blk-throttle.c 55.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Interface for controlling IO bandwidth on a request queue
 *
 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
12
#include <linux/blk-cgroup.h>
13
#include "blk.h"
14 15 16 17 18 19 20

/* Max dispatch from a group in 1 round */
static int throtl_grp_quantum = 8;

/* Total max dispatch from all groups in one round */
static int throtl_quantum = 32;

21 22 23
/* Throttling is performed over a slice and after that slice is renewed */
#define DFL_THROTL_SLICE_HD (HZ / 10)
#define DFL_THROTL_SLICE_SSD (HZ / 50)
24
#define MAX_THROTL_SLICE (HZ)
25

T
Tejun Heo 已提交
26
static struct blkcg_policy blkcg_policy_throtl;
27

28 29 30
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
/*
 * To implement hierarchical throttling, throtl_grps form a tree and bios
 * are dispatched upwards level by level until they reach the top and get
 * issued.  When dispatching bios from the children and local group at each
 * level, if the bios are dispatched into a single bio_list, there's a risk
 * of a local or child group which can queue many bios at once filling up
 * the list starving others.
 *
 * To avoid such starvation, dispatched bios are queued separately
 * according to where they came from.  When they are again dispatched to
 * the parent, they're popped in round-robin order so that no single source
 * hogs the dispatch window.
 *
 * throtl_qnode is used to keep the queued bios separated by their sources.
 * Bios are queued to throtl_qnode which in turn is queued to
 * throtl_service_queue and then dispatched in round-robin order.
 *
 * It's also used to track the reference counts on blkg's.  A qnode always
 * belongs to a throtl_grp and gets queued on itself or the parent, so
 * incrementing the reference of the associated throtl_grp when a qnode is
 * queued and decrementing when dequeued is enough to keep the whole blkg
 * tree pinned while bios are in flight.
 */
struct throtl_qnode {
	struct list_head	node;		/* service_queue->queued[] */
	struct bio_list		bios;		/* queued bios */
	struct throtl_grp	*tg;		/* tg this qnode belongs to */
};

60
struct throtl_service_queue {
61 62
	struct throtl_service_queue *parent_sq;	/* the parent service_queue */

63 64 65 66
	/*
	 * Bios queued directly to this service_queue or dispatched from
	 * children throtl_grp's.
	 */
67
	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
68 69 70 71 72 73
	unsigned int		nr_queued[2];	/* number of queued bios */

	/*
	 * RB tree of active children throtl_grp's, which are sorted by
	 * their ->disptime.
	 */
74 75 76 77
	struct rb_root		pending_tree;	/* RB tree of active tgs */
	struct rb_node		*first_pending;	/* first node in the tree */
	unsigned int		nr_pending;	/* # queued in the tree */
	unsigned long		first_pending_disptime;	/* disptime of the first tg */
78
	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
79 80
};

81 82
enum tg_state_flags {
	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
83
	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
84 85
};

86 87
#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)

88
enum {
S
Shaohua Li 已提交
89
	LIMIT_LOW,
90 91 92 93
	LIMIT_MAX,
	LIMIT_CNT,
};

94
struct throtl_grp {
95 96 97
	/* must be the first member */
	struct blkg_policy_data pd;

98
	/* active throtl group service_queue member */
99 100
	struct rb_node rb_node;

101 102 103
	/* throtl_data this group belongs to */
	struct throtl_data *td;

104 105 106
	/* this group's service queue */
	struct throtl_service_queue service_queue;

107 108 109 110 111 112 113 114 115 116 117
	/*
	 * qnode_on_self is used when bios are directly queued to this
	 * throtl_grp so that local bios compete fairly with bios
	 * dispatched from children.  qnode_on_parent is used when bios are
	 * dispatched from this throtl_grp into its parent and will compete
	 * with the sibling qnode_on_parents and the parent's
	 * qnode_on_self.
	 */
	struct throtl_qnode qnode_on_self[2];
	struct throtl_qnode qnode_on_parent[2];

118 119 120 121 122 123 124 125 126
	/*
	 * Dispatch time in jiffies. This is the estimated time when group
	 * will unthrottle and is ready to dispatch more bio. It is used as
	 * key to sort active groups in service tree.
	 */
	unsigned long disptime;

	unsigned int flags;

127 128 129
	/* are there any throtl rules between this group and td? */
	bool has_rules[2];

S
Shaohua Li 已提交
130
	/* internally used bytes per second rate limits */
131
	uint64_t bps[2][LIMIT_CNT];
S
Shaohua Li 已提交
132 133
	/* user configured bps limits */
	uint64_t bps_conf[2][LIMIT_CNT];
134

S
Shaohua Li 已提交
135
	/* internally used IOPS limits */
136
	unsigned int iops[2][LIMIT_CNT];
S
Shaohua Li 已提交
137 138
	/* user configured IOPS limits */
	unsigned int iops_conf[2][LIMIT_CNT];
139

140 141
	/* Number of bytes disptached in current slice */
	uint64_t bytes_disp[2];
142 143
	/* Number of bio's dispatched in current slice */
	unsigned int io_disp[2];
144

S
Shaohua Li 已提交
145 146 147 148 149 150 151
	unsigned long last_low_overflow_time[2];

	uint64_t last_bytes_disp[2];
	unsigned int last_io_disp[2];

	unsigned long last_check_time;

152 153
	unsigned long last_dispatch_time[2];

154 155 156 157 158 159 160 161
	/* When did we start a new slice */
	unsigned long slice_start[2];
	unsigned long slice_end[2];
};

struct throtl_data
{
	/* service tree for active throtl groups */
162
	struct throtl_service_queue service_queue;
163 164 165 166 167 168

	struct request_queue *queue;

	/* Total Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

169 170
	unsigned int throtl_slice;

171
	/* Work for dispatching throttled bios */
172
	struct work_struct dispatch_work;
173 174
	unsigned int limit_index;
	bool limit_valid[LIMIT_CNT];
S
Shaohua Li 已提交
175 176 177

	unsigned long low_upgrade_time;
	unsigned long low_downgrade_time;
178 179
};

180 181
static void throtl_pending_timer_fn(unsigned long arg);

182 183 184 185 186
static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
{
	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
}

T
Tejun Heo 已提交
187
static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
188
{
189
	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
190 191
}

T
Tejun Heo 已提交
192
static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
193
{
194
	return pd_to_blkg(&tg->pd);
195 196
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
/**
 * sq_to_tg - return the throl_grp the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 * embedded in throtl_data, %NULL is returned.
 */
static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
{
	if (sq && sq->parent_sq)
		return container_of(sq, struct throtl_grp, service_queue);
	else
		return NULL;
}

/**
 * sq_to_td - return throtl_data the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
216
 * A service_queue can be embedded in either a throtl_grp or throtl_data.
217 218 219 220 221 222 223 224 225 226 227 228
 * Determine the associated throtl_data accordingly and return it.
 */
static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
{
	struct throtl_grp *tg = sq_to_tg(sq);

	if (tg)
		return tg->td;
	else
		return container_of(sq, struct throtl_data, service_queue);
}

229 230
static uint64_t tg_bps_limit(struct throtl_grp *tg, int rw)
{
231 232 233 234 235 236 237 238 239
	struct blkcg_gq *blkg = tg_to_blkg(tg);
	uint64_t ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return U64_MAX;
	ret = tg->bps[rw][tg->td->limit_index];
	if (ret == 0 && tg->td->limit_index == LIMIT_LOW)
		return tg->bps[rw][LIMIT_MAX];
	return ret;
240 241 242 243
}

static unsigned int tg_iops_limit(struct throtl_grp *tg, int rw)
{
244 245 246 247 248 249 250 251 252
	struct blkcg_gq *blkg = tg_to_blkg(tg);
	unsigned int ret;

	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && !blkg->parent)
		return UINT_MAX;
	ret = tg->iops[rw][tg->td->limit_index];
	if (ret == 0 && tg->td->limit_index == LIMIT_LOW)
		return tg->iops[rw][LIMIT_MAX];
	return ret;
253 254
}

255 256 257 258 259 260 261 262 263 264 265 266 267 268
/**
 * throtl_log - log debug message via blktrace
 * @sq: the service_queue being reported
 * @fmt: printf format string
 * @args: printf args
 *
 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 * throtl_grp; otherwise, just "throtl".
 */
#define throtl_log(sq, fmt, args...)	do {				\
	struct throtl_grp *__tg = sq_to_tg((sq));			\
	struct throtl_data *__td = sq_to_td((sq));			\
									\
	(void)__td;							\
269 270
	if (likely(!blk_trace_note_message_enabled(__td->queue)))	\
		break;							\
271 272
	if ((__tg)) {							\
		char __pbuf[128];					\
T
Tejun Heo 已提交
273
									\
274 275 276 277 278
		blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf));	\
		blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
	} else {							\
		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
	}								\
T
Tejun Heo 已提交
279
} while (0)
280

