blk-throttle.c 29.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Interface for controlling IO bandwidth on a request queue
 *
 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
#include "blk-cgroup.h"
13
#include "blk.h"
14 15 16 17 18 19 20 21 22 23

/* Max dispatch from a group in 1 round */
static int throtl_grp_quantum = 8;

/* Total max dispatch from all groups in one round */
static int throtl_quantum = 32;

/* Throttling is performed over 100ms slice and after that slice is renewed */
static unsigned long throtl_slice = HZ/10;	/* 100 ms */

T
Tejun Heo 已提交
24
static struct blkcg_policy blkcg_policy_throtl;
25

26 27 28
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;

29 30 31 32 33
struct throtl_service_queue {
	struct rb_root		pending_tree;	/* RB tree of active tgs */
	struct rb_node		*first_pending;	/* first node in the tree */
	unsigned int		nr_pending;	/* # queued in the tree */
	unsigned long		first_pending_disptime;	/* disptime of the first tg */
34 35
};

36 37
#define THROTL_SERVICE_QUEUE_INITIALIZER				\
	(struct throtl_service_queue){ .pending_tree = RB_ROOT }
38

39 40 41 42
enum tg_state_flags {
	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
};

43 44
#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)

45 46 47 48 49 50 51 52
/* Per-cpu group stats */
struct tg_stats_cpu {
	/* total bytes transferred */
	struct blkg_rwstat		service_bytes;
	/* total IOs serviced, post merge */
	struct blkg_rwstat		serviced;
};

53
struct throtl_grp {
54 55 56
	/* must be the first member */
	struct blkg_policy_data pd;

57
	/* active throtl group service_queue member */
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
	struct rb_node rb_node;

	/*
	 * Dispatch time in jiffies. This is the estimated time when group
	 * will unthrottle and is ready to dispatch more bio. It is used as
	 * key to sort active groups in service tree.
	 */
	unsigned long disptime;

	unsigned int flags;

	/* Two lists for READ and WRITE */
	struct bio_list bio_lists[2];

	/* Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

	/* bytes per second rate limits */
	uint64_t bps[2];

78 79 80
	/* IOPS limits */
	unsigned int iops[2];

81 82
	/* Number of bytes disptached in current slice */
	uint64_t bytes_disp[2];
83 84
	/* Number of bio's dispatched in current slice */
	unsigned int io_disp[2];
85 86 87 88

	/* When did we start a new slice */
	unsigned long slice_start[2];
	unsigned long slice_end[2];
89

90 91 92 93 94
	/* Per cpu stats pointer */
	struct tg_stats_cpu __percpu *stats_cpu;

	/* List of tgs waiting for per cpu stats memory to be allocated */
	struct list_head stats_alloc_node;
95 96 97 98 99
};

struct throtl_data
{
	/* service tree for active throtl groups */
100
	struct throtl_service_queue service_queue;
101 102 103 104 105 106 107

	struct request_queue *queue;

	/* Total Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

	/*
V
Vivek Goyal 已提交
108
	 * number of total undestroyed groups
109 110 111 112
	 */
	unsigned int nr_undestroyed_grps;

	/* Work for dispatching throttled bios */
113
	struct delayed_work dispatch_work;
114 115
};

116 117 118 119 120 121 122
/* list and work item to allocate percpu group stats */
static DEFINE_SPINLOCK(tg_stats_alloc_lock);
static LIST_HEAD(tg_stats_alloc_list);

static void tg_stats_alloc_fn(struct work_struct *);
static DECLARE_DELAYED_WORK(tg_stats_alloc_work, tg_stats_alloc_fn);

123 124 125 126 127
static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
{
	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
}

T
Tejun Heo 已提交
128
static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
129
{
130
	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
131 132
}

T
Tejun Heo 已提交
133
static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
134
{
135
	return pd_to_blkg(&tg->pd);
136 137
}

T
Tejun Heo 已提交
138 139 140 141 142
static inline struct throtl_grp *td_root_tg(struct throtl_data *td)
{
	return blkg_to_tg(td->queue->root_blkg);
}

T
Tejun Heo 已提交
143 144 145 146 147 148
#define throtl_log_tg(td, tg, fmt, args...)	do {			\
	char __pbuf[128];						\
									\
	blkg_path(tg_to_blkg(tg), __pbuf, sizeof(__pbuf));		\
	blk_add_trace_msg((td)->queue, "throtl %s " fmt, __pbuf, ##args); \
} while (0)
149 150 151 152

#define throtl_log(td, fmt, args...)	\
	blk_add_trace_msg((td)->queue, "throtl " fmt, ##args)

