goto out_finish;

		ret = -ERANGE;
		if (!val)
			goto out_finish;

		ret = -EINVAL;
		if (!strcmp(tok, "rbps"))
			v[0] = val;
		else if (!strcmp(tok, "wbps"))
			v[1] = val;
		else if (!strcmp(tok, "riops"))
			v[2] = min_t(u64, val, UINT_MAX);
		else if (!strcmp(tok, "wiops"))
			v[3] = min_t(u64, val, UINT_MAX);
1599 1600
		else if (off == LIMIT_LOW && !strcmp(tok, "idle"))
			idle_time = val;
1601 1602
		else if (off == LIMIT_LOW && !strcmp(tok, "latency"))
			latency_time = val;
1603 1604 1605 1606
		else
			goto out_finish;
	}

S
Shaohua Li 已提交
1607 1608 1609 1610
	tg->bps_conf[READ][index] = v[0];
	tg->bps_conf[WRITE][index] = v[1];
	tg->iops_conf[READ][index] = v[2];
	tg->iops_conf[WRITE][index] = v[3];
1611

S
Shaohua Li 已提交
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
	if (index == LIMIT_MAX) {
		tg->bps[READ][index] = v[0];
		tg->bps[WRITE][index] = v[1];
		tg->iops[READ][index] = v[2];
		tg->iops[WRITE][index] = v[3];
	}
	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
		tg->bps_conf[READ][LIMIT_MAX]);
	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
		tg->bps_conf[WRITE][LIMIT_MAX]);
	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
		tg->iops_conf[READ][LIMIT_MAX]);
	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
		tg->iops_conf[WRITE][LIMIT_MAX]);

	if (index == LIMIT_LOW) {
		blk_throtl_update_limit_valid(tg->td);
		if (tg->td->limit_valid[LIMIT_LOW])
			tg->td->limit_index = LIMIT_LOW;
1631 1632
		tg->idletime_threshold = (idle_time == ULONG_MAX) ?
			ULONG_MAX : idle_time;
1633 1634
		tg->latency_target = (latency_time == ULONG_MAX) ?
			ULONG_MAX : latency_time;
S
Shaohua Li 已提交
1635
	}
1636 1637 1638 1639 1640 1641 1642 1643
	tg_conf_updated(tg);
	ret = 0;
out_finish:
	blkg_conf_finish(&ctx);
	return ret ?: nbytes;
}

static struct cftype throtl_files[] = {
S
Shaohua Li 已提交
1644 1645 1646 1647 1648 1649 1650 1651 1652
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_LOW,
	},
#endif
1653 1654 1655
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
S
Shaohua Li 已提交
1656 1657 1658
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_MAX,
1659 1660 1661 1662
	},
	{ }	/* terminate */
};

1663
static void throtl_shutdown_wq(struct request_queue *q)
1664 1665 1666
{
	struct throtl_data *td = q->td;

1667
	cancel_work_sync(&td->dispatch_work);
1668 1669
}

T
Tejun Heo 已提交
1670
static struct blkcg_policy blkcg_policy_throtl = {
1671
	.dfl_cftypes		= throtl_files,
1672
	.legacy_cftypes		= throtl_legacy_files,
1673

1674
	.pd_alloc_fn		= throtl_pd_alloc,
1675
	.pd_init_fn		= throtl_pd_init,
1676
	.pd_online_fn		= throtl_pd_online,
S
Shaohua Li 已提交
1677
	.pd_offline_fn		= throtl_pd_offline,
1678
	.pd_free_fn		= throtl_pd_free,
1679 1680
};

S
Shaohua Li 已提交
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
{
	unsigned long rtime = jiffies, wtime = jiffies;

	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
		rtime = tg->last_low_overflow_time[READ];
	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
		wtime = tg->last_low_overflow_time[WRITE];
	return min(rtime, wtime);
}

