blk-throttle.c 33.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 * Interface for controlling IO bandwidth on a request queue
 *
 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
 */

#include <linux/module.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/bio.h>
#include <linux/blktrace_api.h>
#include "blk-cgroup.h"
13
#include "blk.h"
14 15 16 17 18 19 20 21 22 23

/* Max dispatch from a group in 1 round */
static int throtl_grp_quantum = 8;

/* Total max dispatch from all groups in one round */
static int throtl_quantum = 32;

/* Throttling is performed over 100ms slice and after that slice is renewed */
static unsigned long throtl_slice = HZ/10;	/* 100 ms */

T
Tejun Heo 已提交
24
static struct blkcg_policy blkcg_policy_throtl;
25

26 27 28
/* A workqueue to queue throttle related work */
static struct workqueue_struct *kthrotld_workqueue;

29
struct throtl_service_queue {
30 31
	struct throtl_service_queue *parent_sq;	/* the parent service_queue */

32 33 34 35 36 37 38 39 40 41 42
	/*
	 * Bios queued directly to this service_queue or dispatched from
	 * children throtl_grp's.
	 */
	struct bio_list		bio_lists[2];	/* queued bios [READ/WRITE] */
	unsigned int		nr_queued[2];	/* number of queued bios */

	/*
	 * RB tree of active children throtl_grp's, which are sorted by
	 * their ->disptime.
	 */
43 44 45 46
	struct rb_root		pending_tree;	/* RB tree of active tgs */
	struct rb_node		*first_pending;	/* first node in the tree */
	unsigned int		nr_pending;	/* # queued in the tree */
	unsigned long		first_pending_disptime;	/* disptime of the first tg */
47
	struct timer_list	pending_timer;	/* fires on first_pending_disptime */
48 49
};

50 51
enum tg_state_flags {
	THROTL_TG_PENDING	= 1 << 0,	/* on parent's pending tree */
52
	THROTL_TG_WAS_EMPTY	= 1 << 1,	/* bio_lists[] became non-empty */
53 54
};

55 56
#define rb_entry_tg(node)	rb_entry((node), struct throtl_grp, rb_node)

57 58 59 60 61 62 63 64
/* Per-cpu group stats */
struct tg_stats_cpu {
	/* total bytes transferred */
	struct blkg_rwstat		service_bytes;
	/* total IOs serviced, post merge */
	struct blkg_rwstat		serviced;
};

65
struct throtl_grp {
66 67 68
	/* must be the first member */
	struct blkg_policy_data pd;

69
	/* active throtl group service_queue member */
70 71
	struct rb_node rb_node;

72 73 74
	/* throtl_data this group belongs to */
	struct throtl_data *td;

75 76 77
	/* this group's service queue */
	struct throtl_service_queue service_queue;

78 79 80 81 82 83 84 85 86 87 88 89
	/*
	 * Dispatch time in jiffies. This is the estimated time when group
	 * will unthrottle and is ready to dispatch more bio. It is used as
	 * key to sort active groups in service tree.
	 */
	unsigned long disptime;

	unsigned int flags;

	/* bytes per second rate limits */
	uint64_t bps[2];

90 91 92
	/* IOPS limits */
	unsigned int iops[2];

93 94
	/* Number of bytes disptached in current slice */
	uint64_t bytes_disp[2];
95 96
	/* Number of bio's dispatched in current slice */
	unsigned int io_disp[2];
97 98 99 100

	/* When did we start a new slice */
	unsigned long slice_start[2];
	unsigned long slice_end[2];
101

102 103 104 105 106
	/* Per cpu stats pointer */
	struct tg_stats_cpu __percpu *stats_cpu;

	/* List of tgs waiting for per cpu stats memory to be allocated */
	struct list_head stats_alloc_node;
107 108 109 110 111
};

struct throtl_data
{
	/* service tree for active throtl groups */
112
	struct throtl_service_queue service_queue;
113 114 115 116 117 118 119

	struct request_queue *queue;

	/* Total Number of queued bios on READ and WRITE lists */
	unsigned int nr_queued[2];

	/*
V
Vivek Goyal 已提交
120
	 * number of total undestroyed groups
121 122 123 124
	 */
	unsigned int nr_undestroyed_grps;

	/* Work for dispatching throttled bios */
125
	struct work_struct dispatch_work;
126 127
};

128 129 130 131 132 133 134
/* list and work item to allocate percpu group stats */
static DEFINE_SPINLOCK(tg_stats_alloc_lock);
static LIST_HEAD(tg_stats_alloc_list);

static void tg_stats_alloc_fn(struct work_struct *);
static DECLARE_DELAYED_WORK(tg_stats_alloc_work, tg_stats_alloc_fn);

135 136
static void throtl_pending_timer_fn(unsigned long arg);

137 138 139 140 141
static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
{
	return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
}

T
Tejun Heo 已提交
142
static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
143
{
144
	return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
145 146
}

T
Tejun Heo 已提交
147
static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
148
{
149
	return pd_to_blkg(&tg->pd);
150 151
}

T
Tejun Heo 已提交
152 153 154 155 156
static inline struct throtl_grp *td_root_tg(struct throtl_data *td)
{
	return blkg_to_tg(td->queue->root_blkg);
}

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
/**
 * sq_to_tg - return the throl_grp the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 * embedded in throtl_data, %NULL is returned.
 */
static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
{
	if (sq && sq->parent_sq)
		return container_of(sq, struct throtl_grp, service_queue);
	else
		return NULL;
}

