blk-throttle.c 30.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Interface for controlling IO bandwidth on a request queue
 *
 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
#include "blk-cgroup.h"
13
#include "blk.h"
14 15 16 17 18 19 20 21 22 23

/* Max dispatch from a group in 1 round */
static int throtl_grp_quantum = 8;

/* Total max dispatch from all groups in one round */
static int throtl_quantum = 32;

/* Throttling is performed over 100ms slice and after that slice is renewed */
static unsigned long throtl_slice = HZ/10;	/* 100 ms */

T
Tejun Heo 已提交
24
static struct blkcg_policy blkcg_policy_throtl;
25

26 27 28 29 30
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;
static void throtl_schedule_delayed_work(struct throtl_data *td,
				unsigned long delay);

31 32 33 34 35 36 37 38 39 40 41 42
struct throtl_rb_root {
	struct rb_root rb;
	struct rb_node *left;
	unsigned int count;
	unsigned long min_disptime;
};

#define THROTL_RB_ROOT	(struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \
			.count = 0, .min_disptime = 0}

#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)

43 44 45 46 47 48 49 50
/* Per-cpu group stats */
struct tg_stats_cpu {
	/* total bytes transferred */
	struct blkg_rwstat		service_bytes;
	/* total IOs serviced, post merge */
	struct blkg_rwstat		serviced;
};

51
struct throtl_grp {
52 53 54
	/* must be the first member */
	struct blkg_policy_data pd;

55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
	/* active throtl group service_tree member */
	struct rb_node rb_node;

	/*
	 * Dispatch time in jiffies. This is the estimated time when group
	 * will unthrottle and is ready to dispatch more bio. It is used as
	 * key to sort active groups in service tree.
	 */
	unsigned long disptime;

	unsigned int flags;

	/* Two lists for READ and WRITE */
	struct bio_list bio_lists[2];

	/* Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

	/* bytes per second rate limits */
	uint64_t bps[2];

76 77 78
	/* IOPS limits */
	unsigned int iops[2];

79 80
	/* Number of bytes disptached in current slice */
	uint64_t bytes_disp[2];
81 82
	/* Number of bio's dispatched in current slice */
	unsigned int io_disp[2];
83 84 85 86

	/* When did we start a new slice */
	unsigned long slice_start[2];
	unsigned long slice_end[2];
87

88 89 90 91 92
	/* Per cpu stats pointer */
	struct tg_stats_cpu __percpu *stats_cpu;

	/* List of tgs waiting for per cpu stats memory to be allocated */
	struct list_head stats_alloc_node;
93 94 95 96 97 98 99 100 101 102 103 104 105
};

struct throtl_data
{
	/* service tree for active throtl groups */
	struct throtl_rb_root tg_service_tree;

	struct request_queue *queue;

	/* Total Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

	/*
V
Vivek Goyal 已提交
106
	 * number of total undestroyed groups
107 108 109 110 111 112 113
	 */
	unsigned int nr_undestroyed_grps;

	/* Work for dispatching throttled bios */
	struct delayed_work throtl_work;
};

114 115 116 117 118 119 120
/* list and work item to allocate percpu group stats */
static DEFINE_SPINLOCK(tg_stats_alloc_lock);
static LIST_HEAD(tg_stats_alloc_list);

static void tg_stats_alloc_fn(struct work_struct *);
static DECLARE_DELAYED_WORK(tg_stats_alloc_work, tg_stats_alloc_fn);

121 122 123 124 125
static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
{
	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
}

T
Tejun Heo 已提交
126
static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
127
{
128
	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
129 130
}

T
Tejun Heo 已提交
131
static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
132
{
133
	return pd_to_blkg(&tg->pd);
134 135
}

T
Tejun Heo 已提交
136 137 138 139 140
static inline struct throtl_grp *td_root_tg(struct throtl_data *td)
{
	return blkg_to_tg(td->queue->root_blkg);
}

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
enum tg_state_flags {
	THROTL_TG_FLAG_on_rr = 0,	/* on round-robin busy list */
};

#define THROTL_TG_FNS(name)						\
static inline void throtl_mark_tg_##name(struct throtl_grp *tg)		\
{									\
	(tg)->flags |= (1 << THROTL_TG_FLAG_##name);			\
}									\
static inline void throtl_clear_tg_##name(struct throtl_grp *tg)	\
{									\
	(tg)->flags &= ~(1 << THROTL_TG_FLAG_##name);			\
}									\
static inline int throtl_tg_##name(const struct throtl_grp *tg)		\
{									\
	return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0;	\
}

THROTL_TG_FNS(on_rr);

T
Tejun Heo 已提交
161 162 163 164 165 166
#define throtl_log_tg(td, tg, fmt, args...)	do {			\
	char __pbuf[128];						\
									\
	blkg_path(tg_to_blkg(tg), __pbuf, sizeof(__pbuf));		\
	blk_add_trace_msg((td)->queue, "throtl %s " fmt, __pbuf, ##args); \
} while (0)
167 168 169 170

