blk-throttle.c 42.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11
/*
 * Interface for controlling IO bandwidth on a request queue
 *
 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
12
#include <linux/blk-cgroup.h>
13
#include "blk.h"
14 15 16 17 18 19 20 21 22 23

/* Max dispatch from a group in 1 round */
static int throtl_grp_quantum = 8;

/* Total max dispatch from all groups in one round */
static int throtl_quantum = 32;

/* Throttling is performed over 100ms slice and after that slice is renewed */
static unsigned long throtl_slice = HZ/10;	/* 100 ms */

T
Tejun Heo 已提交
24
static struct blkcg_policy blkcg_policy_throtl;
25

26 27 28
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
/*
 * To implement hierarchical throttling, throtl_grps form a tree and bios
 * are dispatched upwards level by level until they reach the top and get
 * issued.  When dispatching bios from the children and local group at each
 * level, if the bios are dispatched into a single bio_list, there's a risk
 * of a local or child group which can queue many bios at once filling up
 * the list starving others.
 *
 * To avoid such starvation, dispatched bios are queued separately
 * according to where they came from.  When they are again dispatched to
 * the parent, they're popped in round-robin order so that no single source
 * hogs the dispatch window.
 *
 * throtl_qnode is used to keep the queued bios separated by their sources.
 * Bios are queued to throtl_qnode which in turn is queued to
 * throtl_service_queue and then dispatched in round-robin order.
 *
 * It's also used to track the reference counts on blkg's.  A qnode always
 * belongs to a throtl_grp and gets queued on itself or the parent, so
 * incrementing the reference of the associated throtl_grp when a qnode is
 * queued and decrementing when dequeued is enough to keep the whole blkg
 * tree pinned while bios are in flight.
 */
struct throtl_qnode {
	struct list_head	node;		/* service_queue->queued[] */
	struct bio_list		bios;		/* queued bios */
	struct throtl_grp	*tg;		/* tg this qnode belongs to */
};

58
struct throtl_service_queue {
59 60
	struct throtl_service_queue *parent_sq;	/* the parent service_queue */

61 62 63 64
	/*
	 * Bios queued directly to this service_queue or dispatched from
	 * children throtl_grp's.
	 */
65
	struct list_head	queued[2];	/* throtl_qnode [READ/WRITE] */
66 67 68 69 70 71
	unsigned int		nr_queued[2];	/* number of queued bios */

	/*
	 * RB tree of active children throtl_grp's, which are sorted by
	 * their ->disptime.
	 */
72 73 74 75
	struct rb_root		pending_tree;	/* RB tree of active tgs */
	struct rb_node		*first_pending;	/* first node in the tree */
	unsigned int		nr_pending;	/* # queued in the tree */
	unsigned long		first_pending_disptime;	/* disptime of the first tg */
76
	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
77 78
};

79 80
enum tg_state_flags {
	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
81
	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
82 83
};

84 85
#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)

86 87 88 89 90 91 92 93
/* Per-cpu group stats */
struct tg_stats_cpu {
	/* total bytes transferred */
	struct blkg_rwstat		service_bytes;
	/* total IOs serviced, post merge */
	struct blkg_rwstat		serviced;
};

94
struct throtl_grp {
95 96 97
	/* must be the first member */
	struct blkg_policy_data pd;

98
	/* active throtl group service_queue member */
99 100
	struct rb_node rb_node;

101 102 103
	/* throtl_data this group belongs to */
	struct throtl_data *td;

104 105 106
	/* this group's service queue */
	struct throtl_service_queue service_queue;

107 108 109 110 111 112 113 114 115 116 117
	/*
	 * qnode_on_self is used when bios are directly queued to this
	 * throtl_grp so that local bios compete fairly with bios
	 * dispatched from children.  qnode_on_parent is used when bios are
	 * dispatched from this throtl_grp into its parent and will compete
	 * with the sibling qnode_on_parents and the parent's
	 * qnode_on_self.
	 */
	struct throtl_qnode qnode_on_self[2];
	struct throtl_qnode qnode_on_parent[2];

118 119 120 121 122 123 124 125 126
	/*
	 * Dispatch time in jiffies. This is the estimated time when group
	 * will unthrottle and is ready to dispatch more bio. It is used as
	 * key to sort active groups in service tree.
	 */
	unsigned long disptime;

	unsigned int flags;

127 128 129
	/* are there any throtl rules between this group and td? */
	bool has_rules[2];

130 131 132
	/* bytes per second rate limits */
	uint64_t bps[2];

133 134 135
	/* IOPS limits */
	unsigned int iops[2];

136 137
	/* Number of bytes disptached in current slice */
	uint64_t bytes_disp[2];
138 139
	/* Number of bio's dispatched in current slice */
	unsigned int io_disp[2];
140 141 142 143

	/* When did we start a new slice */
	unsigned long slice_start[2];
	unsigned long slice_end[2];
144

145 146
	/* Per cpu stats pointer */
	struct tg_stats_cpu __percpu *stats_cpu;
147 148 149 150 151
};

struct throtl_data
{
	/* service tree for active throtl groups */
152
	struct throtl_service_queue service_queue;
153 154 155 156 157 158 159

	struct request_queue *queue;

	/* Total Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

	/*
V
Vivek Goyal 已提交
160
	 * number of total undestroyed groups
161 162 163 164
	 */
	unsigned int nr_undestroyed_grps;

	/* Work for dispatching throttled bios */
165
	struct work_struct dispatch_work;
166 167
};

168 169
static void throtl_pending_timer_fn(unsigned long arg);

170 171 172 173 174
static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
{
	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
}

T
Tejun Heo 已提交
175
static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
176
{
177
	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
178 179
}

T
Tejun Heo 已提交
180
static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
181
{
182
	return pd_to_blkg(&tg->pd);
183 184
}

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
/**
 * sq_to_tg - return the throl_grp the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 * embedded in throtl_data, %NULL is returned.
 */
static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
{
	if (sq && sq->parent_sq)
		return container_of(sq, struct throtl_grp, service_queue);
	else
		return NULL;
}

