blk-throttle.c 26.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Interface for controlling IO bandwidth on a request queue
 *
 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
#include "blk-cgroup.h"
13
#include "blk.h"
14 15 16 17 18 19 20 21 22 23

/* Max dispatch from a group in 1 round */
static int throtl_grp_quantum = 8;

/* Total max dispatch from all groups in one round */
static int throtl_quantum = 32;

/* Throttling is performed over 100ms slice and after that slice is renewed */
static unsigned long throtl_slice = HZ/10;	/* 100 ms */

24 25
static struct blkio_policy_type blkio_policy_throtl;

26 27 28 29 30
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;
static void throtl_schedule_delayed_work(struct throtl_data *td,
				unsigned long delay);

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
struct throtl_rb_root {
	struct rb_root rb;
	struct rb_node *left;
	unsigned int count;
	unsigned long min_disptime;
};

#define THROTL_RB_ROOT	(struct throtl_rb_root) { .rb = RB_ROOT, .left = NULL, \
			.count = 0, .min_disptime = 0}

#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)

struct throtl_grp {
	/* active throtl group service_tree member */
	struct rb_node rb_node;

	/*
	 * Dispatch time in jiffies. This is the estimated time when group
	 * will unthrottle and is ready to dispatch more bio. It is used as
	 * key to sort active groups in service tree.
	 */
	unsigned long disptime;

	unsigned int flags;

	/* Two lists for READ and WRITE */
	struct bio_list bio_lists[2];

	/* Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

	/* bytes per second rate limits */
	uint64_t bps[2];

65 66 67
	/* IOPS limits */
	unsigned int iops[2];

68 69
	/* Number of bytes disptached in current slice */
	uint64_t bytes_disp[2];
70 71
	/* Number of bio's dispatched in current slice */
	unsigned int io_disp[2];
72 73 74 75

	/* When did we start a new slice */
	unsigned long slice_start[2];
	unsigned long slice_end[2];
76 77

	/* Some throttle limits got updated for the group */
78
	int limits_changed;
79 80 81 82 83 84 85
};

struct throtl_data
{
	/* service tree for active throtl groups */
	struct throtl_rb_root tg_service_tree;

86
	struct throtl_grp *root_tg;
87 88 89 90 91 92
	struct request_queue *queue;

	/* Total Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

	/*
V
Vivek Goyal 已提交
93
	 * number of total undestroyed groups
94 95 96 97 98
	 */
	unsigned int nr_undestroyed_grps;

	/* Work for dispatching throttled bios */
	struct delayed_work throtl_work;
99

100
	int limits_changed;
101 102
};

103 104 105 106 107 108 109 110 111 112
static inline struct throtl_grp *blkg_to_tg(struct blkio_group *blkg)
{
	return blkg_to_pdata(blkg, &blkio_policy_throtl);
}

static inline struct blkio_group *tg_to_blkg(struct throtl_grp *tg)
{
	return pdata_to_blkg(tg, &blkio_policy_throtl);
}

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
enum tg_state_flags {
	THROTL_TG_FLAG_on_rr = 0,	/* on round-robin busy list */
};

#define THROTL_TG_FNS(name)						\
static inline void throtl_mark_tg_##name(struct throtl_grp *tg)		\
{									\
	(tg)->flags |= (1 << THROTL_TG_FLAG_##name);			\
}									\
static inline void throtl_clear_tg_##name(struct throtl_grp *tg)	\
{									\
	(tg)->flags &= ~(1 << THROTL_TG_FLAG_##name);			\
}									\
static inline int throtl_tg_##name(const struct throtl_grp *tg)		\
{									\
	return ((tg)->flags & (1 << THROTL_TG_FLAG_##name)) != 0;	\
}

THROTL_TG_FNS(on_rr);

#define throtl_log_tg(td, tg, fmt, args...)				\
	blk_add_trace_msg((td)->queue, "throtl %s " fmt,		\
135
			  blkg_path(tg_to_blkg(tg)), ##args);		\
136 137 138 139

#define throtl_log(td, fmt, args...)	\
	blk_add_trace_msg((td)->queue, "throtl " fmt, ##args)

140
static inline unsigned int total_nr_queued(struct throtl_data *td)
141
{
142
	return td->nr_queued[0] + td->nr_queued[1];
143 144
}