#define throtl_log(td, fmt, args...)	\
	blk_add_trace_msg((td)->queue, "throtl " fmt, ##args)

171
static inline unsigned int total_nr_queued(struct throtl_data *td)
172
{
173
	return td->nr_queued[0] + td->nr_queued[1];
174 175
}

176 177
/*
 * Worker for allocating per cpu stat for tgs. This is scheduled on the
178
 * system_wq once there are some groups on the alloc_list waiting for
179 180 181 182 183 184 185 186 187 188 189 190 191
 * allocation.
 */
static void tg_stats_alloc_fn(struct work_struct *work)
{
	static struct tg_stats_cpu *stats_cpu;	/* this fn is non-reentrant */
	struct delayed_work *dwork = to_delayed_work(work);
	bool empty = false;

alloc_stats:
	if (!stats_cpu) {
		stats_cpu = alloc_percpu(struct tg_stats_cpu);
		if (!stats_cpu) {
			/* allocation failed, try again after some time */
192
			schedule_delayed_work(dwork, msecs_to_jiffies(10));
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
			return;
		}
	}

	spin_lock_irq(&tg_stats_alloc_lock);

	if (!list_empty(&tg_stats_alloc_list)) {
		struct throtl_grp *tg = list_first_entry(&tg_stats_alloc_list,
							 struct throtl_grp,
							 stats_alloc_node);
		swap(tg->stats_cpu, stats_cpu);
		list_del_init(&tg->stats_alloc_node);
	}

	empty = list_empty(&tg_stats_alloc_list);
	spin_unlock_irq(&tg_stats_alloc_lock);
	if (!empty)
		goto alloc_stats;
}

T
Tejun Heo 已提交
213
static void throtl_pd_init(struct blkcg_gq *blkg)
214
{
215
	struct throtl_grp *tg = blkg_to_tg(blkg);
216
	unsigned long flags;
217

218 219 220 221
	RB_CLEAR_NODE(&tg->rb_node);
	bio_list_init(&tg->bio_lists[0]);
	bio_list_init(&tg->bio_lists[1]);

222 223 224 225
	tg->bps[READ] = -1;
	tg->bps[WRITE] = -1;
	tg->iops[READ] = -1;
	tg->iops[WRITE] = -1;
226 227 228 229 230 231

	/*
	 * Ugh... We need to perform per-cpu allocation for tg->stats_cpu
	 * but percpu allocator can't be called from IO path.  Queue tg on
	 * tg_stats_alloc_list and allocate from work item.
	 */
232
	spin_lock_irqsave(&tg_stats_alloc_lock, flags);
233
	list_add(&tg->stats_alloc_node, &tg_stats_alloc_list);
234
	schedule_delayed_work(&tg_stats_alloc_work, 0);
235
	spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
236 237
}

T
Tejun Heo 已提交
238
static void throtl_pd_exit(struct blkcg_gq *blkg)
239 240
{
	struct throtl_grp *tg = blkg_to_tg(blkg);
241
	unsigned long flags;
242

243
	spin_lock_irqsave(&tg_stats_alloc_lock, flags);
244
	list_del_init(&tg->stats_alloc_node);
245
	spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
246 247 248 249

	free_percpu(tg->stats_cpu);
}

T
Tejun Heo 已提交
250
static void throtl_pd_reset_stats(struct blkcg_gq *blkg)
251 252 253 254 255 256 257 258 259 260 261 262 263
{
	struct throtl_grp *tg = blkg_to_tg(blkg);
	int cpu;

	if (tg->stats_cpu == NULL)
		return;

	for_each_possible_cpu(cpu) {
		struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);

		blkg_rwstat_reset(&sc->service_bytes);
		blkg_rwstat_reset(&sc->serviced);
	}
264 265
}

T
Tejun Heo 已提交
266 267
static struct throtl_grp *throtl_lookup_tg(struct throtl_data *td,
					   struct blkcg *blkcg)
268
{
269
	/*
T
Tejun Heo 已提交
270 271
	 * This is the common case when there are no blkcgs.  Avoid lookup
	 * in this case
272
	 */
T
Tejun Heo 已提交
273
	if (blkcg == &blkcg_root)
T
Tejun Heo 已提交
274
		return td_root_tg(td);
275

276
	return blkg_to_tg(blkg_lookup(blkcg, td->queue));
277 278
}

279
static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
T
Tejun Heo 已提交
280
						  struct blkcg *blkcg)
281
{
282
	struct request_queue *q = td->queue;
283
	struct throtl_grp *tg = NULL;
284

285
	/*
T
Tejun Heo 已提交
286 287
	 * This is the common case when there are no blkcgs.  Avoid lookup
	 * in this case
288
	 */
T
Tejun Heo 已提交
289
	if (blkcg == &blkcg_root) {
T
Tejun Heo 已提交
290
		tg = td_root_tg(td);
291
	} else {
T
Tejun Heo 已提交
292
		struct blkcg_gq *blkg;
293