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
{
	INIT_LIST_HEAD(&qn->node);
	bio_list_init(&qn->bios);
	qn->tg = tg;
}

/**
 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 * @bio: bio being added
 * @qn: qnode to add bio to
 * @queued: the service_queue->queued[] list @qn belongs to
 *
 * Add @bio to @qn and put @qn on @queued if it's not already on.
 * @qn->tg's reference count is bumped when @qn is activated.  See the
 * comment on top of throtl_qnode definition for details.
 */
static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
				 struct list_head *queued)
{
	bio_list_add(&qn->bios, bio);
	if (list_empty(&qn->node)) {
		list_add_tail(&qn->node, queued);
		blkg_get(tg_to_blkg(qn->tg));
	}
}

/**
 * throtl_peek_queued - peek the first bio on a qnode list
 * @queued: the qnode list to peek
 */
static struct bio *throtl_peek_queued(struct list_head *queued)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_peek(&qn->bios);
	WARN_ON_ONCE(!bio);
	return bio;
}

/**
 * throtl_pop_queued - pop the first bio form a qnode list
 * @queued: the qnode list to pop a bio from
 * @tg_to_put: optional out argument for throtl_grp to put
 *
 * Pop the first bio from the qnode list @queued.  After popping, the first
 * qnode is removed from @queued if empty or moved to the end of @queued so
 * that the popping order is round-robin.
 *
 * When the first qnode is removed, its associated throtl_grp should be put
 * too.  If @tg_to_put is NULL, this function automatically puts it;
 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 * responsible for putting it.
 */
static struct bio *throtl_pop_queued(struct list_head *queued,
				     struct throtl_grp **tg_to_put)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_pop(&qn->bios);
	WARN_ON_ONCE(!bio);

	if (bio_list_empty(&qn->bios)) {
		list_del_init(&qn->node);
		if (tg_to_put)
			*tg_to_put = qn->tg;
		else
			blkg_put(tg_to_blkg(qn->tg));
	} else {
		list_move_tail(&qn->node, queued);
	}

	return bio;
}

364
/* init a service_queue, assumes the caller zeroed it */
365
static void throtl_service_queue_init(struct throtl_service_queue *sq)
366
{
367 368
	INIT_LIST_HEAD(&sq->queued[0]);
	INIT_LIST_HEAD(&sq->queued[1]);
369
	sq->pending_tree = RB_ROOT;
370 371 372 373
	setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
		    (unsigned long)sq);
}

374 375
static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
{
376
	struct throtl_grp *tg;
T
Tejun Heo 已提交
377
	int rw;
378 379 380

	tg = kzalloc_node(sizeof(*tg), gfp, node);
	if (!tg)
381
		return NULL;
382

383 384 385 386 387 388 389 390
	throtl_service_queue_init(&tg->service_queue);

	for (rw = READ; rw <= WRITE; rw++) {
		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
	}

	RB_CLEAR_NODE(&tg->rb_node);
391 392 393 394
	tg->bps[READ][LIMIT_MAX] = U64_MAX;
	tg->bps[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops[WRITE][LIMIT_MAX] = UINT_MAX;
S
Shaohua Li 已提交
395 396 397 398 399
	tg->bps_conf[READ][LIMIT_MAX] = U64_MAX;
	tg->bps_conf[WRITE][LIMIT_MAX] = U64_MAX;
	tg->iops_conf[READ][LIMIT_MAX] = UINT_MAX;
	tg->iops_conf[WRITE][LIMIT_MAX] = UINT_MAX;
	/* LIMIT_LOW will have default value 0 */
400

401
	return &tg->pd;
402 403
}

404
static void throtl_pd_init(struct blkg_policy_data *pd)
405
{
406 407
	struct throtl_grp *tg = pd_to_tg(pd);
	struct blkcg_gq *blkg = tg_to_blkg(tg);
408
	struct throtl_data *td = blkg->q->td;
409
	struct throtl_service_queue *sq = &tg->service_queue;
410

411
	/*
412
	 * If on the default hierarchy, we switch to properly hierarchical
413 414 415 416 417
	 * behavior where limits on a given throtl_grp are applied to the
	 * whole subtree rather than just the group itself.  e.g. If 16M
	 * read_bps limit is set on the root group, the whole system can't
	 * exceed 16M for the device.
	 *
418
	 * If not on the default hierarchy, the broken flat hierarchy
419 420 421 422 423
	 * behavior is retained where all throtl_grps are treated as if
	 * they're all separate root groups right below throtl_data.
	 * Limits of a group don't interact with limits of other groups
	 * regardless of the position of the group in the hierarchy.
	 */
424
	sq->parent_sq = &td->service_queue;
425
	if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
426
		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
427
	tg->td = td;
428 429
}

430 431 432 433 434 435 436 437
/*
 * Set has_rules[] if @tg or any of its parents have limits configured.
 * This doesn't require walking up to the top of the hierarchy as the
 * parent's has_rules[] is guaranteed to be correct.
 */
static void tg_update_has_rules(struct throtl_grp *tg)
{
	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
438
	struct throtl_data *td = tg->td;
439 440 441 442
	int rw;

	for (rw = READ; rw <= WRITE; rw++)
		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
443 444 445
			(td->limit_valid[td->limit_index] &&
			 (tg_bps_limit(tg, rw) != U64_MAX ||
			  tg_iops_limit(tg, rw) != UINT_MAX));
446 447
}

448
static void throtl_pd_online(struct blkg_policy_data *pd)
449
{
450
	struct throtl_grp *tg = pd_to_tg(pd);
451 452 453 454
	/*
	 * We don't want new groups to escape the limits of its ancestors.
	 * Update has_rules[] after a new group is brought online.
	 */
455 456 457
	tg_update_has_rules(tg);
	tg->last_dispatch_time[READ] = jiffies;
	tg->last_dispatch_time[WRITE] = jiffies;
458 459
}

S
Shaohua Li 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
static void blk_throtl_update_limit_valid(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;
	bool low_valid = false;

	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg->bps[READ][LIMIT_LOW] || tg->bps[WRITE][LIMIT_LOW] ||
		    tg->iops[READ][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
			low_valid = true;
	}
	rcu_read_unlock();

	td->limit_valid[LIMIT_LOW] = low_valid;
}

479
static void throtl_upgrade_state(struct throtl_data *td);
S
Shaohua Li 已提交
480 481 482 483 484 485 486 487 488 489 490
static void throtl_pd_offline(struct blkg_policy_data *pd)
{
	struct throtl_grp *tg = pd_to_tg(pd);

	tg->bps[READ][LIMIT_LOW] = 0;
	tg->bps[WRITE][LIMIT_LOW] = 0;
	tg->iops[READ][LIMIT_LOW] = 0;
	tg->iops[WRITE][LIMIT_LOW] = 0;

	blk_throtl_update_limit_valid(tg->td);

491 492
	if (!tg->td->limit_valid[tg->td->limit_index])
		throtl_upgrade_state(tg->td);
S
Shaohua Li 已提交
493 494
}

495 496
static void throtl_pd_free(struct blkg_policy_data *pd)
{
497 498
	struct throtl_grp *tg = pd_to_tg(pd);

499
	del_timer_sync(&tg->service_queue.pending_timer);
500
	kfree(tg);
501 502
}

503 504
static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue *parent_sq)
505 506
{
	/* Service tree is empty */
507
	if (!parent_sq->nr_pending)
508 509
		return NULL;

510 511
	if (!parent_sq->first_pending)
		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
512

513 514
	if (parent_sq->first_pending)
		return rb_entry_tg(parent_sq->first_pending);
515 516 517 518 519 520 521 522 523 524

	return NULL;
}

static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

525 526
static void throtl_rb_erase(struct rb_node *n,
			    struct throtl_service_queue *parent_sq)
527
{
528 529 530 531
	if (parent_sq->first_pending == n)
		parent_sq->first_pending = NULL;
	rb_erase_init(n, &parent_sq->pending_tree);
	--parent_sq->nr_pending;
532 533
}

534
static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
535 536 537
{
	struct throtl_grp *tg;