145
static void throtl_init_blkio_group(struct blkio_group *blkg)
146
{
147
	struct throtl_grp *tg = blkg_to_tg(blkg);
148

149 150 151 152 153
	RB_CLEAR_NODE(&tg->rb_node);
	bio_list_init(&tg->bio_lists[0]);
	bio_list_init(&tg->bio_lists[1]);
	tg->limits_changed = false;

154 155 156 157
	tg->bps[READ] = -1;
	tg->bps[WRITE] = -1;
	tg->iops[READ] = -1;
	tg->iops[WRITE] = -1;
158 159
}

160
static struct
161
throtl_grp *throtl_lookup_tg(struct throtl_data *td, struct blkio_cgroup *blkcg)
162
{
163 164
	/*
	 * This is the common case when there are no blkio cgroups.
165 166
	 * Avoid lookup in this case
	 */
167
	if (blkcg == &blkio_root_cgroup)
168
		return td->root_tg;
169

170
	return blkg_to_tg(blkg_lookup(blkcg, td->queue));
171 172
}

173 174
static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
						  struct blkio_cgroup *blkcg)
175
{
176
	struct request_queue *q = td->queue;
177
	struct throtl_grp *tg = NULL;
178

179
	/*
180 181
	 * This is the common case when there are no blkio cgroups.
	 * Avoid lookup in this case
182
	 */
183 184 185 186
	if (blkcg == &blkio_root_cgroup) {
		tg = td->root_tg;
	} else {
		struct blkio_group *blkg;
187

188
		blkg = blkg_lookup_create(blkcg, q, BLKIO_POLICY_THROTL, false);
189

190 191
		/* if %NULL and @q is alive, fall back to root_tg */
		if (!IS_ERR(blkg))
192
			tg = blkg_to_tg(blkg);
193 194
		else if (!blk_queue_dead(q))
			tg = td->root_tg;
195 196
	}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
	return tg;
}

static struct throtl_grp *throtl_rb_first(struct throtl_rb_root *root)
{
	/* Service tree is empty */
	if (!root->count)
		return NULL;

	if (!root->left)
		root->left = rb_first(&root->rb);

	if (root->left)
		return rb_entry_tg(root->left);

	return NULL;
}

static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

static void throtl_rb_erase(struct rb_node *n, struct throtl_rb_root *root)
{
	if (root->left == n)
		root->left = NULL;
	rb_erase_init(n, &root->rb);
	--root->count;
}

static void update_min_dispatch_time(struct throtl_rb_root *st)
{
	struct throtl_grp *tg;

	tg = throtl_rb_first(st);
	if (!tg)
		return;

	st->min_disptime = tg->disptime;
}

static void
tg_service_tree_add(struct throtl_rb_root *st, struct throtl_grp *tg)
{
	struct rb_node **node = &st->rb.rb_node;
	struct rb_node *parent = NULL;
	struct throtl_grp *__tg;
	unsigned long key = tg->disptime;
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__tg = rb_entry_tg(parent);

		if (time_before(key, __tg->disptime))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
		st->left = &tg->rb_node;

	rb_link_node(&tg->rb_node, parent, node);
	rb_insert_color(&tg->rb_node, &st->rb);
}

static void __throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
{
	struct throtl_rb_root *st = &td->tg_service_tree;

	tg_service_tree_add(st, tg);
	throtl_mark_tg_on_rr(tg);
	st->count++;
}

static void throtl_enqueue_tg(struct throtl_data *td, struct throtl_grp *tg)
{
	if (!throtl_tg_on_rr(tg))
		__throtl_enqueue_tg(td, tg);
}

static void __throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
{
	throtl_rb_erase(&tg->rb_node, &td->tg_service_tree);
	throtl_clear_tg_on_rr(tg);
}

static void throtl_dequeue_tg(struct throtl_data *td, struct throtl_grp *tg)
{
	if (throtl_tg_on_rr(tg))
		__throtl_dequeue_tg(td, tg);
}

static void throtl_schedule_next_dispatch(struct throtl_data *td)
{
	struct throtl_rb_root *st = &td->tg_service_tree;

	/*
	 * If there are more bios pending, schedule more work.
	 */
	if (!total_nr_queued(td))
		return;