153 154
/*
 * Worker for allocating per cpu stat for tgs. This is scheduled on the
155
 * system_wq once there are some groups on the alloc_list waiting for
156 157 158 159 160 161 162 163 164 165 166 167 168
 * allocation.
 */
static void tg_stats_alloc_fn(struct work_struct *work)
{
	static struct tg_stats_cpu *stats_cpu;	/* this fn is non-reentrant */
	struct delayed_work *dwork = to_delayed_work(work);
	bool empty = false;

alloc_stats:
	if (!stats_cpu) {
		stats_cpu = alloc_percpu(struct tg_stats_cpu);
		if (!stats_cpu) {
			/* allocation failed, try again after some time */
169
			schedule_delayed_work(dwork, msecs_to_jiffies(10));
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
			return;
		}
	}

	spin_lock_irq(&tg_stats_alloc_lock);

	if (!list_empty(&tg_stats_alloc_list)) {
		struct throtl_grp *tg = list_first_entry(&tg_stats_alloc_list,
							 struct throtl_grp,
							 stats_alloc_node);
		swap(tg->stats_cpu, stats_cpu);
		list_del_init(&tg->stats_alloc_node);
	}

	empty = list_empty(&tg_stats_alloc_list);
	spin_unlock_irq(&tg_stats_alloc_lock);
	if (!empty)
		goto alloc_stats;
}

T
Tejun Heo 已提交
190
static void throtl_pd_init(struct blkcg_gq *blkg)
191
{
192
	struct throtl_grp *tg = blkg_to_tg(blkg);
193
	unsigned long flags;
194

195 196 197 198
	RB_CLEAR_NODE(&tg->rb_node);
	bio_list_init(&tg->bio_lists[0]);
	bio_list_init(&tg->bio_lists[1]);

199 200 201 202
	tg->bps[READ] = -1;
	tg->bps[WRITE] = -1;
	tg->iops[READ] = -1;
	tg->iops[WRITE] = -1;
203 204 205 206 207 208

	/*
	 * Ugh... We need to perform per-cpu allocation for tg->stats_cpu
	 * but percpu allocator can't be called from IO path.  Queue tg on
	 * tg_stats_alloc_list and allocate from work item.
	 */
209
	spin_lock_irqsave(&tg_stats_alloc_lock, flags);
210
	list_add(&tg->stats_alloc_node, &tg_stats_alloc_list);
211
	schedule_delayed_work(&tg_stats_alloc_work, 0);
212
	spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
213 214
}

T
Tejun Heo 已提交
215
static void throtl_pd_exit(struct blkcg_gq *blkg)
216 217
{
	struct throtl_grp *tg = blkg_to_tg(blkg);
218
	unsigned long flags;
219

220
	spin_lock_irqsave(&tg_stats_alloc_lock, flags);
221
	list_del_init(&tg->stats_alloc_node);
222
	spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
223 224 225 226

	free_percpu(tg->stats_cpu);
}

T
Tejun Heo 已提交
227
static void throtl_pd_reset_stats(struct blkcg_gq *blkg)
228 229 230 231 232 233 234 235 236 237 238 239 240
{
	struct throtl_grp *tg = blkg_to_tg(blkg);
	int cpu;

	if (tg->stats_cpu == NULL)
		return;

	for_each_possible_cpu(cpu) {
		struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);

		blkg_rwstat_reset(&sc->service_bytes);
		blkg_rwstat_reset(&sc->serviced);
	}
241 242
}

T
Tejun Heo 已提交
243 244
static struct throtl_grp *throtl_lookup_tg(struct throtl_data *td,
					   struct blkcg *blkcg)
245
{
246
	/*
T
Tejun Heo 已提交
247 248
	 * This is the common case when there are no blkcgs.  Avoid lookup
	 * in this case
249
	 */
T
Tejun Heo 已提交
250
	if (blkcg == &blkcg_root)
T
Tejun Heo 已提交
251
		return td_root_tg(td);
252

253
	return blkg_to_tg(blkg_lookup(blkcg, td->queue));
254 255
}

256
static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
T
Tejun Heo 已提交
257
						  struct blkcg *blkcg)
258
{
259
	struct request_queue *q = td->queue;
260
	struct throtl_grp *tg = NULL;
261

262
	/*
T
Tejun Heo 已提交
263 264
	 * This is the common case when there are no blkcgs.  Avoid lookup
	 * in this case
265
	 */
T
Tejun Heo 已提交
266
	if (blkcg == &blkcg_root) {
T
Tejun Heo 已提交
267
		tg = td_root_tg(td);
268
	} else {
T
Tejun Heo 已提交
269
		struct blkcg_gq *blkg;
270

271
		blkg = blkg_lookup_create(blkcg, q);
272

273 274
		/* if %NULL and @q is alive, fall back to root_tg */
		if (!IS_ERR(blkg))
275
			tg = blkg_to_tg(blkg);
B
Bart Van Assche 已提交
276
		else if (!blk_queue_dying(q))
T
Tejun Heo 已提交
277
			tg = td_root_tg(td);
278 279
	}

280 281 282
	return tg;
}

283
static struct throtl_grp *throtl_rb_first(struct throtl_service_queue *sq)
284 285
{
	/* Service tree is empty */
286
	if (!sq->nr_pending)
287 288
		return NULL;