538
	tg = throtl_rb_first(parent_sq);
539 540 541
	if (!tg)
		return;

542
	parent_sq->first_pending_disptime = tg->disptime;
543 544
}

545
static void tg_service_queue_add(struct throtl_grp *tg)
546
{
547
	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
548
	struct rb_node **node = &parent_sq->pending_tree.rb_node;
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
	struct rb_node *parent = NULL;
	struct throtl_grp *__tg;
	unsigned long key = tg->disptime;
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__tg = rb_entry_tg(parent);

		if (time_before(key, __tg->disptime))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
567
		parent_sq->first_pending = &tg->rb_node;
568 569

	rb_link_node(&tg->rb_node, parent, node);
570
	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
571 572
}

573
static void __throtl_enqueue_tg(struct throtl_grp *tg)
574
{
575
	tg_service_queue_add(tg);
576
	tg->flags |= THROTL_TG_PENDING;
577
	tg->service_queue.parent_sq->nr_pending++;
578 579
}

580
static void throtl_enqueue_tg(struct throtl_grp *tg)
581
{
582
	if (!(tg->flags & THROTL_TG_PENDING))
583
		__throtl_enqueue_tg(tg);
584 585
}

586
static void __throtl_dequeue_tg(struct throtl_grp *tg)
587
{
588
	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
589
	tg->flags &= ~THROTL_TG_PENDING;
590 591
}

592
static void throtl_dequeue_tg(struct throtl_grp *tg)
593
{
594
	if (tg->flags & THROTL_TG_PENDING)
595
		__throtl_dequeue_tg(tg);
596 597
}

598
/* Call with queue lock held */
599 600
static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
					  unsigned long expires)
601
{
602
	unsigned long max_expire = jiffies + 8 * sq_to_tg(sq)->td->throtl_slice;
603 604 605 606 607 608 609 610 611 612

	/*
	 * Since we are adjusting the throttle limit dynamically, the sleep
	 * time calculated according to previous limit might be invalid. It's
	 * possible the cgroup sleep time is very long and no other cgroups
	 * have IO running so notify the limit changes. Make sure the cgroup
	 * doesn't sleep too long to avoid the missed notification.
	 */
	if (time_after(expires, max_expire))
		expires = max_expire;
613 614 615
	mod_timer(&sq->pending_timer, expires);
	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
		   expires - jiffies, jiffies);
616 617
}

618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
/**
 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 * @sq: the service_queue to schedule dispatch for
 * @force: force scheduling
 *
 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 * dispatch time of the first pending child.  Returns %true if either timer
 * is armed or there's no pending child left.  %false if the current
 * dispatch window is still open and the caller should continue
 * dispatching.
 *
 * If @force is %true, the dispatch timer is always scheduled and this
 * function is guaranteed to return %true.  This is to be used when the
 * caller can't dispatch itself and needs to invoke pending_timer
 * unconditionally.  Note that forced scheduling is likely to induce short
 * delay before dispatch starts even if @sq->first_pending_disptime is not
 * in the future and thus shouldn't be used in hot paths.
 */
static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
					  bool force)
638
{
639
	/* any pending children left? */
640
	if (!sq->nr_pending)
641
		return true;
642

643
	update_min_dispatch_time(sq);
644

645
	/* is the next dispatch time in the future? */
646
	if (force || time_after(sq->first_pending_disptime, jiffies)) {
647
		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
648
		return true;
649 650
	}

651 652
	/* tell the caller to continue dispatching */
	return false;
653 654
}

655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
		bool rw, unsigned long start)
{
	tg->bytes_disp[rw] = 0;
	tg->io_disp[rw] = 0;

	/*
	 * Previous slice has expired. We must have trimmed it after last
	 * bio dispatch. That means since start of last slice, we never used
	 * that bandwidth. Do try to make use of that bandwidth while giving
	 * credit.
	 */
	if (time_after_eq(start, tg->slice_start[rw]))
		tg->slice_start[rw] = start;

670
	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
671 672 673 674 675 676
	throtl_log(&tg->service_queue,
		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
}

677
static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
678 679
{
	tg->bytes_disp[rw] = 0;
680
	tg->io_disp[rw] = 0;
681
	tg->slice_start[rw] = jiffies;
682
	tg->slice_end[rw] = jiffies + tg->td->throtl_slice;
683 684 685 686
	throtl_log(&tg->service_queue,
		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
687 688
}

689 690
static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
					unsigned long jiffy_end)
691
{
692
	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
693 694
}

695 696
static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
				       unsigned long jiffy_end)
697
{
698
	tg->slice_end[rw] = roundup(jiffy_end, tg->td->throtl_slice);
699 700 701 702
	throtl_log(&tg->service_queue,
		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
703 704 705
}

/* Determine if previously allocated or extended slice is complete or not */
706
static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
707 708
{
	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
709
		return false;
710 711 712 713 714

	return 1;
}

/* Trim the used slices and adjust slice start accordingly */
715
static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
716
{
717 718
	unsigned long nr_slices, time_elapsed, io_trim;
	u64 bytes_trim, tmp;
719 720 721 722 723 724 725 726

	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));

	/*
	 * If bps are unlimited (-1), then time slice don't get
	 * renewed. Don't try to trim the slice if slice is used. A new
	 * slice will start when appropriate.
	 */
727
	if (throtl_slice_used(tg, rw))
728 729
		return;

730 731 732 733 734 735 736 737
	/*
	 * A bio has been dispatched. Also adjust slice_end. It might happen
	 * that initially cgroup limit was very low resulting in high
	 * slice_end, but later limit was bumped up and bio was dispached
	 * sooner, then we need to reduce slice_end. A high bogus slice_end
	 * is bad because it does not allow new slice to start.
	 */

738
	throtl_set_slice_end(tg, rw, jiffies + tg->td->throtl_slice);
739

740 741
	time_elapsed = jiffies - tg->slice_start[rw];

742
	nr_slices = time_elapsed / tg->td->throtl_slice;
743 744 745

	if (!nr_slices)
		return;
746
	tmp = tg_bps_limit(tg, rw) * tg->td->throtl_slice * nr_slices;
747 748
	do_div(tmp, HZ);
	bytes_trim = tmp;
749

750 751
	io_trim = (tg_iops_limit(tg, rw) * tg->td->throtl_slice * nr_slices) /
		HZ;
752

753
	if (!bytes_trim && !io_trim)
754 755 756 757 758 759 760
		return;

	if (tg->bytes_disp[rw] >= bytes_trim)
		tg->bytes_disp[rw] -= bytes_trim;
	else
		tg->bytes_disp[rw] = 0;

761 762 763 764 765
	if (tg->io_disp[rw] >= io_trim)
		tg->io_disp[rw] -= io_trim;
	else
		tg->io_disp[rw] = 0;

766
	tg->slice_start[rw] += nr_slices * tg->td->throtl_slice;
767

768 769 770 771
	throtl_log(&tg->service_queue,
		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
772 773
}

774 775
static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
				  unsigned long *wait)
776 777
{
	bool rw = bio_data_dir(bio);
778
	unsigned int io_allowed;
779
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
780
	u64 tmp;
781

782
	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
783

784 785
	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
786
		jiffy_elapsed_rnd = tg->td->throtl_slice;
787

788
	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
789

790 791 792 793 794 795 796
	/*
	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
	 * will allow dispatch after 1 second and after that slice should
	 * have been trimmed.
	 */

797
	tmp = (u64)tg_iops_limit(tg, rw) * jiffy_elapsed_rnd;
798 799 800 801 802 803
	do_div(tmp, HZ);

	if (tmp > UINT_MAX)
		io_allowed = UINT_MAX;
	else
		io_allowed = tmp;
804 805

	if (tg->io_disp[rw] + 1 <= io_allowed) {
806 807
		if (wait)
			*wait = 0;
808
		return true;
809 810
	}

811
	/* Calc approx time to dispatch */
812
	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ) / tg_iops_limit(tg, rw) + 1;
813 814 815 816 817 818 819 820 821 822 823

	if (jiffy_wait > jiffy_elapsed)
		jiffy_wait = jiffy_wait - jiffy_elapsed;
	else
		jiffy_wait = 1;

	if (wait)
		*wait = jiffy_wait;
	return 0;
}

824 825
static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
				 unsigned long *wait)
826 827
{
	bool rw = bio_data_dir(bio);
828
	u64 bytes_allowed, extra_bytes, tmp;
829
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
830 831 832 833 834

	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];

	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
835
		jiffy_elapsed_rnd = tg->td->throtl_slice;
836