/**
 * sq_to_td - return throtl_data the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * A service_queue can be embeded in either a throtl_grp or throtl_data.
 * Determine the associated throtl_data accordingly and return it.
 */
static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
{
	struct throtl_grp *tg = sq_to_tg(sq);

	if (tg)
		return tg->td;
	else
		return container_of(sq, struct throtl_data, service_queue);
}

/**
 * throtl_log - log debug message via blktrace
 * @sq: the service_queue being reported
 * @fmt: printf format string
 * @args: printf args
 *
 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 * throtl_grp; otherwise, just "throtl".
 *
 * TODO: this should be made a function and name formatting should happen
 * after testing whether blktrace is enabled.
 */
#define throtl_log(sq, fmt, args...)	do {				\
	struct throtl_grp *__tg = sq_to_tg((sq));			\
	struct throtl_data *__td = sq_to_td((sq));			\
									\
	(void)__td;							\
	if ((__tg)) {							\
		char __pbuf[128];					\
T
Tejun Heo 已提交
236
									\
237 238 239 240 241
		blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf));	\
		blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
	} else {							\
		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
	}								\
T
Tejun Heo 已提交
242
} while (0)
243

244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
{
	INIT_LIST_HEAD(&qn->node);
	bio_list_init(&qn->bios);
	qn->tg = tg;
}

/**
 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 * @bio: bio being added
 * @qn: qnode to add bio to
 * @queued: the service_queue->queued[] list @qn belongs to
 *
 * Add @bio to @qn and put @qn on @queued if it's not already on.
 * @qn->tg's reference count is bumped when @qn is activated.  See the
 * comment on top of throtl_qnode definition for details.
 */
static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
				 struct list_head *queued)
{
	bio_list_add(&qn->bios, bio);
	if (list_empty(&qn->node)) {
		list_add_tail(&qn->node, queued);
		blkg_get(tg_to_blkg(qn->tg));
	}
}

/**
 * throtl_peek_queued - peek the first bio on a qnode list
 * @queued: the qnode list to peek
 */
static struct bio *throtl_peek_queued(struct list_head *queued)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_peek(&qn->bios);
	WARN_ON_ONCE(!bio);
	return bio;
}

/**
 * throtl_pop_queued - pop the first bio form a qnode list
 * @queued: the qnode list to pop a bio from
 * @tg_to_put: optional out argument for throtl_grp to put
 *
 * Pop the first bio from the qnode list @queued.  After popping, the first
 * qnode is removed from @queued if empty or moved to the end of @queued so
 * that the popping order is round-robin.
 *
 * When the first qnode is removed, its associated throtl_grp should be put
 * too.  If @tg_to_put is NULL, this function automatically puts it;
 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 * responsible for putting it.
 */
static struct bio *throtl_pop_queued(struct list_head *queued,
				     struct throtl_grp **tg_to_put)
{
	struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
	struct bio *bio;

	if (list_empty(queued))
		return NULL;

	bio = bio_list_pop(&qn->bios);
	WARN_ON_ONCE(!bio);

	if (bio_list_empty(&qn->bios)) {
		list_del_init(&qn->node);
		if (tg_to_put)
			*tg_to_put = qn->tg;
		else
			blkg_put(tg_to_blkg(qn->tg));
	} else {
		list_move_tail(&qn->node, queued);
	}

	return bio;
}

327
/* init a service_queue, assumes the caller zeroed it */
328
static void throtl_service_queue_init(struct throtl_service_queue *sq)
329
{
330 331
	INIT_LIST_HEAD(&sq->queued[0]);
	INIT_LIST_HEAD(&sq->queued[1]);
332
	sq->pending_tree = RB_ROOT;
333 334 335 336
	setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
		    (unsigned long)sq);
}

337 338
static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
{
339
	struct throtl_grp *tg;
340
	int rw, cpu;
341 342 343 344 345 346 347 348 349 350 351

	tg = kzalloc_node(sizeof(*tg), gfp, node);
	if (!tg)
		return NULL;

	tg->stats_cpu = alloc_percpu_gfp(struct tg_stats_cpu, gfp);
	if (!tg->stats_cpu) {
		kfree(tg);
		return NULL;
	}

352 353 354 355 356 357 358 359 360 361 362 363 364
	throtl_service_queue_init(&tg->service_queue);

	for (rw = READ; rw <= WRITE; rw++) {
		throtl_qnode_init(&tg->qnode_on_self[rw], tg);
		throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
	}

	RB_CLEAR_NODE(&tg->rb_node);
	tg->bps[READ] = -1;
	tg->bps[WRITE] = -1;
	tg->iops[READ] = -1;
	tg->iops[WRITE] = -1;

365 366 367 368 369 370 371 372
	for_each_possible_cpu(cpu) {
		struct tg_stats_cpu *stats_cpu = per_cpu_ptr(tg->stats_cpu, cpu);

		blkg_rwstat_init(&stats_cpu->service_bytes);
		blkg_rwstat_init(&stats_cpu->serviced);
	}

	return &tg->pd;
373 374
}

375
static void throtl_pd_init(struct blkg_policy_data *pd)
376
{
377 378
	struct throtl_grp *tg = pd_to_tg(pd);
	struct blkcg_gq *blkg = tg_to_blkg(tg);
379
	struct throtl_data *td = blkg->q->td;
380
	struct throtl_service_queue *sq = &tg->service_queue;
381

382
	/*
383
	 * If on the default hierarchy, we switch to properly hierarchical
384 385 386 387 388
	 * behavior where limits on a given throtl_grp are applied to the
	 * whole subtree rather than just the group itself.  e.g. If 16M
	 * read_bps limit is set on the root group, the whole system can't
	 * exceed 16M for the device.
	 *
389
	 * If not on the default hierarchy, the broken flat hierarchy
390 391 392 393 394
	 * behavior is retained where all throtl_grps are treated as if
	 * they're all separate root groups right below throtl_data.
	 * Limits of a group don't interact with limits of other groups
	 * regardless of the position of the group in the hierarchy.
	 */
395
	sq->parent_sq = &td->service_queue;
396
	if (cgroup_on_dfl(blkg->blkcg->css.cgroup) && blkg->parent)
397
		sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
398
	tg->td = td;
399 400
}