289 290
	if (!sq->first_pending)
		sq->first_pending = rb_first(&sq->pending_tree);
291

292 293
	if (sq->first_pending)
		return rb_entry_tg(sq->first_pending);
294 295 296 297 298 299 300 301 302 303

	return NULL;
}

static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

304
static void throtl_rb_erase(struct rb_node *n, struct throtl_service_queue *sq)
305
{
306 307 308 309
	if (sq->first_pending == n)
		sq->first_pending = NULL;
	rb_erase_init(n, &sq->pending_tree);
	--sq->nr_pending;
310 311
}

312
static void update_min_dispatch_time(struct throtl_service_queue *sq)
313 314 315
{
	struct throtl_grp *tg;

316
	tg = throtl_rb_first(sq);
317 318 319
	if (!tg)
		return;

320
	sq->first_pending_disptime = tg->disptime;
321 322
}

323 324
static void tg_service_queue_add(struct throtl_service_queue *sq,
				 struct throtl_grp *tg)
325
{
326
	struct rb_node **node = &sq->pending_tree.rb_node;
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
	struct rb_node *parent = NULL;
	struct throtl_grp *__tg;
	unsigned long key = tg->disptime;
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__tg = rb_entry_tg(parent);

		if (time_before(key, __tg->disptime))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
345
		sq->first_pending = &tg->rb_node;
346 347

	rb_link_node(&tg->rb_node, parent, node);
348
	rb_insert_color(&tg->rb_node, &sq->pending_tree);
349 350 351 352
}

static void __throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
{
353
	struct throtl_service_queue *sq = &td->service_queue;
354

355
	tg_service_queue_add(sq, tg);
356
	tg->flags |= THROTL_TG_PENDING;
357
	sq->nr_pending++;
358 359 360 361
}

static void throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
{
362
	if (!(tg->flags & THROTL_TG_PENDING))
363 364 365 366 367
		__throtl_enqueue_tg(td, tg);
}

static void __throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
{
368
	throtl_rb_erase(&tg->rb_node, &td->service_queue);
369
	tg->flags &= ~THROTL_TG_PENDING;
370 371 372 373
}

static void throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
{
374
	if (tg->flags & THROTL_TG_PENDING)
375 376 377
		__throtl_dequeue_tg(td, tg);
}

378 379 380 381 382 383
/* Call with queue lock held */
static void throtl_schedule_delayed_work(struct throtl_data *td,
					 unsigned long delay)
{
	struct delayed_work *dwork = &td->dispatch_work;

384 385
	mod_delayed_work(kthrotld_workqueue, dwork, delay);
	throtl_log(td, "schedule work. delay=%lu jiffies=%lu", delay, jiffies);
386 387
}

388 389
static void throtl_schedule_next_dispatch(struct throtl_data *td)
{
390
	struct throtl_service_queue *sq = &td->service_queue;
391

392
	/* any pending children left? */
393
	if (!sq->nr_pending)
394 395
		return;

396
	update_min_dispatch_time(sq);
397

398
	if (time_before_eq(sq->first_pending_disptime, jiffies))
399
		throtl_schedule_delayed_work(td, 0);
400
	else
401
		throtl_schedule_delayed_work(td, sq->first_pending_disptime - jiffies);
402 403 404 405 406 407
}

static inline void
throtl_start_new_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
{
	tg->bytes_disp[rw] = 0;
408
	tg->io_disp[rw] = 0;
409 410 411 412 413 414 415
	tg->slice_start[rw] = jiffies;
	tg->slice_end[rw] = jiffies + throtl_slice;
	throtl_log_tg(td, tg, "[%c] new slice start=%lu end=%lu jiffies=%lu",
			rw == READ ? 'R' : 'W', tg->slice_start[rw],
			tg->slice_end[rw], jiffies);
}

416 417 418 419 420 421
static inline void throtl_set_slice_end(struct throtl_data *td,
		struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
}

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
static inline void throtl_extend_slice(struct throtl_data *td,
		struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
	throtl_log_tg(td, tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu",
			rw == READ ? 'R' : 'W', tg->slice_start[rw],
			tg->slice_end[rw], jiffies);
}

/* Determine if previously allocated or extended slice is complete or not */
static bool
throtl_slice_used(struct throtl_data *td, struct throtl_grp *tg, bool rw)
{
	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
		return 0;

	return 1;
}

/* Trim the used slices and adjust slice start accordingly */
static inline void
throtl_trim_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
{
445 446
	unsigned long nr_slices, time_elapsed, io_trim;
	u64 bytes_trim, tmp;
447 448 449 450 451 452 453 454 455 456 457

	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));

	/*
	 * If bps are unlimited (-1), then time slice don't get
	 * renewed. Don't try to trim the slice if slice is used. A new
	 * slice will start when appropriate.
	 */
	if (throtl_slice_used(td, tg, rw))
		return;