/* tg should not be an intermediate node */
static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
{
	struct throtl_service_queue *parent_sq;
	struct throtl_grp *parent = tg;
	unsigned long ret = __tg_last_low_overflow_time(tg);

	while (true) {
		parent_sq = parent->service_queue.parent_sq;
		parent = sq_to_tg(parent_sq);
		if (!parent)
			break;

		/*
		 * The parent doesn't have low limit, it always reaches low
		 * limit. Its overflow time is useless for children
		 */
		if (!parent->bps[READ][LIMIT_LOW] &&
		    !parent->iops[READ][LIMIT_LOW] &&
		    !parent->bps[WRITE][LIMIT_LOW] &&
		    !parent->iops[WRITE][LIMIT_LOW])
			continue;
		if (time_after(__tg_last_low_overflow_time(parent), ret))
			ret = __tg_last_low_overflow_time(parent);
	}
	return ret;
}

1720 1721 1722 1723 1724 1725 1726
static bool throtl_tg_is_idle(struct throtl_grp *tg)
{
	/*
	 * cgroup is idle if:
	 * - single idle is too long, longer than a fixed value (in case user
	 *   configure a too big threshold) or 4 times of slice
	 * - average think time is more than threshold
1727
	 * - IO latency is largely below threshold
1728 1729 1730 1731 1732
	 */
	unsigned long time = jiffies_to_usecs(4 * tg->td->throtl_slice);

	time = min_t(unsigned long, MAX_IDLE_TIME, time);
	return (ktime_get_ns() >> 10) - tg->last_finish_time > time ||
1733 1734 1735
	       tg->avg_idletime > tg->idletime_threshold ||
	       (tg->latency_target && tg->bio_cnt &&
		tg->bad_bio_cnt * 5 < tg->bio_cnt);
1736 1737
}

1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
{
	struct throtl_service_queue *sq = &tg->service_queue;
	bool read_limit, write_limit;

	/*
	 * if cgroup reaches low limit (if low limit is 0, the cgroup always
	 * reaches), it's ok to upgrade to next limit
	 */
	read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
	write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
	if (!read_limit && !write_limit)
		return true;
	if (read_limit && sq->nr_queued[READ] &&
	    (!write_limit || sq->nr_queued[WRITE]))
		return true;
	if (write_limit && sq->nr_queued[WRITE] &&
	    (!read_limit || sq->nr_queued[READ]))
		return true;
1757 1758

	if (time_after_eq(jiffies,
1759 1760
		tg_last_low_overflow_time(tg) + tg->td->throtl_slice) &&
	    throtl_tg_is_idle(tg))
1761
		return true;
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
	return false;
}

static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
{
	while (true) {
		if (throtl_tg_can_upgrade(tg))
			return true;
		tg = sq_to_tg(tg->service_queue.parent_sq);
		if (!tg || !tg_to_blkg(tg)->parent)
			return false;
	}
	return false;
}

static bool throtl_can_upgrade(struct throtl_data *td,
	struct throtl_grp *this_tg)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;

	if (td->limit_index != LIMIT_LOW)
		return false;

1786
	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
S
Shaohua Li 已提交
1787 1788
		return false;

1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg == this_tg)
			continue;
		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
			continue;
		if (!throtl_hierarchy_can_upgrade(tg)) {
			rcu_read_unlock();
			return false;
		}
	}
	rcu_read_unlock();
	return true;
}

1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
static void throtl_upgrade_check(struct throtl_grp *tg)
{
	unsigned long now = jiffies;

	if (tg->td->limit_index != LIMIT_LOW)
		return;

	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
		return;

	tg->last_check_time = now;

	if (!time_after_eq(now,
	     __tg_last_low_overflow_time(tg) + tg->td->throtl_slice))
		return;

	if (throtl_can_upgrade(tg->td, NULL))
		throtl_upgrade_state(tg->td);
}

1826 1827 1828 1829 1830 1831
static void throtl_upgrade_state(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;

	td->limit_index = LIMIT_MAX;
S
Shaohua Li 已提交
1832
	td->low_upgrade_time = jiffies;
1833
	td->scale = 0;
1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);
		struct throtl_service_queue *sq = &tg->service_queue;

		tg->disptime = jiffies - 1;
		throtl_select_dispatch(sq);
		throtl_schedule_next_dispatch(sq, false);
	}
	rcu_read_unlock();
	throtl_select_dispatch(&td->service_queue);
	throtl_schedule_next_dispatch(&td->service_queue, false);
	queue_work(kthrotld_workqueue, &td->dispatch_work);
}