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
/*
 * Set has_rules[] if @tg or any of its parents have limits configured.
 * This doesn't require walking up to the top of the hierarchy as the
 * parent's has_rules[] is guaranteed to be correct.
 */
static void tg_update_has_rules(struct throtl_grp *tg)
{
	struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
	int rw;

	for (rw = READ; rw <= WRITE; rw++)
		tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
				    (tg->bps[rw] != -1 || tg->iops[rw] != -1);
}

416
static void throtl_pd_online(struct blkg_policy_data *pd)
417 418 419 420 421
{
	/*
	 * We don't want new groups to escape the limits of its ancestors.
	 * Update has_rules[] after a new group is brought online.
	 */
422
	tg_update_has_rules(pd_to_tg(pd));
423 424
}

425 426
static void throtl_pd_free(struct blkg_policy_data *pd)
{
427 428
	struct throtl_grp *tg = pd_to_tg(pd);

429
	del_timer_sync(&tg->service_queue.pending_timer);
430 431
	free_percpu(tg->stats_cpu);
	kfree(tg);
432 433
}

434
static void throtl_pd_reset_stats(struct blkg_policy_data *pd)
435
{
436
	struct throtl_grp *tg = pd_to_tg(pd);
437 438 439 440 441 442 443 444
	int cpu;

	for_each_possible_cpu(cpu) {
		struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);

		blkg_rwstat_reset(&sc->service_bytes);
		blkg_rwstat_reset(&sc->serviced);
	}
445 446
}

447 448
static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue *parent_sq)
449 450
{
	/* Service tree is empty */
451
	if (!parent_sq->nr_pending)
452 453
		return NULL;

454 455
	if (!parent_sq->first_pending)
		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
456

457 458
	if (parent_sq->first_pending)
		return rb_entry_tg(parent_sq->first_pending);
459 460 461 462 463 464 465 466 467 468

	return NULL;
}

static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

469 470
static void throtl_rb_erase(struct rb_node *n,
			    struct throtl_service_queue *parent_sq)
471
{
472 473 474 475
	if (parent_sq->first_pending == n)
		parent_sq->first_pending = NULL;
	rb_erase_init(n, &parent_sq->pending_tree);
	--parent_sq->nr_pending;
476 477
}

478
static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
479 480 481
{
	struct throtl_grp *tg;

482
	tg = throtl_rb_first(parent_sq);
483 484 485
	if (!tg)
		return;

486
	parent_sq->first_pending_disptime = tg->disptime;
487 488
}

489
static void tg_service_queue_add(struct throtl_grp *tg)
490
{
491
	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
492
	struct rb_node **node = &parent_sq->pending_tree.rb_node;
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
	struct rb_node *parent = NULL;
	struct throtl_grp *__tg;
	unsigned long key = tg->disptime;
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__tg = rb_entry_tg(parent);

		if (time_before(key, __tg->disptime))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
511
		parent_sq->first_pending = &tg->rb_node;
512 513

	rb_link_node(&tg->rb_node, parent, node);
514
	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
515 516
}

517
static void __throtl_enqueue_tg(struct throtl_grp *tg)
518
{
519
	tg_service_queue_add(tg);
520
	tg->flags |= THROTL_TG_PENDING;
521
	tg->service_queue.parent_sq->nr_pending++;
522 523
}

524
static void throtl_enqueue_tg(struct throtl_grp *tg)
525
{
526
	if (!(tg->flags & THROTL_TG_PENDING))
527
		__throtl_enqueue_tg(tg);
528 529
}

530
static void __throtl_dequeue_tg(struct throtl_grp *tg)
531
{
532
	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
533
	tg->flags &= ~THROTL_TG_PENDING;
534 535
}

536
static void throtl_dequeue_tg(struct throtl_grp *tg)
537
{
538
	if (tg->flags & THROTL_TG_PENDING)
539
		__throtl_dequeue_tg(tg);
540 541
}

542
/* Call with queue lock held */
543 544
static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
					  unsigned long expires)
545
{
546 547 548
	mod_timer(&sq->pending_timer, expires);
	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
		   expires - jiffies, jiffies);
549 550
}

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
/**
 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 * @sq: the service_queue to schedule dispatch for
 * @force: force scheduling
 *
 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 * dispatch time of the first pending child.  Returns %true if either timer
 * is armed or there's no pending child left.  %false if the current
 * dispatch window is still open and the caller should continue
 * dispatching.
 *
 * If @force is %true, the dispatch timer is always scheduled and this
 * function is guaranteed to return %true.  This is to be used when the
 * caller can't dispatch itself and needs to invoke pending_timer
 * unconditionally.  Note that forced scheduling is likely to induce short
 * delay before dispatch starts even if @sq->first_pending_disptime is not
 * in the future and thus shouldn't be used in hot paths.
 */
static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
					  bool force)
571
{
572
	/* any pending children left? */
573
	if (!sq->nr_pending)
574
		return true;
575

576
	update_min_dispatch_time(sq);
577

578
	/* is the next dispatch time in the future? */
579
	if (force || time_after(sq->first_pending_disptime, jiffies)) {
580
		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
581
		return true;
582 583
	}

584 585
	/* tell the caller to continue dispatching */
	return false;
586 587
}

588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
		bool rw, unsigned long start)
{
	tg->bytes_disp[rw] = 0;
	tg->io_disp[rw] = 0;

	/*
	 * Previous slice has expired. We must have trimmed it after last
	 * bio dispatch. That means since start of last slice, we never used
	 * that bandwidth. Do try to make use of that bandwidth while giving
	 * credit.
	 */
	if (time_after_eq(start, tg->slice_start[rw]))
		tg->slice_start[rw] = start;

	tg->slice_end[rw] = jiffies + throtl_slice;
	throtl_log(&tg->service_queue,
		   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
}

610
static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
611 612
{
	tg->bytes_disp[rw] = 0;
613
	tg->io_disp[rw] = 0;
614 615
	tg->slice_start[rw] = jiffies;
	tg->slice_end[rw] = jiffies + throtl_slice;
616 617 618 619
	throtl_log(&tg->service_queue,
		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
620 621
}

622 623
static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
					unsigned long jiffy_end)
624 625 626 627
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
}

628 629
static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
				       unsigned long jiffy_end)
630 631
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
632 633 634 635
	throtl_log(&tg->service_queue,
		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
636 637 638
}