/**
 * sq_to_td - return throtl_data the specified service queue belongs to
 * @sq: the throtl_service_queue of interest
 *
 * A service_queue can be embeded in either a throtl_grp or throtl_data.
 * Determine the associated throtl_data accordingly and return it.
 */
static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
{
	struct throtl_grp *tg = sq_to_tg(sq);

	if (tg)
		return tg->td;
	else
		return container_of(sq, struct throtl_data, service_queue);
}

/**
 * throtl_log - log debug message via blktrace
 * @sq: the service_queue being reported
 * @fmt: printf format string
 * @args: printf args
 *
 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 * throtl_grp; otherwise, just "throtl".
 *
 * TODO: this should be made a function and name formatting should happen
 * after testing whether blktrace is enabled.
 */
#define throtl_log(sq, fmt, args...)	do {				\
	struct throtl_grp *__tg = sq_to_tg((sq));			\
	struct throtl_data *__td = sq_to_td((sq));			\
									\
	(void)__td;							\
	if ((__tg)) {							\
		char __pbuf[128];					\
T
Tejun Heo 已提交
208
									\
209 210 211 212 213
		blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf));	\
		blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
	} else {							\
		blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);	\
	}								\
T
Tejun Heo 已提交
214
} while (0)
215

216 217
/*
 * Worker for allocating per cpu stat for tgs. This is scheduled on the
218
 * system_wq once there are some groups on the alloc_list waiting for
219 220 221 222 223 224 225 226 227 228 229 230 231
 * allocation.
 */
static void tg_stats_alloc_fn(struct work_struct *work)
{
	static struct tg_stats_cpu *stats_cpu;	/* this fn is non-reentrant */
	struct delayed_work *dwork = to_delayed_work(work);
	bool empty = false;

alloc_stats:
	if (!stats_cpu) {
		stats_cpu = alloc_percpu(struct tg_stats_cpu);
		if (!stats_cpu) {
			/* allocation failed, try again after some time */
232
			schedule_delayed_work(dwork, msecs_to_jiffies(10));
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
			return;
		}
	}

	spin_lock_irq(&tg_stats_alloc_lock);

	if (!list_empty(&tg_stats_alloc_list)) {
		struct throtl_grp *tg = list_first_entry(&tg_stats_alloc_list,
							 struct throtl_grp,
							 stats_alloc_node);
		swap(tg->stats_cpu, stats_cpu);
		list_del_init(&tg->stats_alloc_node);
	}

	empty = list_empty(&tg_stats_alloc_list);
	spin_unlock_irq(&tg_stats_alloc_lock);
	if (!empty)
		goto alloc_stats;
}

253
/* init a service_queue, assumes the caller zeroed it */
254 255
static void throtl_service_queue_init(struct throtl_service_queue *sq,
				      struct throtl_service_queue *parent_sq)
256
{
257 258
	bio_list_init(&sq->bio_lists[0]);
	bio_list_init(&sq->bio_lists[1]);
259
	sq->pending_tree = RB_ROOT;
260
	sq->parent_sq = parent_sq;
261 262 263 264 265 266 267
	setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
		    (unsigned long)sq);
}

static void throtl_service_queue_exit(struct throtl_service_queue *sq)
{
	del_timer_sync(&sq->pending_timer);
268 269
}

T
Tejun Heo 已提交
270
static void throtl_pd_init(struct blkcg_gq *blkg)
271
{
272
	struct throtl_grp *tg = blkg_to_tg(blkg);
273
	struct throtl_data *td = blkg->q->td;
274
	unsigned long flags;
275

276
	throtl_service_queue_init(&tg->service_queue, &td->service_queue);
277
	RB_CLEAR_NODE(&tg->rb_node);
278
	tg->td = td;
279

280 281 282 283
	tg->bps[READ] = -1;
	tg->bps[WRITE] = -1;
	tg->iops[READ] = -1;
	tg->iops[WRITE] = -1;
284 285 286 287 288 289

	/*
	 * Ugh... We need to perform per-cpu allocation for tg->stats_cpu
	 * but percpu allocator can't be called from IO path.  Queue tg on
	 * tg_stats_alloc_list and allocate from work item.
	 */
290
	spin_lock_irqsave(&tg_stats_alloc_lock, flags);
291
	list_add(&tg->stats_alloc_node, &tg_stats_alloc_list);
292
	schedule_delayed_work(&tg_stats_alloc_work, 0);
293
	spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
294 295
}

T
Tejun Heo 已提交
296
static void throtl_pd_exit(struct blkcg_gq *blkg)
297 298
{
	struct throtl_grp *tg = blkg_to_tg(blkg);
299
	unsigned long flags;
300

301
	spin_lock_irqsave(&tg_stats_alloc_lock, flags);
302
	list_del_init(&tg->stats_alloc_node);
303
	spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
304 305

	free_percpu(tg->stats_cpu);
306 307

	throtl_service_queue_exit(&tg->service_queue);
308 309
}

T
Tejun Heo 已提交
310
static void throtl_pd_reset_stats(struct blkcg_gq *blkg)
311 312 313 314 315 316 317 318 319 320 321 322 323
{
	struct throtl_grp *tg = blkg_to_tg(blkg);
	int cpu;

	if (tg->stats_cpu == NULL)
		return;

	for_each_possible_cpu(cpu) {
		struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);

		blkg_rwstat_reset(&sc->service_bytes);
		blkg_rwstat_reset(&sc->serviced);
	}
324 325
}

T
Tejun Heo 已提交
326 327
static struct throtl_grp *throtl_lookup_tg(struct throtl_data *td,
					   struct blkcg *blkcg)
328
{
329
	/*
T
Tejun Heo 已提交
330 331
	 * This is the common case when there are no blkcgs.  Avoid lookup
	 * in this case
332
	 */
T
Tejun Heo 已提交
333
	if (blkcg == &blkcg_root)
T
Tejun Heo 已提交
334
		return td_root_tg(td);
335