837
	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, tg->td->throtl_slice);
838

839
	tmp = tg_bps_limit(tg, rw) * jiffy_elapsed_rnd;
840
	do_div(tmp, HZ);
841
	bytes_allowed = tmp;
842

843
	if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
844 845
		if (wait)
			*wait = 0;
846
		return true;
847 848 849
	}

	/* Calc approx time to dispatch */
850
	extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
851
	jiffy_wait = div64_u64(extra_bytes * HZ, tg_bps_limit(tg, rw));
852 853 854 855 856 857 858 859 860 861 862

	if (!jiffy_wait)
		jiffy_wait = 1;

	/*
	 * This wait time is without taking into consideration the rounding
	 * up we did. Add that time also.
	 */
	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
	if (wait)
		*wait = jiffy_wait;
863 864 865 866 867 868 869
	return 0;
}

/*
 * Returns whether one can dispatch a bio or not. Also returns approx number
 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 */
870 871
static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
			    unsigned long *wait)
872 873 874 875 876 877 878 879 880 881
{
	bool rw = bio_data_dir(bio);
	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;

	/*
 	 * Currently whole state machine of group depends on first bio
	 * queued in the group bio list. So one should not be calling
	 * this function with a different bio if there are other bios
	 * queued.
	 */
882
	BUG_ON(tg->service_queue.nr_queued[rw] &&
883
	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
884

885
	/* If tg->bps = -1, then BW is unlimited */
886 887
	if (tg_bps_limit(tg, rw) == U64_MAX &&
	    tg_iops_limit(tg, rw) == UINT_MAX) {
888 889
		if (wait)
			*wait = 0;
890
		return true;
891 892 893 894 895
	}

	/*
	 * If previous slice expired, start a new one otherwise renew/extend
	 * existing slice to make sure it is at least throtl_slice interval
896 897 898
	 * long since now. New slice is started only for empty throttle group.
	 * If there is queued bio, that means there should be an active
	 * slice and it should be extended instead.
899
	 */
900
	if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
901
		throtl_start_new_slice(tg, rw);
902
	else {
903 904 905 906
		if (time_before(tg->slice_end[rw],
		    jiffies + tg->td->throtl_slice))
			throtl_extend_slice(tg, rw,
				jiffies + tg->td->throtl_slice);
907 908
	}

909 910
	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
911 912 913 914 915 916 917 918 919 920 921
		if (wait)
			*wait = 0;
		return 1;
	}

	max_wait = max(bps_wait, iops_wait);

	if (wait)
		*wait = max_wait;

	if (time_before(tg->slice_end[rw], jiffies + max_wait))
922
		throtl_extend_slice(tg, rw, jiffies + max_wait);
923 924 925 926 927 928 929 930 931

	return 0;
}

static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
	bool rw = bio_data_dir(bio);

	/* Charge the bio to the group */
932
	tg->bytes_disp[rw] += bio->bi_iter.bi_size;
933
	tg->io_disp[rw]++;
S
Shaohua Li 已提交
934 935
	tg->last_bytes_disp[rw] += bio->bi_iter.bi_size;
	tg->last_io_disp[rw]++;
936

937
	/*
938
	 * BIO_THROTTLED is used to prevent the same bio to be throttled
939 940 941 942
	 * more than once as a throttled bio will go through blk-throtl the
	 * second time when it eventually gets issued.  Set it when a bio
	 * is being charged to a tg.
	 */
943 944
	if (!bio_flagged(bio, BIO_THROTTLED))
		bio_set_flag(bio, BIO_THROTTLED);
945 946
}

947 948 949 950 951 952 953 954 955 956 957
/**
 * throtl_add_bio_tg - add a bio to the specified throtl_grp
 * @bio: bio to add
 * @qn: qnode to use
 * @tg: the target throtl_grp
 *
 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
 * tg->qnode_on_self[] is used.
 */
static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
			      struct throtl_grp *tg)
958
{
959
	struct throtl_service_queue *sq = &tg->service_queue;
960 961
	bool rw = bio_data_dir(bio);

962 963 964
	if (!qn)
		qn = &tg->qnode_on_self[rw];

965 966 967 968 969 970 971 972 973
	/*
	 * If @tg doesn't currently have any bios queued in the same
	 * direction, queueing @bio can change when @tg should be
	 * dispatched.  Mark that @tg was empty.  This is automatically
	 * cleaered on the next tg_update_disptime().
	 */
	if (!sq->nr_queued[rw])
		tg->flags |= THROTL_TG_WAS_EMPTY;

974 975
	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);

976
	sq->nr_queued[rw]++;
977
	throtl_enqueue_tg(tg);
978 979
}

980
static void tg_update_disptime(struct throtl_grp *tg)
981
{
982
	struct throtl_service_queue *sq = &tg->service_queue;
983 984 985
	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
	struct bio *bio;

986 987
	bio = throtl_peek_queued(&sq->queued[READ]);
	if (bio)
988
		tg_may_dispatch(tg, bio, &read_wait);
989

990 991
	bio = throtl_peek_queued(&sq->queued[WRITE]);
	if (bio)
992
		tg_may_dispatch(tg, bio, &write_wait);
993 994 995 996 997

	min_wait = min(read_wait, write_wait);
	disptime = jiffies + min_wait;

	/* Update dispatch time */
998
	throtl_dequeue_tg(tg);
999
	tg->disptime = disptime;
1000
	throtl_enqueue_tg(tg);
1001 1002 1003

	/* see throtl_add_bio_tg() */
	tg->flags &= ~THROTL_TG_WAS_EMPTY;
1004 1005
}

1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
					struct throtl_grp *parent_tg, bool rw)
{
	if (throtl_slice_used(parent_tg, rw)) {
		throtl_start_new_slice_with_credit(parent_tg, rw,
				child_tg->slice_start[rw]);
	}

}

1016
static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1017
{
1018
	struct throtl_service_queue *sq = &tg->service_queue;
1019 1020
	struct throtl_service_queue *parent_sq = sq->parent_sq;
	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1021
	struct throtl_grp *tg_to_put = NULL;
1022 1023
	struct bio *bio;

1024 1025 1026 1027 1028 1029 1030
	/*
	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
	 * from @tg may put its reference and @parent_sq might end up
	 * getting released prematurely.  Remember the tg to put and put it
	 * after @bio is transferred to @parent_sq.
	 */
	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1031
	sq->nr_queued[rw]--;
1032 1033

	throtl_charge_bio(tg, bio);
1034 1035 1036 1037 1038 1039 1040 1041 1042

	/*
	 * If our parent is another tg, we just need to transfer @bio to
	 * the parent using throtl_add_bio_tg().  If our parent is
	 * @td->service_queue, @bio is ready to be issued.  Put it on its
	 * bio_lists[] and decrease total number queued.  The caller is
	 * responsible for issuing these bios.
	 */
	if (parent_tg) {
1043
		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1044
		start_parent_slice_with_credit(tg, parent_tg, rw);
1045
	} else {
1046 1047
		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
				     &parent_sq->queued[rw]);
1048 1049 1050
		BUG_ON(tg->td->nr_queued[rw] <= 0);
		tg->td->nr_queued[rw]--;
	}
1051

1052
	throtl_trim_slice(tg, rw);
1053

1054 1055
	if (tg_to_put)
		blkg_put(tg_to_blkg(tg_to_put));
1056 1057
}

1058
static int throtl_dispatch_tg(struct throtl_grp *tg)
1059
{
1060
	struct throtl_service_queue *sq = &tg->service_queue;
1061 1062
	unsigned int nr_reads = 0, nr_writes = 0;
	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1063
	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1064 1065 1066 1067
	struct bio *bio;

	/* Try to dispatch 75% READS and 25% WRITES */

1068
	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1069
	       tg_may_dispatch(tg, bio, NULL)) {
1070

1071
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1072 1073 1074 1075 1076 1077
		nr_reads++;

		if (nr_reads >= max_nr_reads)
			break;
	}

1078
	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1079
	       tg_may_dispatch(tg, bio, NULL)) {
1080

1081
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1082 1083 1084 1085 1086 1087 1088 1089 1090
		nr_writes++;

		if (nr_writes >= max_nr_writes)
			break;
	}

	return nr_reads + nr_writes;
}

1091
static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1092 1093 1094 1095
{
	unsigned int nr_disp = 0;

	while (1) {
1096 1097
		struct throtl_grp *tg = throtl_rb_first(parent_sq);
		struct throtl_service_queue *sq = &tg->service_queue;
1098 1099 1100 1101 1102 1103 1104

		if (!tg)
			break;

		if (time_before(jiffies, tg->disptime))
			break;