/* Determine if previously allocated or extended slice is complete or not */
639
static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
640 641
{
	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
642
		return false;
643 644 645 646 647

	return 1;
}

/* Trim the used slices and adjust slice start accordingly */
648
static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
649
{
650 651
	unsigned long nr_slices, time_elapsed, io_trim;
	u64 bytes_trim, tmp;
652 653 654 655 656 657 658 659

	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));

	/*
	 * If bps are unlimited (-1), then time slice don't get
	 * renewed. Don't try to trim the slice if slice is used. A new
	 * slice will start when appropriate.
	 */
660
	if (throtl_slice_used(tg, rw))
661 662
		return;

663 664 665 666 667 668 669 670
	/*
	 * A bio has been dispatched. Also adjust slice_end. It might happen
	 * that initially cgroup limit was very low resulting in high
	 * slice_end, but later limit was bumped up and bio was dispached
	 * sooner, then we need to reduce slice_end. A high bogus slice_end
	 * is bad because it does not allow new slice to start.
	 */

671
	throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
672

673 674 675 676 677 678
	time_elapsed = jiffies - tg->slice_start[rw];

	nr_slices = time_elapsed / throtl_slice;

	if (!nr_slices)
		return;
679 680 681
	tmp = tg->bps[rw] * throtl_slice * nr_slices;
	do_div(tmp, HZ);
	bytes_trim = tmp;
682

683
	io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
684

685
	if (!bytes_trim && !io_trim)
686 687 688 689 690 691 692
		return;

	if (tg->bytes_disp[rw] >= bytes_trim)
		tg->bytes_disp[rw] -= bytes_trim;
	else
		tg->bytes_disp[rw] = 0;

693 694 695 696 697
	if (tg->io_disp[rw] >= io_trim)
		tg->io_disp[rw] -= io_trim;
	else
		tg->io_disp[rw] = 0;

698 699
	tg->slice_start[rw] += nr_slices * throtl_slice;

700 701 702 703
	throtl_log(&tg->service_queue,
		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
704 705
}

706 707
static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
				  unsigned long *wait)
708 709
{
	bool rw = bio_data_dir(bio);
710
	unsigned int io_allowed;
711
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
712
	u64 tmp;
713

714
	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
715

716 717 718 719 720 721
	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

722 723 724 725 726 727 728 729 730 731 732 733 734 735
	/*
	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
	 * will allow dispatch after 1 second and after that slice should
	 * have been trimmed.
	 */

	tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
	do_div(tmp, HZ);

	if (tmp > UINT_MAX)
		io_allowed = UINT_MAX;
	else
		io_allowed = tmp;
736 737

	if (tg->io_disp[rw] + 1 <= io_allowed) {
738 739
		if (wait)
			*wait = 0;
740
		return true;
741 742
	}

743 744 745 746 747 748 749 750 751 752 753 754 755
	/* Calc approx time to dispatch */
	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;

	if (jiffy_wait > jiffy_elapsed)
		jiffy_wait = jiffy_wait - jiffy_elapsed;
	else
		jiffy_wait = 1;

	if (wait)
		*wait = jiffy_wait;
	return 0;
}

756 757
static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
				 unsigned long *wait)
758 759
{
	bool rw = bio_data_dir(bio);
760
	u64 bytes_allowed, extra_bytes, tmp;
761
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
762 763 764 765 766 767 768 769 770

	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];

	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

771 772
	tmp = tg->bps[rw] * jiffy_elapsed_rnd;
	do_div(tmp, HZ);
773
	bytes_allowed = tmp;
774

775
	if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
776 777
		if (wait)
			*wait = 0;
778
		return true;
779 780 781
	}

	/* Calc approx time to dispatch */
782
	extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
783 784 785 786 787 788 789 790 791 792 793 794
	jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);

	if (!jiffy_wait)
		jiffy_wait = 1;

	/*
	 * This wait time is without taking into consideration the rounding
	 * up we did. Add that time also.
	 */
	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
	if (wait)
		*wait = jiffy_wait;
795 796 797 798 799 800 801
	return 0;
}

/*
 * Returns whether one can dispatch a bio or not. Also returns approx number
 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 */
802 803
static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
			    unsigned long *wait)
804 805 806 807 808 809 810 811 812 813
{
	bool rw = bio_data_dir(bio);
	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;

	/*
 	 * Currently whole state machine of group depends on first bio
	 * queued in the group bio list. So one should not be calling
	 * this function with a different bio if there are other bios
	 * queued.
	 */
814
	BUG_ON(tg->service_queue.nr_queued[rw] &&
815
	       bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
816

817 818 819 820
	/* If tg->bps = -1, then BW is unlimited */
	if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
		if (wait)
			*wait = 0;
821
		return true;
822 823 824 825 826 827 828
	}

	/*
	 * If previous slice expired, start a new one otherwise renew/extend
	 * existing slice to make sure it is at least throtl_slice interval
	 * long since now.
	 */
829 830
	if (throtl_slice_used(tg, rw))
		throtl_start_new_slice(tg, rw);
831 832
	else {
		if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
833
			throtl_extend_slice(tg, rw, jiffies + throtl_slice);
834 835
	}

836 837
	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
838 839 840 841 842 843 844 845 846 847 848
		if (wait)
			*wait = 0;
		return 1;
	}

	max_wait = max(bps_wait, iops_wait);

	if (wait)
		*wait = max_wait;

	if (time_before(tg->slice_end[rw], jiffies + max_wait))
849
		throtl_extend_slice(tg, rw, jiffies + max_wait);
850 851 852 853

	return 0;
}

T
Tejun Heo 已提交
854
static void throtl_update_dispatch_stats(struct blkcg_gq *blkg, u64 bytes,
855 856
					 int rw)
{
857 858
	struct throtl_grp *tg = blkg_to_tg(blkg);
	struct tg_stats_cpu *stats_cpu;
859 860 861 862 863 864 865 866 867
	unsigned long flags;

	/*
	 * Disabling interrupts to provide mutual exclusion between two
	 * writes on same cpu. It probably is not needed for 64bit. Not
	 * optimizing that case yet.
	 */
	local_irq_save(flags);