336
	return blkg_to_tg(blkg_lookup(blkcg, td->queue));
337 338
}

339
static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
T
Tejun Heo 已提交
340
						  struct blkcg *blkcg)
341
{
342
	struct request_queue *q = td->queue;
343
	struct throtl_grp *tg = NULL;
344

345
	/*
T
Tejun Heo 已提交
346 347
	 * This is the common case when there are no blkcgs.  Avoid lookup
	 * in this case
348
	 */
T
Tejun Heo 已提交
349
	if (blkcg == &blkcg_root) {
T
Tejun Heo 已提交
350
		tg = td_root_tg(td);
351
	} else {
T
Tejun Heo 已提交
352
		struct blkcg_gq *blkg;
353

354
		blkg = blkg_lookup_create(blkcg, q);
355

356 357
		/* if %NULL and @q is alive, fall back to root_tg */
		if (!IS_ERR(blkg))
358
			tg = blkg_to_tg(blkg);
B
Bart Van Assche 已提交
359
		else if (!blk_queue_dying(q))
T
Tejun Heo 已提交
360
			tg = td_root_tg(td);
361 362
	}

363 364 365
	return tg;
}

366 367
static struct throtl_grp *
throtl_rb_first(struct throtl_service_queue *parent_sq)
368 369
{
	/* Service tree is empty */
370
	if (!parent_sq->nr_pending)
371 372
		return NULL;

373 374
	if (!parent_sq->first_pending)
		parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
375

376 377
	if (parent_sq->first_pending)
		return rb_entry_tg(parent_sq->first_pending);
378 379 380 381 382 383 384 385 386 387

	return NULL;
}

static void rb_erase_init(struct rb_node *n, struct rb_root *root)
{
	rb_erase(n, root);
	RB_CLEAR_NODE(n);
}

388 389
static void throtl_rb_erase(struct rb_node *n,
			    struct throtl_service_queue *parent_sq)
390
{
391 392 393 394
	if (parent_sq->first_pending == n)
		parent_sq->first_pending = NULL;
	rb_erase_init(n, &parent_sq->pending_tree);
	--parent_sq->nr_pending;
395 396
}

397
static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
398 399 400
{
	struct throtl_grp *tg;

401
	tg = throtl_rb_first(parent_sq);
402 403 404
	if (!tg)
		return;

405
	parent_sq->first_pending_disptime = tg->disptime;
406 407
}

408
static void tg_service_queue_add(struct throtl_grp *tg)
409
{
410
	struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
411
	struct rb_node **node = &parent_sq->pending_tree.rb_node;
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
	struct rb_node *parent = NULL;
	struct throtl_grp *__tg;
	unsigned long key = tg->disptime;
	int left = 1;

	while (*node != NULL) {
		parent = *node;
		__tg = rb_entry_tg(parent);

		if (time_before(key, __tg->disptime))
			node = &parent->rb_left;
		else {
			node = &parent->rb_right;
			left = 0;
		}
	}

	if (left)
430
		parent_sq->first_pending = &tg->rb_node;
431 432

	rb_link_node(&tg->rb_node, parent, node);
433
	rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
434 435
}

436
static void __throtl_enqueue_tg(struct throtl_grp *tg)
437
{
438
	tg_service_queue_add(tg);
439
	tg->flags |= THROTL_TG_PENDING;
440
	tg->service_queue.parent_sq->nr_pending++;
441 442
}

443
static void throtl_enqueue_tg(struct throtl_grp *tg)
444
{
445
	if (!(tg->flags & THROTL_TG_PENDING))
446
		__throtl_enqueue_tg(tg);
447 448
}

449
static void __throtl_dequeue_tg(struct throtl_grp *tg)
450
{
451
	throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
452
	tg->flags &= ~THROTL_TG_PENDING;
453 454
}

455
static void throtl_dequeue_tg(struct throtl_grp *tg)
456
{
457
	if (tg->flags & THROTL_TG_PENDING)
458
		__throtl_dequeue_tg(tg);
459 460
}

461
/* Call with queue lock held */
462 463
static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
					  unsigned long expires)
464
{
465 466 467
	mod_timer(&sq->pending_timer, expires);
	throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
		   expires - jiffies, jiffies);
468 469
}

470
static void throtl_schedule_next_dispatch(struct throtl_service_queue *sq)
471
{
472
	struct throtl_data *td = sq_to_td(sq);
473

474
	/* any pending children left? */
475
	if (!sq->nr_pending)
476 477
		return;

478
	update_min_dispatch_time(sq);
479

480 481 482 483 484 485 486 487
	/* is the next dispatch time in the future? */
	if (time_after(sq->first_pending_disptime, jiffies)) {
		throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
		return;
	}

	/* kick immediate execution */
	queue_work(kthrotld_workqueue, &td->dispatch_work);
488 489
}

490
static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
491 492
{
	tg->bytes_disp[rw] = 0;
493
	tg->io_disp[rw] = 0;
494 495
	tg->slice_start[rw] = jiffies;
	tg->slice_end[rw] = jiffies + throtl_slice;
496 497 498 499
	throtl_log(&tg->service_queue,
		   "[%c] new slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
500 501
}

502 503
static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
					unsigned long jiffy_end)
504 505 506 507
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
}

508 509
static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
				       unsigned long jiffy_end)
510 511
{
	tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
512 513 514 515
	throtl_log(&tg->service_queue,
		   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', tg->slice_start[rw],
		   tg->slice_end[rw], jiffies);
516 517 518
}