294
		blkg = blkg_lookup_create(blkcg, q);
295

296 297
		/* if %NULL and @q is alive, fall back to root_tg */
		if (!IS_ERR(blkg))
298
			tg = blkg_to_tg(blkg);
B
Bart Van Assche 已提交
299
		else if (!blk_queue_dying(q))
T
Tejun Heo 已提交
300
			tg = td_root_tg(td);
301 302
	}

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
	return tg;
}

static struct throtl_grp *throtl_rb_first(struct throtl_rb_root *root)
{
	/* Service tree is empty */
	if (!root->count)
		return NULL;

	if (!root->left)
		root->left = rb_first(&root->rb);

	if (root->left)
		return rb_entry_tg(root->left);

	return NULL;
}

static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

static void throtl_rb_erase(struct rb_node *n, struct throtl_rb_root *root)
{
	if (root->left == n)
		root->left = NULL;
	rb_erase_init(n, &root->rb);
	--root->count;
}

static void update_min_dispatch_time(struct throtl_rb_root *st)
{
	struct throtl_grp *tg;

	tg = throtl_rb_first(st);
	if (!tg)
		return;

	st->min_disptime = tg->disptime;
}

static void
tg_service_tree_add(struct throtl_rb_root *st, struct throtl_grp *tg)
{
	struct rb_node **node = &st->rb.rb_node;
	struct rb_node *parent = NULL;
	struct throtl_grp *__tg;
	unsigned long key = tg->disptime;
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__tg = rb_entry_tg(parent);

		if (time_before(key, __tg->disptime))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
		st->left = &tg->rb_node;

	rb_link_node(&tg->rb_node, parent, node);
	rb_insert_color(&tg->rb_node, &st->rb);
}

static void __throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
{
	struct throtl_rb_root *st = &td->tg_service_tree;

	tg_service_tree_add(st, tg);
	throtl_mark_tg_on_rr(tg);
	st->count++;
}

static void throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
{
	if (!throtl_tg_on_rr(tg))
		__throtl_enqueue_tg(td, tg);
}

static void __throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
{
	throtl_rb_erase(&tg->rb_node, &td->tg_service_tree);
	throtl_clear_tg_on_rr(tg);
}

static void throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
{
	if (throtl_tg_on_rr(tg))
		__throtl_dequeue_tg(td, tg);
}

static void throtl_schedule_next_dispatch(struct throtl_data *td)
{
	struct throtl_rb_root *st = &td->tg_service_tree;

	/*
	 * If there are more bios pending, schedule more work.
	 */
	if (!total_nr_queued(td))
		return;

	BUG_ON(!st->count);

	update_min_dispatch_time(st);

	if (time_before_eq(st->min_disptime, jiffies))
416
		throtl_schedule_delayed_work(td, 0);
417
	else
418
		throtl_schedule_delayed_work(td, (st->min_disptime - jiffies));
419 420 421 422 423 424
}

static inline void
throtl_start_new_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
{
	tg->bytes_disp[rw] = 0;
425
	tg->io_disp[rw] = 0;
426 427 428 429 430 431 432
	tg->slice_start[rw] = jiffies;
	tg->slice_end[rw] = jiffies + throtl_slice;
	throtl_log_tg(td, tg, "[%c] new slice start=%lu end=%lu jiffies=%lu",
			rw == READ ? 'R' : 'W', tg->slice_start[rw],
			tg->slice_end[rw], jiffies);
}

433 434 435 436 437 438
static inline void throtl_set_slice_end(struct throtl_data *td,
		struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
}

439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
static inline void throtl_extend_slice(struct throtl_data *td,
		struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
	throtl_log_tg(td, tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu",
			rw == READ ? 'R' : 'W', tg->slice_start[rw],
			tg->slice_end[rw], jiffies);
}

/* Determine if previously allocated or extended slice is complete or not */
static bool
throtl_slice_used(struct throtl_data *td, struct throtl_grp *tg, bool rw)
{
	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
		return 0;

	return 1;
}

/* Trim the used slices and adjust slice start accordingly */
static inline void
throtl_trim_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
{
462 463
	unsigned long nr_slices, time_elapsed, io_trim;
	u64 bytes_trim, tmp;
464 465 466 467 468 469 470 471 472 473 474

	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));

	/*
	 * If bps are unlimited (-1), then time slice don't get
	 * renewed. Don't try to trim the slice if slice is used. A new
	 * slice will start when appropriate.
	 */
	if (throtl_slice_used(td, tg, rw))
		return;

475 476 477 478 479 480 481 482 483 484
	/*
	 * A bio has been dispatched. Also adjust slice_end. It might happen
	 * that initially cgroup limit was very low resulting in high
	 * slice_end, but later limit was bumped up and bio was dispached
	 * sooner, then we need to reduce slice_end. A high bogus slice_end
	 * is bad because it does not allow new slice to start.
	 */

	throtl_set_slice_end(td, tg, rw, jiffies + throtl_slice);