868
	stats_cpu = this_cpu_ptr(tg->stats_cpu);
869 870 871 872 873 874 875

	blkg_rwstat_add(&stats_cpu->serviced, rw, 1);
	blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes);

	local_irq_restore(flags);
}

876 877 878 879 880
static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
	bool rw = bio_data_dir(bio);

	/* Charge the bio to the group */
881
	tg->bytes_disp[rw] += bio->bi_iter.bi_size;
882
	tg->io_disp[rw]++;
883

884 885 886 887 888 889 890 891 892 893 894 895 896
	/*
	 * REQ_THROTTLED is used to prevent the same bio to be throttled
	 * more than once as a throttled bio will go through blk-throtl the
	 * second time when it eventually gets issued.  Set it when a bio
	 * is being charged to a tg.
	 *
	 * Dispatch stats aren't recursive and each @bio should only be
	 * accounted by the @tg it was originally associated with.  Let's
	 * update the stats when setting REQ_THROTTLED for the first time
	 * which is guaranteed to be for the @bio's original tg.
	 */
	if (!(bio->bi_rw & REQ_THROTTLED)) {
		bio->bi_rw |= REQ_THROTTLED;
897 898
		throtl_update_dispatch_stats(tg_to_blkg(tg),
					     bio->bi_iter.bi_size, bio->bi_rw);
899
	}
900 901
}

902 903 904 905 906 907 908 909 910 911 912
/**
 * throtl_add_bio_tg - add a bio to the specified throtl_grp
 * @bio: bio to add
 * @qn: qnode to use
 * @tg: the target throtl_grp
 *
 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
 * tg->qnode_on_self[] is used.
 */
static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
			      struct throtl_grp *tg)
913
{
914
	struct throtl_service_queue *sq = &tg->service_queue;
915 916
	bool rw = bio_data_dir(bio);

917 918 919
	if (!qn)
		qn = &tg->qnode_on_self[rw];

920 921 922 923 924 925 926 927 928
	/*
	 * If @tg doesn't currently have any bios queued in the same
	 * direction, queueing @bio can change when @tg should be
	 * dispatched.  Mark that @tg was empty.  This is automatically
	 * cleaered on the next tg_update_disptime().
	 */
	if (!sq->nr_queued[rw])
		tg->flags |= THROTL_TG_WAS_EMPTY;

929 930
	throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);

931
	sq->nr_queued[rw]++;
932
	throtl_enqueue_tg(tg);
933 934
}

935
static void tg_update_disptime(struct throtl_grp *tg)
936
{
937
	struct throtl_service_queue *sq = &tg->service_queue;
938 939 940
	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
	struct bio *bio;

941
	if ((bio = throtl_peek_queued(&sq->queued[READ])))
942
		tg_may_dispatch(tg, bio, &read_wait);
943

944
	if ((bio = throtl_peek_queued(&sq->queued[WRITE])))
945
		tg_may_dispatch(tg, bio, &write_wait);
946 947 948 949 950

	min_wait = min(read_wait, write_wait);
	disptime = jiffies + min_wait;

	/* Update dispatch time */
951
	throtl_dequeue_tg(tg);
952
	tg->disptime = disptime;
953
	throtl_enqueue_tg(tg);
954 955 956

	/* see throtl_add_bio_tg() */
	tg->flags &= ~THROTL_TG_WAS_EMPTY;
957 958
}

959 960 961 962 963 964 965 966 967 968
static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
					struct throtl_grp *parent_tg, bool rw)
{
	if (throtl_slice_used(parent_tg, rw)) {
		throtl_start_new_slice_with_credit(parent_tg, rw,
				child_tg->slice_start[rw]);
	}

}

969
static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
970
{
971
	struct throtl_service_queue *sq = &tg->service_queue;
972 973
	struct throtl_service_queue *parent_sq = sq->parent_sq;
	struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
974
	struct throtl_grp *tg_to_put = NULL;
975 976
	struct bio *bio;

977 978 979 980 981 982 983
	/*
	 * @bio is being transferred from @tg to @parent_sq.  Popping a bio
	 * from @tg may put its reference and @parent_sq might end up
	 * getting released prematurely.  Remember the tg to put and put it
	 * after @bio is transferred to @parent_sq.
	 */
	bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
984
	sq->nr_queued[rw]--;
985 986

	throtl_charge_bio(tg, bio);
987 988 989 990 991 992 993 994 995

	/*
	 * If our parent is another tg, we just need to transfer @bio to
	 * the parent using throtl_add_bio_tg().  If our parent is
	 * @td->service_queue, @bio is ready to be issued.  Put it on its
	 * bio_lists[] and decrease total number queued.  The caller is
	 * responsible for issuing these bios.
	 */
	if (parent_tg) {
996
		throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
997
		start_parent_slice_with_credit(tg, parent_tg, rw);
998
	} else {
999 1000
		throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
				     &parent_sq->queued[rw]);
1001 1002 1003
		BUG_ON(tg->td->nr_queued[rw] <= 0);
		tg->td->nr_queued[rw]--;
	}
1004

1005
	throtl_trim_slice(tg, rw);
1006

1007 1008
	if (tg_to_put)
		blkg_put(tg_to_blkg(tg_to_put));
1009 1010
}

1011
static int throtl_dispatch_tg(struct throtl_grp *tg)
1012
{
1013
	struct throtl_service_queue *sq = &tg->service_queue;
1014 1015
	unsigned int nr_reads = 0, nr_writes = 0;
	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1016
	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1017 1018 1019 1020
	struct bio *bio;

	/* Try to dispatch 75% READS and 25% WRITES */

1021
	while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1022
	       tg_may_dispatch(tg, bio, NULL)) {
1023

1024
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1025 1026 1027 1028 1029 1030
		nr_reads++;

		if (nr_reads >= max_nr_reads)
			break;
	}

1031
	while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1032
	       tg_may_dispatch(tg, bio, NULL)) {
1033

1034
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
1035 1036 1037 1038 1039 1040 1041 1042 1043
		nr_writes++;

		if (nr_writes >= max_nr_writes)
			break;
	}

	return nr_reads + nr_writes;
}

1044
static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1045 1046 1047 1048
{
	unsigned int nr_disp = 0;

	while (1) {
1049 1050
		struct throtl_grp *tg = throtl_rb_first(parent_sq);
		struct throtl_service_queue *sq = &tg->service_queue;
1051 1052 1053 1054 1055 1056 1057

		if (!tg)
			break;

		if (time_before(jiffies, tg->disptime))
			break;