	BUG_ON(!st->count);

	update_min_dispatch_time(st);

	if (time_before_eq(st->min_disptime, jiffies))
310
		throtl_schedule_delayed_work(td, 0);
311
	else
312
		throtl_schedule_delayed_work(td, (st->min_disptime - jiffies));
313 314 315 316 317 318
}

static inline void
throtl_start_new_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
{
	tg->bytes_disp[rw] = 0;
319
	tg->io_disp[rw] = 0;
320 321 322 323 324 325 326
	tg->slice_start[rw] = jiffies;
	tg->slice_end[rw] = jiffies + throtl_slice;
	throtl_log_tg(td, tg, "[%c] new slice start=%lu end=%lu jiffies=%lu",
			rw == READ ? 'R' : 'W', tg->slice_start[rw],
			tg->slice_end[rw], jiffies);
}

327 328 329 330 331 332
static inline void throtl_set_slice_end(struct throtl_data *td,
		struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
}

333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
static inline void throtl_extend_slice(struct throtl_data *td,
		struct throtl_grp *tg, bool rw, unsigned long jiffy_end)
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
	throtl_log_tg(td, tg, "[%c] extend slice start=%lu end=%lu jiffies=%lu",
			rw == READ ? 'R' : 'W', tg->slice_start[rw],
			tg->slice_end[rw], jiffies);
}

/* Determine if previously allocated or extended slice is complete or not */
static bool
throtl_slice_used(struct throtl_data *td, struct throtl_grp *tg, bool rw)
{
	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
		return 0;

	return 1;
}

/* Trim the used slices and adjust slice start accordingly */
static inline void
throtl_trim_slice(struct throtl_data *td, struct throtl_grp *tg, bool rw)
{
356 357
	unsigned long nr_slices, time_elapsed, io_trim;
	u64 bytes_trim, tmp;
358 359 360 361 362 363 364 365 366 367 368

	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));

	/*
	 * If bps are unlimited (-1), then time slice don't get
	 * renewed. Don't try to trim the slice if slice is used. A new
	 * slice will start when appropriate.
	 */
	if (throtl_slice_used(td, tg, rw))
		return;

369 370 371 372 373 374 375 376 377 378
	/*
	 * A bio has been dispatched. Also adjust slice_end. It might happen
	 * that initially cgroup limit was very low resulting in high
	 * slice_end, but later limit was bumped up and bio was dispached
	 * sooner, then we need to reduce slice_end. A high bogus slice_end
	 * is bad because it does not allow new slice to start.
	 */

	throtl_set_slice_end(td, tg, rw, jiffies + throtl_slice);

379 380 381 382 383 384
	time_elapsed = jiffies - tg->slice_start[rw];

	nr_slices = time_elapsed / throtl_slice;

	if (!nr_slices)
		return;
385 386 387
	tmp = tg->bps[rw] * throtl_slice * nr_slices;
	do_div(tmp, HZ);
	bytes_trim = tmp;
388

389
	io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
390

391
	if (!bytes_trim && !io_trim)
392 393 394 395 396 397 398
		return;

	if (tg->bytes_disp[rw] >= bytes_trim)
		tg->bytes_disp[rw] -= bytes_trim;
	else
		tg->bytes_disp[rw] = 0;

399 400 401 402 403
	if (tg->io_disp[rw] >= io_trim)
		tg->io_disp[rw] -= io_trim;
	else
		tg->io_disp[rw] = 0;

404 405
	tg->slice_start[rw] += nr_slices * throtl_slice;

406
	throtl_log_tg(td, tg, "[%c] trim slice nr=%lu bytes=%llu io=%lu"
407
			" start=%lu end=%lu jiffies=%lu",
408
			rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
409 410 411
			tg->slice_start[rw], tg->slice_end[rw], jiffies);
}

412 413
static bool tg_with_in_iops_limit(struct throtl_data *td, struct throtl_grp *tg,
		struct bio *bio, unsigned long *wait)
414 415
{
	bool rw = bio_data_dir(bio);
416
	unsigned int io_allowed;
417
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
418
	u64 tmp;
419

420
	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
421

422 423 424 425 426 427
	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

428 429 430 431 432 433 434 435 436 437 438 439 440 441
	/*
	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
	 * will allow dispatch after 1 second and after that slice should
	 * have been trimmed.
	 */

	tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
	do_div(tmp, HZ);

	if (tmp > UINT_MAX)
		io_allowed = UINT_MAX;
	else
		io_allowed = tmp;
442 443

	if (tg->io_disp[rw] + 1 <= io_allowed) {
444 445 446 447 448
		if (wait)
			*wait = 0;
		return 1;
	}