S
Shaohua Li 已提交
1849 1850
static void throtl_downgrade_state(struct throtl_data *td, int new)
{
1851 1852 1853 1854 1855 1856 1857
	td->scale /= 2;

	if (td->scale) {
		td->low_upgrade_time = jiffies - td->scale * td->throtl_slice;
		return;
	}

S
Shaohua Li 已提交
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
	td->limit_index = new;
	td->low_downgrade_time = jiffies;
}

static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
{
	struct throtl_data *td = tg->td;
	unsigned long now = jiffies;

	/*
	 * If cgroup is below low limit, consider downgrade and throttle other
	 * cgroups
	 */
1871 1872
	if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
	    time_after_eq(now, tg_last_low_overflow_time(tg) +
1873 1874 1875
					td->throtl_slice) &&
	    (!throtl_tg_is_idle(tg) ||
	     !list_empty(&tg_to_blkg(tg)->blkcg->css.children)))
S
Shaohua Li 已提交
1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
		return true;
	return false;
}

static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
{
	while (true) {
		if (!throtl_tg_can_downgrade(tg))
			return false;
		tg = sq_to_tg(tg->service_queue.parent_sq);
		if (!tg || !tg_to_blkg(tg)->parent)
			break;
	}
	return true;
}

static void throtl_downgrade_check(struct throtl_grp *tg)
{
	uint64_t bps;
	unsigned int iops;
	unsigned long elapsed_time;
	unsigned long now = jiffies;

	if (tg->td->limit_index != LIMIT_MAX ||
	    !tg->td->limit_valid[LIMIT_LOW])
		return;
	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
		return;
1904
	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
S
Shaohua Li 已提交
1905 1906 1907 1908 1909
		return;

	elapsed_time = now - tg->last_check_time;
	tg->last_check_time = now;

1910 1911
	if (time_before(now, tg_last_low_overflow_time(tg) +
			tg->td->throtl_slice))
S
Shaohua Li 已提交
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952
		return;

	if (tg->bps[READ][LIMIT_LOW]) {
		bps = tg->last_bytes_disp[READ] * HZ;
		do_div(bps, elapsed_time);
		if (bps >= tg->bps[READ][LIMIT_LOW])
			tg->last_low_overflow_time[READ] = now;
	}

	if (tg->bps[WRITE][LIMIT_LOW]) {
		bps = tg->last_bytes_disp[WRITE] * HZ;
		do_div(bps, elapsed_time);
		if (bps >= tg->bps[WRITE][LIMIT_LOW])
			tg->last_low_overflow_time[WRITE] = now;
	}

	if (tg->iops[READ][LIMIT_LOW]) {
		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
		if (iops >= tg->iops[READ][LIMIT_LOW])
			tg->last_low_overflow_time[READ] = now;
	}

	if (tg->iops[WRITE][LIMIT_LOW]) {
		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
		if (iops >= tg->iops[WRITE][LIMIT_LOW])
			tg->last_low_overflow_time[WRITE] = now;
	}

	/*
	 * If cgroup is below low limit, consider downgrade and throttle other
	 * cgroups
	 */
	if (throtl_hierarchy_can_downgrade(tg))
		throtl_downgrade_state(tg->td, LIMIT_LOW);

	tg->last_bytes_disp[READ] = 0;
	tg->last_bytes_disp[WRITE] = 0;
	tg->last_io_disp[READ] = 0;
	tg->last_io_disp[WRITE] = 0;
}