1058
		throtl_dequeue_tg(tg);
1059

1060
		nr_disp += throtl_dispatch_tg(tg);
1061

1062
		if (sq->nr_queued[0] || sq->nr_queued[1])
1063
			tg_update_disptime(tg);
1064 1065 1066 1067 1068 1069 1070 1071

		if (nr_disp >= throtl_quantum)
			break;
	}

	return nr_disp;
}

1072 1073 1074 1075 1076 1077 1078
/**
 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
 * @arg: the throtl_service_queue being serviced
 *
 * This timer is armed when a child throtl_grp with active bio's become
 * pending and queued on the service_queue's pending_tree and expires when
 * the first child throtl_grp should be dispatched.  This function
1079 1080 1081 1082 1083 1084 1085
 * dispatches bio's from the children throtl_grps to the parent
 * service_queue.
 *
 * If the parent's parent is another throtl_grp, dispatching is propagated
 * by either arming its pending_timer or repeating dispatch directly.  If
 * the top-level service_tree is reached, throtl_data->dispatch_work is
 * kicked so that the ready bio's are issued.
1086
 */
1087 1088 1089
static void throtl_pending_timer_fn(unsigned long arg)
{
	struct throtl_service_queue *sq = (void *)arg;
1090
	struct throtl_grp *tg = sq_to_tg(sq);
1091
	struct throtl_data *td = sq_to_td(sq);
1092
	struct request_queue *q = td->queue;
1093 1094
	struct throtl_service_queue *parent_sq;
	bool dispatched;
1095
	int ret;
1096 1097

	spin_lock_irq(q->queue_lock);
1098 1099 1100
again:
	parent_sq = sq->parent_sq;
	dispatched = false;
1101

1102 1103
	while (true) {
		throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1104 1105
			   sq->nr_queued[READ] + sq->nr_queued[WRITE],
			   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1106 1107 1108 1109 1110 1111

		ret = throtl_select_dispatch(sq);
		if (ret) {
			throtl_log(sq, "bios disp=%u", ret);
			dispatched = true;
		}
1112

1113 1114
		if (throtl_schedule_next_dispatch(sq, false))
			break;
1115

1116 1117 1118 1119
		/* this dispatch windows is still open, relax and repeat */
		spin_unlock_irq(q->queue_lock);
		cpu_relax();
		spin_lock_irq(q->queue_lock);
1120
	}
1121

1122 1123
	if (!dispatched)
		goto out_unlock;
1124

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
	if (parent_sq) {
		/* @parent_sq is another throl_grp, propagate dispatch */
		if (tg->flags & THROTL_TG_WAS_EMPTY) {
			tg_update_disptime(tg);
			if (!throtl_schedule_next_dispatch(parent_sq, false)) {
				/* window is already open, repeat dispatching */
				sq = parent_sq;
				tg = sq_to_tg(sq);
				goto again;
			}
		}
	} else {
		/* reached the top-level, queue issueing */
		queue_work(kthrotld_workqueue, &td->dispatch_work);
	}
out_unlock:
1141
	spin_unlock_irq(q->queue_lock);
1142
}
1143

1144 1145 1146 1147 1148 1149 1150 1151
/**
 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
 * @work: work item being executed
 *
 * This function is queued for execution when bio's reach the bio_lists[]
 * of throtl_data->service_queue.  Those bio's are ready and issued by this
 * function.
 */
1152
static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
{
	struct throtl_data *td = container_of(work, struct throtl_data,
					      dispatch_work);
	struct throtl_service_queue *td_sq = &td->service_queue;
	struct request_queue *q = td->queue;
	struct bio_list bio_list_on_stack;
	struct bio *bio;
	struct blk_plug plug;
	int rw;

	bio_list_init(&bio_list_on_stack);

	spin_lock_irq(q->queue_lock);
1166 1167 1168
	for (rw = READ; rw <= WRITE; rw++)
		while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
			bio_list_add(&bio_list_on_stack, bio);
1169 1170 1171
	spin_unlock_irq(q->queue_lock);

	if (!bio_list_empty(&bio_list_on_stack)) {
1172
		blk_start_plug(&plug);
1173 1174
		while((bio = bio_list_pop(&bio_list_on_stack)))
			generic_make_request(bio);
1175
		blk_finish_plug(&plug);
1176 1177 1178
	}
}

1179 1180
static u64 tg_prfill_cpu_rwstat(struct seq_file *sf,
				struct blkg_policy_data *pd, int off)
1181
{
1182
	struct throtl_grp *tg = pd_to_tg(pd);
1183 1184 1185 1186
	struct blkg_rwstat rwstat = { }, tmp;
	int i, cpu;

	for_each_possible_cpu(cpu) {
1187
		struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
1188 1189 1190 1191 1192 1193

		tmp = blkg_rwstat_read((void *)sc + off);
		for (i = 0; i < BLKG_RWSTAT_NR; i++)
			rwstat.cnt[i] += tmp.cnt[i];
	}

1194
	return __blkg_prfill_rwstat(sf, pd, &rwstat);
1195 1196
}

1197
static int tg_print_cpu_rwstat(struct seq_file *sf, void *v)
1198
{
1199 1200
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_cpu_rwstat,
			  &blkcg_policy_throtl, seq_cft(sf)->private, true);
1201 1202 1203
	return 0;
}

1204 1205
static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
			      int off)
1206
{
1207 1208
	struct throtl_grp *tg = pd_to_tg(pd);
	u64 v = *(u64 *)((void *)tg + off);
1209

1210
	if (v == -1)
1211
		return 0;
1212
	return __blkg_prfill_u64(sf, pd, v);
1213 1214
}

1215 1216
static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
			       int off)
1217
{
1218 1219
	struct throtl_grp *tg = pd_to_tg(pd);
	unsigned int v = *(unsigned int *)((void *)tg + off);
1220

1221 1222
	if (v == -1)
		return 0;
1223
	return __blkg_prfill_u64(sf, pd, v);
1224 1225
}