1105
		throtl_dequeue_tg(tg);
1106

1107
		nr_disp += throtl_dispatch_tg(tg);
1108

1109
		if (sq->nr_queued[0] || sq->nr_queued[1])
1110
			tg_update_disptime(tg);
1111 1112 1113 1114 1115 1116 1117 1118

		if (nr_disp >= throtl_quantum)
			break;
	}

	return nr_disp;
}

1119 1120
static bool throtl_can_upgrade(struct throtl_data *td,
	struct throtl_grp *this_tg);
1121 1122 1123 1124 1125 1126 1127
/**
 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
 * @arg: the throtl_service_queue being serviced
 *
 * This timer is armed when a child throtl_grp with active bio's become
 * pending and queued on the service_queue's pending_tree and expires when
 * the first child throtl_grp should be dispatched.  This function
1128 1129 1130 1131 1132 1133 1134
 * dispatches bio's from the children throtl_grps to the parent
 * service_queue.
 *
 * If the parent's parent is another throtl_grp, dispatching is propagated
 * by either arming its pending_timer or repeating dispatch directly.  If
 * the top-level service_tree is reached, throtl_data->dispatch_work is
 * kicked so that the ready bio's are issued.
1135
 */
1136 1137 1138
static void throtl_pending_timer_fn(unsigned long arg)
{
	struct throtl_service_queue *sq = (void *)arg;
1139
	struct throtl_grp *tg = sq_to_tg(sq);
1140
	struct throtl_data *td = sq_to_td(sq);
1141
	struct request_queue *q = td->queue;
1142 1143
	struct throtl_service_queue *parent_sq;
	bool dispatched;
1144
	int ret;
1145 1146

	spin_lock_irq(q->queue_lock);
1147 1148 1149
	if (throtl_can_upgrade(td, NULL))
		throtl_upgrade_state(td);

1150 1151 1152
again:
	parent_sq = sq->parent_sq;
	dispatched = false;
1153

1154 1155
	while (true) {
		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1156 1157
			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1158 1159 1160 1161 1162 1163

		ret = throtl_select_dispatch(sq);
		if (ret) {
			throtl_log(sq, "bios disp=%u", ret);
			dispatched = true;
		}
1164

1165 1166
		if (throtl_schedule_next_dispatch(sq, false))
			break;
1167

1168 1169 1170 1171
		/* this dispatch windows is still open, relax and repeat */
		spin_unlock_irq(q->queue_lock);
		cpu_relax();
		spin_lock_irq(q->queue_lock);
1172
	}
1173

1174 1175
	if (!dispatched)
		goto out_unlock;
1176

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
	if (parent_sq) {
		/* @parent_sq is another throl_grp, propagate dispatch */
		if (tg->flags & THROTL_TG_WAS_EMPTY) {
			tg_update_disptime(tg);
			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
				/* window is already open, repeat dispatching */
				sq = parent_sq;
				tg = sq_to_tg(sq);
				goto again;
			}
		}
	} else {
		/* reached the top-level, queue issueing */
		queue_work(kthrotld_workqueue, &td->dispatch_work);
	}
out_unlock:
1193
	spin_unlock_irq(q->queue_lock);
1194
}
1195

1196 1197 1198 1199 1200 1201 1202 1203
/**
 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
 * @work: work item being executed
 *
 * This function is queued for execution when bio's reach the bio_lists[]
 * of throtl_data->service_queue.  Those bio's are ready and issued by this
 * function.
 */
1204
static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
{
	struct throtl_data *td = container_of(work, struct throtl_data,
					      dispatch_work);
	struct throtl_service_queue *td_sq = &td->service_queue;
	struct request_queue *q = td->queue;
	struct bio_list bio_list_on_stack;
	struct bio *bio;
	struct blk_plug plug;
	int rw;

	bio_list_init(&bio_list_on_stack);

	spin_lock_irq(q->queue_lock);
1218 1219 1220
	for (rw = READ; rw <= WRITE; rw++)
		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
			bio_list_add(&bio_list_on_stack, bio);
1221 1222 1223
	spin_unlock_irq(q->queue_lock);

	if (!bio_list_empty(&bio_list_on_stack)) {
1224
		blk_start_plug(&plug);
1225 1226
		while((bio = bio_list_pop(&bio_list_on_stack)))
			generic_make_request(bio);
1227
		blk_finish_plug(&plug);
1228 1229 1230
	}
}

1231 1232
static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
			      int off)
1233
{
1234 1235
	struct throtl_grp *tg = pd_to_tg(pd);
	u64 v = *(u64 *)((void *)tg + off);
1236

1237
	if (v == U64_MAX)
1238
		return 0;
1239
	return __blkg_prfill_u64(sf, pd, v);
1240 1241
}

1242 1243
static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
			       int off)
1244
{
1245 1246
	struct throtl_grp *tg = pd_to_tg(pd);
	unsigned int v = *(unsigned int *)((void *)tg + off);
1247

1248
	if (v == UINT_MAX)
1249
		return 0;
1250
	return __blkg_prfill_u64(sf, pd, v);
1251 1252
}

1253
static int tg_print_conf_u64(struct seq_file *sf, void *v)
1254
{
1255 1256
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1257
	return 0;
1258 1259
}

1260
static int tg_print_conf_uint(struct seq_file *sf, void *v)
1261
{
1262 1263
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1264
	return 0;
1265 1266
}

1267
static void tg_conf_updated(struct throtl_grp *tg)
1268
{
1269
	struct throtl_service_queue *sq = &tg->service_queue;
1270
	struct cgroup_subsys_state *pos_css;
1271
	struct blkcg_gq *blkg;
1272

1273 1274
	throtl_log(&tg->service_queue,
		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1275 1276
		   tg_bps_limit(tg, READ), tg_bps_limit(tg, WRITE),
		   tg_iops_limit(tg, READ), tg_iops_limit(tg, WRITE));
1277

1278 1279 1280 1281 1282 1283 1284
	/*
	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
	 * considered to have rules if either the tg itself or any of its
	 * ancestors has rules.  This identifies groups without any
	 * restrictions in the whole hierarchy and allows them to bypass
	 * blk-throttle.
	 */
1285
	blkg_for_each_descendant_pre(blkg, pos_css, tg_to_blkg(tg))
1286 1287
		tg_update_has_rules(blkg_to_tg(blkg));

1288 1289 1290 1291 1292 1293 1294 1295
	/*
	 * We're already holding queue_lock and know @tg is valid.  Let's
	 * apply the new config directly.
	 *
	 * Restart the slices for both READ and WRITES. It might happen
	 * that a group's limit are dropped suddenly and we don't want to
	 * account recently dispatched IO with new low rate.
	 */
1296 1297
	throtl_start_new_slice(tg, 0);
	throtl_start_new_slice(tg, 1);
1298

1299
	if (tg->flags & THROTL_TG_PENDING) {
1300
		tg_update_disptime(tg);
1301
		throtl_schedule_next_dispatch(sq->parent_sq, true);
1302
	}
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
}

static ssize_t tg_set_conf(struct kernfs_open_file *of,
			   char *buf, size_t nbytes, loff_t off, bool is_u64)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	int ret;
	u64 v;

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	ret = -EINVAL;
	if (sscanf(ctx.body, "%llu", &v) != 1)
		goto out_finish;
	if (!v)
1322
		v = U64_MAX;
1323 1324 1325 1326 1327 1328 1329

	tg = blkg_to_tg(ctx.blkg);

	if (is_u64)
		*(u64 *)((void *)tg + of_cft(of)->private) = v;
	else
		*(unsigned int *)((void *)tg + of_cft(of)->private) = v;
1330

1331
	tg_conf_updated(tg);
1332 1333
	ret = 0;
out_finish:
1334
	blkg_conf_finish(&ctx);
1335
	return ret ?: nbytes;
1336 1337
}

1338 1339
static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
1340
{
1341
	return tg_set_conf(of, buf, nbytes, off, true);
1342 1343
}

1344 1345
static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
1346
{
1347
	return tg_set_conf(of, buf, nbytes, off, false);
1348 1349
}