458 459 460 461 462 463 464 465 466 467
	/*
	 * A bio has been dispatched. Also adjust slice_end. It might happen
	 * that initially cgroup limit was very low resulting in high
	 * slice_end, but later limit was bumped up and bio was dispached
	 * sooner, then we need to reduce slice_end. A high bogus slice_end
	 * is bad because it does not allow new slice to start.
	 */

	throtl_set_slice_end(td, tg, rw, jiffies + throtl_slice);

468 469 470 471 472 473
	time_elapsed = jiffies - tg->slice_start[rw];

	nr_slices = time_elapsed / throtl_slice;

	if (!nr_slices)
		return;
474 475 476
	tmp = tg->bps[rw] * throtl_slice * nr_slices;
	do_div(tmp, HZ);
	bytes_trim = tmp;
477

478
	io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
479

480
	if (!bytes_trim && !io_trim)
481 482 483 484 485 486 487
		return;

	if (tg->bytes_disp[rw] >= bytes_trim)
		tg->bytes_disp[rw] -= bytes_trim;
	else
		tg->bytes_disp[rw] = 0;

488 489 490 491 492
	if (tg->io_disp[rw] >= io_trim)
		tg->io_disp[rw] -= io_trim;
	else
		tg->io_disp[rw] = 0;

493 494
	tg->slice_start[rw] += nr_slices * throtl_slice;

495
	throtl_log_tg(td, tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu"
496
			" start=%lu end=%lu jiffies=%lu",
497
			rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
498 499 500
			tg->slice_start[rw], tg->slice_end[rw], jiffies);
}

501 502
static bool tg_with_in_iops_limit(struct throtl_data *td, struct throtl_grp *tg,
		struct bio *bio, unsigned long *wait)
503 504
{
	bool rw = bio_data_dir(bio);
505
	unsigned int io_allowed;
506
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
507
	u64 tmp;
508

509
	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
510

511 512 513 514 515 516
	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

517 518 519 520 521 522 523 524 525 526 527 528 529 530
	/*
	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
	 * will allow dispatch after 1 second and after that slice should
	 * have been trimmed.
	 */

	tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
	do_div(tmp, HZ);

	if (tmp > UINT_MAX)
		io_allowed = UINT_MAX;
	else
		io_allowed = tmp;
531 532

	if (tg->io_disp[rw] + 1 <= io_allowed) {
533 534 535 536 537
		if (wait)
			*wait = 0;
		return 1;
	}

538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
	/* Calc approx time to dispatch */
	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;

	if (jiffy_wait > jiffy_elapsed)
		jiffy_wait = jiffy_wait - jiffy_elapsed;
	else
		jiffy_wait = 1;

	if (wait)
		*wait = jiffy_wait;
	return 0;
}

static bool tg_with_in_bps_limit(struct throtl_data *td, struct throtl_grp *tg,
		struct bio *bio, unsigned long *wait)
{
	bool rw = bio_data_dir(bio);
555
	u64 bytes_allowed, extra_bytes, tmp;
556
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
557 558 559 560 561 562 563 564 565

	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];

	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

566 567
	tmp = tg->bps[rw] * jiffy_elapsed_rnd;
	do_div(tmp, HZ);
568
	bytes_allowed = tmp;
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589

	if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
		if (wait)
			*wait = 0;
		return 1;
	}

	/* Calc approx time to dispatch */
	extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
	jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);

	if (!jiffy_wait)
		jiffy_wait = 1;

	/*
	 * This wait time is without taking into consideration the rounding
	 * up we did. Add that time also.
	 */
	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
	if (wait)
		*wait = jiffy_wait;
590 591 592
	return 0;
}

593 594 595 596 597 598
static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) {
	if (tg->bps[rw] == -1 && tg->iops[rw] == -1)
		return 1;
	return 0;
}

599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
/*
 * Returns whether one can dispatch a bio or not. Also returns approx number
 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 */
static bool tg_may_dispatch(struct throtl_data *td, struct throtl_grp *tg,
				struct bio *bio, unsigned long *wait)
{
	bool rw = bio_data_dir(bio);
	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;

	/*
 	 * Currently whole state machine of group depends on first bio
	 * queued in the group bio list. So one should not be calling
	 * this function with a different bio if there are other bios
	 * queued.
	 */
	BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw]));
616

617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
	/* If tg->bps = -1, then BW is unlimited */
	if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
		if (wait)
			*wait = 0;
		return 1;
	}