1226
static int tg_print_conf_u64(struct seq_file *sf, void *v)
1227
{
1228 1229
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1230
	return 0;
1231 1232
}

1233
static int tg_print_conf_uint(struct seq_file *sf, void *v)
1234
{
1235 1236
	blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
			  &blkcg_policy_throtl, seq_cft(sf)->private, false);
1237
	return 0;
1238 1239
}

1240 1241
static ssize_t tg_set_conf(struct kernfs_open_file *of,
			   char *buf, size_t nbytes, loff_t off, bool is_u64)
1242
{
1243
	struct blkcg *blkcg = css_to_blkcg(of_css(of));
1244
	struct blkg_conf_ctx ctx;
1245
	struct throtl_grp *tg;
1246
	struct throtl_service_queue *sq;
1247
	struct blkcg_gq *blkg;
1248
	struct cgroup_subsys_state *pos_css;
1249 1250
	int ret;

T
Tejun Heo 已提交
1251
	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1252 1253 1254
	if (ret)
		return ret;

1255
	tg = blkg_to_tg(ctx.blkg);
1256
	sq = &tg->service_queue;
1257

1258 1259
	if (!ctx.v)
		ctx.v = -1;
1260

1261
	if (is_u64)
1262
		*(u64 *)((void *)tg + of_cft(of)->private) = ctx.v;
1263
	else
1264
		*(unsigned int *)((void *)tg + of_cft(of)->private) = ctx.v;
1265

1266 1267 1268 1269
	throtl_log(&tg->service_queue,
		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
		   tg->bps[READ], tg->bps[WRITE],
		   tg->iops[READ], tg->iops[WRITE]);
1270

1271 1272 1273 1274 1275 1276 1277
	/*
	 * Update has_rules[] flags for the updated tg's subtree.  A tg is
	 * considered to have rules if either the tg itself or any of its
	 * ancestors has rules.  This identifies groups without any
	 * restrictions in the whole hierarchy and allows them to bypass
	 * blk-throttle.
	 */
1278
	blkg_for_each_descendant_pre(blkg, pos_css, ctx.blkg)
1279 1280
		tg_update_has_rules(blkg_to_tg(blkg));

1281 1282 1283 1284 1285 1286 1287 1288
	/*
	 * We're already holding queue_lock and know @tg is valid.  Let's
	 * apply the new config directly.
	 *
	 * Restart the slices for both READ and WRITES. It might happen
	 * that a group's limit are dropped suddenly and we don't want to
	 * account recently dispatched IO with new low rate.
	 */
1289 1290
	throtl_start_new_slice(tg, 0);
	throtl_start_new_slice(tg, 1);
1291

1292
	if (tg->flags & THROTL_TG_PENDING) {
1293
		tg_update_disptime(tg);
1294
		throtl_schedule_next_dispatch(sq->parent_sq, true);
1295
	}
1296 1297

	blkg_conf_finish(&ctx);
1298
	return nbytes;
1299 1300
}

1301 1302
static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
			       char *buf, size_t nbytes, loff_t off)
1303
{
1304
	return tg_set_conf(of, buf, nbytes, off, true);
1305 1306
}

1307 1308
static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
				char *buf, size_t nbytes, loff_t off)
1309
{
1310
	return tg_set_conf(of, buf, nbytes, off, false);
1311 1312 1313 1314 1315
}

static struct cftype throtl_files[] = {
	{
		.name = "throttle.read_bps_device",
1316
		.private = offsetof(struct throtl_grp, bps[READ]),
1317
		.seq_show = tg_print_conf_u64,
1318
		.write = tg_set_conf_u64,
1319 1320 1321
	},
	{
		.name = "throttle.write_bps_device",
1322
		.private = offsetof(struct throtl_grp, bps[WRITE]),
1323
		.seq_show = tg_print_conf_u64,
1324
		.write = tg_set_conf_u64,
1325 1326 1327
	},
	{
		.name = "throttle.read_iops_device",
1328
		.private = offsetof(struct throtl_grp, iops[READ]),
1329
		.seq_show = tg_print_conf_uint,
1330
		.write = tg_set_conf_uint,
1331 1332 1333
	},
	{
		.name = "throttle.write_iops_device",
1334
		.private = offsetof(struct throtl_grp, iops[WRITE]),
1335
		.seq_show = tg_print_conf_uint,
1336
		.write = tg_set_conf_uint,
1337 1338 1339
	},
	{
		.name = "throttle.io_service_bytes",
1340
		.private = offsetof(struct tg_stats_cpu, service_bytes),
1341
		.seq_show = tg_print_cpu_rwstat,
1342 1343 1344
	},
	{
		.name = "throttle.io_serviced",
1345
		.private = offsetof(struct tg_stats_cpu, serviced),
1346
		.seq_show = tg_print_cpu_rwstat,
1347 1348 1349 1350
	},
	{ }	/* terminate */
};

1351
static void throtl_shutdown_wq(struct request_queue *q)
1352 1353 1354
{
	struct throtl_data *td = q->td;

1355
	cancel_work_sync(&td->dispatch_work);
1356 1357
}

T
Tejun Heo 已提交
1358
static struct blkcg_policy blkcg_policy_throtl = {
1359 1360
	.cftypes		= throtl_files,

1361
	.pd_alloc_fn		= throtl_pd_alloc,
1362
	.pd_init_fn		= throtl_pd_init,
1363
	.pd_online_fn		= throtl_pd_online,
1364
	.pd_free_fn		= throtl_pd_free,
1365
	.pd_reset_stats_fn	= throtl_pd_reset_stats,
1366 1367
};

1368 1369
bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
		    struct bio *bio)
1370
{
1371
	struct throtl_qnode *qn = NULL;
1372
	struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
1373
	struct throtl_service_queue *sq;
1374
	bool rw = bio_data_dir(bio);
1375
	bool throttled = false;
1376

1377 1378
	WARN_ON_ONCE(!rcu_read_lock_held());

1379
	/* see throtl_charge_bio() */
1380
	if ((bio->bi_rw & REQ_THROTTLED) || !tg->has_rules[rw])
1381
		goto out;
1382 1383

	spin_lock_irq(q->queue_lock);
1384 1385

	if (unlikely(blk_queue_bypass(q)))
1386
		goto out_unlock;
1387

1388 1389
	sq = &tg->service_queue;