485 486 487 488 489 490
	time_elapsed = jiffies - tg->slice_start[rw];

	nr_slices = time_elapsed / throtl_slice;

	if (!nr_slices)
		return;
491 492 493
	tmp = tg->bps[rw] * throtl_slice * nr_slices;
	do_div(tmp, HZ);
	bytes_trim = tmp;
494

495
	io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
496

497
	if (!bytes_trim && !io_trim)
498 499 500 501 502 503 504
		return;

	if (tg->bytes_disp[rw] >= bytes_trim)
		tg->bytes_disp[rw] -= bytes_trim;
	else
		tg->bytes_disp[rw] = 0;

505 506 507 508 509
	if (tg->io_disp[rw] >= io_trim)
		tg->io_disp[rw] -= io_trim;
	else
		tg->io_disp[rw] = 0;

510 511
	tg->slice_start[rw] += nr_slices * throtl_slice;

512
	throtl_log_tg(td, tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu"
513
			" start=%lu end=%lu jiffies=%lu",
514
			rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
515 516 517
			tg->slice_start[rw], tg->slice_end[rw], jiffies);
}

518 519
static bool tg_with_in_iops_limit(struct throtl_data *td, struct throtl_grp *tg,
		struct bio *bio, unsigned long *wait)
520 521
{
	bool rw = bio_data_dir(bio);
522
	unsigned int io_allowed;
523
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
524
	u64 tmp;
525

526
	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
527

528 529 530 531 532 533
	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

534 535 536 537 538 539 540 541 542 543 544 545 546 547
	/*
	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
	 * will allow dispatch after 1 second and after that slice should
	 * have been trimmed.
	 */

	tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
	do_div(tmp, HZ);

	if (tmp > UINT_MAX)
		io_allowed = UINT_MAX;
	else
		io_allowed = tmp;
548 549

	if (tg->io_disp[rw] + 1 <= io_allowed) {
550 551 552 553 554
		if (wait)
			*wait = 0;
		return 1;
	}

555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
	/* Calc approx time to dispatch */
	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;

	if (jiffy_wait > jiffy_elapsed)
		jiffy_wait = jiffy_wait - jiffy_elapsed;
	else
		jiffy_wait = 1;

	if (wait)
		*wait = jiffy_wait;
	return 0;
}

static bool tg_with_in_bps_limit(struct throtl_data *td, struct throtl_grp *tg,
		struct bio *bio, unsigned long *wait)
{
	bool rw = bio_data_dir(bio);
572
	u64 bytes_allowed, extra_bytes, tmp;
573
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
574 575 576 577 578 579 580 581 582

	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];

	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

583 584
	tmp = tg->bps[rw] * jiffy_elapsed_rnd;
	do_div(tmp, HZ);
585
	bytes_allowed = tmp;
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606

	if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
		if (wait)
			*wait = 0;
		return 1;
	}

	/* Calc approx time to dispatch */
	extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
	jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);

	if (!jiffy_wait)
		jiffy_wait = 1;

	/*
	 * This wait time is without taking into consideration the rounding
	 * up we did. Add that time also.
	 */
	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
	if (wait)
		*wait = jiffy_wait;
607 608 609
	return 0;
}

610 611 612 613 614 615
static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) {
	if (tg->bps[rw] == -1 && tg->iops[rw] == -1)
		return 1;
	return 0;
}

616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
/*
 * Returns whether one can dispatch a bio or not. Also returns approx number
 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 */
static bool tg_may_dispatch(struct throtl_data *td, struct throtl_grp *tg,
				struct bio *bio, unsigned long *wait)
{
	bool rw = bio_data_dir(bio);
	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;

	/*
 	 * Currently whole state machine of group depends on first bio
	 * queued in the group bio list. So one should not be calling
	 * this function with a different bio if there are other bios
	 * queued.
	 */
	BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw]));
633

634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
	/* If tg->bps = -1, then BW is unlimited */
	if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
		if (wait)
			*wait = 0;
		return 1;
	}

	/*
	 * If previous slice expired, start a new one otherwise renew/extend
	 * existing slice to make sure it is at least throtl_slice interval
	 * long since now.
	 */
	if (throtl_slice_used(td, tg, rw))
		throtl_start_new_slice(td, tg, rw);
	else {
		if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
			throtl_extend_slice(td, tg, rw, jiffies + throtl_slice);
	}

	if (tg_with_in_bps_limit(td, tg, bio, &bps_wait)
	    && tg_with_in_iops_limit(td, tg, bio, &iops_wait)) {
		if (wait)
			*wait = 0;
		return 1;
	}

	max_wait = max(bps_wait, iops_wait);

	if (wait)
		*wait = max_wait;

	if (time_before(tg->slice_end[rw], jiffies + max_wait))
		throtl_extend_slice(td, tg, rw, jiffies + max_wait);
667 668 669 670

	return 0;
}

T
Tejun Heo 已提交
671
static void throtl_update_dispatch_stats(struct blkcg_gq *blkg, u64 bytes,
672 673
					 int rw)
{
674 675
	struct throtl_grp *tg = blkg_to_tg(blkg);
	struct tg_stats_cpu *stats_cpu;
676 677 678
	unsigned long flags;