/* Determine if previously allocated or extended slice is complete or not */
519
static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
520 521 522 523 524 525 526 527
{
	if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
		return 0;

	return 1;
}

/* Trim the used slices and adjust slice start accordingly */
528
static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
529
{
530 531
	unsigned long nr_slices, time_elapsed, io_trim;
	u64 bytes_trim, tmp;
532 533 534 535 536 537 538 539

	BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));

	/*
	 * If bps are unlimited (-1), then time slice don't get
	 * renewed. Don't try to trim the slice if slice is used. A new
	 * slice will start when appropriate.
	 */
540
	if (throtl_slice_used(tg, rw))
541 542
		return;

543 544 545 546 547 548 549 550
	/*
	 * A bio has been dispatched. Also adjust slice_end. It might happen
	 * that initially cgroup limit was very low resulting in high
	 * slice_end, but later limit was bumped up and bio was dispached
	 * sooner, then we need to reduce slice_end. A high bogus slice_end
	 * is bad because it does not allow new slice to start.
	 */

551
	throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
552

553 554 555 556 557 558
	time_elapsed = jiffies - tg->slice_start[rw];

	nr_slices = time_elapsed / throtl_slice;

	if (!nr_slices)
		return;
559 560 561
	tmp = tg->bps[rw] * throtl_slice * nr_slices;
	do_div(tmp, HZ);
	bytes_trim = tmp;
562

563
	io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
564

565
	if (!bytes_trim && !io_trim)
566 567 568 569 570 571 572
		return;

	if (tg->bytes_disp[rw] >= bytes_trim)
		tg->bytes_disp[rw] -= bytes_trim;
	else
		tg->bytes_disp[rw] = 0;

573 574 575 576 577
	if (tg->io_disp[rw] >= io_trim)
		tg->io_disp[rw] -= io_trim;
	else
		tg->io_disp[rw] = 0;

578 579
	tg->slice_start[rw] += nr_slices * throtl_slice;

580 581 582 583
	throtl_log(&tg->service_queue,
		   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
		   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
		   tg->slice_start[rw], tg->slice_end[rw], jiffies);
584 585
}

586 587
static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
				  unsigned long *wait)
588 589
{
	bool rw = bio_data_dir(bio);
590
	unsigned int io_allowed;
591
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
592
	u64 tmp;
593

594
	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
595

596 597 598 599 600 601
	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

602 603 604 605 606 607 608 609 610 611 612 613 614 615
	/*
	 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
	 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
	 * will allow dispatch after 1 second and after that slice should
	 * have been trimmed.
	 */

	tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
	do_div(tmp, HZ);

	if (tmp > UINT_MAX)
		io_allowed = UINT_MAX;
	else
		io_allowed = tmp;
616 617

	if (tg->io_disp[rw] + 1 <= io_allowed) {
618 619 620 621 622
		if (wait)
			*wait = 0;
		return 1;
	}

623 624 625 626 627 628 629 630 631 632 633 634 635
	/* Calc approx time to dispatch */
	jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;

	if (jiffy_wait > jiffy_elapsed)
		jiffy_wait = jiffy_wait - jiffy_elapsed;
	else
		jiffy_wait = 1;

	if (wait)
		*wait = jiffy_wait;
	return 0;
}

636 637
static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
				 unsigned long *wait)
638 639
{
	bool rw = bio_data_dir(bio);
640
	u64 bytes_allowed, extra_bytes, tmp;
641
	unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
642 643 644 645 646 647 648 649 650

	jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];

	/* Slice has just started. Consider one slice interval */
	if (!jiffy_elapsed)
		jiffy_elapsed_rnd = throtl_slice;

	jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);

651 652
	tmp = tg->bps[rw] * jiffy_elapsed_rnd;
	do_div(tmp, HZ);
653
	bytes_allowed = tmp;
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674

	if (tg->bytes_disp[rw] + bio->bi_size <= bytes_allowed) {
		if (wait)
			*wait = 0;
		return 1;
	}

	/* Calc approx time to dispatch */
	extra_bytes = tg->bytes_disp[rw] + bio->bi_size - bytes_allowed;
	jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);

	if (!jiffy_wait)
		jiffy_wait = 1;

	/*
	 * This wait time is without taking into consideration the rounding
	 * up we did. Add that time also.
	 */
	jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
	if (wait)
		*wait = jiffy_wait;
675 676 677
	return 0;
}

678 679 680 681 682 683
static bool tg_no_rule_group(struct throtl_grp *tg, bool rw) {
	if (tg->bps[rw] == -1 && tg->iops[rw] == -1)
		return 1;
	return 0;
}

684 685 686 687
/*
 * Returns whether one can dispatch a bio or not. Also returns approx number
 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 */
688 689
static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
			    unsigned long *wait)
690 691 692 693 694 695 696 697 698 699
{
	bool rw = bio_data_dir(bio);
	unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;

	/*
 	 * Currently whole state machine of group depends on first bio
	 * queued in the group bio list. So one should not be calling
	 * this function with a different bio if there are other bios
	 * queued.
	 */
700 701
	BUG_ON(tg->service_queue.nr_queued[rw] &&
	       bio != bio_list_peek(&tg->service_queue.bio_lists[rw]));
702

703 704 705 706 707 708 709 710 711 712 713 714
	/* If tg->bps = -1, then BW is unlimited */
	if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
		if (wait)
			*wait = 0;
		return 1;
	}

	/*
	 * If previous slice expired, start a new one otherwise renew/extend
	 * existing slice to make sure it is at least throtl_slice interval
	 * long since now.
	 */
715 716
	if (throtl_slice_used(tg, rw))
		throtl_start_new_slice(tg, rw);
717 718
	else {
		if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
719
			throtl_extend_slice(tg, rw, jiffies + throtl_slice);
720 721
	}