1390 1391 1392 1393
	while (true) {
		/* throtl is FIFO - if bios are already queued, should queue */
		if (sq->nr_queued[rw])
			break;
1394

1395 1396 1397 1398 1399
		/* if above limits, break to queue */
		if (!tg_may_dispatch(tg, bio, NULL))
			break;

		/* within limits, let's charge and dispatch directly */
1400
		throtl_charge_bio(tg, bio);
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412

		/*
		 * We need to trim slice even when bios are not being queued
		 * otherwise it might happen that a bio is not queued for
		 * a long time and slice keeps on extending and trim is not
		 * called for a long time. Now if limits are reduced suddenly
		 * we take into account all the IO dispatched so far at new
		 * low rate and * newly queued IO gets a really long dispatch
		 * time.
		 *
		 * So keep on trimming slice even if bio is not queued.
		 */
1413
		throtl_trim_slice(tg, rw);
1414 1415 1416 1417 1418 1419

		/*
		 * @bio passed through this layer without being throttled.
		 * Climb up the ladder.  If we''re already at the top, it
		 * can be executed directly.
		 */
1420
		qn = &tg->qnode_on_parent[rw];
1421 1422 1423 1424
		sq = sq->parent_sq;
		tg = sq_to_tg(sq);
		if (!tg)
			goto out_unlock;
1425 1426
	}

1427
	/* out-of-limit, queue to @tg */
1428 1429
	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
		   rw == READ ? 'R' : 'W',
1430
		   tg->bytes_disp[rw], bio->bi_iter.bi_size, tg->bps[rw],
1431 1432
		   tg->io_disp[rw], tg->iops[rw],
		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1433

1434
	bio_associate_current(bio);
1435
	tg->td->nr_queued[rw]++;
1436
	throtl_add_bio_tg(bio, qn, tg);
1437
	throttled = true;
1438

1439 1440 1441 1442 1443 1444
	/*
	 * Update @tg's dispatch time and force schedule dispatch if @tg
	 * was empty before @bio.  The forced scheduling isn't likely to
	 * cause undue delay as @bio is likely to be dispatched directly if
	 * its @tg's disptime is not in the future.
	 */
1445
	if (tg->flags & THROTL_TG_WAS_EMPTY) {
1446
		tg_update_disptime(tg);
1447
		throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1448 1449
	}

1450
out_unlock:
1451
	spin_unlock_irq(q->queue_lock);
1452
out:
1453 1454 1455 1456 1457 1458 1459
	/*
	 * As multiple blk-throtls may stack in the same issue path, we
	 * don't want bios to leave with the flag set.  Clear the flag if
	 * being issued.
	 */
	if (!throttled)
		bio->bi_rw &= ~REQ_THROTTLED;
1460
	return throttled;
1461 1462
}

1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
/*
 * Dispatch all bios from all children tg's queued on @parent_sq.  On
 * return, @parent_sq is guaranteed to not have any active children tg's
 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
 */
static void tg_drain_bios(struct throtl_service_queue *parent_sq)
{
	struct throtl_grp *tg;

	while ((tg = throtl_rb_first(parent_sq))) {
		struct throtl_service_queue *sq = &tg->service_queue;
		struct bio *bio;

		throtl_dequeue_tg(tg);

1478
		while ((bio = throtl_peek_queued(&sq->queued[READ])))
1479
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
1480
		while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1481 1482 1483 1484
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
	}
}

1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
/**
 * blk_throtl_drain - drain throttled bios
 * @q: request_queue to drain throttled bios for
 *
 * Dispatch all currently throttled bios on @q through ->make_request_fn().
 */
void blk_throtl_drain(struct request_queue *q)
	__releases(q->queue_lock) __acquires(q->queue_lock)
{
	struct throtl_data *td = q->td;
1495
	struct blkcg_gq *blkg;
1496
	struct cgroup_subsys_state *pos_css;
1497
	struct bio *bio;
1498
	int rw;
1499

1500
	queue_lockdep_assert_held(q);
1501
	rcu_read_lock();
1502

1503 1504 1505 1506 1507 1508
	/*
	 * Drain each tg while doing post-order walk on the blkg tree, so
	 * that all bios are propagated to td->service_queue.  It'd be
	 * better to walk service_queue tree directly but blkg walk is
	 * easier.
	 */
1509
	blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
1510
		tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
1511

1512 1513 1514 1515
	/* finally, transfer bios from top-level tg's into the td */
	tg_drain_bios(&td->service_queue);

	rcu_read_unlock();
1516 1517
	spin_unlock_irq(q->queue_lock);

1518
	/* all bios now should be in td->service_queue, issue them */
1519
	for (rw = READ; rw <= WRITE; rw++)
1520 1521
		while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
						NULL)))
1522
			generic_make_request(bio);
1523 1524 1525 1526

	spin_lock_irq(q->queue_lock);
}

1527 1528 1529
int blk_throtl_init(struct request_queue *q)
{
	struct throtl_data *td;
1530
	int ret;
1531 1532 1533 1534 1535

	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
	if (!td)
		return -ENOMEM;

1536
	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1537
	throtl_service_queue_init(&td->service_queue);
1538

1539
	q->td = td;
1540
	td->queue = q;
V
Vivek Goyal 已提交
1541

1542
	/* activate policy */
T
Tejun Heo 已提交
1543
	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1544
	if (ret)
1545
		kfree(td);
1546
	return ret;
1547 1548 1549 1550
}

void blk_throtl_exit(struct request_queue *q)
{
T
Tejun Heo 已提交
1551
	BUG_ON(!q->td);
1552
	throtl_shutdown_wq(q);
T
Tejun Heo 已提交
1553
	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1554
	kfree(q->td);
1555 1556 1557 1558
}

static int __init throtl_init(void)
{
1559 1560 1561 1562
	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
	if (!kthrotld_workqueue)
		panic("Failed to create kthrotld\n");

T
Tejun Heo 已提交
1563
	return blkcg_policy_register(&blkcg_policy_throtl);
1564 1565 1566
}

module_init(throtl_init);