1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
static void blk_throtl_update_idletime(struct throtl_grp *tg)
{
	unsigned long now = ktime_get_ns() >> 10;
	unsigned long last_finish_time = tg->last_finish_time;

	if (now <= last_finish_time || last_finish_time == 0 ||
	    last_finish_time == tg->checked_last_finish_time)
		return;

	tg->avg_idletime = (tg->avg_idletime * 7 + now - last_finish_time) >> 3;
	tg->checked_last_finish_time = last_finish_time;
}

1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
static void throtl_update_latency_buckets(struct throtl_data *td)
{
	struct avg_latency_bucket avg_latency[LATENCY_BUCKET_SIZE];
	int i, cpu;
	unsigned long last_latency = 0;
	unsigned long latency;

	if (!blk_queue_nonrot(td->queue))
		return;
	if (time_before(jiffies, td->last_calculate_time + HZ))
		return;
	td->last_calculate_time = jiffies;

	memset(avg_latency, 0, sizeof(avg_latency));
	for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
		struct latency_bucket *tmp = &td->tmp_buckets[i];

		for_each_possible_cpu(cpu) {
			struct latency_bucket *bucket;

			/* this isn't race free, but ok in practice */
			bucket = per_cpu_ptr(td->latency_buckets, cpu);
			tmp->total_latency += bucket[i].total_latency;
			tmp->samples += bucket[i].samples;
			bucket[i].total_latency = 0;
			bucket[i].samples = 0;
		}

		if (tmp->samples >= 32) {
			int samples = tmp->samples;

			latency = tmp->total_latency;

			tmp->total_latency = 0;
			tmp->samples = 0;
			latency /= samples;
			if (latency == 0)
				continue;
			avg_latency[i].latency = latency;
		}
	}

	for (i = 0; i < LATENCY_BUCKET_SIZE; i++) {
		if (!avg_latency[i].latency) {
			if (td->avg_buckets[i].latency < last_latency)
				td->avg_buckets[i].latency = last_latency;
			continue;
		}

		if (!td->avg_buckets[i].valid)
			latency = avg_latency[i].latency;
		else
			latency = (td->avg_buckets[i].latency * 7 +
				avg_latency[i].latency) >> 3;

		td->avg_buckets[i].latency = max(latency, last_latency);
		td->avg_buckets[i].valid = true;
		last_latency = td->avg_buckets[i].latency;
	}
}
#else
static inline void throtl_update_latency_buckets(struct throtl_data *td)
{
}
#endif

2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
static void blk_throtl_assoc_bio(struct throtl_grp *tg, struct bio *bio)
{
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	int ret;

	ret = bio_associate_current(bio);
	if (ret == 0 || ret == -EBUSY)
		bio->bi_cg_private = tg;
	blk_stat_set_issue(&bio->bi_issue_stat, bio_sectors(bio));
#else
	bio_associate_current(bio);
#endif
}

2047 2048
bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
		    struct bio *bio)
2049
{
2050
	struct throtl_qnode *qn = NULL;
2051
	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
2052
	struct throtl_service_queue *sq;
2053
	bool rw = bio_data_dir(bio);
2054
	bool throttled = false;
2055
	struct throtl_data *td = tg->td;
2056

2057 2058
	WARN_ON_ONCE(!rcu_read_lock_held());

2059
	/* see throtl_charge_bio() */
2060
	if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
2061
		goto out;
2062 2063

	spin_lock_irq(q->queue_lock);
2064

2065 2066
	throtl_update_latency_buckets(td);

2067
	if (unlikely(blk_queue_bypass(q)))
2068
		goto out_unlock;
2069

2070
	blk_throtl_assoc_bio(tg, bio);
2071 2072
	blk_throtl_update_idletime(tg);

2073 2074
	sq = &tg->service_queue;

2075
again:
2076
	while (true) {
S
Shaohua Li 已提交
2077 2078 2079
		if (tg->last_low_overflow_time[rw] == 0)
			tg->last_low_overflow_time[rw] = jiffies;
		throtl_downgrade_check(tg);
2080
		throtl_upgrade_check(tg);
2081 2082 2083
		/* throtl is FIFO - if bios are already queued, should queue */
		if (sq->nr_queued[rw])
			break;
2084