	/* If per cpu stats are not allocated yet, don't do any accounting. */
679
	if (tg->stats_cpu == NULL)
680 681 682 683 684 685 686 687 688
		return;

	/*
	 * Disabling interrupts to provide mutual exclusion between two
	 * writes on same cpu. It probably is not needed for 64bit. Not
	 * optimizing that case yet.
	 */
	local_irq_save(flags);

689
	stats_cpu = this_cpu_ptr(tg->stats_cpu);
690 691 692 693 694 695 696

	blkg_rwstat_add(&stats_cpu->serviced, rw, 1);
	blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes);

	local_irq_restore(flags);
}

697 698 699 700 701 702
static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
	bool rw = bio_data_dir(bio);

	/* Charge the bio to the group */
	tg->bytes_disp[rw] += bio->bi_size;
703
	tg->io_disp[rw]++;
704

705
	throtl_update_dispatch_stats(tg_to_blkg(tg), bio->bi_size, bio->bi_rw);
706 707 708 709 710 711 712 713 714
}

static void throtl_add_bio_tg(struct throtl_data *td, struct throtl_grp *tg,
			struct bio *bio)
{
	bool rw = bio_data_dir(bio);

	bio_list_add(&tg->bio_lists[rw], bio);
	/* Take a bio reference on tg */
T
Tejun Heo 已提交
715
	blkg_get(tg_to_blkg(tg));
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
	tg->nr_queued[rw]++;
	td->nr_queued[rw]++;
	throtl_enqueue_tg(td, tg);
}

static void tg_update_disptime(struct throtl_data *td, struct throtl_grp *tg)
{
	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
	struct bio *bio;

	if ((bio = bio_list_peek(&tg->bio_lists[READ])))
		tg_may_dispatch(td, tg, bio, &read_wait);

	if ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
		tg_may_dispatch(td, tg, bio, &write_wait);

	min_wait = min(read_wait, write_wait);
	disptime = jiffies + min_wait;

	/* Update dispatch time */
	throtl_dequeue_tg(td, tg);
	tg->disptime = disptime;
	throtl_enqueue_tg(td, tg);
}

static void tg_dispatch_one_bio(struct throtl_data *td, struct throtl_grp *tg,
				bool rw, struct bio_list *bl)
{
	struct bio *bio;

	bio = bio_list_pop(&tg->bio_lists[rw]);
	tg->nr_queued[rw]--;
T
Tejun Heo 已提交
748 749
	/* Drop bio reference on blkg */
	blkg_put(tg_to_blkg(tg));
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765

	BUG_ON(td->nr_queued[rw] <= 0);
	td->nr_queued[rw]--;

	throtl_charge_bio(tg, bio);
	bio_list_add(bl, bio);
	bio->bi_rw |= REQ_THROTTLED;

	throtl_trim_slice(td, tg, rw);
}

static int throtl_dispatch_tg(struct throtl_data *td, struct throtl_grp *tg,
				struct bio_list *bl)
{
	unsigned int nr_reads = 0, nr_writes = 0;
	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
766
	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
	struct bio *bio;

	/* Try to dispatch 75% READS and 25% WRITES */

	while ((bio = bio_list_peek(&tg->bio_lists[READ]))
		&& tg_may_dispatch(td, tg, bio, NULL)) {

		tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
		nr_reads++;

		if (nr_reads >= max_nr_reads)
			break;
	}

	while ((bio = bio_list_peek(&tg->bio_lists[WRITE]))
		&& tg_may_dispatch(td, tg, bio, NULL)) {

		tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
		nr_writes++;

		if (nr_writes >= max_nr_writes)
			break;
	}

	return nr_reads + nr_writes;
}

static int throtl_select_dispatch(struct throtl_data *td, struct bio_list *bl)
{
	unsigned int nr_disp = 0;
	struct throtl_grp *tg;
	struct throtl_rb_root *st = &td->tg_service_tree;

	while (1) {
		tg = throtl_rb_first(st);

		if (!tg)
			break;

		if (time_before(jiffies, tg->disptime))
			break;

		throtl_dequeue_tg(td, tg);

		nr_disp += throtl_dispatch_tg(td, tg, bl);