449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
	/* Calc approx time to dispatch */
	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;

	if (jiffy_wait > jiffy_elapsed)
		jiffy_wait = jiffy_wait - jiffy_elapsed;
	else
		jiffy_wait = 1;

	if (wait)
		*wait = jiffy_wait;
	return 0;
}

static bool tg_with_in_bps_limit(struct throtl_data *td, struct throtl_grp *tg,
		struct bio *bio, unsigned long *wait)
{
	bool rw = bio_data_dir(bio);
466
	u64 bytes_allowed, extra_bytes, tmp;
467
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
468 469 470 471 472 473 474 475 476

	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];

	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

477 478
	tmp = tg->bps[rw] * jiffy_elapsed_rnd;
	do_div(tmp, HZ);
479
	bytes_allowed = tmp;
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500

	if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
		if (wait)
			*wait = 0;
		return 1;
	}

	/* Calc approx time to dispatch */
	extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
	jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);

	if (!jiffy_wait)
		jiffy_wait = 1;

	/*
	 * This wait time is without taking into consideration the rounding
	 * up we did. Add that time also.
	 */
	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
	if (wait)
		*wait = jiffy_wait;
501 502 503
	return 0;
}

504 505 506 507 508 509
static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) {
	if (tg->bps[rw] == -1 && tg->iops[rw] == -1)
		return 1;
	return 0;
}

510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
/*
 * Returns whether one can dispatch a bio or not. Also returns approx number
 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 */
static bool tg_may_dispatch(struct throtl_data *td, struct throtl_grp *tg,
				struct bio *bio, unsigned long *wait)
{
	bool rw = bio_data_dir(bio);
	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;

	/*
 	 * Currently whole state machine of group depends on first bio
	 * queued in the group bio list. So one should not be calling
	 * this function with a different bio if there are other bios
	 * queued.
	 */
	BUG_ON(tg->nr_queued[rw] && bio != bio_list_peek(&tg->bio_lists[rw]));
527

528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
	/* If tg->bps = -1, then BW is unlimited */
	if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
		if (wait)
			*wait = 0;
		return 1;
	}

	/*
	 * If previous slice expired, start a new one otherwise renew/extend
	 * existing slice to make sure it is at least throtl_slice interval
	 * long since now.
	 */
	if (throtl_slice_used(td, tg, rw))
		throtl_start_new_slice(td, tg, rw);
	else {
		if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
			throtl_extend_slice(td, tg, rw, jiffies + throtl_slice);
	}

	if (tg_with_in_bps_limit(td, tg, bio, &bps_wait)
	    && tg_with_in_iops_limit(td, tg, bio, &iops_wait)) {
		if (wait)
			*wait = 0;
		return 1;
	}

	max_wait = max(bps_wait, iops_wait);

	if (wait)
		*wait = max_wait;

	if (time_before(tg->slice_end[rw], jiffies + max_wait))
		throtl_extend_slice(td, tg, rw, jiffies + max_wait);
561 562 563 564 565 566 567

	return 0;
}

static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
	bool rw = bio_data_dir(bio);
568
	bool sync = rw_is_sync(bio->bi_rw);
569 570 571

	/* Charge the bio to the group */
	tg->bytes_disp[rw] += bio->bi_size;
572
	tg->io_disp[rw]++;
573

574 575
	blkiocg_update_dispatch_stats(tg_to_blkg(tg), &blkio_policy_throtl,
				      bio->bi_size, rw, sync);
576 577 578 579 580 581 582 583 584
}

static void throtl_add_bio_tg(struct throtl_data *td, struct throtl_grp *tg,
			struct bio *bio)
{
	bool rw = bio_data_dir(bio);

	bio_list_add(&tg->bio_lists[rw], bio);
	/* Take a bio reference on tg */
T
Tejun Heo 已提交
585
	blkg_get(tg_to_blkg(tg));
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
	tg->nr_queued[rw]++;
	td->nr_queued[rw]++;
	throtl_enqueue_tg(td, tg);
}

static void tg_update_disptime(struct throtl_data *td, struct throtl_grp *tg)
{
	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
	struct bio *bio;

	if ((bio = bio_list_peek(&tg->bio_lists[READ])))
		tg_may_dispatch(td, tg, bio, &read_wait);

	if ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
		tg_may_dispatch(td, tg, bio, &write_wait);

	min_wait = min(read_wait, write_wait);
	disptime = jiffies + min_wait;