2085
		/* if above limits, break to queue */
2086
		if (!tg_may_dispatch(tg, bio, NULL)) {
S
Shaohua Li 已提交
2087
			tg->last_low_overflow_time[rw] = jiffies;
2088 2089
			if (throtl_can_upgrade(td, tg)) {
				throtl_upgrade_state(td);
2090 2091
				goto again;
			}
2092
			break;
2093
		}
2094 2095

		/* within limits, let's charge and dispatch directly */
2096
		throtl_charge_bio(tg, bio);
2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108

		/*
		 * We need to trim slice even when bios are not being queued
		 * otherwise it might happen that a bio is not queued for
		 * a long time and slice keeps on extending and trim is not
		 * called for a long time. Now if limits are reduced suddenly
		 * we take into account all the IO dispatched so far at new
		 * low rate and * newly queued IO gets a really long dispatch
		 * time.
		 *
		 * So keep on trimming slice even if bio is not queued.
		 */
2109
		throtl_trim_slice(tg, rw);
2110 2111 2112 2113 2114 2115

		/*
		 * @bio passed through this layer without being throttled.
		 * Climb up the ladder.  If we''re already at the top, it
		 * can be executed directly.
		 */
2116
		qn = &tg->qnode_on_parent[rw];
2117 2118 2119 2120
		sq = sq->parent_sq;
		tg = sq_to_tg(sq);
		if (!tg)
			goto out_unlock;
2121 2122
	}

2123
	/* out-of-limit, queue to @tg */
2124 2125
	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
		   rw == READ ? 'R' : 'W',
2126 2127 2128
		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
		   tg_bps_limit(tg, rw),
		   tg->io_disp[rw], tg_iops_limit(tg, rw),
2129
		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
2130

S
Shaohua Li 已提交
2131 2132
	tg->last_low_overflow_time[rw] = jiffies;

2133
	td->nr_queued[rw]++;
2134
	throtl_add_bio_tg(bio, qn, tg);
2135
	throttled = true;
2136

2137 2138 2139 2140 2141 2142
	/*
	 * Update @tg's dispatch time and force schedule dispatch if @tg
	 * was empty before @bio.  The forced scheduling isn't likely to
	 * cause undue delay as @bio is likely to be dispatched directly if
	 * its @tg's disptime is not in the future.
	 */
2143
	if (tg->flags & THROTL_TG_WAS_EMPTY) {
2144
		tg_update_disptime(tg);
2145
		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
2146 2147
	}

2148
out_unlock:
2149
	spin_unlock_irq(q->queue_lock);
2150
out:
2151 2152 2153 2154 2155 2156
	/*
	 * As multiple blk-throtls may stack in the same issue path, we
	 * don't want bios to leave with the flag set.  Clear the flag if
	 * being issued.
	 */
	if (!throttled)
2157
		bio_clear_flag(bio, BIO_THROTTLED);
2158 2159 2160 2161 2162

#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	if (throttled || !td->track_bio_latency)
		bio->bi_issue_stat.stat |= SKIP_LATENCY;
#endif
2163
	return throttled;
2164 2165
}

2166
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
static void throtl_track_latency(struct throtl_data *td, sector_t size,
	int op, unsigned long time)
{
	struct latency_bucket *latency;
	int index;

	if (!td || td->limit_index != LIMIT_LOW || op != REQ_OP_READ ||
	    !blk_queue_nonrot(td->queue))
		return;

	index = request_bucket_index(size);

	latency = get_cpu_ptr(td->latency_buckets);
	latency[index].total_latency += time;
	latency[index].samples++;
	put_cpu_ptr(td->latency_buckets);
}

void blk_throtl_stat_add(struct request *rq, u64 time_ns)
{
	struct request_queue *q = rq->q;
	struct throtl_data *td = q->td;

	throtl_track_latency(td, blk_stat_size(&rq->issue_stat),
		req_op(rq), time_ns >> 10);
}