	/*
	 * If previous slice expired, start a new one otherwise renew/extend
	 * existing slice to make sure it is at least throtl_slice interval
	 * long since now.
	 */
	if (throtl_slice_used(td, tg, rw))
		throtl_start_new_slice(td, tg, rw);
	else {
		if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
			throtl_extend_slice(td, tg, rw, jiffies + throtl_slice);
	}

	if (tg_with_in_bps_limit(td, tg, bio, &bps_wait)
	    && tg_with_in_iops_limit(td, tg, bio, &iops_wait)) {
		if (wait)
			*wait = 0;
		return 1;
	}

	max_wait = max(bps_wait, iops_wait);

	if (wait)
		*wait = max_wait;

	if (time_before(tg->slice_end[rw], jiffies + max_wait))
		throtl_extend_slice(td, tg, rw, jiffies + max_wait);
650 651 652 653

	return 0;
}

T
Tejun Heo 已提交
654
static void throtl_update_dispatch_stats(struct blkcg_gq *blkg, u64 bytes,
655 656
					 int rw)
{
657 658
	struct throtl_grp *tg = blkg_to_tg(blkg);
	struct tg_stats_cpu *stats_cpu;
659 660 661
	unsigned long flags;

	/* If per cpu stats are not allocated yet, don't do any accounting. */
662
	if (tg->stats_cpu == NULL)
663 664 665 666 667 668 669 670 671
		return;

	/*
	 * Disabling interrupts to provide mutual exclusion between two
	 * writes on same cpu. It probably is not needed for 64bit. Not
	 * optimizing that case yet.
	 */
	local_irq_save(flags);

672
	stats_cpu = this_cpu_ptr(tg->stats_cpu);
673 674 675 676 677 678 679

	blkg_rwstat_add(&stats_cpu->serviced, rw, 1);
	blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes);

	local_irq_restore(flags);
}

680 681 682 683 684 685
static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
	bool rw = bio_data_dir(bio);

	/* Charge the bio to the group */
	tg->bytes_disp[rw] += bio->bi_size;
686
	tg->io_disp[rw]++;
687

688
	throtl_update_dispatch_stats(tg_to_blkg(tg), bio->bi_size, bio->bi_rw);
689 690 691 692 693 694 695 696 697
}

static void throtl_add_bio_tg(struct throtl_data *td, struct throtl_grp *tg,
			struct bio *bio)
{
	bool rw = bio_data_dir(bio);

	bio_list_add(&tg->bio_lists[rw], bio);
	/* Take a bio reference on tg */
T
Tejun Heo 已提交
698
	blkg_get(tg_to_blkg(tg));
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
	tg->nr_queued[rw]++;
	td->nr_queued[rw]++;
	throtl_enqueue_tg(td, tg);
}

static void tg_update_disptime(struct throtl_data *td, struct throtl_grp *tg)
{
	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
	struct bio *bio;

	if ((bio = bio_list_peek(&tg->bio_lists[READ])))
		tg_may_dispatch(td, tg, bio, &read_wait);

	if ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
		tg_may_dispatch(td, tg, bio, &write_wait);

	min_wait = min(read_wait, write_wait);
	disptime = jiffies + min_wait;

	/* Update dispatch time */
	throtl_dequeue_tg(td, tg);
	tg->disptime = disptime;
	throtl_enqueue_tg(td, tg);
}

static void tg_dispatch_one_bio(struct throtl_data *td, struct throtl_grp *tg,
				bool rw, struct bio_list *bl)
{
	struct bio *bio;

	bio = bio_list_pop(&tg->bio_lists[rw]);
	tg->nr_queued[rw]--;
T
Tejun Heo 已提交
731 732
	/* Drop bio reference on blkg */
	blkg_put(tg_to_blkg(tg));
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748

	BUG_ON(td->nr_queued[rw] <= 0);
	td->nr_queued[rw]--;

	throtl_charge_bio(tg, bio);
	bio_list_add(bl, bio);
	bio->bi_rw |= REQ_THROTTLED;

	throtl_trim_slice(td, tg, rw);
}

static int throtl_dispatch_tg(struct throtl_data *td, struct throtl_grp *tg,
				struct bio_list *bl)
{
	unsigned int nr_reads = 0, nr_writes = 0;
	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
749
	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
	struct bio *bio;

	/* Try to dispatch 75% READS and 25% WRITES */

	while ((bio = bio_list_peek(&tg->bio_lists[READ]))
		&& tg_may_dispatch(td, tg, bio, NULL)) {

		tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
		nr_reads++;

		if (nr_reads >= max_nr_reads)
			break;
	}

	while ((bio = bio_list_peek(&tg->bio_lists[WRITE]))
		&& tg_may_dispatch(td, tg, bio, NULL)) {

		tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
		nr_writes++;

		if (nr_writes >= max_nr_writes)
			break;
	}

	return nr_reads + nr_writes;
}

static int throtl_select_dispatch(struct throtl_data *td, struct bio_list *bl)
{
	unsigned int nr_disp = 0;
	struct throtl_grp *tg;
781
	struct throtl_service_queue *sq = &td->service_queue;
782 783

	while (1) {
784
		tg = throtl_rb_first(sq);
785 786 787 788 789 790 791 792 793 794 795

		if (!tg)
			break;

		if (time_before(jiffies, tg->disptime))
			break;

		throtl_dequeue_tg(td, tg);

		nr_disp += throtl_dispatch_tg(td, tg, bl);