	/* Update dispatch time */
	throtl_dequeue_tg(td, tg);
	tg->disptime = disptime;
	throtl_enqueue_tg(td, tg);
}

static void tg_dispatch_one_bio(struct throtl_data *td, struct throtl_grp *tg,
				bool rw, struct bio_list *bl)
{
	struct bio *bio;

	bio = bio_list_pop(&tg->bio_lists[rw]);
	tg->nr_queued[rw]--;
T
Tejun Heo 已提交
618 619
	/* Drop bio reference on blkg */
	blkg_put(tg_to_blkg(tg));
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635

	BUG_ON(td->nr_queued[rw] <= 0);
	td->nr_queued[rw]--;

	throtl_charge_bio(tg, bio);
	bio_list_add(bl, bio);
	bio->bi_rw |= REQ_THROTTLED;

	throtl_trim_slice(td, tg, rw);
}

static int throtl_dispatch_tg(struct throtl_data *td, struct throtl_grp *tg,
				struct bio_list *bl)
{
	unsigned int nr_reads = 0, nr_writes = 0;
	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
636
	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
	struct bio *bio;

	/* Try to dispatch 75% READS and 25% WRITES */

	while ((bio = bio_list_peek(&tg->bio_lists[READ]))
		&& tg_may_dispatch(td, tg, bio, NULL)) {

		tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
		nr_reads++;

		if (nr_reads >= max_nr_reads)
			break;
	}

	while ((bio = bio_list_peek(&tg->bio_lists[WRITE]))
		&& tg_may_dispatch(td, tg, bio, NULL)) {

		tg_dispatch_one_bio(td, tg, bio_data_dir(bio), bl);
		nr_writes++;

		if (nr_writes >= max_nr_writes)
			break;
	}

	return nr_reads + nr_writes;
}

static int throtl_select_dispatch(struct throtl_data *td, struct bio_list *bl)
{
	unsigned int nr_disp = 0;
	struct throtl_grp *tg;
	struct throtl_rb_root *st = &td->tg_service_tree;

	while (1) {
		tg = throtl_rb_first(st);

		if (!tg)
			break;

		if (time_before(jiffies, tg->disptime))
			break;

		throtl_dequeue_tg(td, tg);

		nr_disp += throtl_dispatch_tg(td, tg, bl);

		if (tg->nr_queued[0] || tg->nr_queued[1]) {
			tg_update_disptime(td, tg);
			throtl_enqueue_tg(td, tg);
		}

		if (nr_disp >= throtl_quantum)
			break;
	}

	return nr_disp;
}

695 696
static void throtl_process_limit_change(struct throtl_data *td)
{
697 698
	struct request_queue *q = td->queue;
	struct blkio_group *blkg, *n;
699

700
	if (!td->limits_changed)
701 702
		return;

703
	xchg(&td->limits_changed, false);
704

705
	throtl_log(td, "limits changed");
706

707
	list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
708 709
		struct throtl_grp *tg = blkg_to_tg(blkg);

710 711 712 713 714 715 716 717 718 719
		if (!tg->limits_changed)
			continue;

		if (!xchg(&tg->limits_changed, false))
			continue;

		throtl_log_tg(td, tg, "limit change rbps=%llu wbps=%llu"
			" riops=%u wiops=%u", tg->bps[READ], tg->bps[WRITE],
			tg->iops[READ], tg->iops[WRITE]);

720 721 722 723 724 725 726 727 728
		/*
		 * Restart the slices for both READ and WRITES. It
		 * might happen that a group's limit are dropped
		 * suddenly and we don't want to account recently
		 * dispatched IO with new low rate
		 */
		throtl_start_new_slice(td, tg, 0);
		throtl_start_new_slice(td, tg, 1);

729
		if (throtl_tg_on_rr(tg))
730 731 732 733
			tg_update_disptime(td, tg);
	}
}