2194 2195 2196
void blk_throtl_bio_endio(struct bio *bio)
{
	struct throtl_grp *tg;
2197 2198 2199 2200
	u64 finish_time_ns;
	unsigned long finish_time;
	unsigned long start_time;
	unsigned long lat;
2201 2202 2203 2204 2205 2206

	tg = bio->bi_cg_private;
	if (!tg)
		return;
	bio->bi_cg_private = NULL;

2207 2208 2209 2210 2211
	finish_time_ns = ktime_get_ns();
	tg->last_finish_time = finish_time_ns >> 10;

	start_time = blk_stat_time(&bio->bi_issue_stat) >> 10;
	finish_time = __blk_stat_time(finish_time_ns) >> 10;
2212 2213 2214 2215
	if (!start_time || finish_time <= start_time)
		return;

	lat = finish_time - start_time;
2216
	/* this is only for bio based driver */
2217
	if (!(bio->bi_issue_stat.stat & SKIP_LATENCY))
2218 2219
		throtl_track_latency(tg->td, blk_stat_size(&bio->bi_issue_stat),
			bio_op(bio), lat);
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241

	if (tg->latency_target) {
		int bucket;
		unsigned int threshold;

		bucket = request_bucket_index(
			blk_stat_size(&bio->bi_issue_stat));
		threshold = tg->td->avg_buckets[bucket].latency +
			tg->latency_target;
		if (lat > threshold)
			tg->bad_bio_cnt++;
		/*
		 * Not race free, could get wrong count, which means cgroups
		 * will be throttled
		 */
		tg->bio_cnt++;
	}

	if (time_after(jiffies, tg->bio_cnt_reset_time) || tg->bio_cnt > 1024) {
		tg->bio_cnt_reset_time = tg->td->throtl_slice + jiffies;
		tg->bio_cnt /= 2;
		tg->bad_bio_cnt /= 2;
2242
	}
2243 2244 2245
}
#endif

2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260
/*
 * Dispatch all bios from all children tg's queued on @parent_sq.  On
 * return, @parent_sq is guaranteed to not have any active children tg's
 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
 */
static void tg_drain_bios(struct throtl_service_queue *parent_sq)
{
	struct throtl_grp *tg;

	while ((tg = throtl_rb_first(parent_sq))) {
		struct throtl_service_queue *sq = &tg->service_queue;
		struct bio *bio;

		throtl_dequeue_tg(tg);

2261
		while ((bio = throtl_peek_queued(&sq->queued[READ])))
2262
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
2263
		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2264 2265 2266 2267
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
	}
}

2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
/**
 * blk_throtl_drain - drain throttled bios
 * @q: request_queue to drain throttled bios for
 *
 * Dispatch all currently throttled bios on @q through ->make_request_fn().
 */
void blk_throtl_drain(struct request_queue *q)
	__releases(q->queue_lock) __acquires(q->queue_lock)
{
	struct throtl_data *td = q->td;
2278
	struct blkcg_gq *blkg;
2279
	struct cgroup_subsys_state *pos_css;
2280
	struct bio *bio;
2281
	int rw;
2282

2283
	queue_lockdep_assert_held(q);
2284
	rcu_read_lock();
2285

2286 2287 2288 2289 2290 2291
	/*
	 * Drain each tg while doing post-order walk on the blkg tree, so
	 * that all bios are propagated to td->service_queue.  It'd be
	 * better to walk service_queue tree directly but blkg walk is
	 * easier.
	 */
2292
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2293
		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
2294

2295 2296 2297 2298
	/* finally, transfer bios from top-level tg's into the td */
	tg_drain_bios(&td->service_queue);

	rcu_read_unlock();
2299 2300
	spin_unlock_irq(q->queue_lock);