796
		if (tg->nr_queued[0] || tg->nr_queued[1])
797 798 799 800 801 802 803 804 805
			tg_update_disptime(td, tg);

		if (nr_disp >= throtl_quantum)
			break;
	}

	return nr_disp;
}

806 807
/* work function to dispatch throttled bios */
void blk_throtl_dispatch_work_fn(struct work_struct *work)
808
{
809 810 811
	struct throtl_data *td = container_of(to_delayed_work(work),
					      struct throtl_data, dispatch_work);
	struct request_queue *q = td->queue;
812 813 814
	unsigned int nr_disp = 0;
	struct bio_list bio_list_on_stack;
	struct bio *bio;
815
	struct blk_plug plug;
816 817 818 819 820

	spin_lock_irq(q->queue_lock);

	bio_list_init(&bio_list_on_stack);

821
	throtl_log(td, "dispatch nr_queued=%u read=%u write=%u",
822 823
		   td->nr_queued[READ] + td->nr_queued[WRITE],
		   td->nr_queued[READ], td->nr_queued[WRITE]);
824 825 826 827 828 829 830

	nr_disp = throtl_select_dispatch(td, &bio_list_on_stack);

	if (nr_disp)
		throtl_log(td, "bios disp=%u", nr_disp);

	throtl_schedule_next_dispatch(td);
831

832 833 834 835 836 837 838
	spin_unlock_irq(q->queue_lock);

	/*
	 * If we dispatched some requests, unplug the queue to make sure
	 * immediate dispatch
	 */
	if (nr_disp) {
839
		blk_start_plug(&plug);
840 841
		while((bio = bio_list_pop(&bio_list_on_stack)))
			generic_make_request(bio);
842
		blk_finish_plug(&plug);
843 844 845
	}
}

846 847
static u64 tg_prfill_cpu_rwstat(struct seq_file *sf,
				struct blkg_policy_data *pd, int off)
848
{
849
	struct throtl_grp *tg = pd_to_tg(pd);
850 851 852 853
	struct blkg_rwstat rwstat = { }, tmp;
	int i, cpu;

	for_each_possible_cpu(cpu) {
854
		struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
855 856 857 858 859 860

		tmp = blkg_rwstat_read((void *)sc + off);
		for (i = 0; i < BLKG_RWSTAT_NR; i++)
			rwstat.cnt[i] += tmp.cnt[i];
	}

861
	return __blkg_prfill_rwstat(sf, pd, &rwstat);
862 863
}

864 865
static int tg_print_cpu_rwstat(struct cgroup *cgrp, struct cftype *cft,
			       struct seq_file *sf)
866
{
T
Tejun Heo 已提交
867
	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
868

T
Tejun Heo 已提交
869
	blkcg_print_blkgs(sf, blkcg, tg_prfill_cpu_rwstat, &blkcg_policy_throtl,
870
			  cft->private, true);
871 872 873
	return 0;
}

874 875
static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
			      int off)
876
{
877 878
	struct throtl_grp *tg = pd_to_tg(pd);
	u64 v = *(u64 *)((void *)tg + off);
879

880
	if (v == -1)
881
		return 0;
882
	return __blkg_prfill_u64(sf, pd, v);
883 884
}

885 886
static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
			       int off)
887
{
888 889
	struct throtl_grp *tg = pd_to_tg(pd);
	unsigned int v = *(unsigned int *)((void *)tg + off);
890

891 892
	if (v == -1)
		return 0;
893
	return __blkg_prfill_u64(sf, pd, v);
894 895
}

896 897
static int tg_print_conf_u64(struct cgroup *cgrp, struct cftype *cft,
			     struct seq_file *sf)
898
{
T
Tejun Heo 已提交
899 900
	blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_u64,
			  &blkcg_policy_throtl, cft->private, false);
901
	return 0;
902 903
}

904 905
static int tg_print_conf_uint(struct cgroup *cgrp, struct cftype *cft,
			      struct seq_file *sf)
906
{
T
Tejun Heo 已提交
907 908
	blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_uint,
			  &blkcg_policy_throtl, cft->private, false);
909
	return 0;
910 911
}

912 913
static int tg_set_conf(struct cgroup *cgrp, struct cftype *cft, const char *buf,
		       bool is_u64)
914
{
T
Tejun Heo 已提交
915
	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
916
	struct blkg_conf_ctx ctx;
917
	struct throtl_grp *tg;
918
	struct throtl_data *td;
919 920
	int ret;

T
Tejun Heo 已提交
921
	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
922 923 924
	if (ret)
		return ret;