734 735 736 737 738 739 740
/* Dispatch throttled bios. Should be called without queue lock held. */
static int throtl_dispatch(struct request_queue *q)
{
	struct throtl_data *td = q->td;
	unsigned int nr_disp = 0;
	struct bio_list bio_list_on_stack;
	struct bio *bio;
741
	struct blk_plug plug;
742 743 744

	spin_lock_irq(q->queue_lock);

745 746
	throtl_process_limit_change(td);

747 748 749 750 751
	if (!total_nr_queued(td))
		goto out;

	bio_list_init(&bio_list_on_stack);

752
	throtl_log(td, "dispatch nr_queued=%u read=%u write=%u",
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
			total_nr_queued(td), td->nr_queued[READ],
			td->nr_queued[WRITE]);

	nr_disp = throtl_select_dispatch(td, &bio_list_on_stack);

	if (nr_disp)
		throtl_log(td, "bios disp=%u", nr_disp);

	throtl_schedule_next_dispatch(td);
out:
	spin_unlock_irq(q->queue_lock);

	/*
	 * If we dispatched some requests, unplug the queue to make sure
	 * immediate dispatch
	 */
	if (nr_disp) {
770
		blk_start_plug(&plug);
771 772
		while((bio = bio_list_pop(&bio_list_on_stack)))
			generic_make_request(bio);
773
		blk_finish_plug(&plug);
774 775 776 777 778 779 780 781 782 783 784 785 786 787
	}
	return nr_disp;
}

void blk_throtl_work(struct work_struct *work)
{
	struct throtl_data *td = container_of(work, struct throtl_data,
					throtl_work.work);
	struct request_queue *q = td->queue;

	throtl_dispatch(q);
}

/* Call with queue lock held */
788 789
static void
throtl_schedule_delayed_work(struct throtl_data *td, unsigned long delay)
790 791 792 793
{

	struct delayed_work *dwork = &td->throtl_work;

794
	/* schedule work if limits changed even if no bio is queued */
795
	if (total_nr_queued(td) || td->limits_changed) {
796 797 798 799 800
		/*
		 * We might have a work scheduled to be executed in future.
		 * Cancel that and schedule a new one.
		 */
		__cancel_delayed_work(dwork);
801
		queue_delayed_work(kthrotld_workqueue, dwork, delay);
802 803 804 805 806
		throtl_log(td, "schedule work. delay=%lu jiffies=%lu",
				delay, jiffies);
	}
}

807 808 809 810 811 812 813 814 815
static void throtl_update_blkio_group_common(struct throtl_data *td,
				struct throtl_grp *tg)
{
	xchg(&tg->limits_changed, true);
	xchg(&td->limits_changed, true);
	/* Schedule a work now to process the limit change */
	throtl_schedule_delayed_work(td, 0);
}

816
/*
817
 * For all update functions, @q should be a valid pointer because these
818
 * update functions are called under blkcg_lock, that means, blkg is
819
 * valid and in turn @q is valid. queue exit path can not race because
820 821 822 823 824
 * of blkcg_lock
 *
 * Can not take queue lock in update functions as queue lock under blkcg_lock
 * is not allowed. Under other paths we take blkcg_lock under queue_lock.
 */
825
static void throtl_update_blkio_group_read_bps(struct request_queue *q,
826
				struct blkio_group *blkg, u64 read_bps)
827
{
828
	struct throtl_grp *tg = blkg_to_tg(blkg);
829

830
	tg->bps[READ] = read_bps;
831
	throtl_update_blkio_group_common(q->td, tg);
832 833
}

834
static void throtl_update_blkio_group_write_bps(struct request_queue *q,
835
				struct blkio_group *blkg, u64 write_bps)
836
{
837
	struct throtl_grp *tg = blkg_to_tg(blkg);
838

839
	tg->bps[WRITE] = write_bps;
840
	throtl_update_blkio_group_common(q->td, tg);
841 842
}

843
static void throtl_update_blkio_group_read_iops(struct request_queue *q,
844
			struct blkio_group *blkg, unsigned int read_iops)
845
{
846
	struct throtl_grp *tg = blkg_to_tg(blkg);
847

848
	tg->iops[READ] = read_iops;
849
	throtl_update_blkio_group_common(q->td, tg);
850 851
}

852
static void throtl_update_blkio_group_write_iops(struct request_queue *q,
853
			struct blkio_group *blkg, unsigned int write_iops)
854
{
855
	struct throtl_grp *tg = blkg_to_tg(blkg);
856