1350
static struct cftype throtl_legacy_files[] = {
1351 1352
	{
		.name = "throttle.read_bps_device",
1353
		.private = offsetof(struct throtl_grp, bps[READ][LIMIT_MAX]),
1354
		.seq_show = tg_print_conf_u64,
1355
		.write = tg_set_conf_u64,
1356 1357 1358
	},
	{
		.name = "throttle.write_bps_device",
1359
		.private = offsetof(struct throtl_grp, bps[WRITE][LIMIT_MAX]),
1360
		.seq_show = tg_print_conf_u64,
1361
		.write = tg_set_conf_u64,
1362 1363 1364
	},
	{
		.name = "throttle.read_iops_device",
1365
		.private = offsetof(struct throtl_grp, iops[READ][LIMIT_MAX]),
1366
		.seq_show = tg_print_conf_uint,
1367
		.write = tg_set_conf_uint,
1368 1369 1370
	},
	{
		.name = "throttle.write_iops_device",
1371
		.private = offsetof(struct throtl_grp, iops[WRITE][LIMIT_MAX]),
1372
		.seq_show = tg_print_conf_uint,
1373
		.write = tg_set_conf_uint,
1374 1375 1376
	},
	{
		.name = "throttle.io_service_bytes",
1377 1378
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_bytes,
1379 1380 1381
	},
	{
		.name = "throttle.io_serviced",
1382 1383
		.private = (unsigned long)&blkcg_policy_throtl,
		.seq_show = blkg_print_stat_ios,
1384 1385 1386 1387
	},
	{ }	/* terminate */
};

S
Shaohua Li 已提交
1388
static u64 tg_prfill_limit(struct seq_file *sf, struct blkg_policy_data *pd,
1389 1390 1391 1392 1393
			 int off)
{
	struct throtl_grp *tg = pd_to_tg(pd);
	const char *dname = blkg_dev_name(pd->blkg);
	char bufs[4][21] = { "max", "max", "max", "max" };
S
Shaohua Li 已提交
1394 1395
	u64 bps_dft;
	unsigned int iops_dft;
1396 1397 1398

	if (!dname)
		return 0;
1399

S
Shaohua Li 已提交
1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
	if (off == LIMIT_LOW) {
		bps_dft = 0;
		iops_dft = 0;
	} else {
		bps_dft = U64_MAX;
		iops_dft = UINT_MAX;
	}

	if (tg->bps_conf[READ][off] == bps_dft &&
	    tg->bps_conf[WRITE][off] == bps_dft &&
	    tg->iops_conf[READ][off] == iops_dft &&
	    tg->iops_conf[WRITE][off] == iops_dft)
1412 1413
		return 0;

S
Shaohua Li 已提交
1414
	if (tg->bps_conf[READ][off] != bps_dft)
1415
		snprintf(bufs[0], sizeof(bufs[0]), "%llu",
S
Shaohua Li 已提交
1416 1417
			tg->bps_conf[READ][off]);
	if (tg->bps_conf[WRITE][off] != bps_dft)
1418
		snprintf(bufs[1], sizeof(bufs[1]), "%llu",
S
Shaohua Li 已提交
1419 1420
			tg->bps_conf[WRITE][off]);
	if (tg->iops_conf[READ][off] != iops_dft)
1421
		snprintf(bufs[2], sizeof(bufs[2]), "%u",
S
Shaohua Li 已提交
1422 1423
			tg->iops_conf[READ][off]);
	if (tg->iops_conf[WRITE][off] != iops_dft)
1424
		snprintf(bufs[3], sizeof(bufs[3]), "%u",
S
Shaohua Li 已提交
1425
			tg->iops_conf[WRITE][off]);
1426 1427 1428 1429 1430 1431

	seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s\n",
		   dname, bufs[0], bufs[1], bufs[2], bufs[3]);
	return 0;
}

S
Shaohua Li 已提交
1432
static int tg_print_limit(struct seq_file *sf, void *v)
1433
{
S
Shaohua Li 已提交
1434
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_limit,
1435 1436 1437 1438
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
	return 0;
}

S
Shaohua Li 已提交
1439
static ssize_t tg_set_limit(struct kernfs_open_file *of,
1440 1441 1442 1443 1444 1445 1446
			  char *buf, size_t nbytes, loff_t off)
{
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
	struct blkg_conf_ctx ctx;
	struct throtl_grp *tg;
	u64 v[4];
	int ret;
S
Shaohua Li 已提交
1447
	int index = of_cft(of)->private;
1448 1449 1450 1451 1452 1453 1454

	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
	if (ret)
		return ret;

	tg = blkg_to_tg(ctx.blkg);

S
Shaohua Li 已提交
1455 1456 1457 1458
	v[0] = tg->bps_conf[READ][index];
	v[1] = tg->bps_conf[WRITE][index];
	v[2] = tg->iops_conf[READ][index];
	v[3] = tg->iops_conf[WRITE][index];
1459 1460 1461 1462

	while (true) {
		char tok[27];	/* wiops=18446744073709551616 */
		char *p;
1463
		u64 val = U64_MAX;
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
		int len;

		if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
			break;
		if (tok[0] == '\0')
			break;
		ctx.body += len;

		ret = -EINVAL;
		p = tok;
		strsep(&p, "=");
		if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
			goto out_finish;

		ret = -ERANGE;
		if (!val)
			goto out_finish;

		ret = -EINVAL;
		if (!strcmp(tok, "rbps"))
			v[0] = val;
		else if (!strcmp(tok, "wbps"))
			v[1] = val;
		else if (!strcmp(tok, "riops"))
			v[2] = min_t(u64, val, UINT_MAX);
		else if (!strcmp(tok, "wiops"))
			v[3] = min_t(u64, val, UINT_MAX);
		else
			goto out_finish;
	}

S
Shaohua Li 已提交
1495 1496 1497 1498
	tg->bps_conf[READ][index] = v[0];
	tg->bps_conf[WRITE][index] = v[1];
	tg->iops_conf[READ][index] = v[2];
	tg->iops_conf[WRITE][index] = v[3];
1499

S
Shaohua Li 已提交
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
	if (index == LIMIT_MAX) {
		tg->bps[READ][index] = v[0];
		tg->bps[WRITE][index] = v[1];
		tg->iops[READ][index] = v[2];
		tg->iops[WRITE][index] = v[3];
	}
	tg->bps[READ][LIMIT_LOW] = min(tg->bps_conf[READ][LIMIT_LOW],
		tg->bps_conf[READ][LIMIT_MAX]);
	tg->bps[WRITE][LIMIT_LOW] = min(tg->bps_conf[WRITE][LIMIT_LOW],
		tg->bps_conf[WRITE][LIMIT_MAX]);
	tg->iops[READ][LIMIT_LOW] = min(tg->iops_conf[READ][LIMIT_LOW],
		tg->iops_conf[READ][LIMIT_MAX]);
	tg->iops[WRITE][LIMIT_LOW] = min(tg->iops_conf[WRITE][LIMIT_LOW],
		tg->iops_conf[WRITE][LIMIT_MAX]);

	if (index == LIMIT_LOW) {
		blk_throtl_update_limit_valid(tg->td);
		if (tg->td->limit_valid[LIMIT_LOW])
			tg->td->limit_index = LIMIT_LOW;
	}
1520 1521 1522 1523 1524 1525 1526 1527
	tg_conf_updated(tg);
	ret = 0;
out_finish:
	blkg_conf_finish(&ctx);
	return ret ?: nbytes;
}

static struct cftype throtl_files[] = {
S
Shaohua Li 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
	{
		.name = "low",
		.flags = CFTYPE_NOT_ON_ROOT,
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_LOW,
	},
#endif
1537 1538 1539
	{
		.name = "max",
		.flags = CFTYPE_NOT_ON_ROOT,
S
Shaohua Li 已提交
1540 1541 1542
		.seq_show = tg_print_limit,
		.write = tg_set_limit,
		.private = LIMIT_MAX,
1543 1544 1545 1546
	},
	{ }	/* terminate */
};

1547
static void throtl_shutdown_wq(struct request_queue *q)
1548 1549 1550
{
	struct throtl_data *td = q->td;

1551
	cancel_work_sync(&td->dispatch_work);
1552 1553
}

T
Tejun Heo 已提交
1554
static struct blkcg_policy blkcg_policy_throtl = {
1555
	.dfl_cftypes		= throtl_files,
1556
	.legacy_cftypes		= throtl_legacy_files,
1557

1558
	.pd_alloc_fn		= throtl_pd_alloc,
1559
	.pd_init_fn		= throtl_pd_init,
1560
	.pd_online_fn		= throtl_pd_online,
S
Shaohua Li 已提交
1561
	.pd_offline_fn		= throtl_pd_offline,
1562
	.pd_free_fn		= throtl_pd_free,
1563 1564
};