925
	tg = blkg_to_tg(ctx.blkg);
926
	td = ctx.blkg->q->td;
927

928 929
	if (!ctx.v)
		ctx.v = -1;
930

931 932 933 934
	if (is_u64)
		*(u64 *)((void *)tg + cft->private) = ctx.v;
	else
		*(unsigned int *)((void *)tg + cft->private) = ctx.v;
935

936 937 938 939 940 941 942 943 944 945 946 947 948 949 950
	throtl_log_tg(td, tg, "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
		      tg->bps[READ], tg->bps[WRITE],
		      tg->iops[READ], tg->iops[WRITE]);

	/*
	 * We're already holding queue_lock and know @tg is valid.  Let's
	 * apply the new config directly.
	 *
	 * Restart the slices for both READ and WRITES. It might happen
	 * that a group's limit are dropped suddenly and we don't want to
	 * account recently dispatched IO with new low rate.
	 */
	throtl_start_new_slice(td, tg, 0);
	throtl_start_new_slice(td, tg, 1);

951
	if (tg->flags & THROTL_TG_PENDING) {
952 953 954
		tg_update_disptime(td, tg);
		throtl_schedule_next_dispatch(td);
	}
955 956

	blkg_conf_finish(&ctx);
957
	return 0;
958 959
}

960 961
static int tg_set_conf_u64(struct cgroup *cgrp, struct cftype *cft,
			   const char *buf)
962
{
963
	return tg_set_conf(cgrp, cft, buf, true);
964 965
}

966 967
static int tg_set_conf_uint(struct cgroup *cgrp, struct cftype *cft,
			    const char *buf)
968
{
969
	return tg_set_conf(cgrp, cft, buf, false);
970 971 972 973 974
}

static struct cftype throtl_files[] = {
	{
		.name = "throttle.read_bps_device",
975 976 977
		.private = offsetof(struct throtl_grp, bps[READ]),
		.read_seq_string = tg_print_conf_u64,
		.write_string = tg_set_conf_u64,
978 979 980 981
		.max_write_len = 256,
	},
	{
		.name = "throttle.write_bps_device",
982 983 984
		.private = offsetof(struct throtl_grp, bps[WRITE]),
		.read_seq_string = tg_print_conf_u64,
		.write_string = tg_set_conf_u64,
985 986 987 988
		.max_write_len = 256,
	},
	{
		.name = "throttle.read_iops_device",
989 990 991
		.private = offsetof(struct throtl_grp, iops[READ]),
		.read_seq_string = tg_print_conf_uint,
		.write_string = tg_set_conf_uint,
992 993 994 995
		.max_write_len = 256,
	},
	{
		.name = "throttle.write_iops_device",
996 997 998
		.private = offsetof(struct throtl_grp, iops[WRITE]),
		.read_seq_string = tg_print_conf_uint,
		.write_string = tg_set_conf_uint,
999 1000 1001 1002
		.max_write_len = 256,
	},
	{
		.name = "throttle.io_service_bytes",
1003
		.private = offsetof(struct tg_stats_cpu, service_bytes),
1004
		.read_seq_string = tg_print_cpu_rwstat,
1005 1006 1007
	},
	{
		.name = "throttle.io_serviced",
1008
		.private = offsetof(struct tg_stats_cpu, serviced),
1009
		.read_seq_string = tg_print_cpu_rwstat,
1010 1011 1012 1013
	},
	{ }	/* terminate */
};

1014
static void throtl_shutdown_wq(struct request_queue *q)
1015 1016 1017
{
	struct throtl_data *td = q->td;

1018
	cancel_delayed_work_sync(&td->dispatch_work);
1019 1020
}

T
Tejun Heo 已提交
1021
static struct blkcg_policy blkcg_policy_throtl = {
1022 1023 1024 1025 1026 1027
	.pd_size		= sizeof(struct throtl_grp),
	.cftypes		= throtl_files,

	.pd_init_fn		= throtl_pd_init,
	.pd_exit_fn		= throtl_pd_exit,
	.pd_reset_stats_fn	= throtl_pd_reset_stats,
1028 1029
};

1030
bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
1031 1032 1033 1034
{
	struct throtl_data *td = q->td;
	struct throtl_grp *tg;
	bool rw = bio_data_dir(bio), update_disptime = true;
T
Tejun Heo 已提交
1035
	struct blkcg *blkcg;
1036
	bool throttled = false;
1037 1038 1039

	if (bio->bi_rw & REQ_THROTTLED) {
		bio->bi_rw &= ~REQ_THROTTLED;
1040
		goto out;
1041 1042
	}

1043 1044 1045 1046 1047 1048
	/*
	 * A throtl_grp pointer retrieved under rcu can be used to access
	 * basic fields like stats and io rates. If a group has no rules,
	 * just update the dispatch stats in lockless manner and return.
	 */
	rcu_read_lock();
T
Tejun Heo 已提交
1049
	blkcg = bio_blkcg(bio);
1050
	tg = throtl_lookup_tg(td, blkcg);
1051 1052
	if (tg) {
		if (tg_no_rule_group(tg, rw)) {
1053 1054
			throtl_update_dispatch_stats(tg_to_blkg(tg),
						     bio->bi_size, bio->bi_rw);
1055
			goto out_unlock_rcu;
1056 1057 1058 1059 1060 1061 1062
		}
	}