722 723
	if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
	    tg_with_in_iops_limit(tg, bio, &iops_wait)) {
724 725 726 727 728 729 730 731 732 733 734
		if (wait)
			*wait = 0;
		return 1;
	}

	max_wait = max(bps_wait, iops_wait);

	if (wait)
		*wait = max_wait;

	if (time_before(tg->slice_end[rw], jiffies + max_wait))
735
		throtl_extend_slice(tg, rw, jiffies + max_wait);
736 737 738 739

	return 0;
}

T
Tejun Heo 已提交
740
static void throtl_update_dispatch_stats(struct blkcg_gq *blkg, u64 bytes,
741 742
					 int rw)
{
743 744
	struct throtl_grp *tg = blkg_to_tg(blkg);
	struct tg_stats_cpu *stats_cpu;
745 746 747
	unsigned long flags;

	/* If per cpu stats are not allocated yet, don't do any accounting. */
748
	if (tg->stats_cpu == NULL)
749 750 751 752 753 754 755 756 757
		return;

	/*
	 * Disabling interrupts to provide mutual exclusion between two
	 * writes on same cpu. It probably is not needed for 64bit. Not
	 * optimizing that case yet.
	 */
	local_irq_save(flags);

758
	stats_cpu = this_cpu_ptr(tg->stats_cpu);
759 760 761 762 763 764 765

	blkg_rwstat_add(&stats_cpu->serviced, rw, 1);
	blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes);

	local_irq_restore(flags);
}

766 767 768 769 770 771
static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
{
	bool rw = bio_data_dir(bio);

	/* Charge the bio to the group */
	tg->bytes_disp[rw] += bio->bi_size;
772
	tg->io_disp[rw]++;
773

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
	/*
	 * REQ_THROTTLED is used to prevent the same bio to be throttled
	 * more than once as a throttled bio will go through blk-throtl the
	 * second time when it eventually gets issued.  Set it when a bio
	 * is being charged to a tg.
	 *
	 * Dispatch stats aren't recursive and each @bio should only be
	 * accounted by the @tg it was originally associated with.  Let's
	 * update the stats when setting REQ_THROTTLED for the first time
	 * which is guaranteed to be for the @bio's original tg.
	 */
	if (!(bio->bi_rw & REQ_THROTTLED)) {
		bio->bi_rw |= REQ_THROTTLED;
		throtl_update_dispatch_stats(tg_to_blkg(tg), bio->bi_size,
					     bio->bi_rw);
	}
790 791
}

792
static void throtl_add_bio_tg(struct bio *bio, struct throtl_grp *tg)
793
{
794
	struct throtl_service_queue *sq = &tg->service_queue;
795 796
	bool rw = bio_data_dir(bio);

797 798 799 800 801 802 803 804 805
	/*
	 * If @tg doesn't currently have any bios queued in the same
	 * direction, queueing @bio can change when @tg should be
	 * dispatched.  Mark that @tg was empty.  This is automatically
	 * cleaered on the next tg_update_disptime().
	 */
	if (!sq->nr_queued[rw])
		tg->flags |= THROTL_TG_WAS_EMPTY;

806
	bio_list_add(&sq->bio_lists[rw], bio);
807
	/* Take a bio reference on tg */
T
Tejun Heo 已提交
808
	blkg_get(tg_to_blkg(tg));
809
	sq->nr_queued[rw]++;
810
	tg->td->nr_queued[rw]++;
811
	throtl_enqueue_tg(tg);
812 813
}

814
static void tg_update_disptime(struct throtl_grp *tg)
815
{
816
	struct throtl_service_queue *sq = &tg->service_queue;
817 818 819
	unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
	struct bio *bio;

820
	if ((bio = bio_list_peek(&sq->bio_lists[READ])))
821
		tg_may_dispatch(tg, bio, &read_wait);
822

823
	if ((bio = bio_list_peek(&sq->bio_lists[WRITE])))
824
		tg_may_dispatch(tg, bio, &write_wait);
825 826 827 828 829

	min_wait = min(read_wait, write_wait);
	disptime = jiffies + min_wait;

	/* Update dispatch time */
830
	throtl_dequeue_tg(tg);
831
	tg->disptime = disptime;
832
	throtl_enqueue_tg(tg);
833 834 835

	/* see throtl_add_bio_tg() */
	tg->flags &= ~THROTL_TG_WAS_EMPTY;
836 837
}

838
static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
839
{
840
	struct throtl_service_queue *sq = &tg->service_queue;
841 842
	struct bio *bio;

843 844
	bio = bio_list_pop(&sq->bio_lists[rw]);
	sq->nr_queued[rw]--;
T
Tejun Heo 已提交
845 846
	/* Drop bio reference on blkg */
	blkg_put(tg_to_blkg(tg));
847

848 849
	BUG_ON(tg->td->nr_queued[rw] <= 0);
	tg->td->nr_queued[rw]--;
850 851

	throtl_charge_bio(tg, bio);
852
	bio_list_add(&sq->parent_sq->bio_lists[rw], bio);
853

854
	throtl_trim_slice(tg, rw);
855 856
}

857
static int throtl_dispatch_tg(struct throtl_grp *tg)
858
{
859
	struct throtl_service_queue *sq = &tg->service_queue;
860 861
	unsigned int nr_reads = 0, nr_writes = 0;
	unsigned int max_nr_reads = throtl_grp_quantum*3/4;
862
	unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
863 864 865 866
	struct bio *bio;

	/* Try to dispatch 75% READS and 25% WRITES */

867
	while ((bio = bio_list_peek(&sq->bio_lists[READ])) &&
868
	       tg_may_dispatch(tg, bio, NULL)) {
869