S
Shaohua Li 已提交
1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
static unsigned long __tg_last_low_overflow_time(struct throtl_grp *tg)
{
	unsigned long rtime = jiffies, wtime = jiffies;

	if (tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW])
		rtime = tg->last_low_overflow_time[READ];
	if (tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW])
		wtime = tg->last_low_overflow_time[WRITE];
	return min(rtime, wtime);
}

/* tg should not be an intermediate node */
static unsigned long tg_last_low_overflow_time(struct throtl_grp *tg)
{
	struct throtl_service_queue *parent_sq;
	struct throtl_grp *parent = tg;
	unsigned long ret = __tg_last_low_overflow_time(tg);

	while (true) {
		parent_sq = parent->service_queue.parent_sq;
		parent = sq_to_tg(parent_sq);
		if (!parent)
			break;

		/*
		 * The parent doesn't have low limit, it always reaches low
		 * limit. Its overflow time is useless for children
		 */
		if (!parent->bps[READ][LIMIT_LOW] &&
		    !parent->iops[READ][LIMIT_LOW] &&
		    !parent->bps[WRITE][LIMIT_LOW] &&
		    !parent->iops[WRITE][LIMIT_LOW])
			continue;
		if (time_after(__tg_last_low_overflow_time(parent), ret))
			ret = __tg_last_low_overflow_time(parent);
	}
	return ret;
}

1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
static bool throtl_tg_can_upgrade(struct throtl_grp *tg)
{
	struct throtl_service_queue *sq = &tg->service_queue;
	bool read_limit, write_limit;

	/*
	 * if cgroup reaches low limit (if low limit is 0, the cgroup always
	 * reaches), it's ok to upgrade to next limit
	 */
	read_limit = tg->bps[READ][LIMIT_LOW] || tg->iops[READ][LIMIT_LOW];
	write_limit = tg->bps[WRITE][LIMIT_LOW] || tg->iops[WRITE][LIMIT_LOW];
	if (!read_limit && !write_limit)
		return true;
	if (read_limit && sq->nr_queued[READ] &&
	    (!write_limit || sq->nr_queued[WRITE]))
		return true;
	if (write_limit && sq->nr_queued[WRITE] &&
	    (!read_limit || sq->nr_queued[READ]))
		return true;
1623 1624 1625 1626 1627 1628

	if (time_after_eq(jiffies,
	     tg->last_dispatch_time[READ] + tg->td->throtl_slice) &&
	    time_after_eq(jiffies,
	     tg->last_dispatch_time[WRITE] + tg->td->throtl_slice))
		return true;
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
	return false;
}

static bool throtl_hierarchy_can_upgrade(struct throtl_grp *tg)
{
	while (true) {
		if (throtl_tg_can_upgrade(tg))
			return true;
		tg = sq_to_tg(tg->service_queue.parent_sq);
		if (!tg || !tg_to_blkg(tg)->parent)
			return false;
	}
	return false;
}

static bool throtl_can_upgrade(struct throtl_data *td,
	struct throtl_grp *this_tg)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;

	if (td->limit_index != LIMIT_LOW)
		return false;

1653
	if (time_before(jiffies, td->low_downgrade_time + td->throtl_slice))
S
Shaohua Li 已提交
1654 1655
		return false;

1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);

		if (tg == this_tg)
			continue;
		if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
			continue;
		if (!throtl_hierarchy_can_upgrade(tg)) {
			rcu_read_unlock();
			return false;
		}
	}
	rcu_read_unlock();
	return true;
}

static void throtl_upgrade_state(struct throtl_data *td)
{
	struct cgroup_subsys_state *pos_css;
	struct blkcg_gq *blkg;

	td->limit_index = LIMIT_MAX;
S
Shaohua Li 已提交
1679
	td->low_upgrade_time = jiffies;
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
	rcu_read_lock();
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg) {
		struct throtl_grp *tg = blkg_to_tg(blkg);
		struct throtl_service_queue *sq = &tg->service_queue;

		tg->disptime = jiffies - 1;
		throtl_select_dispatch(sq);
		throtl_schedule_next_dispatch(sq, false);
	}
	rcu_read_unlock();
	throtl_select_dispatch(&td->service_queue);
	throtl_schedule_next_dispatch(&td->service_queue, false);
	queue_work(kthrotld_workqueue, &td->dispatch_work);
}

S
Shaohua Li 已提交
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
static void throtl_downgrade_state(struct throtl_data *td, int new)
{
	td->limit_index = new;
	td->low_downgrade_time = jiffies;
}

static bool throtl_tg_can_downgrade(struct throtl_grp *tg)
{
	struct throtl_data *td = tg->td;
	unsigned long now = jiffies;

1706 1707 1708 1709 1710
	if (time_after_eq(now, tg->last_dispatch_time[READ] +
					td->throtl_slice) &&
	    time_after_eq(now, tg->last_dispatch_time[WRITE] +
					td->throtl_slice))
		return false;
S
Shaohua Li 已提交
1711 1712 1713 1714
	/*
	 * If cgroup is below low limit, consider downgrade and throttle other
	 * cgroups
	 */
1715 1716 1717
	if (time_after_eq(now, td->low_upgrade_time + td->throtl_slice) &&
	    time_after_eq(now, tg_last_low_overflow_time(tg) +
					td->throtl_slice))
S
Shaohua Li 已提交
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
		return true;
	return false;
}

static bool throtl_hierarchy_can_downgrade(struct throtl_grp *tg)
{
	while (true) {
		if (!throtl_tg_can_downgrade(tg))
			return false;
		tg = sq_to_tg(tg->service_queue.parent_sq);
		if (!tg || !tg_to_blkg(tg)->parent)
			break;
	}
	return true;
}

static void throtl_downgrade_check(struct throtl_grp *tg)
{
	uint64_t bps;
	unsigned int iops;
	unsigned long elapsed_time;
	unsigned long now = jiffies;

	if (tg->td->limit_index != LIMIT_MAX ||
	    !tg->td->limit_valid[LIMIT_LOW])
		return;
	if (!list_empty(&tg_to_blkg(tg)->blkcg->css.children))
		return;
1746
	if (time_after(tg->last_check_time + tg->td->throtl_slice, now))
S
Shaohua Li 已提交
1747 1748 1749 1750 1751
		return;

	elapsed_time = now - tg->last_check_time;
	tg->last_check_time = now;

1752 1753
	if (time_before(now, tg_last_low_overflow_time(tg) +
			tg->td->throtl_slice))
S
Shaohua Li 已提交
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
		return;

	if (tg->bps[READ][LIMIT_LOW]) {
		bps = tg->last_bytes_disp[READ] * HZ;
		do_div(bps, elapsed_time);
		if (bps >= tg->bps[READ][LIMIT_LOW])
			tg->last_low_overflow_time[READ] = now;
	}

	if (tg->bps[WRITE][LIMIT_LOW]) {
		bps = tg->last_bytes_disp[WRITE] * HZ;
		do_div(bps, elapsed_time);
		if (bps >= tg->bps[WRITE][LIMIT_LOW])
			tg->last_low_overflow_time[WRITE] = now;
	}

	if (tg->iops[READ][LIMIT_LOW]) {
		iops = tg->last_io_disp[READ] * HZ / elapsed_time;
		if (iops >= tg->iops[READ][LIMIT_LOW])
			tg->last_low_overflow_time[READ] = now;
	}

	if (tg->iops[WRITE][LIMIT_LOW]) {
		iops = tg->last_io_disp[WRITE] * HZ / elapsed_time;
		if (iops >= tg->iops[WRITE][LIMIT_LOW])
			tg->last_low_overflow_time[WRITE] = now;
	}

	/*
	 * If cgroup is below low limit, consider downgrade and throttle other
	 * cgroups
	 */
	if (throtl_hierarchy_can_downgrade(tg))
		throtl_downgrade_state(tg->td, LIMIT_LOW);

	tg->last_bytes_disp[READ] = 0;
	tg->last_bytes_disp[WRITE] = 0;
	tg->last_io_disp[READ] = 0;
	tg->last_io_disp[WRITE] = 0;
}

1795 1796
bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
		    struct bio *bio)
1797
{
1798
	struct throtl_qnode *qn = NULL;
1799
	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
1800
	struct throtl_service_queue *sq;
1801
	bool rw = bio_data_dir(bio);
1802
	bool throttled = false;
1803

1804 1805
	WARN_ON_ONCE(!rcu_read_lock_held());