857
	tg->iops[WRITE] = write_iops;
858
	throtl_update_blkio_group_common(q->td, tg);
859 860
}

861
static void throtl_shutdown_wq(struct request_queue *q)
862 863 864 865 866 867 868 869
{
	struct throtl_data *td = q->td;

	cancel_delayed_work_sync(&td->throtl_work);
}

static struct blkio_policy_type blkio_policy_throtl = {
	.ops = {
870
		.blkio_init_group_fn = throtl_init_blkio_group,
871 872 873 874
		.blkio_update_group_read_bps_fn =
					throtl_update_blkio_group_read_bps,
		.blkio_update_group_write_bps_fn =
					throtl_update_blkio_group_write_bps,
875 876 877 878
		.blkio_update_group_read_iops_fn =
					throtl_update_blkio_group_read_iops,
		.blkio_update_group_write_iops_fn =
					throtl_update_blkio_group_write_iops,
879
	},
880
	.plid = BLKIO_POLICY_THROTL,
881
	.pdata_size = sizeof(struct throtl_grp),
882 883
};

884
bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
885 886 887 888
{
	struct throtl_data *td = q->td;
	struct throtl_grp *tg;
	bool rw = bio_data_dir(bio), update_disptime = true;
889
	struct blkio_cgroup *blkcg;
890
	bool throttled = false;
891 892 893

	if (bio->bi_rw & REQ_THROTTLED) {
		bio->bi_rw &= ~REQ_THROTTLED;
894
		goto out;
895 896
	}

897 898 899 900 901 902 903
	/*
	 * A throtl_grp pointer retrieved under rcu can be used to access
	 * basic fields like stats and io rates. If a group has no rules,
	 * just update the dispatch stats in lockless manner and return.
	 */
	rcu_read_lock();
	blkcg = task_blkio_cgroup(current);
904
	tg = throtl_lookup_tg(td, blkcg);
905 906
	if (tg) {
		if (tg_no_rule_group(tg, rw)) {
907
			blkiocg_update_dispatch_stats(tg_to_blkg(tg),
908
						      &blkio_policy_throtl,
909 910
						      bio->bi_size, rw,
						      rw_is_sync(bio->bi_rw));
911
			goto out_unlock_rcu;
912 913 914 915 916 917 918
		}
	}

	/*
	 * Either group has not been allocated yet or it is not an unlimited
	 * IO group
	 */
919
	spin_lock_irq(q->queue_lock);
920
	tg = throtl_lookup_create_tg(td, blkcg);
921 922
	if (unlikely(!tg))
		goto out_unlock;
923

924 925 926 927 928
	if (tg->nr_queued[rw]) {
		/*
		 * There is already another bio queued in same dir. No
		 * need to update dispatch time.
		 */
929
		update_disptime = false;
930
		goto queue_bio;
931

932 933 934 935 936
	}

	/* Bio is with-in rate limit of group */
	if (tg_may_dispatch(td, tg, bio, NULL)) {
		throtl_charge_bio(tg, bio);
937 938 939 940 941 942 943 944 945 946 947 948 949

		/*
		 * We need to trim slice even when bios are not being queued
		 * otherwise it might happen that a bio is not queued for
		 * a long time and slice keeps on extending and trim is not
		 * called for a long time. Now if limits are reduced suddenly
		 * we take into account all the IO dispatched so far at new
		 * low rate and * newly queued IO gets a really long dispatch
		 * time.
		 *
		 * So keep on trimming slice even if bio is not queued.
		 */
		throtl_trim_slice(td, tg, rw);
950
		goto out_unlock;
951 952 953
	}

queue_bio:
954
	throtl_log_tg(td, tg, "[%c] bio. bdisp=%llu sz=%u bps=%llu"
955 956
			" iodisp=%u iops=%u queued=%d/%d",
			rw == READ ? 'R' : 'W',
957
			tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
958
			tg->io_disp[rw], tg->iops[rw],
959 960 961
			tg->nr_queued[READ], tg->nr_queued[WRITE]);

	throtl_add_bio_tg(q->td, tg, bio);
962
	throttled = true;
963 964 965 966 967 968

	if (update_disptime) {
		tg_update_disptime(td, tg);
		throtl_schedule_next_dispatch(td);
	}