813
		if (tg->nr_queued[0] || tg->nr_queued[1])
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
			tg_update_disptime(td, tg);

		if (nr_disp >= throtl_quantum)
			break;
	}

	return nr_disp;
}

/* Dispatch throttled bios. Should be called without queue lock held. */
static int throtl_dispatch(struct request_queue *q)
{
	struct throtl_data *td = q->td;
	unsigned int nr_disp = 0;
	struct bio_list bio_list_on_stack;
	struct bio *bio;
830
	struct blk_plug plug;
831 832 833 834 835 836 837 838

	spin_lock_irq(q->queue_lock);

	if (!total_nr_queued(td))
		goto out;

	bio_list_init(&bio_list_on_stack);

839
	throtl_log(td, "dispatch nr_queued=%u read=%u write=%u",
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
			total_nr_queued(td), td->nr_queued[READ],
			td->nr_queued[WRITE]);

	nr_disp = throtl_select_dispatch(td, &bio_list_on_stack);

	if (nr_disp)
		throtl_log(td, "bios disp=%u", nr_disp);

	throtl_schedule_next_dispatch(td);
out:
	spin_unlock_irq(q->queue_lock);

	/*
	 * If we dispatched some requests, unplug the queue to make sure
	 * immediate dispatch
	 */
	if (nr_disp) {
857
		blk_start_plug(&plug);
858 859
		while((bio = bio_list_pop(&bio_list_on_stack)))
			generic_make_request(bio);
860
		blk_finish_plug(&plug);
861 862 863 864 865 866 867 868 869 870 871 872 873 874
	}
	return nr_disp;
}

void blk_throtl_work(struct work_struct *work)
{
	struct throtl_data *td = container_of(work, struct throtl_data,
					throtl_work.work);
	struct request_queue *q = td->queue;

	throtl_dispatch(q);
}

/* Call with queue lock held */
875 876
static void
throtl_schedule_delayed_work(struct throtl_data *td, unsigned long delay)
877 878 879 880
{

	struct delayed_work *dwork = &td->throtl_work;

881
	if (total_nr_queued(td)) {
882
		mod_delayed_work(kthrotld_workqueue, dwork, delay);
883 884 885 886 887
		throtl_log(td, "schedule work. delay=%lu jiffies=%lu",
				delay, jiffies);
	}
}

888 889
static u64 tg_prfill_cpu_rwstat(struct seq_file *sf,
				struct blkg_policy_data *pd, int off)
890
{
891
	struct throtl_grp *tg = pd_to_tg(pd);
892 893 894 895
	struct blkg_rwstat rwstat = { }, tmp;
	int i, cpu;

	for_each_possible_cpu(cpu) {
896
		struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
897 898 899 900 901 902

		tmp = blkg_rwstat_read((void *)sc + off);
		for (i = 0; i < BLKG_RWSTAT_NR; i++)
			rwstat.cnt[i] += tmp.cnt[i];
	}

903
	return __blkg_prfill_rwstat(sf, pd, &rwstat);
904 905
}

906 907
static int tg_print_cpu_rwstat(struct cgroup *cgrp, struct cftype *cft,
			       struct seq_file *sf)
908
{
T
Tejun Heo 已提交
909
	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
910

T
Tejun Heo 已提交
911
	blkcg_print_blkgs(sf, blkcg, tg_prfill_cpu_rwstat, &blkcg_policy_throtl,
912
			  cft->private, true);
913 914 915
	return 0;
}

916 917
static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
			      int off)
918
{
919 920
	struct throtl_grp *tg = pd_to_tg(pd);
	u64 v = *(u64 *)((void *)tg + off);
921

922
	if (v == -1)
923
		return 0;
924
	return __blkg_prfill_u64(sf, pd, v);
925 926
}

927 928
static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
			       int off)
929
{
930 931
	struct throtl_grp *tg = pd_to_tg(pd);
	unsigned int v = *(unsigned int *)((void *)tg + off);
932

933 934
	if (v == -1)
		return 0;
935
	return __blkg_prfill_u64(sf, pd, v);
936 937
}

938 939
static int tg_print_conf_u64(struct cgroup *cgrp, struct cftype *cft,
			     struct seq_file *sf)
940
{
T
Tejun Heo 已提交
941 942
	blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_u64,
			  &blkcg_policy_throtl, cft->private, false);
943
	return 0;
944 945
}

946 947
static int tg_print_conf_uint(struct cgroup *cgrp, struct cftype *cft,
			      struct seq_file *sf)
948
{
T
Tejun Heo 已提交
949 950
	blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_uint,
			  &blkcg_policy_throtl, cft->private, false);
951
	return 0;
952 953
}

954 955
static int tg_set_conf(struct cgroup *cgrp, struct cftype *cft, const char *buf,
		       bool is_u64)
956
{
T
Tejun Heo 已提交
957
	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
958
	struct blkg_conf_ctx ctx;
959
	struct throtl_grp *tg;
960
	struct throtl_data *td;
961 962
	int ret;

T
Tejun Heo 已提交
963
	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
964 965 966
	if (ret)
		return ret;