870
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
871 872 873 874 875 876
		nr_reads++;

		if (nr_reads >= max_nr_reads)
			break;
	}

877
	while ((bio = bio_list_peek(&sq->bio_lists[WRITE])) &&
878
	       tg_may_dispatch(tg, bio, NULL)) {
879

880
		tg_dispatch_one_bio(tg, bio_data_dir(bio));
881 882 883 884 885 886 887 888 889
		nr_writes++;

		if (nr_writes >= max_nr_writes)
			break;
	}

	return nr_reads + nr_writes;
}

890
static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
891 892 893 894
{
	unsigned int nr_disp = 0;

	while (1) {
895 896
		struct throtl_grp *tg = throtl_rb_first(parent_sq);
		struct throtl_service_queue *sq = &tg->service_queue;
897 898 899 900 901 902 903

		if (!tg)
			break;

		if (time_before(jiffies, tg->disptime))
			break;

904
		throtl_dequeue_tg(tg);
905

906
		nr_disp += throtl_dispatch_tg(tg);
907

908
		if (sq->nr_queued[0] || sq->nr_queued[1])
909
			tg_update_disptime(tg);
910 911 912 913 914 915 916 917

		if (nr_disp >= throtl_quantum)
			break;
	}

	return nr_disp;
}

918 919 920 921 922 923 924 925
static void throtl_pending_timer_fn(unsigned long arg)
{
	struct throtl_service_queue *sq = (void *)arg;
	struct throtl_data *td = sq_to_td(sq);

	queue_work(kthrotld_workqueue, &td->dispatch_work);
}

926 927
/* work function to dispatch throttled bios */
void blk_throtl_dispatch_work_fn(struct work_struct *work)
928
{
929 930
	struct throtl_data *td = container_of(work, struct throtl_data,
					      dispatch_work);
931
	struct throtl_service_queue *sq = &td->service_queue;
932
	struct request_queue *q = td->queue;
933 934 935
	unsigned int nr_disp = 0;
	struct bio_list bio_list_on_stack;
	struct bio *bio;
936
	struct blk_plug plug;
937
	int rw;
938 939 940 941 942

	spin_lock_irq(q->queue_lock);

	bio_list_init(&bio_list_on_stack);

943
	throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
944 945
		   td->nr_queued[READ] + td->nr_queued[WRITE],
		   td->nr_queued[READ], td->nr_queued[WRITE]);
946

947
	nr_disp = throtl_select_dispatch(sq);
948

949 950 951 952 953
	if (nr_disp) {
		for (rw = READ; rw <= WRITE; rw++) {
			bio_list_merge(&bio_list_on_stack, &sq->bio_lists[rw]);
			bio_list_init(&sq->bio_lists[rw]);
		}
954
		throtl_log(sq, "bios disp=%u", nr_disp);
955
	}
956

957
	throtl_schedule_next_dispatch(sq);
958

959 960 961 962 963 964 965
	spin_unlock_irq(q->queue_lock);

	/*
	 * If we dispatched some requests, unplug the queue to make sure
	 * immediate dispatch
	 */
	if (nr_disp) {
966
		blk_start_plug(&plug);
967 968
		while((bio = bio_list_pop(&bio_list_on_stack)))
			generic_make_request(bio);
969
		blk_finish_plug(&plug);
970 971 972
	}
}

973 974
static u64 tg_prfill_cpu_rwstat(struct seq_file *sf,
				struct blkg_policy_data *pd, int off)
975
{
976
	struct throtl_grp *tg = pd_to_tg(pd);
977 978 979 980
	struct blkg_rwstat rwstat = { }, tmp;
	int i, cpu;

	for_each_possible_cpu(cpu) {
981
		struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
982 983 984 985 986 987

		tmp = blkg_rwstat_read((void *)sc + off);
		for (i = 0; i < BLKG_RWSTAT_NR; i++)
			rwstat.cnt[i] += tmp.cnt[i];
	}

988
	return __blkg_prfill_rwstat(sf, pd, &rwstat);
989 990
}

991 992
static int tg_print_cpu_rwstat(struct cgroup *cgrp, struct cftype *cft,
			       struct seq_file *sf)
993
{
T
Tejun Heo 已提交
994
	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
995

T
Tejun Heo 已提交
996
	blkcg_print_blkgs(sf, blkcg, tg_prfill_cpu_rwstat, &blkcg_policy_throtl,
997
			  cft->private, true);
998 999 1000
	return 0;
}

1001 1002
static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
			      int off)
1003
{
1004 1005
	struct throtl_grp *tg = pd_to_tg(pd);
	u64 v = *(u64 *)((void *)tg + off);
1006

1007
	if (v == -1)
1008
		return 0;
1009
	return __blkg_prfill_u64(sf, pd, v);
1010 1011
}

1012 1013
static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
			       int off)
1014
{
1015 1016
	struct throtl_grp *tg = pd_to_tg(pd);
	unsigned int v = *(unsigned int *)((void *)tg + off);
1017

1018 1019
	if (v == -1)
		return 0;
1020
	return __blkg_prfill_u64(sf, pd, v);
1021 1022
}

1023 1024
static int tg_print_conf_u64(struct cgroup *cgrp, struct cftype *cft,
			     struct seq_file *sf)
1025
{
T
Tejun Heo 已提交
1026 1027
	blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_u64,
			  &blkcg_policy_throtl, cft->private, false);
1028
	return 0;
1029 1030
}

1031 1032
static int tg_print_conf_uint(struct cgroup *cgrp, struct cftype *cft,
			      struct seq_file *sf)
1033
{
T
Tejun Heo 已提交
1034 1035
	blkcg_print_blkgs(sf, cgroup_to_blkcg(cgrp), tg_prfill_conf_uint,
			  &blkcg_policy_throtl, cft->private, false);
1036
	return 0;
1037 1038
}