1806
	/* see throtl_charge_bio() */
1807
	if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
1808
		goto out;
1809 1810

	spin_lock_irq(q->queue_lock);
1811 1812

	if (unlikely(blk_queue_bypass(q)))
1813
		goto out_unlock;
1814

1815 1816
	sq = &tg->service_queue;

1817
again:
1818
	while (true) {
1819
		tg->last_dispatch_time[rw] = jiffies;
S
Shaohua Li 已提交
1820 1821 1822
		if (tg->last_low_overflow_time[rw] == 0)
			tg->last_low_overflow_time[rw] = jiffies;
		throtl_downgrade_check(tg);
1823 1824 1825
		/* throtl is FIFO - if bios are already queued, should queue */
		if (sq->nr_queued[rw])
			break;
1826

1827
		/* if above limits, break to queue */
1828
		if (!tg_may_dispatch(tg, bio, NULL)) {
S
Shaohua Li 已提交
1829
			tg->last_low_overflow_time[rw] = jiffies;
1830 1831 1832 1833
			if (throtl_can_upgrade(tg->td, tg)) {
				throtl_upgrade_state(tg->td);
				goto again;
			}
1834
			break;
1835
		}
1836 1837

		/* within limits, let's charge and dispatch directly */
1838
		throtl_charge_bio(tg, bio);
1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850

		/*
		 * We need to trim slice even when bios are not being queued
		 * otherwise it might happen that a bio is not queued for
		 * a long time and slice keeps on extending and trim is not
		 * called for a long time. Now if limits are reduced suddenly
		 * we take into account all the IO dispatched so far at new
		 * low rate and * newly queued IO gets a really long dispatch
		 * time.
		 *
		 * So keep on trimming slice even if bio is not queued.
		 */
1851
		throtl_trim_slice(tg, rw);
1852 1853 1854 1855 1856 1857

		/*
		 * @bio passed through this layer without being throttled.
		 * Climb up the ladder.  If we''re already at the top, it
		 * can be executed directly.
		 */
1858
		qn = &tg->qnode_on_parent[rw];
1859 1860 1861 1862
		sq = sq->parent_sq;
		tg = sq_to_tg(sq);
		if (!tg)
			goto out_unlock;
1863 1864
	}

1865
	/* out-of-limit, queue to @tg */
1866 1867
	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
		   rw == READ ? 'R' : 'W',
1868 1869 1870
		   tg->bytes_disp[rw], bio->bi_iter.bi_size,
		   tg_bps_limit(tg, rw),
		   tg->io_disp[rw], tg_iops_limit(tg, rw),
1871
		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1872

S
Shaohua Li 已提交
1873 1874
	tg->last_low_overflow_time[rw] = jiffies;

1875
	bio_associate_current(bio);
1876
	tg->td->nr_queued[rw]++;
1877
	throtl_add_bio_tg(bio, qn, tg);
1878
	throttled = true;
1879

1880 1881 1882 1883 1884 1885
	/*
	 * Update @tg's dispatch time and force schedule dispatch if @tg
	 * was empty before @bio.  The forced scheduling isn't likely to
	 * cause undue delay as @bio is likely to be dispatched directly if
	 * its @tg's disptime is not in the future.
	 */
1886
	if (tg->flags & THROTL_TG_WAS_EMPTY) {
1887
		tg_update_disptime(tg);
1888
		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1889 1890
	}

1891
out_unlock:
1892
	spin_unlock_irq(q->queue_lock);
1893
out:
1894 1895 1896 1897 1898 1899
	/*
	 * As multiple blk-throtls may stack in the same issue path, we
	 * don't want bios to leave with the flag set.  Clear the flag if
	 * being issued.
	 */
	if (!throttled)
1900
		bio_clear_flag(bio, BIO_THROTTLED);
1901
	return throttled;
1902 1903
}

1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
/*
 * Dispatch all bios from all children tg's queued on @parent_sq.  On
 * return, @parent_sq is guaranteed to not have any active children tg's
 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
 */
static void tg_drain_bios(struct throtl_service_queue *parent_sq)
{
	struct throtl_grp *tg;

	while ((tg = throtl_rb_first(parent_sq))) {
		struct throtl_service_queue *sq = &tg->service_queue;
		struct bio *bio;

		throtl_dequeue_tg(tg);

1919
		while ((bio = throtl_peek_queued(&sq->queued[READ])))
1920
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
1921
		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1922 1923 1924 1925
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
	}
}

1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
/**
 * blk_throtl_drain - drain throttled bios
 * @q: request_queue to drain throttled bios for
 *
 * Dispatch all currently throttled bios on @q through ->make_request_fn().
 */
void blk_throtl_drain(struct request_queue *q)
	__releases(q->queue_lock) __acquires(q->queue_lock)
{
	struct throtl_data *td = q->td;
1936
	struct blkcg_gq *blkg;
1937
	struct cgroup_subsys_state *pos_css;
1938
	struct bio *bio;
1939
	int rw;
1940

1941
	queue_lockdep_assert_held(q);
1942
	rcu_read_lock();
1943

1944 1945 1946 1947 1948 1949
	/*
	 * Drain each tg while doing post-order walk on the blkg tree, so
	 * that all bios are propagated to td->service_queue.  It'd be
	 * better to walk service_queue tree directly but blkg walk is
	 * easier.
	 */
1950
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
1951
		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
1952

1953 1954 1955 1956
	/* finally, transfer bios from top-level tg's into the td */
	tg_drain_bios(&td->service_queue);

	rcu_read_unlock();
1957 1958
	spin_unlock_irq(q->queue_lock);

1959
	/* all bios now should be in td->service_queue, issue them */
1960
	for (rw = READ; rw <= WRITE; rw++)
1961 1962
		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
						NULL)))
1963
			generic_make_request(bio);
1964 1965 1966 1967

	spin_lock_irq(q->queue_lock);
}

1968 1969 1970
int blk_throtl_init(struct request_queue *q)
{
	struct throtl_data *td;
1971
	int ret;
1972 1973 1974 1975 1976

	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
	if (!td)
		return -ENOMEM;

1977
	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1978
	throtl_service_queue_init(&td->service_queue);
1979

1980
	q->td = td;
1981
	td->queue = q;
V
Vivek Goyal 已提交
1982

1983
	td->limit_valid[LIMIT_MAX] = true;
S
Shaohua Li 已提交
1984
	td->limit_index = LIMIT_MAX;
S
Shaohua Li 已提交
1985 1986
	td->low_upgrade_time = jiffies;
	td->low_downgrade_time = jiffies;
1987
	/* activate policy */
T
Tejun Heo 已提交
1988
	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1989
	if (ret)
1990
		kfree(td);
1991
	return ret;
1992 1993 1994 1995
}

void blk_throtl_exit(struct request_queue *q)
{
T
Tejun Heo 已提交
1996
	BUG_ON(!q->td);
1997
	throtl_shutdown_wq(q);
T
Tejun Heo 已提交
1998
	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1999
	kfree(q->td);
2000 2001
}

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
void blk_throtl_register_queue(struct request_queue *q)
{
	struct throtl_data *td;

	td = q->td;
	BUG_ON(!td);

	if (blk_queue_nonrot(q))
		td->throtl_slice = DFL_THROTL_SLICE_SSD;
	else
		td->throtl_slice = DFL_THROTL_SLICE_HD;
#ifndef CONFIG_BLK_DEV_THROTTLING_LOW
	/* if no low limit, use previous default */
	td->throtl_slice = DFL_THROTL_SLICE_HD;
#endif
}

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
#ifdef CONFIG_BLK_DEV_THROTTLING_LOW
ssize_t blk_throtl_sample_time_show(struct request_queue *q, char *page)
{
	if (!q->td)
		return -EINVAL;
	return sprintf(page, "%u\n", jiffies_to_msecs(q->td->throtl_slice));
}

ssize_t blk_throtl_sample_time_store(struct request_queue *q,
	const char *page, size_t count)
{
	unsigned long v;
	unsigned long t;

	if (!q->td)
		return -EINVAL;
	if (kstrtoul(page, 10, &v))
		return -EINVAL;
	t = msecs_to_jiffies(v);
	if (t == 0 || t > MAX_THROTL_SLICE)
		return -EINVAL;
	q->td->throtl_slice = t;
	return count;
}
#endif

2045 2046
static int __init throtl_init(void)
{
2047 2048 2049 2050
	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
	if (!kthrotld_workqueue)
		panic("Failed to create kthrotld\n");

T
Tejun Heo 已提交
2051
	return blkcg_policy_register(&blkcg_policy_throtl);
2052 2053 2054
}

module_init(throtl_init);