967
	tg = blkg_to_tg(ctx.blkg);
968
	td = ctx.blkg->q->td;
969

970 971
	if (!ctx.v)
		ctx.v = -1;
972

973 974 975 976
	if (is_u64)
		*(u64 *)((void *)tg + cft->private) = ctx.v;
	else
		*(unsigned int *)((void *)tg + cft->private) = ctx.v;
977

978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
	throtl_log_tg(td, tg, "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
		      tg->bps[READ], tg->bps[WRITE],
		      tg->iops[READ], tg->iops[WRITE]);

	/*
	 * We're already holding queue_lock and know @tg is valid.  Let's
	 * apply the new config directly.
	 *
	 * Restart the slices for both READ and WRITES. It might happen
	 * that a group's limit are dropped suddenly and we don't want to
	 * account recently dispatched IO with new low rate.
	 */
	throtl_start_new_slice(td, tg, 0);
	throtl_start_new_slice(td, tg, 1);

	if (throtl_tg_on_rr(tg)) {
		tg_update_disptime(td, tg);
		throtl_schedule_next_dispatch(td);
	}
997 998

	blkg_conf_finish(&ctx);
999
	return 0;
1000 1001
}

1002 1003
static int tg_set_conf_u64(struct cgroup *cgrp, struct cftype *cft,
			   const char *buf)
1004
{
1005
	return tg_set_conf(cgrp, cft, buf, true);
1006 1007
}

1008 1009
static int tg_set_conf_uint(struct cgroup *cgrp, struct cftype *cft,
			    const char *buf)
1010
{
1011
	return tg_set_conf(cgrp, cft, buf, false);
1012 1013 1014 1015 1016
}

static struct cftype throtl_files[] = {
	{
		.name = "throttle.read_bps_device",
1017 1018 1019
		.private = offsetof(struct throtl_grp, bps[READ]),
		.read_seq_string = tg_print_conf_u64,
		.write_string = tg_set_conf_u64,
1020 1021 1022 1023
		.max_write_len = 256,
	},
	{
		.name = "throttle.write_bps_device",
1024 1025 1026
		.private = offsetof(struct throtl_grp, bps[WRITE]),
		.read_seq_string = tg_print_conf_u64,
		.write_string = tg_set_conf_u64,
1027 1028 1029 1030
		.max_write_len = 256,
	},
	{
		.name = "throttle.read_iops_device",
1031 1032 1033
		.private = offsetof(struct throtl_grp, iops[READ]),
		.read_seq_string = tg_print_conf_uint,
		.write_string = tg_set_conf_uint,
1034 1035 1036 1037
		.max_write_len = 256,
	},
	{
		.name = "throttle.write_iops_device",
1038 1039 1040
		.private = offsetof(struct throtl_grp, iops[WRITE]),
		.read_seq_string = tg_print_conf_uint,
		.write_string = tg_set_conf_uint,
1041 1042 1043 1044
		.max_write_len = 256,
	},
	{
		.name = "throttle.io_service_bytes",
1045
		.private = offsetof(struct tg_stats_cpu, service_bytes),
1046
		.read_seq_string = tg_print_cpu_rwstat,
1047 1048 1049
	},
	{
		.name = "throttle.io_serviced",
1050
		.private = offsetof(struct tg_stats_cpu, serviced),
1051
		.read_seq_string = tg_print_cpu_rwstat,
1052 1053 1054 1055
	},
	{ }	/* terminate */
};

1056
static void throtl_shutdown_wq(struct request_queue *q)
1057 1058 1059 1060 1061 1062
{
	struct throtl_data *td = q->td;

	cancel_delayed_work_sync(&td->throtl_work);
}

T
Tejun Heo 已提交
1063
static struct blkcg_policy blkcg_policy_throtl = {
1064 1065 1066 1067 1068 1069
	.pd_size		= sizeof(struct throtl_grp),
	.cftypes		= throtl_files,

	.pd_init_fn		= throtl_pd_init,
	.pd_exit_fn		= throtl_pd_exit,
	.pd_reset_stats_fn	= throtl_pd_reset_stats,
1070 1071
};

1072
bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
1073 1074 1075 1076
{
	struct throtl_data *td = q->td;
	struct throtl_grp *tg;
	bool rw = bio_data_dir(bio), update_disptime = true;
T
Tejun Heo 已提交
1077
	struct blkcg *blkcg;
1078
	bool throttled = false;
1079 1080 1081

	if (bio->bi_rw & REQ_THROTTLED) {
		bio->bi_rw &= ~REQ_THROTTLED;
1082
		goto out;
1083 1084
	}

1085 1086 1087 1088 1089 1090
	/*
	 * A throtl_grp pointer retrieved under rcu can be used to access
	 * basic fields like stats and io rates. If a group has no rules,
	 * just update the dispatch stats in lockless manner and return.
	 */
	rcu_read_lock();
T
Tejun Heo 已提交
1091
	blkcg = bio_blkcg(bio);
1092
	tg = throtl_lookup_tg(td, blkcg);
1093 1094
	if (tg) {
		if (tg_no_rule_group(tg, rw)) {
1095 1096
			throtl_update_dispatch_stats(tg_to_blkg(tg),
						     bio->bi_size, bio->bi_rw);
1097
			goto out_unlock_rcu;
1098 1099 1100 1101 1102 1103 1104
		}
	}