1039 1040
static int tg_set_conf(struct cgroup *cgrp, struct cftype *cft, const char *buf,
		       bool is_u64)
1041
{
T
Tejun Heo 已提交
1042
	struct blkcg *blkcg = cgroup_to_blkcg(cgrp);
1043
	struct blkg_conf_ctx ctx;
1044
	struct throtl_grp *tg;
1045
	struct throtl_service_queue *sq;
1046 1047
	int ret;

T
Tejun Heo 已提交
1048
	ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1049 1050 1051
	if (ret)
		return ret;

1052
	tg = blkg_to_tg(ctx.blkg);
1053
	sq = &tg->service_queue;
1054

1055 1056
	if (!ctx.v)
		ctx.v = -1;
1057

1058 1059 1060 1061
	if (is_u64)
		*(u64 *)((void *)tg + cft->private) = ctx.v;
	else
		*(unsigned int *)((void *)tg + cft->private) = ctx.v;
1062

1063 1064 1065 1066
	throtl_log(&tg->service_queue,
		   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
		   tg->bps[READ], tg->bps[WRITE],
		   tg->iops[READ], tg->iops[WRITE]);
1067 1068 1069 1070 1071 1072 1073 1074 1075

	/*
	 * We're already holding queue_lock and know @tg is valid.  Let's
	 * apply the new config directly.
	 *
	 * Restart the slices for both READ and WRITES. It might happen
	 * that a group's limit are dropped suddenly and we don't want to
	 * account recently dispatched IO with new low rate.
	 */
1076 1077
	throtl_start_new_slice(tg, 0);
	throtl_start_new_slice(tg, 1);
1078

1079
	if (tg->flags & THROTL_TG_PENDING) {
1080
		tg_update_disptime(tg);
1081
		throtl_schedule_next_dispatch(sq->parent_sq);
1082
	}
1083 1084

	blkg_conf_finish(&ctx);
1085
	return 0;
1086 1087
}

1088 1089
static int tg_set_conf_u64(struct cgroup *cgrp, struct cftype *cft,
			   const char *buf)
1090
{
1091
	return tg_set_conf(cgrp, cft, buf, true);
1092 1093
}

1094 1095
static int tg_set_conf_uint(struct cgroup *cgrp, struct cftype *cft,
			    const char *buf)
1096
{
1097
	return tg_set_conf(cgrp, cft, buf, false);
1098 1099 1100 1101 1102
}

static struct cftype throtl_files[] = {
	{
		.name = "throttle.read_bps_device",
1103 1104 1105
		.private = offsetof(struct throtl_grp, bps[READ]),
		.read_seq_string = tg_print_conf_u64,
		.write_string = tg_set_conf_u64,
1106 1107 1108 1109
		.max_write_len = 256,
	},
	{
		.name = "throttle.write_bps_device",
1110 1111 1112
		.private = offsetof(struct throtl_grp, bps[WRITE]),
		.read_seq_string = tg_print_conf_u64,
		.write_string = tg_set_conf_u64,
1113 1114 1115 1116
		.max_write_len = 256,
	},
	{
		.name = "throttle.read_iops_device",
1117 1118 1119
		.private = offsetof(struct throtl_grp, iops[READ]),
		.read_seq_string = tg_print_conf_uint,
		.write_string = tg_set_conf_uint,
1120 1121 1122 1123
		.max_write_len = 256,
	},
	{
		.name = "throttle.write_iops_device",
1124 1125 1126
		.private = offsetof(struct throtl_grp, iops[WRITE]),
		.read_seq_string = tg_print_conf_uint,
		.write_string = tg_set_conf_uint,
1127 1128 1129 1130
		.max_write_len = 256,
	},
	{
		.name = "throttle.io_service_bytes",
1131
		.private = offsetof(struct tg_stats_cpu, service_bytes),
1132
		.read_seq_string = tg_print_cpu_rwstat,
1133 1134 1135
	},
	{
		.name = "throttle.io_serviced",
1136
		.private = offsetof(struct tg_stats_cpu, serviced),
1137
		.read_seq_string = tg_print_cpu_rwstat,
1138 1139 1140 1141
	},
	{ }	/* terminate */
};

1142
static void throtl_shutdown_wq(struct request_queue *q)
1143 1144 1145
{
	struct throtl_data *td = q->td;

1146
	cancel_work_sync(&td->dispatch_work);
1147 1148
}

T
Tejun Heo 已提交
1149
static struct blkcg_policy blkcg_policy_throtl = {
1150 1151 1152 1153 1154 1155
	.pd_size		= sizeof(struct throtl_grp),
	.cftypes		= throtl_files,

	.pd_init_fn		= throtl_pd_init,
	.pd_exit_fn		= throtl_pd_exit,
	.pd_reset_stats_fn	= throtl_pd_reset_stats,
1156 1157
};

1158
bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
1159 1160 1161
{
	struct throtl_data *td = q->td;
	struct throtl_grp *tg;
1162
	struct throtl_service_queue *sq;
1163
	bool rw = bio_data_dir(bio);
T
Tejun Heo 已提交
1164
	struct blkcg *blkcg;
1165
	bool throttled = false;
1166

1167 1168
	/* see throtl_charge_bio() */
	if (bio->bi_rw & REQ_THROTTLED)
1169
		goto out;
1170