2301
	/* all bios now should be in td->service_queue, issue them */
2302
	for (rw = READ; rw <= WRITE; rw++)
2303 2304
		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
						NULL)))
2305
			generic_make_request(bio);
2306 2307 2308 2309

	spin_lock_irq(q->queue_lock);
}

2310 2311 2312
int blk_throtl_init(struct request_queue *q)
{
	struct throtl_data *td;
2313
	int ret;
2314 2315 2316 2317

	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
	if (!td)
		return -ENOMEM;
2318 2319 2320 2321 2322 2323
	td->latency_buckets = __alloc_percpu(sizeof(struct latency_bucket) *
		LATENCY_BUCKET_SIZE, __alignof__(u64));
	if (!td->latency_buckets) {
		kfree(td);
		return -ENOMEM;
	}
2324

2325
	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
2326
	throtl_service_queue_init(&td->service_queue);
2327

2328
	q->td = td;
2329
	td->queue = q;
V
Vivek Goyal 已提交
2330

2331
	td->limit_valid[LIMIT_MAX] = true;
S
Shaohua Li 已提交
2332
	td->limit_index = LIMIT_MAX;
S
Shaohua Li 已提交
2333 2334
	td->low_upgrade_time = jiffies;
	td->low_downgrade_time = jiffies;
2335

2336
	/* activate policy */
T
Tejun Heo 已提交
2337
	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
2338 2339
	if (ret) {
		free_percpu(td->latency_buckets);
2340
		kfree(td);
2341
	}
2342
	return ret;
2343 2344 2345 2346
}

void blk_throtl_exit(struct request_queue *q)
{
T
Tejun Heo 已提交
2347
	BUG_ON(!q->td);
2348
	throtl_shutdown_wq(q);
T
Tejun Heo 已提交
2349
	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
2350
	free_percpu(q->td->latency_buckets);
2351
	kfree(q->td);
2352 2353
}

2354 2355 2356
void blk_throtl_register_queue(struct request_queue *q)
{
	struct throtl_data *td;
2357 2358
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;
2359 2360 2361 2362

	td = q->td;
	BUG_ON(!td);

2363
	if (blk_queue_nonrot(q)) {
2364
		td->throtl_slice = DFL_THROTL_SLICE_SSD;
2365 2366
		td->dft_idletime_threshold = DFL_IDLE_THRESHOLD_SSD;
	} else {
2367
		td->throtl_slice = DFL_THROTL_SLICE_HD;
2368 2369
		td->dft_idletime_threshold = DFL_IDLE_THRESHOLD_HD;
	}
2370 2371 2372 2373
#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
	/* if no low limit, use previous default */
	td->throtl_slice = DFL_THROTL_SLICE_HD;
#endif
2374

2375 2376 2377 2378
	td->track_bio_latency = !q->mq_ops && !q->request_fn;
	if (!td->track_bio_latency)
		blk_stat_enable_accounting(q);

2379 2380 2381 2382 2383 2384 2385 2386
	/*
	 * some tg are created before queue is fully initialized, eg, nonrot
	 * isn't initialized yet
	 */
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, q->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

2387
		tg->idletime_threshold = td->dft_idletime_threshold;
2388 2389
	}
	rcu_read_unlock();
2390 2391
}

2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
{
	if (!q->td)
		return -EINVAL;
	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
}

ssize_t blk_throtl_sample_time_store(struct request_queue *q,
	const char *page, size_t count)
{
	unsigned long v;
	unsigned long t;

	if (!q->td)
		return -EINVAL;
	if (kstrtoul(page, 10, &v))
		return -EINVAL;
	t = msecs_to_jiffies(v);
	if (t == 0 || t > MAX_THROTL_SLICE)
		return -EINVAL;
	q->td->throtl_slice = t;
	return count;
}
#endif

2418 2419
static int __init throtl_init(void)
{
2420 2421 2422 2423
	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
	if (!kthrotld_workqueue)
		panic("Failed to create kthrotld\n");

T
Tejun Heo 已提交
2424
	return blkcg_policy_register(&blkcg_policy_throtl);
2425 2426 2427
}

module_init(throtl_init);