969
out_unlock:
970
	spin_unlock_irq(q->queue_lock);
971 972
out_unlock_rcu:
	rcu_read_unlock();
973 974
out:
	return throttled;
975 976
}

977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
/**
 * blk_throtl_drain - drain throttled bios
 * @q: request_queue to drain throttled bios for
 *
 * Dispatch all currently throttled bios on @q through ->make_request_fn().
 */
void blk_throtl_drain(struct request_queue *q)
	__releases(q->queue_lock) __acquires(q->queue_lock)
{
	struct throtl_data *td = q->td;
	struct throtl_rb_root *st = &td->tg_service_tree;
	struct throtl_grp *tg;
	struct bio_list bl;
	struct bio *bio;

992
	WARN_ON_ONCE(!queue_is_locked(q));
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011

	bio_list_init(&bl);

	while ((tg = throtl_rb_first(st))) {
		throtl_dequeue_tg(td, tg);

		while ((bio = bio_list_peek(&tg->bio_lists[READ])))
			tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
		while ((bio = bio_list_peek(&tg->bio_lists[WRITE])))
			tg_dispatch_one_bio(td, tg, bio_data_dir(bio), &bl);
	}
	spin_unlock_irq(q->queue_lock);

	while ((bio = bio_list_pop(&bl)))
		generic_make_request(bio);

	spin_lock_irq(q->queue_lock);
}

1012 1013 1014
int blk_throtl_init(struct request_queue *q)
{
	struct throtl_data *td;
1015
	struct blkio_group *blkg;
1016 1017 1018 1019 1020 1021

	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
	if (!td)
		return -ENOMEM;

	td->tg_service_tree = THROTL_RB_ROOT;
1022
	td->limits_changed = false;
1023
	INIT_DELAYED_WORK(&td->throtl_work, blk_throtl_work);
1024

1025
	q->td = td;
1026
	td->queue = q;
V
Vivek Goyal 已提交
1027

1028
	/* alloc and init root group. */
1029 1030
	rcu_read_lock();
	spin_lock_irq(q->queue_lock);
1031

1032 1033 1034
	blkg = blkg_lookup_create(&blkio_root_cgroup, q, BLKIO_POLICY_THROTL,
				  true);
	if (!IS_ERR(blkg))
1035
		td->root_tg = blkg_to_tg(blkg);
1036

1037
	spin_unlock_irq(q->queue_lock);
1038 1039
	rcu_read_unlock();

1040 1041 1042 1043
	if (!td->root_tg) {
		kfree(td);
		return -ENOMEM;
	}
1044 1045 1046 1047 1048 1049
	return 0;
}

void blk_throtl_exit(struct request_queue *q)
{
	struct throtl_data *td = q->td;
1050
	bool wait;
1051 1052 1053

	BUG_ON(!td);

1054
	throtl_shutdown_wq(q);
1055 1056

	/* If there are other groups */
1057
	spin_lock_irq(q->queue_lock);
1058
	wait = q->nr_blkgs;
1059 1060 1061
	spin_unlock_irq(q->queue_lock);

	/*
1062
	 * Wait for tg_to_blkg(tg)->q accessors to exit their grace periods.
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
	 * Do this wait only if there are other undestroyed groups out
	 * there (other than root group). This can happen if cgroup deletion
	 * path claimed the responsibility of cleaning up a group before
	 * queue cleanup code get to the group.
	 *
	 * Do not call synchronize_rcu() unconditionally as there are drivers
	 * which create/delete request queue hundreds of times during scan/boot
	 * and synchronize_rcu() can take significant time and slow down boot.
	 */
	if (wait)
		synchronize_rcu();
1074 1075 1076 1077 1078 1079

	/*
	 * Just being safe to make sure after previous flush if some body did
	 * update limits through cgroup and another work got queued, cancel
	 * it.
	 */
1080
	throtl_shutdown_wq(q);
1081 1082

	kfree(q->td);
1083 1084 1085 1086
}

static int __init throtl_init(void)
{
1087 1088 1089 1090
	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
	if (!kthrotld_workqueue)
		panic("Failed to create kthrotld\n");

1091 1092 1093 1094 1095
	blkio_policy_register(&blkio_policy_throtl);
	return 0;
}

module_init(throtl_init);