1171 1172 1173 1174 1175 1176
	/*
	 * A throtl_grp pointer retrieved under rcu can be used to access
	 * basic fields like stats and io rates. If a group has no rules,
	 * just update the dispatch stats in lockless manner and return.
	 */
	rcu_read_lock();
T
Tejun Heo 已提交
1177
	blkcg = bio_blkcg(bio);
1178
	tg = throtl_lookup_tg(td, blkcg);
1179 1180
	if (tg) {
		if (tg_no_rule_group(tg, rw)) {
1181 1182
			throtl_update_dispatch_stats(tg_to_blkg(tg),
						     bio->bi_size, bio->bi_rw);
1183
			goto out_unlock_rcu;
1184 1185 1186 1187 1188 1189 1190
		}
	}

	/*
	 * Either group has not been allocated yet or it is not an unlimited
	 * IO group
	 */
1191
	spin_lock_irq(q->queue_lock);
1192
	tg = throtl_lookup_create_tg(td, blkcg);
1193 1194
	if (unlikely(!tg))
		goto out_unlock;
1195

1196 1197
	sq = &tg->service_queue;

1198 1199
	/* throtl is FIFO - if other bios are already queued, should queue */
	if (sq->nr_queued[rw])
1200
		goto queue_bio;
1201

1202
	/* Bio is with-in rate limit of group */
1203
	if (tg_may_dispatch(tg, bio, NULL)) {
1204
		throtl_charge_bio(tg, bio);
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216

		/*
		 * We need to trim slice even when bios are not being queued
		 * otherwise it might happen that a bio is not queued for
		 * a long time and slice keeps on extending and trim is not
		 * called for a long time. Now if limits are reduced suddenly
		 * we take into account all the IO dispatched so far at new
		 * low rate and * newly queued IO gets a really long dispatch
		 * time.
		 *
		 * So keep on trimming slice even if bio is not queued.
		 */
1217
		throtl_trim_slice(tg, rw);
1218
		goto out_unlock;
1219 1220 1221
	}

queue_bio:
1222 1223 1224 1225 1226
	throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
		   rw == READ ? 'R' : 'W',
		   tg->bytes_disp[rw], bio->bi_size, tg->bps[rw],
		   tg->io_disp[rw], tg->iops[rw],
		   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1227

1228
	bio_associate_current(bio);
1229
	throtl_add_bio_tg(bio, tg);
1230
	throttled = true;
1231

1232 1233
	/* update @tg's dispatch time if @tg was empty before @bio */
	if (tg->flags & THROTL_TG_WAS_EMPTY) {
1234
		tg_update_disptime(tg);
1235
		throtl_schedule_next_dispatch(tg->service_queue.parent_sq);
1236 1237
	}

1238
out_unlock:
1239
	spin_unlock_irq(q->queue_lock);
1240 1241
out_unlock_rcu:
	rcu_read_unlock();
1242
out:
1243 1244 1245 1246 1247 1248 1249
	/*
	 * As multiple blk-throtls may stack in the same issue path, we
	 * don't want bios to leave with the flag set.  Clear the flag if
	 * being issued.
	 */
	if (!throttled)
		bio->bi_rw &= ~REQ_THROTTLED;
1250
	return throttled;
1251 1252
}

1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
/**
 * blk_throtl_drain - drain throttled bios
 * @q: request_queue to drain throttled bios for
 *
 * Dispatch all currently throttled bios on @q through ->make_request_fn().
 */
void blk_throtl_drain(struct request_queue *q)
	__releases(q->queue_lock) __acquires(q->queue_lock)
{
	struct throtl_data *td = q->td;
1263
	struct throtl_service_queue *parent_sq = &td->service_queue;
1264 1265
	struct throtl_grp *tg;
	struct bio *bio;
1266
	int rw;
1267

1268
	queue_lockdep_assert_held(q);
1269

1270
	while ((tg = throtl_rb_first(parent_sq))) {
1271 1272
		struct throtl_service_queue *sq = &tg->service_queue;

1273
		throtl_dequeue_tg(tg);
1274

1275
		while ((bio = bio_list_peek(&sq->bio_lists[READ])))
1276
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
1277
		while ((bio = bio_list_peek(&sq->bio_lists[WRITE])))
1278
			tg_dispatch_one_bio(tg, bio_data_dir(bio));
1279 1280 1281
	}
	spin_unlock_irq(q->queue_lock);

1282 1283 1284
	for (rw = READ; rw <= WRITE; rw++)
		while ((bio = bio_list_pop(&parent_sq->bio_lists[rw])))
			generic_make_request(bio);
1285 1286 1287 1288

	spin_lock_irq(q->queue_lock);
}

1289 1290 1291
int blk_throtl_init(struct request_queue *q)
{
	struct throtl_data *td;
1292
	int ret;
1293 1294 1295 1296 1297

	td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
	if (!td)
		return -ENOMEM;

1298
	INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1299
	throtl_service_queue_init(&td->service_queue, NULL);
1300

1301
	q->td = td;
1302
	td->queue = q;
V
Vivek Goyal 已提交
1303

1304
	/* activate policy */
T
Tejun Heo 已提交
1305
	ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1306
	if (ret)
1307
		kfree(td);
1308
	return ret;
1309 1310 1311 1312
}

void blk_throtl_exit(struct request_queue *q)
{
T
Tejun Heo 已提交
1313
	BUG_ON(!q->td);
1314
	throtl_shutdown_wq(q);
T
Tejun Heo 已提交
1315
	blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1316
	kfree(q->td);
1317 1318 1319 1320
}

static int __init throtl_init(void)
{
1321 1322 1323 1324
	kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
	if (!kthrotld_workqueue)
		panic("Failed to create kthrotld\n");

T
Tejun Heo 已提交
1325
	return blkcg_policy_register(&blkcg_policy_throtl);
1326 1327 1328
}

module_init(throtl_init);