	/*
	 * Either group has not been allocated yet or it is not an unlimited
	 * IO group
	 */
1063
	spin_lock_irq(q->queue_lock);
1064
	tg = throtl_lookup_create_tg(td, blkcg);
1065 1066
	if (unlikely(!tg))
		goto out_unlock;
1067

1068 1069 1070 1071 1072
	if (tg->nr_queued[rw]) {
		/*
		 * There is already another bio queued in same dir. No
		 * need to update dispatch time.
		 */
1073
		update_disptime = false;
1074
		goto queue_bio;
1075

1076 1077 1078 1079 1080
	}

	/* Bio is with-in rate limit of group */
	if (tg_may_dispatch(td, tg, bio, NULL)) {
		throtl_charge_bio(tg, bio);
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093

		/*
		 * We need to trim slice even when bios are not being queued
		 * otherwise it might happen that a bio is not queued for
		 * a long time and slice keeps on extending and trim is not
		 * called for a long time. Now if limits are reduced suddenly
		 * we take into account all the IO dispatched so far at new
		 * low rate and * newly queued IO gets a really long dispatch
		 * time.
		 *
		 * So keep on trimming slice even if bio is not queued.
		 */
		throtl_trim_slice(td, tg, rw);
1094
		goto out_unlock;
1095 1096 1097
	}

queue_bio:
1098
	throtl_log_tg(td, tg, "[%c] bio. bdisp=%llu sz=%u bps=%llu"
1099 1100
			" iodisp=%u iops=%u queued=%d/%d",
			rw == READ ? 'R' : 'W',
1101
			tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
1102
			tg->io_disp[rw], tg->iops[rw],
1103 1104
			tg->nr_queued[READ], tg->nr_queued[WRITE]);

1105
	bio_associate_current(bio);
1106
	throtl_add_bio_tg(q->td, tg, bio);
1107
	throttled = true;
1108 1109 1110 1111 1112 1113

	if (update_disptime) {
		tg_update_disptime(td, tg);
		throtl_schedule_next_dispatch(td);
	}

1114
out_unlock:
1115
	spin_unlock_irq(q->queue_lock);
1116 1117
out_unlock_rcu:
	rcu_read_unlock();
1118 1119
out:
	return throttled;
1120 1121
}

1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
/**
 * blk_throtl_drain - drain throttled bios
 * @q: request_queue to drain throttled bios for
 *
 * Dispatch all currently throttled bios on @q through ->make_request_fn().
 */
void blk_throtl_drain(struct request_queue *q)
	__releases(q->queue_lock) __acquires(q->queue_lock)
{
	struct throtl_data *td = q->td;
1132
	struct throtl_service_queue *sq = &td->service_queue;
1133 1134 1135 1136
	struct throtl_grp *tg;
	struct bio_list bl;
	struct bio *bio;

1137
	queue_lockdep_assert_held(q);
1138 1139 1140

	bio_list_init(&bl);

1141
	while ((tg = throtl_rb_first(sq))) {
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
		throtl_dequeue_tg(td, tg);

		while ((bio = bio_list_peek(&tg->bio_lists[READ])))
			tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
		while ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
			tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
	}
	spin_unlock_irq(q->queue_lock);

	while ((bio = bio_list_pop(&bl)))
		generic_make_request(bio);

	spin_lock_irq(q->queue_lock);
}

1157 1158 1159
int blk_throtl_init(struct request_queue *q)
{
	struct throtl_data *td;
1160
	int ret;
1161 1162 1163 1164 1165

	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
	if (!td)
		return -ENOMEM;

1166
	td->service_queue = THROTL_SERVICE_QUEUE_INITIALIZER;
1167
	INIT_DELAYED_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1168

1169
	q->td = td;
1170
	td->queue = q;
V
Vivek Goyal 已提交
1171

1172
	/* activate policy */
T
Tejun Heo 已提交
1173
	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1174
	if (ret)
1175
		kfree(td);
1176
	return ret;
1177 1178 1179 1180
}

void blk_throtl_exit(struct request_queue *q)
{
T
Tejun Heo 已提交
1181
	BUG_ON(!q->td);
1182
	throtl_shutdown_wq(q);
T
Tejun Heo 已提交
1183
	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1184
	kfree(q->td);
1185 1186 1187 1188
}

static int __init throtl_init(void)
{
1189 1190 1191 1192
	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
	if (!kthrotld_workqueue)
		panic("Failed to create kthrotld\n");

T
Tejun Heo 已提交
1193
	return blkcg_policy_register(&blkcg_policy_throtl);
1194 1195 1196
}

module_init(throtl_init);