	/*
	 * Either group has not been allocated yet or it is not an unlimited
	 * IO group
	 */
1105
	spin_lock_irq(q->queue_lock);
1106
	tg = throtl_lookup_create_tg(td, blkcg);
1107 1108
	if (unlikely(!tg))
		goto out_unlock;
1109

1110 1111 1112 1113 1114
	if (tg->nr_queued[rw]) {
		/*
		 * There is already another bio queued in same dir. No
		 * need to update dispatch time.
		 */
1115
		update_disptime = false;
1116
		goto queue_bio;
1117

1118 1119 1120 1121 1122
	}

	/* Bio is with-in rate limit of group */
	if (tg_may_dispatch(td, tg, bio, NULL)) {
		throtl_charge_bio(tg, bio);
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135

		/*
		 * We need to trim slice even when bios are not being queued
		 * otherwise it might happen that a bio is not queued for
		 * a long time and slice keeps on extending and trim is not
		 * called for a long time. Now if limits are reduced suddenly
		 * we take into account all the IO dispatched so far at new
		 * low rate and * newly queued IO gets a really long dispatch
		 * time.
		 *
		 * So keep on trimming slice even if bio is not queued.
		 */
		throtl_trim_slice(td, tg, rw);
1136
		goto out_unlock;
1137 1138 1139
	}

queue_bio:
1140
	throtl_log_tg(td, tg, "[%c] bio. bdisp=%llu sz=%u bps=%llu"
1141 1142
			" iodisp=%u iops=%u queued=%d/%d",
			rw == READ ? 'R' : 'W',
1143
			tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
1144
			tg->io_disp[rw], tg->iops[rw],
1145 1146
			tg->nr_queued[READ], tg->nr_queued[WRITE]);

1147
	bio_associate_current(bio);
1148
	throtl_add_bio_tg(q->td, tg, bio);
1149
	throttled = true;
1150 1151 1152 1153 1154 1155

	if (update_disptime) {
		tg_update_disptime(td, tg);
		throtl_schedule_next_dispatch(td);
	}

1156
out_unlock:
1157
	spin_unlock_irq(q->queue_lock);
1158 1159
out_unlock_rcu:
	rcu_read_unlock();
1160 1161
out:
	return throttled;
1162 1163
}

1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
/**
 * blk_throtl_drain - drain throttled bios
 * @q: request_queue to drain throttled bios for
 *
 * Dispatch all currently throttled bios on @q through ->make_request_fn().
 */
void blk_throtl_drain(struct request_queue *q)
	__releases(q->queue_lock) __acquires(q->queue_lock)
{
	struct throtl_data *td = q->td;
	struct throtl_rb_root *st = &td->tg_service_tree;
	struct throtl_grp *tg;
	struct bio_list bl;
	struct bio *bio;

1179
	queue_lockdep_assert_held(q);
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198

	bio_list_init(&bl);

	while ((tg = throtl_rb_first(st))) {
		throtl_dequeue_tg(td, tg);

		while ((bio = bio_list_peek(&tg->bio_lists[READ])))
			tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
		while ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
			tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
	}
	spin_unlock_irq(q->queue_lock);

	while ((bio = bio_list_pop(&bl)))
		generic_make_request(bio);

	spin_lock_irq(q->queue_lock);
}

1199 1200 1201
int blk_throtl_init(struct request_queue *q)
{
	struct throtl_data *td;
1202
	int ret;
1203 1204 1205 1206 1207 1208

	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
	if (!td)
		return -ENOMEM;

	td->tg_service_tree = THROTL_RB_ROOT;
1209
	INIT_DELAYED_WORK(&td->throtl_work, blk_throtl_work);
1210

1211
	q->td = td;
1212
	td->queue = q;
V
Vivek Goyal 已提交
1213

1214
	/* activate policy */
T
Tejun Heo 已提交
1215
	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1216
	if (ret)
1217
		kfree(td);
1218
	return ret;
1219 1220 1221 1222
}

void blk_throtl_exit(struct request_queue *q)
{
T
Tejun Heo 已提交
1223
	BUG_ON(!q->td);
1224
	throtl_shutdown_wq(q);
T
Tejun Heo 已提交
1225
	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1226
	kfree(q->td);
1227 1228 1229 1230
}

static int __init throtl_init(void)
{
1231 1232 1233 1234
	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
	if (!kthrotld_workqueue)
		panic("Failed to create kthrotld\n");

T
Tejun Heo 已提交
1235
	return blkcg_policy_register(&blkcg_policy_throtl);
1236 1237 1238
}

module_init(throtl_init);